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In this paper, we study ideals spanned by polynomials or overconvergent series in a Tate algebra. With state-of-the-art algorithms for computing Tate Gröbner bases, even if the input is polynomials, the size of the output grows with the required precision, both in terms of the size of the coefficients and the size of the support of the series.

We prove that ideals which are spanned by polynomials admit a Tate Gröbner basis made of polynomials, and we propose an algorithm, leveraging Mora's weak normal form algorithm, for computing it. As a result, the size of the output of this algorithm grows linearly with the precision. Following the same ideas, we propose an algorithm which computes an overconvergent basis for an ideal spanned by overconvergent series. Finally, we prove the existence of a universal analytic Gröbner basis for polynomial ideals in Tate algebras, compatible with all convergence radii.

INTRODUCTION

The study of 𝑝-adic geometric objects has taken significant importance in the 20th century, as a crucial component of algebraic number theory. Beyond polynomials and algebraic geometry, Tate developed a theory of 𝑝-adic analytic varieties, called rigid geometry. This theory is now central to many developments in number theory. The fundamental underlying algebraic object is Tate algebras, that is, algebras of convergent multivariate power series over a complete discrete valuation field 𝐾 (for instance Q 𝑝 ).

In earlier papers, the authors examined those Tate series from a computational point of view, with the hope to develop an algorithmic toolbox on par with what is available for polynomials. The main result was that it is possible to define and compute Gröbner bases of Tate ideals, in a way compatible with the usual theory on polynomials over the residue field (e.g. F 𝑝 ). We also examined how different algorithms from the polynomial case transfer to Tate settings.

A key property of Tate series is their convergence radius. Tate algebras are parameterized by the convergence radius of their series. If a series is convergent on a certain disk, it is certainly convergent on all disks with smaller radius. This gives a natural embedding of one Tate algebra into another if the convergence radii of the latter are smaller than those of the former. This property is a key feature of rigid geometry. In fact, the canonical embedding of 𝐾 [X] into Tate algebras is a particular case of such an embedding, with polynomials seen as series with infinite convergence radius.

Beyond this theoretical interest, recognizing and exploiting such overconvergence properties would help making the algorithms more efficient. Indeed, a limiting factor of the current algorithms is the cost of the reductions, in particular as the precision grows. Series with a larger convergence radius are series which converge faster, and thus require to compute fewer terms while reducing. The challenge in taking advantage of those properties lies in designing algorithms ensuring that this overconvergence property is preserved in the course of the algorithm.

In [START_REF] Caruso | On FGLM Algorithms With Tate Algebras[END_REF], we showed how to generalize the FGLM algorithm [START_REF] Faugère | Efficient computation of zerodimensional Gröbner bases by change of ordering[END_REF] to Tate algebras. A result was that this algorithm allows, for zerodimensional Tate ideals embedded into a Tate algebra with a less restrictive convergence condition, to convert the Gröbner basis. This opens the possibility, for zero-dimensional ideals, of computing a Gröbner basis in the smaller Tate algebra, where all series have the stronger convergence property, and then using FGLM to convert the result.

In this work, we consider ideals spanned by polynomials in a Tate algebra, from this point of view of overconvergence. We show that in this case, the ideal admits a Gröbner basis comprised only of polynomials, and we propose an algorithm computing such a basis, and working only with polynomials. The key ingredient is to use a variant of Mora's weak normal form [START_REF] Mora | An Algorithm to Compute the Equations of Tangent Cones[END_REF] to compute the head reductions instead of standard reduction. This algorithm computes reductions up to an invertible factor, with the additional property that all series appearing in the computations are actually polynomials. In order to do so, it uses specific metrics, called écarts, to select the polynomials to use for reduction at each step. This notion of écart is crucial in proving that the Gröbner basis computation terminates. In the polynomial case, the écart is simply defined as the difference between the degree of the polynomial and that of its leading term, and in the Tate case we need to refine that with a comparison on the set-difference of the supports of the polynomials.

