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Robust collaborative collision avoidance between robots
with nearly symmetric crossing trajectories

Grimaldo Silva3, Khansa Rekik2, James Crowley1

Abstract— The growth in both acceptance and usage of
mobile robots have given risen to novel challenges in robot
navigation. Often, robots that share a space but are unable
to communicate are required to safely avoid each other even
under sensor noise. Current approaches have often relied on
the assumption that collaboration is always done correctly, in
practice, sensor noise might lead robots to make avoidance
motions that are not mutually beneficial and do not actually
decrease the collision risk. Our approach intends to mitigate
the negative impact of sensor noise in collaborative collision
avoidance of robots. As a consequence, even if robots initially
take non-mutually beneficial avoidance motions they would
correctly perceive their role in the next decision step.

I. INTRODUCTION

Mobile robots have seen an increased usage in recent years
and this trend should continue to hold for the foreseeable
future. Considering the multitude of models and specifica-
tions, this work focuses on robots that share a space but
are unable to directly communicate their intentions during
collision avoidance motions. In other words, robots should
communicate solely through motion and still be able to
avoid collision with each other in a safe and preferably
collaborative manner. Collaboration is important for two
reasons. First it provides a solution for the classic freezing
robot problem [1] and second that sharing motion adaptations
among agents in the environment leads to overall smaller and
more readable motion adaptations from individual agents.

Effective collaboration requires that any pairwise combi-
nation of robots involved in a collision avoidance situation
agree on the side in which they will cross each other in order
to avoid collision. Choosing a specific side to cross indicates
which robot crosses in front and which crosses behind the
other i.e. their roles. However, without direct communication
a convention has to be established in order to allow for same
crossing side to be reliably chosen by both robots.

The sign of the derivative of the bearing angle has been
used to reliably predict crossing side [2], [3] in the literature.
However, as robots that are unable to directly or indirectly
communicate are subject to noise in their perception of this
derivative, the sign of this shared value may be perceived
differently by each robot which leads them to incorrectly
attempt to cross each other on different sides - what we call
an ineffective collaboration.
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 Collaboration failure

Our approach

     due to noise

Fig. 1: Noise in the observation of the obstacles position
and motion can lead to incorrect collaborative motion. Our
approach reduces both duration and impact of this failure.

This ineffective collaboration is more prominent in so-
called near symmetry scenarios. Situations in which the
derivative of the bearing angle is near zero and thus robots
are unable to assess their crossing side with the required
confidence. As shown in Fig. 1, our approach mitigates the
chance of ineffective collaboration in these scenarios while
still attempting to avoid collision. For that end, our approach
models the error in observation of the derivative of the bear-
ing angle, which is then used to obtain a confidence in the
sign of the derivative of the bearing angle. This confidence
is then used as an input into a collision avoidance approach
in order to mitigate the chance of ineffective collaboration
in the next time step. Our approach is evaluated in ROS
simulated robots in scenarios with two to three robots.

II. LITERATURE REVIEW

Although our method focuses on robot-robot interac-
tion, this section provides an overview on collaborative
approaches for collision avoidance for different types of
agent. As such, methods that deal with people, robots or any
combination thereof are described as long as they provide
important landmarks into collaborative collision avoidance.

Classical approaches have often attempted to guarantee
safe navigation in the presence of static and moving obstacles
[4] where the latter obstacles do not react to the presence nor
motion of the robot. Some recent methods, able to effectively
navigate even with sensor noise and in crowded scenarios [5],
have also often relied on this assumption, in contrast, our



approach focuses on scenarios with an unbounded number
of robots that take (if able) reactive steps to avoid collision
while dealing with sensor noise.

Although several collaborative approaches have been pro-
posed a common limitation is that, in the absence of addi-
tional obstacles, agents would always preserve their current
role as seen in both velocity object methods [6], [7] and
social force model methods [8], [9]. Approaches based on
synthetic vision, such as [3], [10], that are able to replicate
several important characteristics of human vision and its
impact on their motion, also rely on the assumption that
roles are unchanging under repeated initial conditions.

