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Abstract

This paper introduces the first statistically consistent estimator of the optimal transport map between

two probability distributions, based on neural networks. Building on theoretical and practical advances

in the field of Lipschitz neural networks, we define a Lipschitz-constrained generative adversarial network

penalized by the quadratic transportation cost. Then, we demonstrate that, under regularity assumptions,

the obtained generator converges uniformly to the optimal transport map as the sample size increases to

infinity. Furthermore, we show through a number of numerical experiments that the learnt mapping has

promising performances. In contrast to previous work tackling either statistical guarantees or practicality,

we provide an expressive and feasible estimator which paves way for optimal transport applications where

the asymptotic behaviour must be certified.

1 Introduction

An optimal transport map is the fundamental object of Monge’s seminal formulation of optimal transport

[Monge, 1781]. It transforms one distribution into another with minimal effort. Formally, given two probability

distributions P and Q on Ω ⊆ Rd, an optimal transport map from P to Q is a solution to,

min
T∈T (P,Q)

∫
Ω

‖x− T (x)‖2dP (x), (1)

where T (P,Q) is the set of measurable maps T : Ω→ Ω pushing forward P to Q, that is Q(M) = P (T−1(M))

for every measurable set M ⊆ Ω. This property, denoted by T]P = Q, means that if a random variable X

follows the distribution P then its image T (X) follows the distribution Q. According to Theorem 2.12 in [Villani,

2003], originally demonstrated in [Cuesta and Matrán, 1989, Brenier, 1991], when P and Q admit densities

with respect to the Lebesgue measure and have finite second-order moments, then there exists a unique (up to

P -negligible sets) solution to Problem (1), which we denote by T0.

Due to their transparent mathematical formulation and well-established theory, optimal transport maps

became popular in many applications from statistics-related fields, where one aims at modeling shifts between

distributions. This includes multivariate-quantile analysis [Beirlant et al., 2020, Hallin et al., 2021], signal

analysis [Kolouri et al., 2017], domain adaptation [Courty et al., 2014, Seguy et al., 2018, Redko et al., 2019],

transfer learning Gayraud et al. [2017], fairness in machine learning [Gordaliza et al., 2019, Black et al., 2020],

and counterfactual reasoning [De Lara et al., 2021, Berk et al., 2021]. However, in such practical frameworks,

one typically does not have access to the true distributions P and Q but to independent samples x1, . . . , xn ∼ P
and y1, . . . , yn ∼ Q. This raises the question of constructing a tractable approximation of the solution T0 on the
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basis of these empirical observations. The simplest way to compute an empirical optimal transport map from

data points is to solve Problem (1) between the empirical measures Pn := n−1
∑n
i=1 δxi

and Qn := n−1
∑n
i=1 δyi

instead of P and Q. Implementing this solution suffers from three main drawbacks. The first one is the

computational cost, since it requires at least O(n3) operations to compute the empirical optimal transport map

[Peyré and Cuturi, 2019]. The second is the memory cost, since this map is typically stored as an n× n matrix.

As a consequence of these two issues, this approach does not scale well with the size of the dataset. The third

limitation of the empirical map is its inability to generalize to new out-of-sample observations: by construction

it is only matching the set {x1, . . . , xn} to {y1, . . . , yn}.
These practical drawbacks triggered a vast literature on continuous approximations of optimal transport maps.

The proposed mappings all come with different practical limitations, theoretical guarantees, and experimental

performances. On the one hand, a wide range of these constructions provably converge in some sense to the true

map T0 as n increases to infinity, making them consistent estimators. The so-called plug-in estimators, such as

the ones proposed in [Beirlant et al., 2020, Hallin et al., 2021, Manole et al., 2021], extend the empirical solution

to the whole domain Ω by leveraging regularity assumptions. However, they still bear the burdens of computing

and storing the empirical transport map. The smooth estimator introduced by Hütter and Rigollet [2021]

reaches near-optimal minimax convergence rate, but fails to be computationally tractable. In contrast, Seguy

et al. [2018] and Pooladian and Niles-Weed [2021] employed entropic regularization, a numerical scheme based

on Sinkhorn’s algorithm [Cuturi, 2013], to build an implementable and scalable estimator. On the other hand,

several papers proposed learning the optimal transport map through neural networks, leading to expressive

approximations with high generalization power. Specifically, Leygonie et al. [2019] and Black et al. [2020]

developed approximations based on a generative-adversarial-network (GAN) objective [Goodfellow et al., 2014,

Arjovsky et al., 2017]. More recently, the use of input convex neural networks, building on the convexity of

the optimal transport potential, has received a growing attention [Makkuva et al., 2020, Korotin et al., 2021,

Huang et al., 2021]. However, while these neural-based mappings display strong experimental performances,

they generally lack theoretical guarantees, in particular the statistical convergence.

To sum-up, the literature has mostly addressed either theoretically grounded statistical estimators of optimal

transport maps, but unsuitable for large-scale implementations, or efficient heuristic approximations, at the cost

of statistical guarantees. In this paper, we propose a novel GAN-based estimator Gn of T0 which, under some

assumptions, converges uniformly:

‖Gn − T0‖∞
a.s.−−−−−→

n→+∞
0.

Our construction takes root in the approximation from [Black et al., 2020], defined as the generator of a

penalized Wassertein-GAN (WGAN) training problem [Arjovsky et al., 2017], and improve it by assuming a

setting where the optimal transport map is Lipschitz and by leveraging recent theoretical and practical advances

on Lipschitz neural networks [Anil et al., 2019, Tanielian and Biau, 2021, Béthune et al., 2021]. Formally, Gn

solves the following adversarial training:

inf
G∈Gn

{
‖I −G‖2L2(Pn) + λn sup

D∈Dn

∫
D (d(G]Pn)− dQn)

}
,

where Dn is a class of 1-Lipschitz discriminators providing a proxy for the Wasserstein-1 distance, and Gn is a

class of Lipschitz generators parametrizing the space of feasible mappings. The positive parameter λn governs

the trade-off between minimizing the quadratic transportation cost, promoting the objective of the Monge

problem (1), and minimizing the distance between the generated and the target distributions, enforcing the

push-forward constraint.
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Figure 1: Estimation of the optimal transport map on the TwoMoons dataset. (a) GAN estimator G after 800

gradient steps on the generator, on the basis of 4, 000 points from each distribution. The black arrows represent

the transport of specific points. (b) Empirical optimal transport map (discrete matching) between samples of

size 500.

The most similar papers to ours are the ones of Seguy et al. [2018] and Pooladian and Niles-Weed [2021], as

they propose feasible estimators with statistical guarantees. We note two main differences. First, we do not rely

on entropic regularization while still ensuring scalability to large datasets. Second, our estimator innovates

by being defined as a neural network. In particular, Seguy et al. [2018] relies on a neural network in practice,

but the statistical convergence holds for a theoretical estimator. Regarding theoretical guarantees, we lack the

convergences rates provided in [Pooladian and Niles-Weed, 2021], but we prove a stronger result than Seguy

et al. [2018] by ensuring the uniform convergence of the estimator.

