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Let (F n ) n≥0 be the Fibonacci sequence given by F 0 = 0, F 1 = 1 and F n+2 = F n+1 + F n for n ≥ 0. In this paper, we solve all powers of two which are sums of four Fibonacci numbers with a few exceptions that we characterize.

Introduction

The equation F n -F m = y a has been well-studied. For instance Z. Siar and R. Keskin [START_REF] Siar | On the Diophantine equation F n -F n = 2 a[END_REF] have found all the solutions for y = 2, B. Demirtürk et al [START_REF] Bitim | On solutions of the Diophantine equation F n -F m = 3 a[END_REF] and P. Tiebekabe et al [START_REF] Tiebekabe | Powers of Three as Difference of Two Fibonacci Numbers F n -F m = 3 a[END_REF] have independently determined all the solutions for y = 3 and finally F. Erduvan and R. Keskin [START_REF] Erduvan | Nonnegative integer solutions of the equation F n -F m = 5 a[END_REF] determined all solutions for y = 5 and conjectured that there are no solutions for y > 7.

There are comparatively fewer works on the equation F n + F m = y a . J. J. Bravo and Luca [START_REF] Bravo | On the Diophantine equation F n + F m = 2 a[END_REF] solved the case y = 2, and their result has been generalized by Pink and Ziegler in [START_REF] Pink | Effective resolution of Diophantine equations of the form u n + u m = wp z1 1 • • • p zs s[END_REF]. J. J. Bravo and E. Bravo [START_REF] Bravo | Powers of two as sums of three Fibonacci numbers[END_REF] determined all solutions to the similar equation F n + F m + F l = 2 a ; and wrote that they expect that the equation

F n 1 + F n 2 + F n 3 + F n 4 = 2 a
(1.1) may be handled using the same method. Since the solution would involve more cases and harder computations, they leave this equation for other researchers. We have decided to tackle this difficult case. Many problems similar to the one discussed in this paper have been investigated for the Fibonacci and Lucas sequences. For example, repdigits which are sums of at most three Fibonacci numbers were found in [START_REF] Luca | Repdigits as sums of three Fibonacci numbers[END_REF]; repdigits as sums of four Fibonacci or Lucas numbers were found in [START_REF] Normenyo | Repdigits as Sums of Four Fibonacci or Lucas Numbers[END_REF]; Fibonacci numbers which are sums of two repdigits were obtained in [START_REF] Alvarado | Fibonacci numbers which are sums of two repdigits[END_REF], while factorials which are sums of at most three Fibonacci numbers were found in [START_REF] Luca | Factorials expressible as sums of two and three Fibonacci numbers[END_REF]. In 2020, Das, A. and Saha [START_REF] Das | Determining Number of Some Families of Cubic Graphs[END_REF], M. determined the number of Some families of cubic graphs.

Recall that the Zeckendorf representation [START_REF] Zeckendorf | Representation des nombres naturels par une somme de nombres ou de nombres de Lucas[END_REF] of a positive integer N is the representation N = F m 1 +F m 2 +. . .+F mt ; with m i -m i+1 2 for i = 1, . . . , t-1.

Equation (1.1) is a particular case of Zeckendorf representation with N = 2 a and t = 4.

This paper is subdivided as follows: In Section 2, we introduce auxiliary results used in Section 3 to prove the main theorem of this paper stated below. 
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Auxiliary results

In this section, we give some important known definitions, proprieties, theorem and lemmas. Definition 2.1. For an algebraic number γ, we define its measure by the following identity :

M(γ) = |a d | d i=1 max{1, |γ i |}, where γ i are the roots of f (x) = a d d i=1 (x -γ i ), the minimal polynomial of γ.
Let us define now another height, deduced from the last one, called the absolute logarithmic height. Definition 2.2. (Absolute logarithmic height). For a non-zero algebraic number of degree d on Q where the minimal polynomial on Z is

f (x) = a d d i=1 (x -γ i ), we denote by h(γ) = 1 d log |a d | + d i=1 log max{1, |γ i |} = 1 d log M(γ).
the usual absolute logarithmic height of γ.