More recent approaches have attempted to plan collision
avoidance behavior while accommodating different role as-
signments. For instance, the concept of joint trajectories
encode the collaborative aspect of collision avoidance be-
tween people [11] and were able encode both current and
reversed role trajectories. However, this implicitly relied on
the assumption that roles are always agreed upon in any
pairwise interaction before collision avoidance starts - an
assumption that is relaxed in this work.

Accepting that roles are sometimes reversed reveals a
subtle issue [12]: whenever in any pairwise interaction only
a single agent reverses their role ineffective collaboration
is produced. A recent approach to this issue [12] considered
that only a person can mistake its role. In our work a general
model is proposed based on a sensor-specific error model
where any robot can be at fault.

III. COLLABORATION IN COLLISION AVOIDANCE

Collaboration during collision avoidance requires a proto-
col that robots follow in order to take effective actions. In this
section the manner in which a robot can infer its role during
avoidance is presented alongside its potential shortcomings.

A. Derivative of the bearing angle
The bearing angle represents the angle between the cur-

rent heading of a robot and another obstacle (moving or
otherwise). Its derivative, in [2], was found to be a reliable
indicator of the side agents would cross each other and in
conjunction with the change in size of an object over time
[13] it can also be used in practical applications to predict
future collision [3]. The behavior of the derivative of the
bearing angle in near collision situations is shown in Fig. 2.

B. Homotopy class decision boundary
Given any number of agents involved in a crossing sce-

nario, the side in which each pairwise combination of agents
pass each other is an homotopy class [11]. More precisely,
the decision of agents r and i of passing each other on right
or on the left side will influence the sign of the integral over
time of their derivative of the bearing angle

Effective collision avoidance requires that agents attempt
to pass each other on the same side, that is, make the same
homotopy class decision. In experiments with people, the
derivative of the bearing angle has been shown to reliably
predict the homotopy class decision of an agent [12] before
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Fig. 2: The derivative of the bearing angle over time in four
distinct head-on collision scenarios. Robots circumscribed
radius is 0.8m and move at 1.2 m/s. Closest distance between
robots center points are, from highest to lowest risk of
collision scenarios, exactly 0.1m, 1.0m, 2.2m, 6.0m.

any collision avoidance action has been made. Based on
this, a simplified predictor of homotopy class decision before
collision avoidance has started, presented in [12], can be used
as below

ˆ

⇥(↵̇) =

8
><

>:

+⇡ or � ⇡, if ↵̇ = 0

+⇡, if ↵̇ > 0

�⇡, if ↵̇ < 0

(1)

where ↵̇ represents a derivative of the bearing angle. The
boundary between homotopy class decisions1 in this case is
the sign of ↵̇, denoted as sign(↵̇). In a noise-free observation
of sign(↵̇) homotopy class decision ambiguity could only
occur at the infinitesimal point ↵̇ = 0, however, due to noise
in sensor readings this no longer holds.

IV. MODEL FOR OBSERVATION ERRORS FROM SENSOR

Effective collaboration requires that every pairwise com-
bination of crossing agents with collision risk choose the
same homotopy class decision when taking their collision
avoidance action. In the majority of cases this is trivial as
sign(↵̇) can be perceived unambiguously as the same by both
agents. However, whenever these perceptions differ the risk
of ineffective collaboration rises as a consequence.

In this section a condition for ineffective collaboration and
its risk is established based on a statistical properties of the
noise in observation of the derivative of the bearing angle.

