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S U M M A R Y
The uneven distribution of earthquakes and stations in seismic tomography leads to slower
convergence of nonlinear inversions and spatial bias in inversion results. Including dense re-
gional arrays, such as USArray or Hi-Net, in global tomography causes severe convergence
and spatial bias problems, against which conventional pre-conditioning schemes are ineffec-
tive. To save computational cost and reduce model bias, we propose a new strategy based on
a geographical weighting of sources and receivers. Unlike approaches based on ray density
or the Voronoi tessellation, this method scales to large full-waveform inversion problems and
avoids instabilities at the edges of dense receiver or source clusters. We validate our strategy
using a 2-D global waveform inversion test and show that the new weighting scheme leads
to a nearly twofold reduction in model error and much faster convergence relative to a con-
ventionally pre-conditioned inversion. We implement this geographical weighting strategy for
global adjoint tomography.

Key words: Inverse theory; Waveform inversion; Computational seismology; Seismic to-
mography; Theoretical seismology.

1 I N T RO D U C T I O N

The deployment of new global and regional seismographic stations
has made more data available for seismic tomography than ever
before. The spatial distribution of these stations remains highly lop-
sided, however, with limited ocean bottom seismometers or ocean
island stations, and fewer stations in the Southern Hemisphere than
in the Northern Hemisphere. This uneven station coverage, com-
bined with the uneven distribution of earthquakes dictated by plate
tectonics, poses major challenges for the inverse problem. In global
adjoint tomography in particular, the large number of paths from
subduction zones, such as Fiji Tonga, to dense arrays, such as USAr-
ray, causes highly oscillatory behaviour in model updates, hindering
convergence (Bozdağ et al. 2016).

Since the first global tomographic study by Dziewoński et al.
(1977), uneven data coverage has been an issue of concern. The
problem with a cluster of earthquakes or a dense receiver array is that
data residuals are correlated, and large portions of data are in some
sense redundant. The correlation of data residuals is reflected in the
data covariance matrix: its diagonal terms involve the variance in

each individual datum and off-diagonal terms involve the covariance
between one datum and another.

For any inverse problem, constructing a data covariance matrix is
an important yet challenging task. While full measurement of data
covariance is not practically feasible, a priori knowledge of data
covariance is not completely absent. In practice, correlation between
data is related to geographical proximity. Two main strategies have
been developed based on this idea.

One of the strategies is to merge data that are highly correlated. In
a pioneering traveltime tomography study using ray theory (Spak-
man & Nolet 1988), all the rays from pre-determined event cluster
to a single station are forged into a ‘composite ray’, and the corre-
sponding delay times averaged to one delay time. This composite
ray approach was then adopted in many subsequent studies (e.g.
Spakman 1991; Bijwaard et al. 1998; Bijwaard & Spakman 2000).
A slightly different method was proposed by Morelli & Dziewoński
(1987) and refined by van der Hilst et al. (1997) in which close rays
are grouped to form a ‘summary ray’, that is, the average of a ray
bundle. Both ‘composite ray’ and ‘summary ray’ methods reduce
the number of data and make rays cover the model space more
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evenly. In other words, they merge the correlated data to eliminate
the associated off-diagonal terms in the data covariance matrix.

Rather than directly merge close rays and reduce the data space,
another strategy to deal with uneven data coverage was introduced
by Li & Romanowicz (1996) in a global seismic tomography study.
They address this issue by weighting the diagonal terms of the data
covariance matrix according to how significantly their errors are
correlated with the errors of the other data. The weighting function
in this study (ω = ωe ωn ωr ) consists of data errors (ωe—the rms
amplitude of a wave packet), data redundancy within a wave packet
(ωn—the inverse of the square root of number of data) and data
redundancy among wave packets sampling similar ray paths (ωr—a
geometrical relationship between a given source–receiver pair to
all other pairs). The final term addresses data covariance through a
path weighting strategy. Down-weighting correlated paths can help
homogenize data coverage and reduce the effect of the associated
off-diagonal terms in the data covariance matrix, therefore a full
data covariance matrix can be approximated as a diagonal matrix.
This method has been employed in a few subsequent global to-
mography studies (e.g. Lebedev & van der Hilst 2008; Schaeffer
& Lebedev 2013; Clouzet et al. 2018). In short, introducing ei-
ther ‘composite/summary ray’ or ‘path weighting’ strategies to deal
with the uneven data distribution provides a proper design of a data
covariance matrix.