The following properties of the logarithmic height are well-known:

• h(γ ± η) ≤ h(γ) + h(η) + log 2; • h(γη ±1 ) ≤ h(γ) + h(η); • h(γ k ) = |k|h(γ) k ∈ Z.
The nth Fibonacci number can be represented as

F n = α n -β n √ 5 for all n 0.
where (α, β) := ((1 + √ 5)/2, (1 -√ 5)/2). The following inequalities

α n-2 F n α n-1
are well-known to hold for all n 1 and can be proved by induction on n. The following theorem is deduced from Corollary 2.3 of Matveev [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II[END_REF]. 

Λ := η b 1 1 • • • η b l l -1 = l i=1 η b i i -1.
Let A 1 , . . . , A l reals numbers such that

A j ≥ max{Dh(η j ), | log(η j )|, 0.16}, 1 ≤ j ≤ l.
Assume that Λ = 0, So we have

log |Λ| > -3 × 30 l+4 × (l + 1) 5.5 × d 2 × A 1 ...A l (1 + log D)(1 + log nB).
Further, if L is real, then

log |Λ| > -1.4 × 30 l+3 × (l) 4.5 × d 2 × A 1 ...A l (1 + log D)(1 + log B).
The following two Lemmas are due Dujella and Pethő, and to Legendre respectively.

For a real number X, we write X := min{| X -n |: n ∈ Z} for the distance of X to the nearest integer.

Lemma 2.1. (Dujella and Pethő, [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF]) Let M a positive integer, let p/q the convergent of the continued fraction expansion of κ such that q > 6M and let A, B, µ real numbers such that A > 0 and B > 1. Let ε := µq -M κq . If ε > 0 then there is no solution of the inequality

0 < mκ -n + µ < AB -m
in integers m and n with log(Aq/ε) log B m M.

Lemma 2.2. (Legendre) Let τ real number such that x, y are integers such that

τ - x y < 1 2y 2 , then x y = p k q k is a convergent of τ . Further, τ - x y > 1 (q k+1 + 2)y 2 .

Main result

Proof. Assume that

F n 1 + F n 2 + F n 3 + F n 4 = 2 a
holds. Let us first find relation between n 1 and a.

Combining equation(1.1) with the well-known inequality F n α n-1 for all n 1, one gets that

F n 1 + F n 2 + F n 3 + F n 4 = 2 a α n 1 -1 + α n 2 -1 + α n 3 -1 + α n 4 -1 <2 n 1 -1 + 2 n 2 -1 + 2 n 3 -1 + 2 n 4 -1 ∵ α < 2 <2 n 1 -1 1 + 2 n 2 -n 1 + 2 n 3 -n 1 + 2 n 4 -n 1 2 n 1 -1 1 + 1 + 2 -1 + 2 -2 = 2 n 1 -1 2 + 2 -1 + 2 -2 <2 n 1 +1 . Hence 2 a < 2 n 1 +1 =⇒ a < n 1 + 1 =⇒ a n 1 .
This inequality will help us to calculate some parameters.

Rewriting equation (1.1), we get

α n 1 √ 5 -2 a = β n 1 √ 5 -(F n 2 + F n 3 + F n 4 ).
Taking absolute values on the above equation, we obtain

α n 1 √ 5 -2 a β n 1 √ 5 + (F n 2 + F n 3 + F n 4 ) < |β| n 1 √ 5 + (α n 2 + α n 3 + α n 4 ),
and

α n 1 √ 5 -2 a < 1 2 + (α n 2 + α n 3 + α n 4 ) ,
where we used F n α n-1 . Dividing both sides of the above equation by

α n 1 / √ 5, we get 1 -2 a • α -n 1 • √ 5 < √ 5 2α n 1 + α n 2 -n 1 + α n 3 -n 1 + α n 4 -n 1 √ 5 < √ 5 2α n 1 + √ 5 α n 1 -n 2 + √ 5 α n 1 -n 3 + √ 5 α n 1 -n 4 .
Taking into account the assumption n 4 n 3 n 3 n 2 n 1 , we get

|Λ 1 | = 1 -2 a • α -n 1 • √ 5 < 9 α n 1 -n 2 (3.1)
Let us apply Matveev's theorem, with the following parameters t := 3 and

γ 1 := 2, γ 2 := α, γ 3 := √ 5, b 1 := a, b 2 := -n, and b 3 := 1. Since γ 1 , γ 2 , γ 3 ∈ K := Q( √ 5 
), we can take D := 2. Before applying Matveev's theorem, we have to check the last condition: the left-hand side of (3.1) is not zero. Indeed, if it were zero, we would then get that 2 a √ 5 = α n . Squaring the previous relation, we get α 2n = 5•2 2a = 5•4 a . This implies that α 2n ∈ Z, which is impossible, so we conclude that Λ 1 = 0.