Outline. The rest of the paper is organized as follows:

1. Section 2 introduces the necessary background on so-called GroupSort neural networks, which became the

gold standard to parametrize Lipschiz feed-forward neural networks. By studying the multivariate setting,

we provide generalizations of the main approximation theorem from [Tanielian and Biau, 2021].

2. Section 3 presents the technical assumptions of our framework, in particular the regularity of the optimal

transport map, details construction of our GAN estimator, and states the statistical consistency theorem.

3. Section 4 focuses on the practical implementation of the estimator, and study its performance through a

number of numerical experiments.

Notations. The absolute value of real numbers and the Euclidean norm of vectors are respectively given

by |·| and ‖·‖. The notation Br refers to the centered Euclidean ball of Rd with radius r > 0. We denote

by diam(Ω) the diameter of a set Ω ⊆ Rd. If Ω is a closed convex set, then PΩ stands for the projection

onto Ω. The support of a probability measure is given by supp(·). In the following Ω1 ⊆ Rd1 and Ω2 ⊆ Rd2

denote two arbitrary subsets. For a function F : Ω1 → Ω2 and µ a probability measure on Ω1, we write
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‖F‖L2(µ) :=
√∫

Ω1
‖F (x)‖2dµ(x). The supremum norm of function is given by ‖·‖∞.For some L > 0, we write

LipL(Ω1,Ω2) the set of L-Lipschitz functions from Ω1 to Ω2. For some α > 0, we call Cα(Ω1,Ω2) the set of

α-Hölder functions from Ω1 to Ω2 and write ‖·‖α,∞ for the α-Hölder norm of functions. For a differentiable

function F : Ω1 → Ω2, we call F ′ its derivative, where for any x ∈ Ω1 the quantity F ′(x) is a d1 × d2 matrix.

For a real symmetric matrix S and a real number γ, the relation γ � S indicates that all the eigenvalues of S

are greater than γ. The relation � is defined similarly.

2 Lipschitz neural networks

The GAN estimator defined by (2) and further described in Section 3 requires generators and discriminators

that are both Lipschitz. The question of imposing sharp Lipschitz constraints on neural networks has attracted

much attention from the field of machine learning, especially with the popularization of WGANs which rely on

1-Lipschitz discriminators. In particular, gradient penalization [Gulrajani et al., 2017] has proven to be more

efficient than the parameter-clipping approach originally proposed by Arjovsky et al. [2017]. In this paper,

we focus on the recently introduced GroupSort activation function to impose the Lipschitz constraint, which

have proven to yield tighter estimates of 1-Lispchitz functions [Anil et al., 2019, Tanielian and Biau, 2021]. We

recall the necessary background on GroupSort-based networks, and show that their ability to approximate any

bounded classes of Lipschitz functions holds for arbitrary output dimension.

2.1 Multivariate GroupSort neural networks

We introduce GroupSort neural networks in a similar fashion to [Tanielian and Biau, 2021]. In contrast, we

consider a more general setting where the output dimension p ≥ 1 is arbitrary. This difference is motivated by

the optimal transport map being a multivariate function.

We write σk for the GroupSort activation function of grouping size k ≥ 2. By definition, it splits the

pre-activation input into groups of size k, and then sorts each group by decreasing order. This operation is

1-Lipschitz, gradient-norm preserving and homogeneous [Anil et al., 2019]. In this paper, we only address

the grouping size 2. We call a GroupSort feed-forward neural network (with grouping size 2) any function

Nθ : Rd → Rp of the form

Nθ = hl ◦ hl−1 ◦ . . . ◦ h1, (2)

where

h1(x) := W1x+ b1 with W1 ∈ Rw1×d, b1 ∈ Rw1 ;

h2(x) := W2σ2(x) + b2 with W2 ∈ Rw2×w1 , b2 ∈ Rw2 ;

. . .

hl(x) := Wlσ2(x) + bl with Wl ∈ Rp×wl−1 , bl ∈ Rp.

The integer l ≥ 1 denotes the depth of the network while the integers {w1, . . . , wl−1} refer to the widths of the

hidden layers {h1, . . . , hl−1}. The widths are assumed to be divisible by 2 (the grouping size). Additionally, we

define s :=
∑l−1
i=1 wi the size of the network. The parameter θ := (W1, . . . ,Wl, b1, . . . , bl) ∈ Θ represents the

weights matrices and offset vectors of Nθ.

For a matrix W , let ‖W‖∞ := sup‖x‖∞=1 ‖Wx‖∞ and ‖W‖2,∞ := sup‖x‖=1 ‖Wx‖∞, where ‖x‖∞ denotes

the maximum norm of vectors. Consider the following assumption on the parameters:

4



(C) There exists a constant C > 0 such that for all (W1, . . . ,Wl, b1, . . . , bl) ∈ Θ,

‖W1‖2,∞ ≤ 1,

max(‖W2‖∞, . . . , ‖Wl‖∞) ≤ 1,

max(‖b1‖∞, . . . , ‖bl‖∞) ≤ C.

In the following, we denote by N p
C(l, s) the class of GroupSort feed-forward neural networks with depth l, size s,

output dimension p, satisfying Assumption (C) for the constant C > 0. When the depth and size are arbitrary,

we simply write N p
C . The following result is a trivial extension to the multivariate case of Lemma 1 in [Tanielian

and Biau, 2021], stating that GroupSort neural networks satisfying Assumption (C) are 1-Lipschitz.

Lemma 2.1. For any C > 0, N p
C ⊂ Lip1(Rd,Rp).

Next, we study their ability to approximate Lipschitz continuous functions.

2.2 Approximating Lipschitz continuous functions

We now restrict the input domain to a compact subset of Rd denoted by Ω. The following lemma states that

for a well-chosen C the class N 1
C approximates with given precision any bounded subclass of Lip1(Ω,R). It

generalizes Theorem 2 in [Tanielian and Biau, 2021] by providing the universal constant for which Assumption

(C) is satisfied, and extending the result to any compact domain Ω while it was restricted to [0, 1]d.

Theorem 2.1. Let F ⊆ Lip1(Ω,R) be a class of functions such that supf∈F ‖f‖∞ ≤ KF for some KF > 0. Set

ε > 0 and C := KF +
√
d(supx∈Ω ‖x‖+ 1) + ε. Then, for any f ∈ F , there exists a neural network N ∈ N 1

C(l, s)

where

l = O

(
d2 log2

(
2
√
d

ε

))
and s = O

(2
√
d

ε

)d2 ,

such that ‖N − f‖∞ ≤ ε.

The proof essentially follows that of Tanielian and Biau [2021]. It generalizes some parts by tracking the

bound on the offset vectors of the approximating network. Interestingly, Theorem 2.1 can be extended to the

case where the output is of dimension p.

Theorem 2.2. Let G ⊆ Lip1(Ω,Rp) be a class of functions such that supg∈G ‖g‖∞ ≤ KG for some KG > 0. Set

ε > 0 and C = KG +
√
d(supx∈Ω ‖x‖+ 1) + ε. Then, for any g ∈ G there exists a neural network N ∈ N p

C(l, s)

where

l = O

(
d2 log2

(
2
√
d
√
p

ε

))
, and s = O

p(2
√
d
√
p

ε

)d2 ,

such that ‖N − g‖∞ ≤ ε.