The resulting algorithm offers a better control for the complexity as a function of the precision. Concretely, given a set of polynomials in Q[X], and a prime number 𝑝, we consider the ideal 𝐼 spanned by the polynomials in Q 𝑝 {X}. Using existing algorithms for Tate Gröbner bases, we can compute a Gröbner basis of 𝐼 modulo 𝑝 𝑁 for all 𝑁 . But the output of such a computation will be truncated series, and if we increase the precision 𝑁 , the size of their support typically increases, and even quantifying that growth is not an easy task. By contrast, the algorithm which we present here only computes polynomials. So once the precision is large enough, the supports will be completely determined and will not grow anymore. Asymptotically, the size of the output grows linearly with the precision, and the complexity of the algorithm grows at the same rate as the cost of coefficient arithmetic.

The same idea can be used for ideals spanned by overconvergent series. With a further refinement of the écart in order to take the valuation of the coefficients into account, we prove that Mora's algorithm allows to compute overconvergent remainders as a result of reducing overconvergent series, and that the modified version of Buchberger's algorithm converges, and computes a basis comprised of overconvergent series.

In later sections, we examine an application of those results for ideals spanned by polynomials in a Tate algebra, namely eliminating variables. This operation is fundamental in effective algebraic geometry, by allowing to compute various ideal operations such as saturation or intersection. However, in the Tate setting, due to the nature of the term ordering, computing an elimination ideal by a Gröbner basis may fail. Concretely, even with an elimination ordering, the leading term of a Tate series is determined by first looking at the valuations of the coefficients, and so it is not enough to look at the leading term to determine whether the series involves the elimination variable or not.

We prove that for ideals spanned by polynomials, using Buchberger's algorithm with Mora reductions, this problem does not appear, and we are indeed able to eliminate variables. This allows to recover all the usual ideal operations, and in particular proves that polynomial ideals are stable under intersection and radical.

Finally, we consider the theory of universal Gröbner bases, that is, sets which are a Gröbner basis for all monomial orderings. This theory has proved useful in the classical setting, for instance leading to algorithms for change of ordering. The key result is that any ideal in a polynomial algebra has a finite universal Gröbner basis. This allows to see the set of Gröbner bases of the ideal as a polyhedral cone, and algorithms wandering on this cone have been developed (see [START_REF] Bayer | Standard bases and geometric invariant theoryI. Initial ideals and state polytopes[END_REF][START_REF] Collart | Converting bases with the Gröbner walk[END_REF][START_REF] Fukuda | Computing Gröbner fans[END_REF][START_REF] Mora | The Gröbner fan of an ideal[END_REF]). Furthermore, connections with tropical geometry have been explored (see [START_REF] Bogart | Computing Tropical Varieties[END_REF][START_REF] Jensen | Gfan, a software system for Gröbner fans and tropical varieties[END_REF]). This latter aspect motivates the quest for a similar notion in the Tate setting. It could pave the way for the computation of the tropical analytic variety defined by a polynomial ideal (see [START_REF] Rabinoff | Tropical analytic geometry, Newton polygons, and tropical intersections[END_REF]). However, it is not clear whether all Tate ideals admit a finite universal Gröbner basis. The last result of this work is a proof that polynomial ideals admit a finite universal analytic Gröbner basis, valid regardless of the choice of the convergence radii.

SETTING 2.1 Term orders, Tate algebras and ideals

In order to fix notations, we briefly recall the definition of Tate algebras and their theory of Gröbner bases (GB for short). Let 𝐾 be a field with valuation val and let 𝐾 • be the subring of 𝐾 consisting of elements of nonnegative valuation. Let 𝜋 be a uniformizer of 𝐾, that is an element of valuation 1. Let 𝐾 ex ⊂ 𝐾, be an exact field. Typical examples of such a setting are 𝑝-adic fields like 𝐾 = Q 𝑝 with 𝐾 • = Z 𝑝 , 𝜋 = 𝑝 and 𝐾 ex = Q or Laurent series fields like