A. Approximating the derivative of the bearing angle
Let ↵̇real

r,i

denote the noise-free derivative of the bearing
angle between robots r and i. For a robot to approximate
its value consider a set ~↵ = {↵1,↵2, · · · ,↵

T

} of the T

last measurements of the bearing angle ↵ done at fixed
time intervals. Based on these samples of the bearing angle,
its time derivative can be approximated with the symmetric

1The term “boundary between homotopy class decision” is sometimes
shortened to just “boundary” within this work.
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difference quotient as ↵̇ ⇡ [↵

T

� ↵1] / [�t] where �t is the
time elapsed between ↵1 and ↵

T

samples.
The value of T balances a diverse set of trade-offs, for

instance, a larger T would decrease the impact of noise from
individual samples, slow reaction times after each collision
avoidance action due to additional bearing measurements and
increase difference between the instantaneous value of ↵̇ and
its approximation. In this work T = 5 giving a minimum
delay of 125msec between velocity changes in a PR2 robot
(25 msec per scan).

Given this approximation of ↵̇, whenever r observes the
change in the bearing angle over time with respect to a
robot i it perceives this derivative value as ↵̇obs

r,i

= ↵̇

real
r,i

+ ✏

where ✏ denotes the error during observation of ↵̇real
r,i

. The
robot i will apply a similar approach and observe a likely
distinct ↵̇obs

i,r

. As such, whenever ↵̇real
r,i

⇡ 0 the fluctuations
in observed values might lead to sign(↵̇

obs
i,r

) 6= sign(↵̇

obs
r,i

).
In such case, robots would incorrectly attempt to cross each
other on opposite sides during avoidance.

B. Ineffective collaboration risk with model of sensor error

Evaluating the chance of ineffective collaboration requires
first understanding the error distribution for observations of
the derivative of the bearing angle. From this, a probability
P (sign(↵̇

obs
i,r

) 6= sign(↵̇

obs
r,i

)) can be calculated so that our
mitigation of ineffective collaboration can be presented.

From the perspective of robot r and without communica-
tion with a robot i the values of ↵̇real

r,i

or ↵̇obs
i,r

are unknown.
Consider that r samples the observations of ↵̇real

r,i

from a
normally distributed random variable A ⇠ N (µ,�) where
the unknown mean is µ = ↵̇

real
r,i

and the variance is �. The
variance is calculated at each time-step based on the sensor
type and situational factors of r and i as �

r,i

which are
detailed in Sec. VII.

The risk of ineffective collaboration is associated with
the boundary between homotopy class decisions. Even with
unknown values, properties of the average distance between
samples of a normal distribution can approximate the chance
of mismatch between sign(↵̇

obs
r,i

) and sign(↵̇

obs
i,r

). To that end,
our first objective is to determine the probability that the
distance between ↵̇obs

r,i

and the unknown ↵̇obs
i,r

is large enough
to cross the homotopy class decision boundary. The fact that
the perceived distance to the boundary can change, as seen in
Fig. 3, does not affect the statistical properties of the result
as it is solely used as a risk indicator.

The probability density function (pdf) of the distance be-
tween elements sampled from a standard normal distribution
was presented in [14]. In our work this derivation was done
while assuming a non-standard normal distribution, yielding

f

�

(x) =

exp(

�x

2

4�2 )

�

p
⇡

(2)

Although the value of ↵̇real
r,i

is unknown, assessing whether
there is risk of ineffective collaboration can still be calcu-
lated. First by integrating the perceived distance pdf

g

�

(↵̇) =

Z 1

|↵̇|
f

�

(x) dx (3)

and second by considering that crossing the boundary hap-
pens only in a single direction, as can be seen in Fig. 3. As
such, the associated risk of ineffective collaboration should
be halved. Finally, the predicate to determine whether the
risk of ineffective collaboration is sufficient to entail our
mitigation strategy is then given by

[1/2] · g

�

(↵̇) � 1 � ⇤ (4)

where in this work ⇤ = 90% so there is only 1% chance of
ineffective collaboration after two consecutive decisions.

This risk assessment strategy allows our strategy for
mitigation of ineffective collaboration to be finally presented.

V. MITIGATION OF INEFFECTIVE COLLABORATION

In a near symmetry scenario a decision has to be made
on how to deal with the nearing collision under the assump-
tion that ineffective collaboration is possible. This section
introduces measures that can be taken during this avoidance
motion so that in the next decision sign(↵̇

real
r,i

) is more likely
to be unambiguously perceived as the same by both agents.