Besides working directly in data space, effects of uneven data cov-
erage can be dealt with to some extent through model parametriza-
tion and regularization. One solution is to introduce an irregular
grid or mesh based on ray coverage (Spakman & Bijwaard 2001),
or, more recently, based on the Voronoi tessellation (e.g. Debayle
& Sambridge 2004; Zhang & Thurber 2005). Sampling-dependent
grids can reduce the number of model parameters and allow high res-
olution wherever warranted by the data. The other solution is strong
damping in the inversion. Boschi & Dziewoński (1999) examined
the effects of uneven data coverage with differently parametrized
and regularized inversions. They parametrized their global model
in terms of both blocks and spherical harmonics. Sparse data cover-
age in the Southern Hemisphere produced fictitious model features,
especially in the spherical harmonic model. Applying stronger reg-
ularization or damping, however, more or less resolved the issue.
In other words, to resolve bias in inversions caused by uneven data
coverage, we need to sacrifice resolution in well-covered regions
through stronger damping (e.g. Masters et al. 1996; Antolik et al.
2003; Dalton & Ekström 2006).

Here, we propose a more general approach to handle unevenly
distributed data and examine related convergence rate implications.
The motivation for reinvestigating this historical topic is that in re-
cent full-waveform inversions (e.g. Zhu et al. 2015; Bozdağ et al.
2016), uneven data coverage caused oscillatory behaviour in model
updates and slowed convergence. The numerical solvers used in full-
waveform inversion are computationally very expensive, and so to
reduce cost it is crucial to address the issue of slow convergence due
to unevenly distributed data. In full-waveform tomography, ray paths
are replaced by waveform Fréchet derivatives associated with differ-
ent phases (e.g. direct body waves, multiply reflected body waves,
surface waves) all in one ‘event kernel’ despite the very different
‘paths’ associated with each phase (Tromp et al. 2005). Untangling
these paths, calculating their relative proximity or summing a bun-
dle of them becomes computationally prohibitive because it requires
many additional wavefield simulations. Instead, this paper demon-
strates an efficient and scalable geographical weighting strategy to
address data correlation, applicable not only to full-waveform in-
version but also to seismic inverse problems more generally. Using

Table 1. Measurement categories in global adjoint tomography (Bozdağ
et al. 2016; Lei et al. 2019). Seismic waves are categorized in terms of
complementary period bands on three components of motion.

Vertical (Z) Radial (R) Transverse (T)

17–40 s P–SV body waves P–SV body waves SH body waves
40–100 s P–SV body waves P–SV body waves SH body waves
40–100 s Rayleigh waves Rayleigh waves Love waves
90–250 s Rayleigh waves Rayleigh waves Love waves

2-D numerical experiments, we validate this strategy and show its
faster convergence rate and larger model error reduction compared
with previous methods. Finally, we demonstrate how to apply this
weighting strategy in global adjoint tomography.

2 W E I G H T I N G S T R AT E G Y

2.1 Measurements and misfit function

Seismic waves sample different parts of Earth’s interior at different
dominant frequencies, so it is natural to categorize seismic signals in
terms of their type and band. In global adjoint tomography (Bozdağ
et al. 2016; Lei et al. 2019), we currently consider three period
bands: 17–40 s, 40–100 s and 90–250 s. Typically, we select body
waves in the 17–40 s band, body waves in the 40–100 s band, surface
waves in the 40–100 s band and surface waves in the 90–250 s
band. Within each band, we consider three-component seismograms
rotated into vertical, radial and transverse directions of motion, so
in total there are 12 data categories, as summarized in Table 1.