The proof amounts to applying Theorem 2.1 to the univariate function along each dimension. Note that

Theorems 2.1 and 2.2 can be extended to approximate L-Lipschitz functions, for an arbitrary L > 0, by

multiplicating by L the output later of 1-Lipschitz neural networks. This remark will be useful to approximate

the optimal transport map, assumed to be L-Lipschitz.
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3 GAN estimator

In this section, we address the construction of an estimator of the optimal transport map, and show its uniform

convergence as the sample size increases to infinity.

3.1 Optimal transport setup

Set P and Q two measures on Rd admitting densities with respect to the Lebesgue measure and with finite

second-order moments. We aim at estimating with a GroupSort neural network the unique optimal transport

map T0 between P and Q through the knowledge of the empirical distributions Pn and Qn. As mentioned in

the introduction, we consider a setting where the optimal transport map T0 is Lipschitz.

As in the previous section, Ω ⊂ R is a compact set, and we denote by ΩP := supp(P ) the source domain

and ΩQ := supp(Q) the target domain. Then, we let L ≥ 2 and make the following assumptions:

(S1) The source domain ΩP ⊆ BL is a bounded and connected Lipschitz domain. The measure P admits a

density ρ with respect to the Lebesgue measure such that L−1 ≤ ρ(x) ≤ L for almost every x ∈ ΩP .

(S2) Let Ω̃P denote a convex set with Lipschitz boundary such that ΩP + BL−1 ⊆ Ω̃P ⊆ BL. The optimal

transport map T0 is a differentiable function from Ω̃P to Rd such that T0 = ∇f0 where f0 : Ω̃P → Rd is a

differentiable convex function. Additionally it satisfies:

(i) T0 ∈ C2(Ω̃P ,Rd) such that ‖T0‖2,∞ ≤ L;

(ii) L−1 � T ′0(x) � L for all x ∈ Ω̃P .

These are the same hypothesis as in Section 5 from [Hütter and Rigollet, 2021], specified with a Hölder

regularity α equals to 2. This makes our setting milder, as we do not require the optimal transport map to

be highly regular. Assumptions (S1) and (S2) ensure the existence of a near-optimal minimax estimator of

T0, which play a key role in the proof of our estimator’s consistency. Note that, without loss of generality,

we can consider that P and Q are measures on a compact set Ω ⊂ Rd sufficiently large to contain BL. Then,

Assumption (S2) implies that T0 ∈ LipL(Ω, BL).

Now that the optimal transport problem is properly specified, we turn to the GAN architecture through

which our estimator is defined.

3.2 GAN setup

The optimal transport map T0 satisfies two objectives: it is constrained to pushing-forward P to Q, that is

T0]P = Q; it minimizes the quadratic transportation cost ‖I − T0‖2L2(P ). Due to the push-forward condition, T0

can be regarded as a generative model. This observation is the foundation of the approximation of Black et al.

[2020]. They proposed to regularize the WGAN objective function, promoting only the push-forward condition,

with an optimal transport penalty on the generator. We proceed similarly, with three critical differences. First,

we penalize the quadratic transportation cost with the push-forward condition instead of the converse. Second,

we employ GroupSort neural networks to implement the discriminator and generator. Third, because we aim at

proving the statistical convergence of the generator, we emphasize for all the objects involved in the GAN their

dependence to the sample size n, including the penalty weight.
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3.2.1 Discriminator

In the WGAN framework, the discriminator D : Rd → R is a neural network defining a proxy for the Wasserstein-

1 distance, while the generator G : Rd → Rd is a neural network minimizing this proxy between G]Pn and Qn,

thereby aiming at generating Q from P .

We recall that the Wasserstein-1 distance between two measures µ and ν on Ω is defined as,

W(µ, ν) := inf
π∈Π(µ,ν)

∫
Ω×Ω

‖x− y‖dπ(x, y),

where Π(µ, ν) is the set of couplings with µ as first marginal and ν as second marginal. Interestingly, this

distance enjoys the following dual formulation, known as the Kantorovich-Rubinstein formula [Kantorovich and

Rubinshtein, 1958]. According to the Particular Case 5.15 of Theorem 5.9 in [Villani, 2008], this can be written

as:

W(µ, ν) = sup
f∈Lip1(Ω,R)

∫
f(dµ− dν). (3)

The key idea of WGAN is to approximate this distance by computing the supremum over a class of neural

networks included in Lip1(Ω,R). The larger the class, the better the approximation. Originally, this was done

by clipping, thresholding the weights of the network, leading to a coarse approximation of the Wasserstein

distance. Later, several papers showed that using GroupSort neural networks led to sharper approximations

[Anil et al., 2019, Biau et al., 2021].

Actually, note that if f is an optimal function in Problem (3), then the function f + c for any constant

c is also an optimal solution. As a consequence, we can without loss of generality restrict the set of feasible

potentials to 1-Lipschitz functions taking the value zero at a given arbitrary anchor point x0 ∈ Ω. Formally,

let’s define

F := {f ∈ Lip1(Ω,R) | f(x0) = 0}. (4)

Then we can write,

W(µ, ν) = sup
f∈F

∫
f(dµ− dν).

The interest of this formulation is that the feasible potentials now belongs to a bounded subclass of Lipschitz

functions.

Lemma 3.1. Let F be defined as in Equation (4). Then,

KF := sup
f∈F
‖f‖∞ ≤ diam(Ω).

Thus, Theorem 2.1 entails that they can be approximated by GroupSort neural networks with specific depth

and size. Following this remark, we define for each sample size n the class of feasible discriminators Dn as

well-chosen GroupSort neural networks. Specifically, the discriminators are defined as in the next assumption.

(G1) Set a sequence of positive numbers {εn}n∈N such that limn→+∞ εn = 0, and a sequence of constants

{Cn}n∈N defined as

Cn := diam(Ω) +
√
d(sup
x∈Ω
‖x‖+ 1) + εn.

For every n ∈ N, define Dn := N 1
Cn

(ln, sn) where,

ln = O

(
d2 log2

(
2
√
d

εn

))
, and sn = O

(2
√
d

εn

)d2 .
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Figure 2: Visualisation of G]P and Q := T0]P with 10, 000 points. P is the uniform distribution on [−1, 1]d.

The generator is trained for 120 gradient steps. The Figures (a)-(b) corresponds to d = 2. The Figures (c)-(d)

corresponds to d = 3. In Figures (a)-(c), we defined T0 by coordinate-wise application of x 7→ 1
1.18 (expx− 1.18).

In Figures (b)-(d), we defined T0 by coordinate-wise application of x 7→ x2sign(x).

Then, we approximate the Wasserstein-1 distance through the following integral probability metric:

Wn(µ, ν) := sup
D∈Dn

∫
D(dµ− dν). (5)

An important consequence of Assumption (G1) through Lemma 3.1 and Theorem 2.1 is that
⋃
n∈NDn

is dense in F , rendering Wn asymptotically close to W as n increases to infinity. Note that the sequence

{εn}n∈N characterizes the rate at which the class Dn approximates F . Now that we have properly defined the

discriminators, we focus on the generators.