A. Velocity change impact on derivative of the bearing angle

Whenever robot r evaluates that collision avoidance with
another robot i is necessary, it changes its current velocity ~v

r

to ~vnew
r

based on the velocity of i denoted as ~v
i

. The robot
i will apply a similar logic to calculate ~vnew

i

.
These velocity changes, when observed separately, cause

a change �↵̇

r,i

and �↵̇

i,r

in their observed instantaneous
value (see Sec. 2.2.1 of [15] for equation). Its new instanta-
neous value will be approximately the sum of ↵̇real

r,i

with these
individual changes in the derivative of the bearing angle,
given by

↵̇

new
r,i

= ↵̇

real
r,i

+ (�↵̇

i,r

+�↵̇

r,i

) (5)

As can be seen in Fig. 4, the range of values �↵̇

r,i

can assume depending on the chosen velocity is significant.
Thus, in case both r and i were to respectively sample the
value of �↵̇

r,i

and �↵̇

i,r

from an uniform distribution with
an appropriately chosen size, a confidence of ⇤ could be
obtained that their sum is larger than a certain threshold.
As a consequence, the next perceived value of ↵̇real

r,i

would
be far enough from the boundary to allow for unambiguous
crossing order observation.
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Fig. 4: Velocity change effect in the derivative of the bearing
angle. Colorbar is discretized to facilitate visualization.

B. Bounds length for near symmetry mitigation
The framework on Sec. V-A can utilize statistical prop-

erties of uniform distributions to obtain a confidence in the
distance between the values of �↵̇

i,r

and �↵̇

r,i

.
To that end, the first step is to find the mitigation proba-

bility P (M) required to reach ⇤ confidence through a joint
product between two independent events: worst case chance
of robots misjudging crossing order (50%) and chance of
failing to mitigate symmetry. Isolating M yields

P (M) = 1 � (1 � ⇤)

[1/2]

= 2⇤ � 1 (6)

Let k denote the desired minimum distance between samples
in both directions, unlike in (4) where only a single direction
was used, its value can be calculated as

k = g

�1
�

(1 � P (M)) (7)

Our intention is for each robot to sample from an uni-
form distribution X (0, L) in order ensure that the equality
P (|X

r

� X

i

| > k) = ⇤ holds where X

r

and X

i

are inde-
pendent samples by r and i. The equation that relates ⇤, the
length L of the uniform distribution and k is demonstrated
in Appendix C.1.2 of [15] and defined as

⇤ = (L � k)

2
/L

2
, (8)

Isolating L yields L

2
(⇤�1)+2Lk �k

2
= 0 which has two

roots L1 and L2 from which the largest one is selected.
In the following section, the feasible upper and lower

bounds for possible values of the derivative of the bearing
angle due to velocity change are determined and actions in
case it is larger or smaller than L presented.

VI. AVOIDANCE MOTION UNDER NEAR-SYMMETRY

This section describes a method to select an homotopy
class that best respects the desired confidence in near sym-
metry mitigation while finding an avoidance velocity.

To generate collision avoidance velocities and calculate
feasible bounds for the derivative of the bearing angle
under several constraints a two-step optimization is used.
First, random perturbations on the input are done which
are followed by local optimizations using Sequential Least
SQuares Programming (SLSQP) [16] as it can handle any
combination of bounds, equality and inequality constraints.
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Fig. 5: Three-way situation with ambiguous crossing order.
From the perspective of the black robot four homotopy class
decisions are possible. Cross in front of others would not
provide sufficient bounds for near symmetry mitigation.