Considering all these data categories, along with all the sources
and receivers available for an inversion, we define an overall data
misfit

� =
S∑

s=1

ωs

C∑
c=1

ωc

Rsc∑
r=1

ωscr

Nscr∑
w=1

ωscrw χscrw. (1)

Here, s = 1, ..., S denotes a given source and S the total number of
sources. Likewise, c = 1, ..., C denotes a given category and C the to-
tal number of categories (in our case, the 12 categories summarized
in Table 1). Rsc denotes the number of receivers for a given source s
and category c. Finally, Nscr denotes the number of measurement
windows for a given source s, category c and receiver r.

The misfit for a given source s, category c, receiver r and mea-
surement window w is

χscrw =
(

�dscrw

σscrw

)2

, (2)

where �dscrw denotes a measurement with associated uncertain-
ties σ scrw. When the model fits the data to within one standard
deviation, we expect that

χscrw ∼ 1. (3)

In the following sections we discuss various options for the assign-
ment of the source, category, receiver and window weights, ωs, ωc,
ωscr, and ωscrw, respectively.

2.2 Category-weighting strategy

We start by considering an ideal case where each datum in a certain
category is independent and the associated errors are not correlated.
(In reality, the measurement error of a datum is difficult to estimate,
not to mention the correlation of the errors.) The standard devia-
tion σ scrw in eq. (2) is often set as an a priori constant in the practice
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Figure 1. A Voronoi tessellation constructed for a dense array of stations,
marked by grey triangles. The area of cells corresponding to stations at the
edge of the array is hundreds of times more than stations removed from the
edge. We require a different sort of weighting scheme in which all stations
from a dense array have roughly similar weights.

of inversion. Under such conditions, a common weighting strategy
is to assign a constant weight to all windows, receivers, and sources,
that is,

ωs = 1, (4)

ωscr = 1, (5)

ωscrw = 1. (6)

We seek to define a misfit function � such that when the model fits
the data to within one standard deviation, � ∼ 1 , thereby making �

similar to a χ 2/N distribution. The data in each category should
contribute equally to the overall misfit, which implies that we should
choose a category weight

ωc = 1

C

1

Nc
, (7)

where Nc is the number of measurements in category c, that is,

Nc =
S∑

s=1

Rsc∑
r=1

Nscr . (8)

Note that the category weight in eq. (7) is independent of source s.
Now we see that when the model fits the data to within one standard

deviation, that is, χ scrw ∼ 1, then

� ∼
S∑

s=1

ωs

C∑
c=1

ωc

Rsc∑
r=1

ωscr

Nscr∑
w=1

ωscrw (9)

=
S∑

s=1

C∑
c=1

ωc

Rsc∑
r=1

Nscr (10)

=
C∑

c=1

1

C

1

Nc

S∑
s=1

Rsc∑
r=1

Nscr (11)

=
C∑

c=1

1

C
(12)

= 1, (13)

as desired.
Let us next analyse the contribution of each datum to the misfit

function at various levels. At the receiver level, we consider

χscr =
Nscr∑
w=1

ωscrw χscrw. (14)

When we assign a weight of one to all windows, that is, ωscrw = 1,
thus putting them on the same footing, and when the model fits the
data to within one standard deviation, that is, χ scrw ∼ 1, we see that

χscr ∼ Nscr . (15)

Next, we consider the misfit for a given source s and category c,
namely,

χsc =
Rsc∑
r=1

ωscr

Nscr∑
w=1

ωscrw χscrw =
Rsc∑
r=1

ωscr χscr . (16)

When the model fits the data to within one standard deviation, we
find that

χsc ∼
Rsc∑
r=1

Nscr = Nsc, (17)

where Nsc denotes the number of measurements for a given source s
in category c. Note that we have used the fact that ωcsr = 1, meaning
all receivers are weighted equally.