3.2.2 Generator

On the contrary to a standard WGAN, the generator must additionally minimize the quadratic transportation

cost in order to approach the optimal transport map T0. Let us denote by Gn the class of feasible generators,

which will be specified later. A naive formulation for our estimator Gn ∈ Gn would be,

Gn ∈ arg min
G∈Gn s.t. G]Pn=Qn

‖I −G‖2L2(Pn).

However, since the push-forward condition is intractable as such, we replace it by a penalty term based on the

neural proxy of the Wasserstein-1 distance. Formally, we set λn > 0 a regularization weight and we define the

GAN estimator Gn as an optimal solution to Problem (2), that is

Gn ∈ arg min
G∈Gn

Ln(G),

where

Ln(G) := ‖I −G‖2L2(Pn) + λnWn(G]Pn, Qn).

We note that Problem (2) is well-posed under mild conditions.

Proposition 3.1. If Dn ⊆ Lip1(Ω,R) and Gn is compact, then Problem (2) admits solutions.

This result is a direct consequence of the Lipschitz continuity of the loss function Ln, which we demonstrate

in the proof.
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At this stage, we should make further assumptions on Gn to exploit the smoothness of the optimal transport

problem. Let us define

G := LipL(Ω, BL), (6)

which is a class of bounded Lipschitz functions.

Lemma 3.2. Let G be defined as in Equation (6). Then,

KG := sup
g∈G
‖g‖∞ ≤ Ldiam(Ω) + sup

x∈Ω
‖x‖.

Critically, under Assumption (S2), the solution T0 belongs to G, and as such can be approximated by

GroupSort neural networks according to Theorem 2.2. This motivates the following conditions on the set of

feasible generators Gn:

(G2) Set {εn}n∈N a sequence of positive numbers such that limn→+∞ εn = 0, and a sequence of constants

{Cn}n∈N defined as

Cn := Ldiam(Ω) + (
√
d+ 1) sup

x∈Ω
‖x‖+

√
d+ εn.

For every n ∈ N, we define Gn as

{x ∈ Ω 7→ PBL
(L×N(x)), N ∈ N d

Cn
(ln, sn)}

where,

ln = O

(
d log2

(
2d

εn

))
, and sn = O

(
d

(
2d

εn

)d2)
.

Defined as such, Gn is included in G. The idea behind Assumption (G2) is similar to that of Assumption (G1).

In particular, the condition on the depth and size of the networks guarantees through Theorem 2.2 that Gn
asymptotically fills G at speed εn, allowing to recover T0 at the limit.

3.3 Main theorem

The convergence of {Gn}n∈N towards T0 revolves around two antagonistic conditions. Instinctively, the sequence

of regularization weights {λn}n∈N must tend to infinity in order to impose the push-forward condition at the

limit. Concurrently, the sequence of feasible generators {Gn}n∈N must fill G sufficiently fast. This corresponds

to the following assumptions:

(G3) The sequence {λn} is such that limn→+∞ λn = +∞ and

λn =


o
(
n

1
d

)
if d > 2,

o
(
n

1
2 / log n

)
if d = 2,

o
(
n

1
2 /
√

log n
)

if d = 1.

(G4) The sequence {εn}n∈N from Assumption (G2) is such that, εn = o
(

1
λn

)
.

We are now ready to state our main theorem.

9



Theorem 3.1. Let P and Q be such that the smoothness assumptions (S1) and (S2) on the optimal transport

problem hold, and denote by T0 the (almost everywhere) unique optimal transport map between P and Q. Suppose

that the GAN problem satisfies Assumptions (G1), (G2), (G3) and (G4). Then, for Gn defined as a solution

to Problem (2) we have

‖Gn − T0‖∞
a.s.−−−−−→

n→+∞
0.

To the best of our knowledge, this is the first statistical consistency result for a neural-network-based

optimal transport map. We leave the analysis of consistency rates for future work. In particular, we could

obtain sharper results by imposing conditions on the parameter εn which characterizes the rate at which the

discriminators Dn approximate the 1-Lipschitz potentials, and by leveraging stronger regularity assumptions

on T0. The proof is quite technical; the convergence of λn to infinity prevents from using classical empirical

process techniques. Instead, we rely on more analytical arguments based on the relative compactness properties

of Lipschitz functions. Moreover, we note that the proof still holds for more general classes of generators as long

as they maintain certain universality properties and have a Lipschitz constant that can be controlled. This is

one of the main strengths of GroupSort neural networks: they can sharply approximate any classes of bounded

Lipschitz functions with the same Lipschitz constant.

4 Numerical experiments

The rest of the paper addresses the implementation of our method, and showcases experimental results.

Specifically, we do not try to illustrate the convergence rate of the estimator, which is yet to be found, but

instead focus on the efficiency and practicality of our GAN-based optimal transport map.

4.1 Implementation

In the following experiments, we use (· → 80 → 80 → 80 → ·) densely connected neural networks with

GroupSort activation functions for both the generator and the discriminator. We implement GroupSort using

Deel-Lip library1. The 1-Lipschitz constraint is enforced through projections onto a parameter space satisfying

Assumption (C). The output layer of the generator is multiplied by L to be made L-Lipschitz. Critically, since

this constant is unknown in practice, we must rely on a large-enough user-defined upper bound. We use Adam

with default parameters for the optimization. All experiments have been run on personal workstation with

32GB RAM and NVIDIA Quadro RTX 8000 48GB GPU.

The learning procedure is detailed in Algorithm 1. In contrast to a WGAN, the generator loss includes the

quadratic transportation cost. It also differs from the procedure proposed in [Black et al., 2020] by implementing

a sharper weight projection than clipping.

4.2 Experimental results

We evaluate how close the trained generator G is to the optimal transport map T0. Recall that our construction,

as in [Hütter and Rigollet, 2021, Pooladian and Niles-Weed, 2021], is tailored to settings where the optimal

transport map is at least Lipschitz, hence continuous. This excludes in particular target distributions with

disconnected supports. Firstly, we address a setting where the true optimal transport map T0 in unknown.

Figure 1 benchmarks the GAN estimator against the empirical optimal transport map on the TwoMoons dataset.

1https://deel-lip.readthedocs.io
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Algorithm 1 GAN learning of the optimal transport map

Input: source distribution P , target distribution Q, regularization parameter λ, discriminator {Dψ}ψ∈Ψ,

generator {Gφ}φ∈Φ, respective learning rates ηD and ηG, minibatch size m

repeat

repeat

Sample minibatchs: {xi}mi=1 ∼ P , {yi}mi=1 ∼ Q
Define cost function:

WD(ψ) :=
1

m

m∑
i=1

Dψ(Gφ(xi))−
1

m

m∑
i=1

Dψ(yi)

Projected gradient ascent step on discriminator:

ψ ← PΨ (ψ + ηD∇ψWD(ψ))

until convergence of Dψ

Sample minibatch: {x′i}mi=1 ∼ P
Define cost functions:

WG(φ) :=
1

m

m∑
i=1

Dψ(Gφ(x′i))

C(φ) :=
1

m

m∑
i=1

‖x′i −Gφ(x′i)‖
2

Projected gradient descent step on generator:

φ← PΦ (φ− ηG∇φ(C(φ) + λWG(φ)))

until convergence of Gφ

We used the POT library to compute the discrete matching [Flamary et al., 2021]. It shows that the generator

faithfully matches the two moons with respect to the quadratic transportation cost.