A. Enumerating homotopy classes to evaluate
Mitigation of near symmetry requires an available range

of velocity changes that may not be possible for a particular
homotopy class decision, e.g. due to the presence of other
obstacles. In these scenarios, a robot should explore other
crossing sides in order to properly mitigate near symmetry.
Thus, let c 2 {�⇡,⇡} denote an homotopy class decision
for a robot with respect to another. The risk of ineffective
collaboration for a given c is

h

�

(↵̇, c) =

(
1
2 · g

�

(↵̇) , if ˆ

⇥(↵̇) = c

1 � 1
2 · g

�

(↵̇) , otherwise
(9)

A robot r observing a set of robots i 2 I should ideally
account for all possible homotopy class decisions. As this is
impractical for larger number of robots, a subset is obtained
by skipping the evaluation of unambiguous crossing side
decisions using the predicate: h

�

(↵̇

obs
r,i

, c) � 1 � ⇤.

B. Feasible and safe bounds for near symmetry mitigation
In Sec. V, a method to calculate the necessary range of

derivatives of the bearing angle in order to guarantee a certain
confidence in near symmetry mitigation was introduced. In
practice, the robot motion model and the configuration of
obstacles in the environment impose a practical bound on the
range of velocities and as consequence the range of derivative
of the bearing angle that can be sampled.

As seen in Fig. 5, each homotopy class decision for r

allows for a distinct subset of velocities and also brings
different bounds on values for the derivative of the bearing
angle that still avoid future collision. These bounds are



calculated by finding their minimum and maximum values
while still constraining their signs to match the ones from the
homotopy class decision and also account for safe velocities
with respect to all other obstacles.

Let B

+
r,i

( ) and B

�
r,i

( ) denote for r with respect to i

respectively the upper and lower bound of values for the
derivative of the bearing angle for an homotopy class  .
For each achievable homotopy class, in decreasing order of
confidence in effective collaboration, the first where L

r,i


B

+
r,i

( )�B

�
r,i

( ) for all i 2 I is chosen. In case no matching
homotopy class is found the closest one to fulfilling the
condition is selected. Finally, given this homotopy class, an
avoidance motion can be calculated in the following section.

C. Avoidance velocity with near symmetry mitigation
A collision avoidance for near symmetry scenarios intends

to avoid collision while guaranteeing a certain confidence in
effective collaboration in case of ambiguous crossing order.
Thus, our termination condition is that the roles of each robot
are unambiguous for a homotopy class decision, in which
case any standard collaborative approach would suffice.

Each agent will minimize the change in their desired
velocity ~vdes

r

(t) to a value that avoids future collision using

~v

⇤
r

= argmin

~v2Fp
r

��
~v � ~v

des
r

(t)

�� (10)

where Fp

r

is the set of velocities for r where the closest
predicted future distance between the circumscribed radii of
r and all i 2 I is larger than the threshold for collision risk.

The mitigation approach presented requires respecting the
chosen homotopy class and also a uniform sample of a
derivative of the bearing angle value from a distribution of
length L

r,i

from r with respect to each agent i. To solve
both of these, let u

r,i

= R(0, L

r,i

) represent a random value
sampled within the interval [0, L

r,i

]. This value is sampled
once for each i 2 I prior to the optimization to fulfill both
aforementioned requirements within the constraint

↵̇

new
r,i

= B

�
r,i

( ) + u

r,i

, 8i 2 I (11)

in practice, due to the difficulty of specifying exact values
for more than one distinct derivative of the bearing angle, in
case no optimization solution is found, the equality constraint
for the robot with the least risk of ineffective collaboration
is removed and the optimization is restarted.

As robots can continuously fail to establish unambiguous
crossing order, despite mitigation, a speed limit based on
distance is added to avoid accidental collision.

VII. SIMULATED EXPERIMENTS

This section intends to showcase robot specific calibration
for sensor noise and test limits of the presented approach
during mitigation. First a comparative validation is done of
the presented approach against a standard navigation method
in symmetric scenarios. Afterwards, experiments in a more
realistic simulation are presented using Gazebo-simulated
Personal Robot 2 (PR2) [17] robots controlled using the
Robot Operating System (ROS).
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Fig. 6: Noise impact mitigation performance for two robots.

Experiments were done considering the worst case sce-
nario, that is, in fully symmetric situations with ↵̇ = 0 for
all pairwise combinations of robots.