Since category weighting is independent of source weighting, we
can change the order of summation. The misfit in a given category c
is given by

χc =
S∑

s=1

ωs χsc. (18)

Since ωs = 1, we see that when the model fits the data to within one
standard deviation

χc ∼
S∑

s=1

Nsc = Nc, (19)

as expected.
Finally, the total misfit function is

� =
C∑

c=1

ωc χc, (20)

and thus we see that when the model fits the data to within one
standard deviation

� ∼
C∑

c=1

1

C

1

Nc
Nc = 1, (21)
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Figure 2. Condition number of the diagonal weighting matrix defined by eq. (22) as a function of the reference distance �0. The chosen value, indicated by the
green star, is about one-third of the largest possible value. Since evaluation of eq. (22) for different reference distances adds negligible computational expense,
it is possible (and recommended) to repeat this type of analysis for each iteration.

−60˚ −60˚

0˚ 0˚

60˚ 60˚

0.1 0.2 0.5 1.0 2.0

Figure 3. Example of receiver weights for an event C201604131355A at 40–100 s period band and vertical component determined based upon eq. (22) and
normalized according to eq. (25). The weights are in logarithmic scale. Note the difference between USArray stations and ocean island stations.

as required. This weighting scheme is widely used in a variety of
inversions (e.g. Zhu et al. 2015; Bozdağ et al. 2016). The behaviour
of the misfit function at the various levels demonstrated above will
guide the design of source and receiver weights in the next section.

2.3 Geographical-weighting strategy

In the previous section we treated each measurement datum in a
given category equally, which means each datum was weighted
only by the total number of measurements in its category, regardless

of possible correlations between data. Solving the inverse problem
based on this ‘all data are equal’ strategy can fail sometimes because
the uneven spatial distribution of sources and receivers on Earth’s
surface is found to negatively affect convergence rate. In particular,
if data from dense regional arrays such as USArray are included,
progress of the inversion can be extremely slow. In this section, we
add additional weights associated with the geographical distribution
of sources and receivers, with the goal of down-weighting densely
sampled regions, so that we obtain more uniform spatial sampling
and minimize the dominant effects of dense regional arrays.
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−60˚ −60˚

0˚ 0˚

60˚ 60˚

0.1 0.2 0.5 1.0 2.0 5.0 10.0

Figure 4. Example of source weights determined based upon eq. (22) and normalized according to eq. (24). Note the difference between dense subduction
zone earthquakes and sparse transform fault earthquakes.

-150 -100 -50 0 50 100 150

-50

0

50

Figure 5. Source–receiver geometry used in synthetic inversions. GSN stations are labelled by green triangles, USArray stations by blue triangles and sources
by magenta asterisks.

−150 −100 −50 0 50 100 150

−50

0

50

4300

4500

4700

m/s

Figure 6. Target model used in the synthetic inversions. Wave speeds are determined by the 40 s Rayleigh wave phase speed model of Trampert & Woodhouse
(2003).

2.3.1 Geographical weighting

For closely located sources or dense receiver arrays, measurement
errors are correlated for a variety of reasons (e.g. Li & Romanowicz
1996), and the degree of correlation is associated with geographical
distance. With these correlations in mind, we seek to define a source

and receiver weighting scheme that results in more uniform spatial
sampling. In such a scheme, areas with dense sampling, like Japan
or North America, should be down-weighted relative to areas which
are sparsely sampled, such as the Southern Ocean.

To determine weights for each source and receiver, one option is
to construct a Voronoi tessellation (e.g. Du et al. 1999) of the sources
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Figure 7. With the category weighting defined in Section 2.2, convergence
is extremely slow. With the geographical weighting discussed in Section 2.3,
convergence is much faster. Diagonal model-space pre-conditioning, it turns
out, is not an effective alternative to weighting when dealing with extremely
lopsided source–receiver distributions.

or receivers, and then weight each source or receiver by the area of its
corresponding cell. Although the Voronoi weighting has been used
successfully in regional and global studies (e.g. Böhm et al. 2000;
Debayle & Sambridge 2004; Zhang & Thurber 2005), when applied
to dense station arrays or event clusters, the approach becomes
unstable. In some cases, the stations at the edge of a dense array
can be weighted orders of magnitude more than stations slightly
removed from the edge, which is undesirable. Fig. 1 illustrates this
effect. To avoid convergence problems, we require that stations from
a dense array carry roughly equal weights.