Secondly, we consider synthetic examples for which T0 has an explicit formula. We follow the protocol

adopted in the aforementioned papers by defining P as the uniform distribution on the hypercube [−1, 1]d and

setting Q := T0]P , where T0 : Rd → Rd is obtained by applying a monotone scalar function coordinate-wise.

The combination of McCann’s theorem [McCann, 1995], stating that there exists a unique gradient of a

convex function achieving the push-forward between two Lebesgue-absolutely-continuous distributions, and

Theorem 2.12 in [Villani, 2003], stating that an optimal transport map coincide almost-everywhere with the

gradient of a convex function, ensures that T0 constructed as such is the (almost everywhere unique) optimal

transport map between P and Q. Note that for practical reasons, we choose T0 such that Q is a distribution

with zero mean and width less than 2: normalizing the input and output distributions of a neural network

ensures faster convergence. The result are illustrated in Figure 2.

Additionally, we investigate in Figure 3 the evolution of the mean square error between the generator G and

the optimal transport map T0 as the learning process goes on. It confirms that the optimization scheme has the

expected behaviour. Furthermore, since the mean square error is evaluated on an independent sample to the

training set, it illustrates the generalization ability of the learnt map.
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Figure 3: Evolution of the mean square error ‖T0 −G‖22 during the learning process as function of the number

of gradient steps on generator with batch size 512, for x 7→ 1
1.18 (expx− 1.18). The number of samples used is

proportional to the number of steps.

5 Conclusion

The method we propose has the advantage of providing a theoretically sound and feasible estimation of the

optimal transport map whose statistical convergence can be mathematically certified. Theorem 3.1 proves

its consistency, while Section 4 highlights its feasibility and illustrates its ability to learn the underlying map.

This renders this estimator suitable for many applications where guarantees of convergence are required while

maintaining a high level of computational performance.

Additionally, we extended in Section 2 the established theory on approximating Lipschitz continuous

functions by GroupSort neural networks to the multivariate case. This also opens new lines of inquiry for

further applications of these networks, such as imposing regularity properties on generative models. Finally, our

statistical framework and mathematical proofs addressed several interesting problems at the frontier between

neural network modeling and statistics. We hope this effort will contribute to bridge the gap between deep

learning and statistical theory.
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A Proof of Theorem 2.1

Let f ∈ F ⊂ Lip1(Ω,R) such that supf∈F ‖f‖∞ ≤ KF . The idea is to generalize Theorem 2 in [Tanielian and

Biau, 2021], restricted to 1-Lipschitz functions on the hypercube [0, 1]d, to functions on the arbitrary compact

set Ω. To this end, we first transform f into a 1-Lipschitz function on the hypercube [0, 1]d.

Since Ω is compact then there exists some R > 0 such that Ω ⊂ [−R,R]d. Kirszbraun’s theorem, see for

instance Theorem 2.5 in [Heinonen, 2005], implies that we can extend f on [−R,R]d while preserving the

1-Lipschitz property. Concretely, there exists a function f̃ ∈ Lip1([−R,R]d,R) such that f̃(x) = f(x) for all

x ∈ Ω.

Now, we transform the extension f̃ into a 1-Lipschitz function on the hypercube [0, 1]d. This requires to

translate and scale the inputs. Set xR = R ·1 where 1 := (1, . . . , 1) ∈ Rd, and define fR(x) := 1
2R f̃(2Rx−xR) as

a function on [0, 1]d. Theorem 2 in [Tanielian and Biau, 2021] yields that, for every ε > 0, there exists a neural

network N of the form (2) satisfying Assumption (C) defined on [0, 1]d whose depth and size are respectively

l = O

(
d2 log2

(
2
√
d

ε

))
and s = O

(2
√
d

ε

)d2,
such that

sup
x∈[0,1]d

|fR(x)−N(x)| < ε. (7)

However, Tanielian and Biau [2021] never clearly specified a universal bound C for which Assumption (C) was

satisfied, which is necessary to conclude. To find such a bound, we detail how they constructed the GroupSort

neural network N approximating fR. First, note that according to Theorem 5.1 in [He et al., 2020], any

1-Lipschitz piecewise-affine function q defined on a compact set can be written as,

q(x) = max
1≤s≤m

min
i∈Is

(ai · x+ ci), (8)

where for any 1 ≤ s ≤ m, Is is a subset of {1, . . . ,m} and ‖ai‖ ≤ 1. Second, following the proof of Theorem

2 in [Tanielian and Biau, 2021], one can find a 1-Lipschitz piecewise-affine function q such that ‖q − fR‖ ≤ ε.
Finally, Theorem 1 in [Tanielian and Biau, 2021], states that q can be represented by a neural network N of the

form (2) with depth l and size s. Critically, the representing N is built with weights (W1, . . . ,Wl, b1, . . . , bl)

such that the offset vectors of N are all equal to zero except b1. More precisely, the coefficients of b1 are the

constants c1, . . . , cm from the representation (8). This entails that max1≤i≤l ‖bi‖∞ ≤ max1≤i≤m |ci|. Hence,

bounding the constants in (8) will bound the offsets vectors in (2). To find a bound on the constants, we rely

on the following lemma.

Lemma A.1. Let f1 ∈ Lip1([0, 1]d,R) and f2 be a 1-Lipschitz piecewise-linear function such that ‖f2 − f1‖∞ < ε.

Then, f2 can be expressed in the form (8) with

max
1≤i≤m

|ci| ≤ ‖f1‖∞ + ε+
√
d.

Proof. Note that we can suppose without loss of generality that for any k ∈ {1, . . . ,m} there exists a point

xk ∈ Ω such that f2(xk) = ak · xk + ck, otherwise this index is meaningless and we can eliminate it. Since

‖ak‖ ≤ 1, we have that |ck| ≤ ‖f2‖∞+ supx∈[0,1]d ‖x‖. We conclude using the fact that ‖f2‖∞ ≤ ‖f1‖∞+ ε.

This implies that the ε-approximation q of fR is such that max1≤i≤m |ci| ≤ KF + ε +
√
d, and that

consequently, the neural network N approximating fR belongs to N 1
C0

(l, s) with C0 = KF + ε+
√
d.
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Now, recall the the objective is to construct a neural network approximating f . Note that, after a change of

variable, (7) can be written as

sup
x∈[−R,R]d

∣∣∣∣f̃(x)− 2RN

(
x+ xR

2R

)∣∣∣∣ < 2Rε.

Since the activation functions are GroupSort, hence homogeneous, we have that 2RN
(
x+xR

2R

)
= N(x + xR).

This leads to

‖f −NR‖∞ ≤ sup
x∈[−R,R]d

∣∣∣f̃(x)−NR(x)
∣∣∣ < 2Rε,

Finally, remark that the neural network NR : x 7→ N(x+ xR) belongs to N 1
C(l, s) with C =

√
dR+ C0 that is√

d(R+ 1) +KF + ε. Setting R = supx∈Ω ‖x‖ completes the proof.