𝐾 = Q((𝑇 )) with 𝐾 • = Q[[𝑇 ]], 𝜋 = 𝑇 and 𝐾 ex = Q(𝑇 ).
Let r = (𝑟 1 , . . . , 𝑟 𝑛 ) ∈ Q 𝑛 . The Tate algebra 𝐾 {X; r} is defined by:

𝐾 {X; r} := ∑︁ i∈N 𝑛 𝑎 i X i s.t. 𝑎 i ∈ 𝐾 and val(𝑎 i ) -r•i -------→ |i|→+∞ +∞
(1) The tuple r is called the convergence log-radii of the Tate algebra. We define the Gauss valuation of a term 𝑎 i X i as val r (𝑎 i X i ) = val(𝑎 i )r•i, and the Gauss valuation of 𝑎 i X i ∈ 𝐾 {X; r} as the minimum of the Gauss valuations of its terms. The integral Tate algebra ring 𝐾 {X; r} • is the subring of 𝐾 {X; r} consisting of elements with nonnegative valuation. A sequence (𝑓 𝑛 ) 𝑛 ∈N ∈ 𝐾 {X; r} converges to zero if val r (𝑓 𝑛 ) ------→ 𝑛→+∞ +∞.

We fix once and for all a classical monomial order ≤ 𝑚 on the set of monomials X i . Given two terms 𝑎X i and 𝑏X j (with 𝑎, 𝑏 ∈ 𝐾 × ), we write 𝑎X i < r 𝑏X j if val r (𝑎X i ) > val r (𝑏X j ), or val r (𝑎X i ) = val r (𝑏X j ) and X i < 𝑚 X j . The leading term of a Tate series 𝑓 = 𝑎 i X i ∈ 𝐾 {X; r} is, by definition, its maximal term, and is denoted by LT r (𝑓 ). Its coefficient and its monomial are denoted LC r (𝑓 ) and LM r (𝑓 ), with LT r (𝑓 ) = LC r (𝑓 ) × LM r (𝑓 ). For 𝑓 , 𝑔 ∈ 𝐾 {X; r}, we define their S-polynomial as S-Poly(𝑓 , 𝑔) = LT r (𝑔) gcd(𝐿𝑇 (𝑓 ), LT r (𝑔))

𝑓 -

LT r (𝑓 ) gcd(LT r (𝑓 ), LT r (𝑔))

𝑔.

A Gröbner basis (or GB for short) of an ideal 𝐼 of 𝐾 {X; r} is, by definition, a family (𝑔 1 , . . . , 𝑔 𝑠 ) of elements of 𝐼 with the property that for all 𝑓 ∈ 𝐼 , there exists an index 𝑖 ∈ {1, . . . , 𝑠} such that LT r (𝑔 𝑖 ) divides LT r (𝑓 ). The following theorem is proved in [START_REF] Caruso | Gröbner bases over Tate algebras[END_REF].

Theorem 2.1. Any ideal of 𝐾 {X; r} or 𝐾 {X; r} • admits a GB.

We define the monoid of terms 𝑇 {X; r} as the multiplicative monoid consisting of the elements 𝑎X 𝛼 with 𝑎 ∈ 𝐾 × and 𝛼 ∈ N 𝑛 . We let also 𝑇 {X; r} • be the submonoid of 𝑇 {X; r} consisting of terms 𝑎X i for which val r (𝑎X i ) ≥ 0. The multiplicative group 𝐾 × (resp. (𝐾 • ) × ) embeds into 𝑇 {X; r} (resp. 𝑇 {X; r} • ). We set: T{X; r} = 𝑇 {X; r}/𝐾 × and T{X; r}

• = 𝑇 {X; r} • /(𝐾 • ) × .
We remark that 𝐺 is a GB of an ideal 𝐼 in 𝐾 {X; r} (resp. 𝐾 {X; r} • ) if and only if LT r (𝐺) generates LT r (𝐼 ) in T{X; r} (resp. T{X; r} • ).

Polynomial and overconvergent ideals

The main object of our studies is polynomials and overconvergent series, and the ideals they span.