A. Large-scale comparative analysis of mitigation impact
The presented approach is compared to Reciprocal Veloc-

ity Obstacles (RVO) [6], [7], a standard multi-agent naviga-
tion method. As RVO agents have perfect sensing, a modified
version of RVO was generated in which noise was added to
the observations of each robot to all others robots in the
environment. The noise was normally distributed following
the behavior described in Sec. VII-B.

This experiment is done by measuring the number of
decisions until the chance of effective collaboration is above
the desired confidence. All tests were repeated 200 times
and results are shown in Fig. 7 and examples in Fig. 8. With
two robots mitigation allows for unambiguous crossing order
on at most two decisions (250ms) in upwards of 99% of
the tests while RVO with noise required up to 5 decisions
(625ms). Mitigation between three robots more than doubles
the chance of disambiguation after one decision.

Mitigation performance is likely to surpass ⇤ when L is
smaller than the bounds for the derivative of the bearing
angle due to the fact that its next measurement is not made
instantaneously and a non-zero value will increase as robots
approach their crossing point (see examples in Fig. 2).

Finally, the impact of distinct noise levels in mitigation
efficiency was evaluated as shown in Fig. 6 with positive
results. The noise values � = 0.1

�, � = 0.2

� and � = 0.3

�

allowed testing low, medium and high levels of noise.

B. ROS-integrated experiments
This experiment replicates scenarios where 2 or 3 fully-

simulated PR2 robots attempted to avoid collision in near
symmetry situations. A comparison of our approach with
RVO with noise in ROS is available in video2.

As a robot r model requires a �

r,i

error distribution to
predict average distance between samples of the derivative
of the bearing angle (see Sec. IV-B). Near collision situations
involving two PR2 robots, as shown in Fig. 9, were executed
several times and the observed values of the derivative of
the bearing angle until the crossing point were compared
with their real values which were obtained directly from
the simulator. The difference between observed value and

2See for experiments https://youtu.be/w9m5Tjj8eiM
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(a) A robot avoiding another with � = 0.2.
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(b) A robot avoiding two others with � = 0.2

Fig. 7: Relating number of consecutive avoidance decisions
with percentage of tests that had unambiguous crossing order.

Fig. 8: Examples of difference in generated trajectories be-
tween methods. Left plots are RVO with noise and right plots
are our approach. Red lines represent ineffective action(s).

Fig. 9: Frames where three robots initially misjudge crossing
order but our approach disambiguate it after one decision.

baseline was fitted to a Gaussian distribution and its stan-
dard deviation applied into (2). Thus, for situations with
robots within less than 1 meter distance from each other
�

r,i

= 1.17

� while within 2-4 meter distance an average of

�

r,i

= 0.26

� was obtained. Although exploiting holonomic
motion properties by avoiding changing the yaw of the
PR2 during avoidance motion decreased sensor noise, further
improvement seems possible.

VIII. DISCUSSION

Mitigation of ineffective collaboration in near symmetric
scenarios was done through exploitation of properties of
normal and uniform distributions. The results showed near
optimal mitigation in simulated scenarios with a model that
can be directly replicated and verified. Commonly considered
alternatives to this problem have major limitations, as

1) Always crossing in either left or right side could
solve the problem, however, it would be less efficient in
50% of the cases due to role reversal. Some scenarios
would be harder to solve due to obstacles.

2) Moving homotopy class boundary to non-zero value
would be sensitive to noise in estimation of the instan-
taneous value for the derivative of the bearing angle.

For future work, it would be interesting to also evaluate
actuation intensity for different near symmetry approaches.

REFERENCES

[1] P. Trautman and A. Krause, “Unfreezing the robot: Navigation in
dense, interacting crowds,” in Int. Conf. on Intelligent Robots and
Systems. IEEE, 2010.

[2] J. Cutting, P. Vishton, and P. Braren, “How we avoid collisions with
stationary and moving obstacles,” American Psychological Associa-
tion, vol. 102, no. 4, 1995.
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