B Proof of Theorem 2.2

Let g ∈ G ⊂ Lip1(Ω,Rp) such that supg∈G ‖g‖∞ = KG > 0. We generalize Theorem 2.1 to Rp-valued output

by approximating g along each dimension by a GroupSort neural network. The function g can be written as

(g1, . . . , gp) where gi ∈ Lip1(Ω,R) and ‖gi‖∞ ≤ KG for every 1 ≤ i ≤ p. Then, we know from Theorem 2.1 that

there exists a neural network N i ∈ N 1
C where C = KG +

√
d(supx∈Ω ‖x‖ + 1) + ε, whose depth and size are

respectively

l = O

(
d2 log2

(
2
√
d

ε

))
and s = O

(2
√
d

ε

)d2,
such that, ∥∥gi −N i

∥∥
∞ ≤ ε.

We build the Rp-valued neural network N = (N1, . . . , Np). Then, for any x ∈ Ω,

‖g(x)−N(x)‖2 =

p∑
i=1

∣∣gi(x)−N i(x)
∣∣2 ≤ pε2.

As a consequence, ‖g −N‖∞ ≤
√
pε. To conclude, note that N and has depth l and size p × s. Moreover,

it satisfies Assumption (C) for the constant C, as the weight matrices and offset vectors of N are obtained

by concatenation of the ones of the N i, which preserves the upper-bound on the norms ‖·‖2,∞ and ‖·‖∞.

Consequently, N ∈ N p
C(l, p× s).

C Proof of Proposition 3.1

The proof amounts to showing that Ln is continuous on the compact set Gn.

Proof. Firstly, we note that the map Lotn : T 7→ ‖I − T‖L2(Pn) is continuous. Secondly, we prove that

Lgenn : T 7→ λnWn(T]Pn, Qn) is Lipschitz continuous. Let T1, T2 ∈ C(Ω,Ω) and compute,
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∣∣Wn(T1]Pn, Qn)−Wn(T2]Pn, Qn)
∣∣ ≤ ∣∣∣∣ sup

D∈Dn

{∫
D(T1(x))−D(T2(x))dPn(x)

}∣∣∣∣
≤ sup
D∈Lip1(Ω,R)

∣∣∣∣∫ D(T1(x))−D(T2(x))dPn(x)

∣∣∣∣
≤
∫
‖T1(x)− T2(x)‖dPn(x)

≤ ‖T1 − T2‖∞.

As a conclusion, Ln := Lotn + Lgenn is continuous, and as such admits a minimizer on any compact set, in

particular Gn.

D Proof of Theorem 3.1

The proof relies on an intermediary result on the minimax estimator described in Section 5 of [Hütter and

Rigollet, 2021]. Existence and statistical guarantees follow from the smoothness assumptions (S1) and (S2).

Lemma D.1. Assume that Assumptions (S1) and (S2) hold, and let TMM
n be the minimax estimator from

[Hütter and Rigollet, 2021] of the optimal transport map T0. It satisfies,∥∥TMM
n − I

∥∥2

L2(Pn)

a.s.−−−−−→
n→+∞

‖T0 − I‖2L2(P ). (9)

Additionally, if Assumptions (G1), (G3) and (G4) hold, then

λnWn(TMM
n ]Pn, Qn)

a.s.−−−−−→
n→+∞

0, (10)

hence,

Ln(TMM
n )

a.s.−−−−−→
n→+∞

‖T0 − I‖2L2(P ). (11)

Proof. Let’s start by proving (9). According to the triangle inequality,∥∥TMM
n − I

∥∥
L2(Pn)

≤
∥∥TMM

n − T0

∥∥
L2(Pn)

+ ‖T0 − I‖L2(Pn),

≤

√∣∣∣∣∫ ‖TMM
n − T0‖2(dPn − dP )

∣∣∣∣+
∥∥TMM

n − T0

∥∥
L2(P )

+ ‖T0 − I‖L2(Pn).

We address each of the three terms of the upper bound in order. For the first term, recall that both TMM
n and T

are L-Lipschitz on Ω. Let’s show that this entails that x 7→
∥∥TMM

n (x)− T0(x)
∥∥2

is Lipschitz. For any x, y ∈ Ω,∣∣∣∥∥TMM
n (x)− T0(x)

∥∥2 −
∥∥TMM

n (y)− T0(y)
∥∥2
∣∣∣ ≤ 2

∥∥TMM
n − T0

∥∥
∞

(∥∥TMM
n (x)− T0(x)

∥∥+
∥∥TMM

n (y)− T0(y)
∥∥) ,

≤ 2 diam(Ω)
(∥∥TMM

n (x)− T0(x)
∥∥− ∥∥TMM

n (y)− T0(y)
∥∥) ,

≤ 2 diam(Ω)
∥∥TMM

n (x)− T0(x)− TMM
n (y) + T0(y)

∥∥,
≤ 2 diam(Ω)

(∥∥TMM
n (x)− TMM

n (y)
∥∥+ ‖T0(x)− T0(y)‖

)
,

≤ 2 diam(Ω) (L‖x− y‖+ L‖x− y‖) ,

≤ 4Ldiam(Ω)‖x− y‖.
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Denoting L′ = 4Ldiam(Ω), we conclude that x 7→
∥∥TMM

n (x)− T0(x)
∥∥2

belongs to LipL′(Ω,R). As a consequence,∣∣∣∣∫ ∥∥TMM
n − T0

∥∥2
(dPn − dP )

∣∣∣∣ ≤ sup
f∈LipL′ (Ω,R)

∣∣∣∣∫ f(dPn − dP )

∣∣∣∣.
The upper bound is a centered empirical process indexed by LipL′(Ω,R). According to Corollary 2.7.2. and

Theorem 2.4.1 in [Van Der Vaart and Wellner, 1996], it tends to zero almost surely as n increases to infinity.

This shows the convergence of the first term.

To control the second term we rely on Proposition 12 in [Hütter and Rigollet, 2021]. It states that with

probability at least 1− δ,

∥∥TMM
n − T0

∥∥2

L2(P )
=


O
(
n−

4
2+d (log n)2 + log δ−1

n

)
if d > 2

O
(
n−1(log n)2 + log δ−1

n

)
if d = 2

O
(
n−1 + log δ−1

n

)
if d = 1

Hence,

∥∥TMM
n − T0

∥∥
L2(P )

=



O

(
n−

4
2+d (log n) +

√
log δ−1

n

)
if d > 2

O

(
n−

1
2 (log n) +

√
log δ−1

n

)
if d = 2

O

(
n−

1
2 +

√
log δ−1

n

)
if d = 1

(12)

Then, by setting δn = 1
n2 , it follows from Borel-Cantelli’s theorem that

∥∥TMM
n − T0

∥∥
L2(P )

a.s.−−−−−→
n→+∞

0. This shows

the desired convergence of the second term. Moreover, as n increases to infinity, the third term of the upper

bound tends almost surely to ‖T0 − I‖L2(P ), by weak convergence of Pn to P almost surely,

We now turn to the demonstration of (10). Let D ∈ Dn and write the following decomposition,∫
D ◦ TMM

n dPn −
∫
DdQn =

∫
D ◦ TMM

n d(Pn − P ) +

∫
(D ◦ TMM

n −D ◦ T0)dP +

∫
D ◦ T0dP −

∫
DdQn,

≤
∣∣∣∣∫ D ◦ TMM

n d(Pn − P )