The logarithmic height of γ 1 , γ 2 and γ 3 are: h(γ 1 ) = log 2 = 0.6931 . . ., so we can choose A 1 := 1.4.

h(γ 2 ) = 1 2 log α = 0.2406 . . ., so we can choose A 2 := 0.5.

h(γ 3 ) = log √ 5 = 0.8047 . . ., it follows that we can choose

A 3 := 1.7. Since a < n 1 + 1, B := max{|b 1 |, |b 2 |, |b 3 |} = n 1 . Matveev's result informs us that 1 -2 a • α n 1 • √ 5 > exp (-c 1 • (1 + log n) • 1.4 • 0.5 • 1.7) , (3.2) 
where

c 1 := 1.4 • 30 6 • 3 4.5 • 2 2 • (1 + log 2) < 9.7 × 10 11 .
Taking log in inequality (3.1), we get

log |Λ 1 | < log 9 -(n 1 -n 2 ) log α.
Taking log in inequality (3.2), we get

log |Λ 1 | > 2.31 × 10 12 log n 1 .
Comparing the previous two inequalities, we get

(n 1 -n 2 ) log α -log 9 < 2.31 × 10 12 log n 1 ,
where we used 1 + log n 1 < 2 log n 1 which holds for all n 1 3. Then we have (n 1 -n 2 ) log α < 2.32 × 10 12 log n 1 .

(3.3) Let us now consider a second linear form in logarithms. We rewrite equation (1.1) as follows

α n 1 √ 5 + α n 2 √ 5 -2 a = β n 1 √ 5 + β n 2 √ 5 -(F n 3 + F n 4 ) .
Taking absolute values on the above equation and the fact that β = (1 -√ 5)/2, we get

α n 1 √ 5 1 + α n 2 -n 1 -2 a |β| n 1 + |β| n 2 √ 5 + F n 3 + F n 4 < 1 3 + α n 3 + α n 4 for all n 1 5 and n 2 5.
Dividing both sides of the above inequality by

α n 1 √ 5 (1 + α n 2 -n 1 ), we obtain |Λ 2 | = 1 -2 a • α n 1 • √ 5 1 + α n 2 -n 1 -1 < 6 α n 2 -n 1 . (3.4)
Let us apply Matveev's theorem second time with the follow parameters

t := 3, γ 1 := 2, γ 2 := α, γ 3 := √ 5 1 + α n 2 -n 1 -1 , b 1 := a, b 2 := -n 1 , and b 3 := 1. Since γ 1 , γ 2 , γ 3 ∈ K := Q( √ 5 
), we can take D := 2. The left hand side of (3.4) is not zero, otherwise, we would get the relation

2 a √ 5 = α n 1 + α n 2 . (3.5) Conjugating (3.5) in the field Q( √ 5), we get -2 a √ 5 = β n 1 + β n 2 . (3.6)
Combining (3.5) and (3.6), we get

α n 1 < α n 1 + α n 2 = |β n 1 + β n 2 | |β| n 1 + |β| n 2 < 1
which is impossible for n 1 > 350. Hence Λ 2 = 0. We know that, h(γ 1 ) = log 2 and h(γ 2 ) = 1 2 log α. Let us now estimate h(γ 3 ) by first observing that

γ 3 = √ 5 1 + α n 2 -n 1 < √ 5 and γ -1 3 = 1 + α n 2 -n 1 √ 5 < 2 √ 5 , so that | log γ 3 | < 1.
Using proprieties of logarithmic height stated in Section 2, we have

h(γ 3 ) log √ 5+|n 2 -n 1 | log α 2 +log 2 = log(2 √ 5)+(n 1 -n 2 ) log α 2 .
Hence, we can take