A robust alternative approach is as follows. Given a set of N
receivers, calculate the epicentral distance �ij for each receiver
pair. The weight ωi assigned to each receiver i is calculated via

ω−1
i =

N∑
j=1

exp

[
−

(
�i j

�0

)2
]

, (22)

where �0 is a reference distance parameter. We note that if a station
has few nearby stations, it is assigned a larger weight than if it has
many nearby stations. For large values of �0 the scheme reduces
to the category weighting in Section 2.2. The adjustable reference
distance avoids the issue of overwhelming weights in the Voronoi
scheme.

We also note that an equivalent weighting scheme for sources
can be obtained by substituting source pairs for receiver pairs in
the above expression. In Section 2.3.3 we discuss how weights
determined by eq. (22) are normalized to obtain weights ωc for each
event and ωcsr for each receiver associated with a certain event.

Interestingly, eq. (22) is just a discretized version of the ‘smooth-
ing’ method used in many parameter estimation and optimal de-
sign studies (Modrak & Tromp 2016). Rather than applying it in
the model space, however, we are applying it in the data space to
‘smooth’ the discrete receiver distribution.

2.3.2 Choice of reference parameter

The distribution of weights calculated from eq. (22) depends
strongly on the reference distance �0. This parameter needs to be
carefully chosen so that the ratio of maximum to minimum weights
is not unreasonably small or large. In the example in Fig. 2, we
chose �0 so that the ratio is about one-third of the largest possible

ratio for all choices of �0. In other words, we chose the reference
length parameter to be about one-third of the most aggressive value.

Based on this choice, Figs 3 and 4 illustrate the distribution of
weights in a recent global adjoint tomography study (Lei et al.
2019). In Fig. 3, weights of USArray and European stations are
brought down to about one-tenth of ocean island station’s weights.
The source weighting is similar, with the contribution of individual
Fiji Tonga events brought down to about one-tenth the contribution
of intraplate events in Asia. This ratio between the minimum and
maximum weights can be adjusted through the reference distance
parameter, as informed by practical experience in a given inversion.

2.3.3 Weighting normalization

In this section our goal is to introduce geographical source and
receiver weighting without changing the event- and category-level
behaviour of the misfit function discussed in Section 2.2.

In geometrical ray-based tomography, specific phases are iden-
tified and windowed. These phases usually correspond to distinct
paths that provide constraints on different parts of Earth’s interior,
and some phases may be assigned more weight than others depend-
ing on the aims of the researcher. In waveform inversion, any part
of the wave train can be selected and phase identification is no
longer required. We thus assign a uniform weight to all windows in
a seismogram,

ωscrw = 1, (23)

such that, according to eq. (15), χ scr ∼ Nscr. The normalization of
the geographical source weights from eq. (22) is then determined
in a straightforward manner by

S∑
s=1

ωs = S. (24)

Because the number of receivers that happen to be online varies
from one source to another, including receiver weights in an in-
version is not as straightforward. To guide the normalization of
receiver weights, we adopt the same type of analysis performed in
connection with category-weighting and eq. (16).