∣∣∣∣+

∫ ∥∥TMM
n − T0

∥∥dP +

∣∣∣∣∫ Dd(Q−Qn)

∣∣∣∣,
where we use that

∫
D ◦ T0dP =

∫
DdQ since T0]P = Q. Noting that Dn ⊆ Lip1(Ω,R) we obtain,

Wn(TMM
n ]Pn, Qn) ≤ sup

D∈Lip1(Ω,R)

∣∣∣∣∫ D ◦ TMM
n d(Pn − P )

∣∣∣∣+

∫ ∥∥TMM
n − T0

∥∥dP + sup
D∈Lip1(Ω,R)

∣∣∣∣∫ Dd(Q−Qn)

∣∣∣∣.
Recall now that TMM

n is L-Lipschitz so that for any D ∈ Dn we have D ◦TMM
n ∈ LipL(Ω,R). As a consequence,

Wn(TMM
n ]Pn, Qn) ≤ sup

g∈LipL(Ω,R)

∣∣∣∣∫ gd(Pn − P )

∣∣∣∣+

∫ ∥∥TMM
n − T0

∥∥dP + sup
D∈Lip1(Ω,R)

∣∣∣∣∫ Dd(Q−Qn)

∣∣∣∣. (13)

Next, we control each of the three terms of the upper bound in (13) with high probability.

Let us start with the first one, which is the supremum of a centered empirical process indexed by Lipschitz

functions. Recall that Pn is supported by n independent variables x1, . . . , xn ∼ P . Set X ∼ P and define

Zn := sup
g∈LipL(Ω,R)

∣∣∣∣∣ 1n
n∑
i=1

g(xi)− Eg(X)

∣∣∣∣∣ = sup
g∈LipL(Ω,R)

∣∣∣∣∫ gd(Pn − P )

∣∣∣∣.
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By L-Lipschitz continuity, changing xi by an independent duplicate x′i ∼ P changes Zn of at most 1
nLdiam(Ω).

Thus, it follows from MacDiarmid’s inequality [Boucheron et al., 2013] that for any t > 0,

P(Zn ≤ EZn + t) ≤ 1− exp

(
− 2t2

1
nL

2 diam2(Ω)

)
.

After a change of variable, we get for every 0 < δ < 1,

P(Zn ≤ EZn +
Ldiam(Ω)√

2n

√
log(δ−1)) ≤ 1− δ.

Theorem 4 in [Schreuder, 2020] provides an upper bound on EZn. Up to logarithmic factors we have,

EZn =


O
(
n−

1
d

)
if d > 2

O
(
n−

1
2 log n

)
if d = 2

O
(
n−

1
2

)
if d = 1

Hence, with probability at least 1− δ,

Zn =



O

(
n−

1
d +

√
log(δ−1)

n

)
if d > 2

O

(
n−

1
2 log n+

√
log(δ−1)

n

)
if d = 2

O

(
n−

1
2 +

√
log(δ−1)

n

)
if d = 1

The third term of (13) can be bounded similarly, as the smoothness L only affects the hidden constant in the O.

We now turn to the second term of (13). If follows from Cauchy-Schwarz inequality that∫ ∥∥TMM
n − T0

∥∥dP ≤
∥∥TMM

n − T0

∥∥
L2(P )

.

Recall that with probability at least 1− δ, the right-term of this inequality is bounded as in (12).

By summing the bounds in probability holding for each of the three terms of (13), and after rescaling δ by

3, we obtain that with probability at least 1− δ,

Wn(TMM
n ]Pn, Qn) =



O

(
n−

1
d + n−

4
2+d (log n) +

√
log δ−1

n

)
if d > 2

O

(
n−

1
2 (log n) +

√
log δ−1

n

)
if d = 2

O

(
n−

1
2 +

√
log δ−1

n

)
if d = 1

Now, we replace δ by 1
n2 and we multiply both sides of the inequality by λn so that with probability at least

1− 1
n2 ,

λnWn(TMM
n ]Pn, Qn) =



λnO

(
n−

1
d + n−

4
2+d log n+

√
log(n)
n

)
if d > 2

λnO

(
n−

1
2 log n+

√
log(n)
n

)
if d = 2

λnO

(
n−

1
2 +

√
log(n)
n

)
if d = 1

20



Then, Assumption (G3) on λn implies that with probability at least 1− 1
n2 ,

λnWn(TMM
n ]Pn, Qn) =


o(1) + o

(
n−

3d−2
d(2+d) log n

)
+ o

(
n−

d−2
2d

√
log(n)

)
if d > 2

o(1) + o
(

1√
logn

)
if d = 2

o

(
1√

log(n)

)
+ o(1) if d = 1

We conclude, using Borel-Cantelli’s theorem, that limn→+∞ λnWn(TMM
n ]Pn, Qn) = 0 almost surely.

We now turn to the proof of Theorem 3.1, which will be divided in three steps.

Proof. Recall that for any n ∈ N, Gn ∈ Gn ⊂ G := LipL(Ω, BL) according to Assumption (G2). Since G is a

compact set, there exists a subsequence {Gϕ(n)}n∈N and some Gϕ ∈ G such that
∥∥Gϕ(n) −Gϕ

∥∥
∞

a.s.−−−−−→
n→+∞

0.

The goal of the proof is to show that Gϕ = T0 regardless of the extraction ϕ. For the sake of clarity, we will not

track ϕ in the notations for the rest of the proof.

Moreover, note that since the minimax estimator TMM
n belongs to G, we know from Assumption (G2) and

Theorem 2.2 that there exists a GroupSort neural network GMM
n ∈ Gn such that

∥∥GMM
n − TMM

n

∥∥
∞ ≤ εn. This

neural network approximation of the minimax estimator will play a key role throughout the proof.

Step 1. In this first part, we aim at showing that limn→+∞ λnWn(Gn]Pn, Qn) = 0 almost surely when λn

verifies Assumption (G3). Let’s assume ad absurdum that λnWn(Gn]Pn, Qn) does not tend to zero. As

0 ∈ Dn, we have that Wn(Gn]Pn, Qn) > 0 and consequently limn→+∞ λnWn(Gn]Pn, Qn) = +∞. We will show

a contradiction to this convergence.

Recall that
∥∥GMM

n − TMM
n

∥∥
∞ ≤ εn, and that G 7→ λnWn(G]Pn, Qn) is λn-Lipschitz continuous. This leads

to,∣∣Ln(GMM
n )− Ln(TMM

n )
∣∣ ≤ λn∣∣∣Wn(GMM

n ]Pn, Qn)−Wn(TMM
n ]Pn, Qn)

∣∣∣+
∥∥I −GMM

n

∥∥
L2(Pn)

+
∥∥I − TMM

n

∥∥
L2(Pn)

,

≤ λn
∥∥GMM

n − TMM
n

∥∥
∞ + diam2(Ω) + diam2(Ω),

≤ λnεn + 2 diam2(Ω).

As Gn minimizes Ln over Gn, and since GMM
n ∈ Gn, we additionally have,

Ln(Gn) ≤ Ln(GMM
n ) =

{
Ln(GMM

n )− Ln(TMM
n )

}
+ Ln(TMM

n ).