A 3 := 3+(n 1 -n 2 ) log α > max{2h(γ 3 ), | log γ 3 |, 0.16}. Matveev's theorem implies that exp (-c 2 (1 + log n 1 ) • 1.4 • 0.5 • (3 + (n 1 -n 2 ) log α))
where

c 2 := 1.4 • 30 6 • 3 4.5 • 2 2 • (1 + log 2) < 9.7 × 10 11 .
Since (1 + log n 1 ) < 2 log n 1 hold for n 1 3, from (3.4), we have

(n 1 -n 3 ) log α -log 6 < 1.4 × 10 12 log n 1 (3 + (n 1 -n 2 ) log α). (3.7)
Putting relation (3.3) in the right-hand side of (3.7), we get

(n 1 -n 3 ) log α < 3.29 × 10 24 log 2 n 1 . (3.8)
Let us consider a third linear form in logarithms. To this end, we again rewrite (1.1) as follows

α n 1 + α n 2 + α n 3 √ 5 -2 a = β n 1 + β n 2 + β n 3 √ 5 -F n 4 .
Taking absolute values on both sides, we obtain

α n 1 √ 5 1 + α n 2 -n 1 + α n 3 -n 1 -2 a |β| n 1 + |β| n 2 + |β| n 3 √ 5 + F n 4 < 3 4 + α n 4
for all n 1 > 350, and n 2 , n 3 , n 4 1.

Thus we have

|Λ 3 | = 1 -2 a • α -n 1 • √ 5 1 + α n 2 -n 1 + α n 3 -n 1 -1 < 3 α n 1 -n 4 . (3.9)
In a third application of Matveev's theorem, we can take parameters

t := 3, γ 1 := 2, γ 2 := α, γ 3 := √ 5 1 + α n 2 -n 1 + α n 3 -n 1 -1 , b 1 := a, b 2 := -n, and, b 3 := 1. Since γ 1 , γ 2 , γ 3 ∈ K := Q( √ 5 
), we can take D := 2. Suppose, for a contradiction, that |Λ 3 | = 0. Then

2 a √ 5 = α n 1 + α n 2 + α n 3 .
Taking the conjugate in the field Q( √ 5), we get

-2 a √ 5 = β n 1 + β n 2 + β n 3 ,
which leads to

α n 1 < α n 1 + α n 2 + α n 3 = |β n 1 + β n 2 + β n 3 | |β| n 1 + |β| n 2 + |β| n 3 < 1
and leads to a contradiction since n 1 > 350. Hence Λ 3 = 0.

As we did before, we can take A 1 := 1.4, A 2 := 0.5 and B := n 1 . We can also see that

γ 3 = √ 5 1 + α n 2 -n 1 + α n 3 -n 1 < √ 5 and γ -1 3 = 1 + α n 2 -n 1 + α n 3 -n 1 √ 5 < 3 √ 5 , so | log γ 3 | < 1.
Applying proprieties on logarithmic height, we estimate

h(γ 3 ) log √ 5 + |n 2 -n 1 | log α 2 + |n 3 -n 1 | log α 2 + log 3 = log(3 √ 5) + (n 1 -n 2 ) log α 2 + (n 1 -n 3 ) log α 2 ;
so we can take

A 3 := 4 + (n 1 -n 2 ) log α + (n 1 -n 3 ) log α > max{2h(γ 3 ), | log γ 3 |, 0.16}.
A lower bound on the left-hand side of (3.9) is exp(-

c 3 • (1 + log n 1 ) • 1.4 • 0.5 • (4 + (n 1 -n 2 ) log α + (n 1 -n 3 ) log α))
where

c 3 = 1.4 • 30 6 • 3 4.5 • 2 2 • (1 + log 2) < 9.7 × 10 11 .
From inequality (3.9), we have (3.11)

(n 1 -n 4 ) log α < 1.4 × 10 12 log n 1 • (4 + (n 1 -n 2 ) log α + (n 1 -n 3 ) log α). ( 3 
Let us now consider a fourth and last linear form in logarithms. Rerwriting (1.1) once again by separating large terms and small terms, we get

α n 1 + α n 2 + α n 3 + α n 4 √ 5 -2 a = β n 1 + β n 2 + β n 3 + β n 4 √ 5 .
Taking absolute values on both sides, we get