If the model fits the data to within one standard deviation, the
misfit in a certain source and category χ sc approaches Nsc, and
the receiver-level misfit χ scr approaches Nscr (eqs 15–17). These
properties of the misfit imply a normalization requirement for the
receiver weights ωscr, determined by eq. (22) for a given category c
and source s:

Rsc∑
r=1

ωscr Nscr = Nsc. (25)

When ωscr = 1, as in the simple weighting strategy, this normaliza-
tion condition is naturally satisfied because

Rsc∑
r=1

Nscr = Nsc. (26)

After we determine the source and receiver weights, what is left is
to examine the category weights ωc . For the misfit function given
by eq. (1), we want the contributions from each category to be
balanced, and this implies that

ωc

S∑
s=1

ωs

Rsc∑
r=1

ωscr Nscr = ωc

S∑
s=1

ωs Nsc = 1

C
, (27)
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Figure 8. Percentage of data (window count) in each of the 12 categories (see Table 1). Period band and wave type are labelled in the upper right corner of each
panel. Note the dramatic differences between body-wave (top) and surface-wave data (bottom). The large variations in data count from category to category
illustrate the need for balancing.

and thus

ωc = 1

C

1∑S
s=1 ωs Nsc

. (28)

Note that when ωs = 1, the weighting reduce to the category-
weighting strategy, namely,

ωc = 1

C

1

Nc
. (29)

From the normalization of geographical weights described above,
we see that when the model fits the data to within one standard
deviation, the source-level misfit χ sc approaches Nsc and category-
level misfit χ c approaches Nc.

In theory, data correlation changes the degrees of freedom in the
data space of an inversion. Loosely speaking, the above normal-
ization can be thought of as changing the degrees of freedom of
the data set for a given category c and source s, as well as the de-
grees of freedom of the data set in a given category c. Geographical
weighting can be viewed as an approximation of the complete data
covariance matrix.

3 N U M E R I C A L VA L I DAT I O N : 2 - D
G L O B A L A D J O I N T T O M O G R A P H Y

Data space weighting and model space pre-conditioning are two
common approaches to balance uneven coverage in the inverse prob-
lem. In this section we investigate performance of the geographical
weighting strategy through comparisons with the category weight-
ing strategy and pre-conditioning in terms of model error reduction
and convergence rate.

In full-waveform inversion, model space pre-conditioning is ac-
complished through a change of variables in the nonlinear conjugate
gradient, quasi-Newton, or other nonlinear optimization methods

used to minimize the objective function (e.g. Modrak & Tromp
2016).

Model space pre-conditioning differs from data space pre-
conditioning in that the former is applied to the gradient and the
latter to the Jacobian or its action. Because the expense of working
with the Jacobian generally far outweighs any increase in conver-
gence rate, data space pre-conditioning becomes impractical for
large-scale problems. Data space weighting, in turn, differs from
both types of pre-conditioning in that, rather than just a change of
variables in the optimization algorithm, it effectively changes the
objective function.

To validate the geographical weighting strategy, we performed
2-D inversions with a global test problem. In these numeri-
cal experiments, we used both Global Seismographic Network
(GSN) stations, which are sparsely distributed at the global scale,
and USArray stations, which densely cover the North Ameri-
can continent, as shown in Fig. 5. For the target model, we
employed the acoustic test case shown in Fig. 6. We gener-
ated synthetic data for this model using periodic boundary con-
ditions at the edges to approximate a spherical Earth. Finally,
we inverted these data with the workflow described by Modrak
et al. (2018).

To test the geographical weighting strategy, we performed 2-D
inversions with a global test problem. In these experiments, we used
both GSN stations, which are sparsely distributed at the global scale,
and USArray stations, which densely cover the North American
continent, as shown in Fig. 5. For the target model, we employed
the acoustic test case shown in Fig. 6. We generated synthetic data
for this model using periodic boundary conditions at the edges to
approximate a spherical Earth. Finally, we inverted these data with
the workflow described by Modrak et al. (2018).

Starting from a homogeneous model, we tracked the reduction in
model error as a function of the number of wavefield simulations in

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/219/2/1225/5542709 by C

N
R

S - ISTO
 user on 16 February 2022



1232 Y. Ruan et al.

0

4

8

90
−

25
0 

s 
su

rf
. w

Vertical (Z)

3.9% 4.1%

0

4

8

Radial (R)

3.0% 3.0%

0

4

8

Transverse (T)

3.5%
4.1%

0

8

16

40
−

10
0 

s 
su

rf
. w

.