Hence,

λnWn(Gn]Pn, Qn) + ‖I −Gn‖L2(Pn) ≤
{
λnεn + 2 diam2(Ω)

}
+ λnWn(TMM

n ]Pn, Qn) +
∥∥I − TMM

n

∥∥
L2(Pn)

,

leading to

0 ≤ λnWn(Gn]Pn, Qn) ≤ λnεn + 3 diam2(Ω) + λnWn(TMM
n ]Pn, Qn).

From Lemma D.1, it follows that the right term is bounded, which contradicts λnWn(Gn]Pn, Qn)
a.s.−−−−−→

n→+∞
+∞.

Consequently, Wn(Gn]Pn, Qn)
a.s.−−−−−→

n→+∞
0.
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Step 2. Now, we prove that G]P = Q. Note that,

∣∣Wn(Gn]Pn, Qn)−W (G]P,Q)
∣∣ ≤ ∣∣∣∣ sup

D∈Dn

(∫
D ◦GndPn −

∫
DdQn

)
−
(∫

D ◦GdP −
∫
DdQ

)∣∣∣∣
+

∣∣∣∣∣ sup
D∈Dn

(∫
D ◦GdP −

∫
DdQ

)
− sup
D∈Lip1(Ω,R)

(∫
D ◦GdP −

∫
DdQ

)∣∣∣∣∣,
≤

∣∣∣∣∣ sup
D∈Lip1(Ω,R)

(∫
D ◦GndPn −

∫
DdQn

)
−
(∫

D ◦GdP −
∫
DdQ

)∣∣∣∣∣
+

∣∣∣∣∣ sup
D∈Dn

(∫
D ◦GdP −

∫
DdQ

)
− sup
D∈Lip1(Ω,R)

(∫
D ◦GdP −

∫
DdQ

)∣∣∣∣∣,
≤

∣∣∣∣∣ sup
D∈Lip1(Ω,R)

∫
D ◦GndPn −

∫
D ◦GdP

∣∣∣∣∣+

∣∣∣∣∣ sup
D∈Lip1(Ω,R)

∫
D(dPn − dP )

∣∣∣∣∣
+

∣∣∣∣∣ sup
D∈Dn

(∫
D ◦GdP −

∫
DdQ

)
− sup
D∈Lip1(Ω,R)

(∫
D ◦GdP −

∫
DdQ

)∣∣∣∣∣.
The second term of the upper bound is the supremum of a centered empirical process indexed by the class of

1-Lipschitz functions, which tends to zero almost surely as n increases to infinity. The third term tends to zero

according to Assumption (G1). To address the first term, remark that for any D ∈ Lip1(Ω,R),

D(Gn(x)) ≤ ‖Gn(x)−G(x)‖+D(G(x)).

Consequently,∣∣∣∣∣ sup
D∈Lip1(Ω,R)

∫
D ◦GndPn −

∫
D ◦GdP

∣∣∣∣∣ ≤ ‖Gn −G‖∞ +

∣∣∣∣∣ sup
D∈Lip1(Ω,R)

∫
(D ◦G)(dPn − dP )

∣∣∣∣∣,
≤ ‖Gn −G‖∞ +

∣∣∣∣∣ sup
f∈LipL(Ω,R)

∫
f(dPn − dP )

∣∣∣∣∣,
where we used the fact that D ◦G ∈ LipL(Ω,R), since D ∈ Lip1(Ω,R) and G ∈ LipL(Ω,Ω). By definition of

G, we know that ‖G−Gn‖∞
a.s.−−−−−→

n→+∞
0. Moreover, the second term is here again the supremum of a centered

empirical process indexed by Lipschitz functions, which tends to zero almost surely.

All in all, Wn(Gn]Pn, Qn)
a.s.−−−−−→

n→+∞
0, and it follows from the first step that W (G]P,Q) = 0, hence G]P = Q.

Step 3. We know that G]P = Q. To conclude that G is the unique optimal transport map T0 between P and

Q, we show that G minimizes the transportation cost. Firstly, we write,∣∣∣‖I −Gn‖2L2(Pn) − ‖I −G‖
2
L2(P )

∣∣∣ ≤ ∣∣∣‖I −Gn‖2L2(Pn) − ‖I −G‖
2
L2(Pn)

∣∣∣+
∣∣∣‖I − T0‖2L2(Pn) − ‖I −G‖

2
L2(P )

∣∣∣,
≤ 2 diam(Ω)‖Gn −G‖∞ + 2 diam(Ω)

∣∣∣∣∫ ‖T0(x)−G(x)‖2(dPn(x)− dP (x))

∣∣∣∣.
Hence,

‖I −Gn‖L2(Pn)
a.s.−−−−−→

n→+∞
‖I −G‖L2(P ). (14)
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Secondly, using that Gn minimizes Ln on Gn we have

Ln(Gn) ≤ Ln(GMM
n ),

≤ λn sup
D∈Lip1(Ω,R)

{∫
(D ◦GMM

n )dPn −
∫
DdQn

}
+
∥∥I −GMM

n

∥∥2

L2(Pn)
,

≤ λn sup
D∈Lip1(Ω,R)

{∫
(D ◦GMM

n )dPn −
∫

(D ◦ TMM
n )dPn

}
+ λn sup

D∈Lip1(Ω,R)

{∫
(D ◦ TMM

n )dPn −
∫
DdQn

}
+
∥∥I −GMM

n

∥∥2

L2(Pn)
,

≤ λn
∥∥TMM

n −GMM
n

∥∥
∞ + λnWn(TMM

n ]Pn, Qn) +
∥∥I −GMM

n

∥∥2

L2(Pn)
,

≤ λnεn + Ln(TMM
n ) +

∥∥I −GMM
n

∥∥2

L2(Pn)
−
∥∥I − TMM

n

∥∥2

L2(Pn)
,

≤ λnεn + Ln(TMM
n ) +

∥∥I −GMM
n

∥∥2

L2(Pn)
−
∥∥I − TMM

n

∥∥2

L2(Pn)
,

≤ λnεn + Ln(TMM
n ) +

(∥∥I −GMM
n

∥∥
L2(Pn)

−
∥∥I − TMM

n

∥∥
L2(Pn)

)
×
(∥∥I −GMM

n

∥∥
L2(Pn)

+
∥∥I − TMM

n

∥∥
L2(Pn)

)
,

≤ λnεn + Ln(TMM
n ) + 2εn diam(Ω).

This inequality can be written as,

λnWn(Gn]Pn, Qn) + ‖I −Gn‖2L2(Pn) ≤ Ln(TMM
n ) + λnεn + 2εn diam(Ω).

Then, according to the first step of the proof and the convergence (14), the left term tends almost surely to

‖I −G‖2L2(P ) as n increases to infinity. Besides, according to Lemma D.1 and Assumptions (G4) and (G3),

the right term tends to ‖I − T0‖2L2(P ). Consequently,

‖I −G‖2L2(P ) ≤ ‖I − T0‖2L2(P ).

This means that G minimizes the transportation cost. By uniqueness of the optimal transport map we conclude

that G = T0. This completes the proof.
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