α n 1 √ 5 1 + α n 2 -n 1 + α n 3 -n 1 + α n 4 -n 1 -2 a |β| n 1 + |β| n 2 + |β| n 3 + |β| n 4 √ 5 < 4 5 for all n 1 > 350, and n 2 , n 3 , n 4 1.
Dividing both sides of the above relation by the fist term of the RHS of the previous equation, we get

|Λ 4 | = 1 -2 a • α -n 1 • √ 5 1 + α n 2 -n 1 + α n 3 -n 1 + α n 4 -n 1 -1 < 2 α n 1 .
(3.12) In the last application of Matveev's theorem, we have the following parameters

γ 1 := 2, γ 2 := α, γ 3 := √ 5 1 + α n 2 -n 1 + α n 3 -n 1 + α n 4 -n 1 -1 ,
and we can also take b 1 := a, b 2 := -n and b

3 := 1. Since γ 1 , γ 2 , γ 3 ∈ K := Q( √ 5 
), we can take D := 2. Suppose, for a contradiction, that

|Λ 4 | = 0. Then 2 a √ 5 = α n 1 + α n 2 + α n 3 + α n 4 . Conjugating the above relation in the field Q( √ 5), we get -2 a √ 5 = β n 1 + β n 2 + β n 3 + β n 4 .
Combining the above two equations, we get

α n 1 < α n 1 + α n 2 + α n 3 + α n 4 = |β n 1 + β n 2 + β n 3 + β n 4 | |β| n 1 + |β| n 2 + |β| n 3 + |β| n 4 < 1, which leads to a contradiction since n 1 > 350.
As before, here, we can take A 1 := 1.4, A 2 := 0.5 and B := n 1 . Let us estimate h(γ 3 ). We can see that,

γ 3 = √ 5 1 + α n 2 -n 1 + α n 3 -n 1 + α n 4 -n 1 < √ 5 and γ -1 3 = 1 + α n 2 -n 1 + α n 3 -n 1 + α n 4 -n 1 √ 5 < 4 √ 5 .
Hence

| log γ 3 | < 1. Then h(γ 3 ) log(4 √ 5) + |n 2 -n 1 | log α 2 + |n 3 -n 1 | log α 2 + |n 4 -n 1 | log α 2 = log(4 √ 5) + (n 1 -n 2 ) log α 2 + (n 1 -n 3 ) log α 2 + (n 1 -n 4 ) log α 2 ;
so we can take

A 3 := 5 + (n 1 -n 2 ) log α + (n 1 -n 3 ) log α + (n 1 -n 4 ) log α.
Then a lower bound on the left-hand side of (3. With the help of Mathematica, we get from the previous inequality n < 2.8 × 10 58 .

We record what we have proved. 

Reduction the bound on n

The goal of this section is to reduce the upper bound on n to a size that can be handled. To do this, we shall use Lemma 2.1 four times. Let us consider

z 1 := a log 2 -n 1 log α + log √ 5. (4.1)
From equation (4.1), (3.1) can be written as

|1 -e z 1 | < 9 α n 1 -n 2 . (4.2)
Associating (1.1) and Binet's formula for the Fibonacci sequence, we have

α n 1 √ 5 = F n 1 + β n 1 √ 5 < F n 1 + F n 2 + F n 3 + F n 4 = 2 a , hence α n 1 √ 5 < 2 a ,
which leads to z 1 > 0. This result, together with (4.2), give

0 < z 1 < e z 1 -1 < 9 α n 1 -n 2 .
Replacing (4.1) in the inequality and dividing both sides of the resulting inequality by log α, we get

0 < a log 2 log α -n + log √ 5 log α < 9 log α • α n 1 -n 2 < 19 • α n 1 -n 2 . (4.3)
We put

τ := log 2 log α , µ := log √ 5 log α
, A := 19, and B := α.

τ is an irrational number. We also put M := 2.8 × 10 58 , which is an upper bound on a by Lemma 2.1 applied to inequality (4.3), that

n 1 -n 2 < log(Aq/ε) log B ,
where q > 6M is a denominator of a convergent of the continued fraction of τ such that ε := µq -M τ q > 0. A computation with SageMath revealed that if (n 1 , n 2 , n 3 , n 4 , a) is a possible solution of the equation 1.1, then

n 1 -n 2 ∈ [0, 314].
Let us now consider a second function, derived from (3.4) in order to find an improved upper bound on

n 1 -n 2 . Put z 2 := a log 2 -n 1 log α + log Υ 1 (n 1 -n 2 )
where Υ is the function given by the formula Υ(t) := √ 5 (1 + α -t ) -1 . From (3.4), we have

|1 -e z 2 | < 6 α n 1 -n 3 . (4.4) 
Using (1.1) and the Binet's formula for the Fibonacci sequence, we have