6.4% 6.8%

0

8

16

5.6% 5.8%

0

8

16

6.2% 6.7%

0

8

16

40
−

10
0 

s 
bo

dy
 w

.

8.6%
7.6%

0

8

16

6.9% 7.1%

0

8

16

8.6% 9.0%

0

16

32

17
−

40
 s

 b
od

y 
w

.

16.1% 15.4%

0

16

32

14.1% 13.4%

0

16

32

17.1% 17.1%

Category weighting Geographical weighting

Figure 9. Percentage of the misfit in each of the 12 categories (see Table 1) using the category-weighting strategy (orange) and geographical-weighting strategy
(black). The percentage contribution in each category is labelled above the bars. Note that each category’s contribution to the misfit barely changes with
geographical weighting because weight rebalancing only happens within each category.

three separate inversions. In the first inversion, we employed model-
space diagonal pre-conditioning, using the best-performing pre-
conditioner of all the variants tested by Modrak & Tromp (2016).
In the second inversion, we employed the category-weighting strat-
egy discussed in Section 2.2. In the third inversion, we used the
geographical-weighting strategy described in Section 2.3. The per-
formance of the three methods is shown in Fig. 7.

Compared with category weighting, pre-conditioning fails to pro-
vide an effective improvement, while the geographical-weighting
strategy provides a much faster convergence rate. Considering the
high cost of large-scale inverse problems like global adjoint to-
mography, where one iteration can require millions of core hours,
the saving could be significant. In addition to the performance

improvement, the geographically weighted inversion demonstrates
larger model error reduction than the other approaches.

4 A P P L I C AT I O N T O 3 - D G L O B A L
A D J O I N T T O M O G R A P H Y: M I S F I T
S TAT I S T I C S

After testing the geographical-weighting strategy through synthetic
experiments, we deployed it in our ongoing global adjoint tomogra-
phy study (Lei et al. 2019) with the goal of obtaining faster conver-
gence and a better model. In this section we illustrate various aspects
of the above category- and geographical-weighting strategies.
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As described in Section 2, the weight we assign to each mea-
surement is the product of source, category, receiver, and window
weights: ωs ωc ωscr ωscrw . In Figs 3 and 4, we plotted weights ωs

assigned to sources and weights ωscr assigned to receivers. Next, we
examine the misfit when the product of all four weights is applied.

In total, we picked more than 17 million windows from 1480
sources and 12 categories (Lei et al. 2019). As shown in Fig. 8, the
contribution from each category is far from balanced. Short period
body-wave data (17–40 s) account for more than 50 per cent of the
total number of windows while long period surface waves (90–250 s)
contribute less than 5 per cent. Across all three periods bands, more
than 80 per cent of windows correspond to body-wave data. For a
given period band, the vertical component always provides more

data than the horizontals. If not balanced, these differences between
categories can cause regions sensitive to body waves to be updated
more than regions sensitive to surface waves and slow down the
overall convergence rate.

We define the weighted misfit for each category as

�c =
S∑

s=1

Rsc∑
r=1

Nscr∑
w=1

ωs ωc ωscr ωscrw χscr . (30)

In Fig. 9, we calculate the percentage of the summed misfit for each
category using two weighting strategies: (1) orange bars correspond
to category-only weighting and (2) black bars correspond to the full
category- and geographical-weighting strategy.
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Figure 11. Smoothed shear wave-speed gradient contributions using data from 42 earthquakes without (left-hand column) and with source and receiver
weighting (right-hand column) in three period bands: 17–40 s (top row), 40–100 s (middle row) and 90–250 s (bottom row). The top centre map shows the
cross-section with a red line for reference. The isotropic smoothing length scale is 100 km.

In the first case, after employing the category-weighting strategy
in which the misfit is normalized by the total number of data in
each category (Fig. 8), misfits from different categories are better
balanced and do not vary dramatically from category to category.