α n 1 √ 5 + α n 2 √ 5 = F n 1 +F n 2 + β n 1 √ 5 + β n 2 √ 5 < F n 1 +F n 2 +1 F n 1 +F n 2 +F n 3 +F n 4 = 2 a . Therefore 1 < 2 a √ 5α -n 1 (1 + α n 2 -n 1 )
-1 and so z 2 > 0. This with (4.4) give

0 < z 2 e z 2 -1 < 6 α n 1 -n 3 .
Putting the expression of z 2 in the above inequality and arguing as in (4.3), we obtain

0 < a log 2 log α -n 1 + log Υ 1 (n 1 -n 2 ) log α < 13 • α -(n 1 -n 3 ) . (4.5) 
As before, we take M := 2.8 × 10 58 as the upper bound on a, and, as explained before, we apply Lemma 2.1 to inequamity (4.5) for all choices n 1 -n 2 ∈ [0, 314] except when n 1 -n 2 = 2, 6. With the help of SageMath, we find that if (n 1 , n 2 , n 3 , n 4 , a) is a possible solution of the equation (1.1) with n 1 -n 2 = 2 and n 1 -n 2 = 6, then n 1 -n 3 ∈ [0, 314].

Next, we study the cases n 1 -n 2 ∈ {2, 6}. For these cases, when we apply Lemma 2.1 to the expression (4.5), the corresponding parameter µ appearing in Lemma 2.1 is

log Υ 1 (t) log α =    1 if t = 2; 3 - log 2 log α if t = 6.
In both case, the parameters τ and µ are linearly dependent, which tell us that the corresponding value of ε from Lemma 2.1 is always negative and therefore the reduction method is not useful for reducing the bound on n in these instances. For this reason, we need to treat these cases differently. However, we can see that if t = 2 and 6, then the resulting inequality from (4.5) has the shape 0 < |xτ -y| < 13 • α -(n 1 -n 3 ) with τ being an irrational number and x, y ∈ Z. We will use the known properties of the convergents of continued fractions to obtain a nontrivial lower bound for |xτ -y|.

For n 1 -n 2 = 2, from (4.5), we get that Furthermore, a M := max{a i : i = 0, 1, . . . , 114} = 134. So, from the proprieties of continued fractions, we obtain that

0 < aτ -(n 1 -1) < 13 • α -(n 1 -n 3 ) ,
|aτ -(n 1 -1)| > 1 (a M + 2)a . (4.7) 
Comparing (4.6) and (4.7), we get

α n 1 -n 3 < 13 • (134 + 2)a.
Taking log on both sides of the above inequality and then dividing by log α, we get n 1 -n 3 < 296.

In order to avoid repetition, we omits the details for the case n 1 -n 2 = 6. Here, we get n 1 -n 3 < 314.

This completes the analysis of the two special cases n 1 -n 2 = 2 and n 1 -n 2 = 6. Consequently n 1 -n 3 314 always holds. Now let us use (3.9) in order to find improved upper bound on n

1 -n 4 . Put z 3 := a log 2 -n 1 log α + log Υ 2 (n 1 -n 2 , n 1 -n 3 ),
where Υ 2 is the function given by the formula

Υ 2 (t, s) := √ 5 (1 + α -t + α -s ) -1 .
From (3.9), we have

|1 -e z 3 | < 3 α n 1 -n 4 . (4.8)
Note that, z 3 = 0; thus, two cases arise: z 3 > 0 and z 3 < 0. If z 3 > 0, then

0 < z 3 e z 3 -1 < 3 α n 1 -n 4 . F n 2 +5 + F n 2 + F n 2 +4 + F n 4 = 2 a , and F n 2 +8 + F n 2 + F n 2 +1 + F n 4 = 2 a
(4.10) in positive integers n 2 , n 4 and a. To do so, we recall the following well-known relation between the Fibonacci and the Lucas numbers:

L k = F k-1 + F k+1 for all k 1. (4.11)
From (4.11) and (4.10), we have the following identities

F n 2 +1 + 2F n 2 + F n 4 = F n 2 +2 + F n 2 + F n 4 = F k+2 + F k + F m , 2F n 2 +3 + F n 2 + F n 4 = F n 2 +2 + F n 2 +4 + F n 4 = F k+2 + F k+4 + F m , F n 2 +4 + F n 2 + F n 2 +1 + F n 4 = F n 2 +2 + F n 2 +4 + F n 4 = F k+2 + F k+4 + F m , (4.12) F n 2 +5 +F n 2 +F n 2 +4 +F n 4 = 2F n 2 +2 +2F n 2 +4 +F n 4 = 2F k+2 +2F k+4 +F m , and F n 2 +8 +F n 2 +F n 2 +1 +F n 4 = 2F n 2 +6 +2F n 2 +4 +F n 4 = 2F k+6 +2F k+4 +F m ,
which hold for all k, m 0. Equation (4.10) are transformed into the equations A complete resolution and analysis gives solutions that are already listed in Theorem 1.1. This completes the analysis of the special cases. Finally let us use (3.12) in order to find an improved upper bound on n 1 . Set Replacing the expression for z 3 in the above inequality and arguing again as before, we conclude that 0 < a log 2 log α -n 1 + log Υ 3 (n 1 -n 2 , n 1 -n 3 , n 1 -n 4 ) log α < 9 • α -n 1 .

L k+1 +F m = 2 a , L k+3 +F m = 2 a , 2L k+3 +F m = 2 a , 2L k+5 +F m = 2 a , ( 4 
(4.15) Here, we also take, M := 2.8×10 58 and we apply Lemma 2.1 last time in inequality (4.15) for all choices n 1 -n 2 ∈ {0, 314}, n 1 -n 3 ∈ {0, 314} and n 1 -n 4 ∈ {0, 314} with (n 1 , n 2 , n 3 , n 4 , a) a possible solution of equation (1.1), and by omitting study of special cases (because they give a solution presented in Theorem 1.1 ), we get:

n 1 < 320.
This is false due to our assumption that n 1 > 350.

This ends the proof of our main theorem.

Remark 4.1. Note that the computations for this last case took 2 hours on an ASUS CORE i5 8th Gen. processor.

Comments

In this paper, we found all instances in which a power of two can be expressed as a sum of four Fibonacci numbers. Given the results obtained, we can make the following conjecture. where n 1 , n 2 , n 3 , n 4 , a are positive integers with n 1 n 2 n 3 n 4 and p is prime, then p = 2, 3, 5, 7.

Theorem 1 . 1 .

 11 All non-trivial solutions of the Diophantine equation (1.1) in positive integers n 1 , n 2 , n 3 , n 4 and a with n 1

Theorem 2 . 1 (

 21 Matveev [17]). Let n ≥ 1 an integer. Let L be a field of algebraic number of degree D. Let η 1 , . . . , η l non-zero elements of L and let b 1 , b 2 , . . . , b l integers, B := max{|b 1 |, ..., |b l |}, and

. 10 )

 10 Combining equation (3.3) and (3.8) in the right-most terms of equation (3.10) and performing the respective calculations, we get (n 1 -n 4 ) log α < 9.3 × log 3 n 1 .

  12) is exp(-c 4 •(1+log n 1 )•1.4•0.5•(5+(n 1 -n 2 ) log α+(n 1 -n 3 ) log α+(n 1 -n 4 ) log α)), where c 4 = 1.4 • 30 6 • 3 4.5 • 2 2 • (1 + log 2) < 9.7 × 10 11 .So, inequality (3.12) yieldsn 1 log α < 1.4×10 12 log n 1 •(5+(n 1 -n 2 ) log α+(n 1 -n 3 ) log α+(n 1 -n 4 ) log α). (3.13) Using now (3.3), (3.8) and (3.11) in the right-most terms of the above inequality (3.13) and performing the respective calculation, we find that n 1 log α < 40.32 × 10 48 log 4 n 1 .

Lemma 3 . 1 .