Although the summed weights themselves are equal in each cate-
gory, the weighted misfits from each category are not. The weighted
misfits of short-period body waves are on average two to three times
larger than the misfits of long-period body and surface waves.
We attribute this to the larger number of updates required to fit
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Figure 12. Example of a smoothed shear wave-speed gradient (weighted summation of the contributions of the three period bands shown in Fig. 11) using
data from 42 earthquakes without (left) and with source and receiver weighting (right). The isotropic smoothing length scale is 100 km.

short-period phases compared with long-period phases, and we ex-
pect the body-wave misfits to decrease as the inversion progresses.

In the second case, when geographical weighting is applied, the
distribution of misfits in each category does not significantly change,
meaning that the re-balancing happens only within each category,
as desired.

To further probe the overall re-balancing within each category, we
compare the contribution to the total misfit from two seismographic
networks: USArray (network ID TA) and GSN (network IDs II and
IU). USArray stations are densely distributed across North America
and GSN stations are sparsely distributed across the globe.

The total misfit from USArray or GSN stations in each category
is given by

�USArray / GSN
c =

S∑
s=1

Rsc∑
r=1

Nscr∑
w=1

ωs ωc ωscr ωscrw χUSArray / GSN
scr . (31)

Fig. 10 shows the percentage of �USArray
c and �GSN

c in each cate-
gory under different weighting strategies. In the category-weighing
strategy, GSN stations contribute much less to the overall mis-
fit than USArray stations, reflecting the proportionality to the
amount of data, as expected. In the geographical-weighting strat-
egy, the contribution of GSN stations is enhanced due to the
re-balancing.

To further illustrate the effects of weighting, we selected 42 events
for a pilot test and examined the model update gradient. Ideally, we
should run forward and adjoint simulations for each of the 12 cat-
egories for one weighting strategy, and repeat this process for the
other weighting strategy, which would require 2016 simulations in
total. To save computational cost while keeping the test meaningful,
we considered only three categories, 17–40 s, 40–100 s and 90–
250 s, and ignored wave types for the adjoint simulations. Fig. 11
shows cross-sections of the model update gradient. In the shortest
period band (17–40 s), the gradient based on category-weighting
is dominated by regions beneath Fiji Tonga and North America,
with limited updates in the Southern Hemisphere. In contrast, the
geographical-weighting approach results in a balanced gradient with
more information in the Southern Hemisphere and relatively re-
duced sensitivity beneath Fiji Tonga and North America. The longer
period bands, involving mostly surface waves, demonstrate similar
behaviour but more focused on the shallow mantle. Upon combining

all three categories, we clearly see that the model update based on
the geographical weighting strategy is better balanced, with a more
even sampling of the whole mantle (Fig. 12). From this pilot test
we conclude that the geographical-weighting strategy effectively
balances the inversion and improves the convergence rate, which is
necessary for any inversion dealing with the unevenly distributed
data.

5 C O N C LU S I O N

We propose a geographic weighting strategy to address uneven
data coverage in seismic tomography. To test the approach, we per-
formed synthetic 2-D global adjoint tomography experiments using
realistic source and receiver distributions. The results show that ge-
ographical weighting performs better than category-only weighting
and diagonal model-space pre-conditioning. A 42-event pilot test
was used to illustrate how geographical weighting balances densely
and sparsely sampled regions. Finally, using a database of 1480
earthquakes, we performed a statistical analysis of 17 million mea-
surements assimilated in the global adjoint tomography inversion
of Lei et al. (2019), verifying expected effects of the weighting
scheme. Although we only demonstrated an example of global full-
waveform adjoint tomography, this approach should be applicable
to any inverse problem where the sources/receivers are unevenly dis-
tributed. As more data from dense regional seismographic networks
become available, we expect weighting to play an increasingly im-
portant role in scientific studies of Earth’s interior (e.g. Örsvuran
et al. 2019).
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