 31 If (n 1 , n 2 , n 3 , n 4 , a) is a positive solution of (1.1) with n 1 n 2 n 3 n 4 , then a n 1 < 2.8 × 10 58 .

  .13) to be resolved in positive integers k, m and a. A quick search in SageMath and analytical resolution leads to : (k, m, a) ∈ {(4, 5, 4), (4, 8, 5)} for L k+1 + F m = 2 a , (k, m, a) ∈ {(2, 5, 4), (2, 8, 5), (4, 4, 5)} for L k+3 + F m = 2 a , (k, m, a) = (5, 9, 7) for 2L k+3 + F m = 2 a , (k, m, a) = (3, 9, 7) for 2L k+5 + F m = 2 a .

z 4 : 2 α n 1 .< 4 α n 1 which gives 0 < |z 3 | < 4 α n 1

 4211 = a log 2 -n 1 log α + log Υ 3 (n 1 -n 2 , n 1 -n 3 , n 1 -n 4 ),where Υ 3 is the function given by the formulaΥ 3 (t, u, v) := √ 5 1 + α -t + α -u + α -v -1 with t = n 1 -n 2 , u = n 1 -n 3 and v = n 1 -n 4 .From (3.12), we get|1 -e z 3 | < 2 α n 1 . (4.14)Since z 3 = 0, as before, two cases arise : z 4 < 0 and z 4 > 0.If z 4 > 0, then 0 < z 4 e z 4 -1 < Suppose now that z 4 < 0. We have 2/α n 1 < 1/2 for all n 1 > 350. Then, from (4.14), we have|1 -e z 4 | < 1 2and therefore e |z 3 | < 2. Since z 3 < 0, we have :0 < |z 3 | e |z 3 | -1 = e |z 3 | e |z 3 |-1 for both cases (z 3 < 0 and z 3 > 0 ) and holds for all n 1 > 350.

Conjecture 5 . 1 .

 51 Consider the Diophantine equationF n 1 + F n 2 + F n 3 + F n 4 = p a , p 2, a2(5.1)

  , a 2 , a 3 , a 4 , . . .] = [1, 2, 3, 1, . . .] be the continued fraction of τ , and let p k /q k denote its kth convergent. By Lemma 2.2, we know that a < 2.8 × 10 58 . An inspection in SageMath reveals that 1207471144047491451512110092657730332808809199105354185685 = q 113 < 2.8 × 10 58 < q 114 = 28351096929195187169517686575841899309129196859170938821667.

	where τ =	log 2 log α	.	(4.6)
	Let [a 1			
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Suppose now z 3 < 0. It is easy to check that 3/α n 1 -n 4 < 1/2 for all n 1 > 350 and n 4 2. From (4.8), we have that |1 -e z 3 | < 1/2 and therefore e |z 3 | < 2.

Since z 3 < 0, we have:

holds for z 3 < 0, z 3 > 0 and for all for all n 1 > 350, and n 4 2. Replacing the expression for z 3 in the above inequality and arguing again as before, we conclude that

(4.9) Here, we also take, M := 2.8 × 10 58 and we apply Lemma 2.1 in inequality (4.9) for all choices n 1 -n 2 ∈ {0, 314} and n 1 -n 3 ∈ {0, 314} except when (n 1 -n 2 , n 1 -n 3 ) ∈ {(0, 3), (1, 1), (1, 5), (3, 0), [START_REF] Tiebekabe | Powers of Three as Difference of Two Fibonacci Numbers F n -F m = 3 a[END_REF][START_REF] Tiebekabe | On solutions of Diophantine equation L n + L m = 3 a[END_REF], (4, 3), (5, 1), [START_REF] Bravo | On the Diophantine equation F n + F m = 2 a[END_REF][START_REF] Pink | Effective resolution of Diophantine equations of the form u n + u m = wp z1 1 • • • p zs s[END_REF], (8, 7)}. Indeed, with the help of SageMath we find that if (n 1 , n 2 , n 3 , n 4 , a) is a possible solution of equation (1.1), excluding the cases presented before, then n 1 -n 4 314.

SPECIAL CASES. We deal with the cases when

), (3, 0), (4, 3), (5, 1), (8, 7)}.

It is easy to check that log Υ 2 (t, s)

As we explained before, when we apply Lemma 2.1 to the expression (4.9), the parameters τ and µ are linearly dependent, so the corresponding value of ε from Lemma 2.1 is negative in all cases. For this reason, we shall treat these cases differently.

Here, we have to solve the equations