Definition 2.2. An ideal of 𝐾 {X; r} is called a polynomial ideal if it is spanned by polynomials in 𝐾 [X]. Let s ≤ r with respect to component-wise comparison: ∀𝑖 ∈ 1, 𝑛 , 𝑠 𝑖 ≤ 𝑟 𝑖 . A series 𝑓 = 𝑖 𝑎 i X i ∈ 𝐾 {X; r} is called s-convergent (or simply overconvergent if s is clear by the context) if val(𝑎 i ) -s • i → |𝑖 |→∞ +∞. (2) 
Equivalently, it means that 𝑓 is the image of an element of 𝐾 {X; s} under the canonical embedding. An ideal of 𝐾 {X; r} is called sconvergent if it is spanned by s-convergent series.

Remark 2.3. A polynomial ideal in 𝐾 {X; r} contains more polynomials than the ideal taken in 𝐾 [X]. For example, let r = (0) and consider

𝑓 = 𝑋 + 𝑝𝑋 2 in Q 𝑝 [𝑋 ]. In Q 𝑝 [𝑋 ], the ideal spanned by 𝑓 is ⟨𝑓 ⟩ = ⟨𝑋 + 𝑝𝑋 2 ⟩.
On the other hand, in Q 𝑝 {𝑋 }, 1 + 𝑝𝑋 is invertible with inverse 𝑖 (-𝑝) 𝑖 𝑋 𝑖 , and the ideal contains 𝑋 = 𝑖 (-𝑝) 𝑖 𝑋 𝑖 𝑓 .

The following structural results are immediate.

Proposition 2.4. Let s ≤ r. Let 𝐼 and 𝐽 be two polynomial (resp. s-convergent) ideals in 𝐾 {X; r}. Then:

(1) the sum 𝐼 + 𝐽 is a polynomial (resp. s-convergent) ideal;

(2) the product 𝐼 𝐽 is a polynomial (resp. s-convergent) ideal.

On the other hand, closure under elimination is not obvious, and therefore closure under intersection or saturation is not immediate. For intersection, it can be proved using that, as a completion of a Noetherian ring, 𝐾 {X; r} is flat over 𝐾 {X; s}. Using Gröbner bases, we present in Section 3.2 a constructive proof for polynomial ideals.

POLYNOMIAL IDEALS: TOOLS AND MOTIVATIONS

Using elimination, we motivate our results with the closure of polynomial ideals under some ideal operations including intersection and saturation. 

Elimination of one variable

Let 𝐴 = 𝐾 {𝑥 1 , . . . ,
≤ 𝑚 𝐴 , then 𝐺 𝐵 ∩ 𝐴 is a GB of 𝐼 ∩ 𝐴.
Proof. Firstly, ⟨𝐺 𝐵 ∩ 𝐴⟩ 𝐴 ⊂ 𝐼 ∩ 𝐴. Now, let us remark that if 𝑔 ∈ 𝐵 is such that LT(𝑔) ∈ 𝐴 then 𝑔 ∈ 𝐴. Indeed, as 𝑟 0 = +∞ and ≤ 𝑚 𝐴 is a block-monomial ordering, any term 𝑐𝑥 𝛼 involving 𝑡 is such that 𝑡 > LT(𝑔) so 𝑔 does not have any term involving 𝑡.

As a consequence of this fact, if 𝑓 ∈ 𝐼 ∩ 𝐴 is divided by 𝐺 𝐵 then only elements of 𝐺 𝐵 in 𝐴, with LT's in 𝐴 will be involved, and as 𝐺 𝐵 is a GB of 𝐼 , 𝑓 is reduced to 0. Consequently, the same division to 0 happens for the division of 𝑓 by 𝐺 𝐵 ∩𝐴, so 𝐼 ∩𝐴 ⊂ ⟨𝐺 𝐵 ∩ 𝐴⟩ 𝐴 , which concludes the proof. □ Corollary 3.2. For 𝑟 0 big enough, the previous result for 𝐺 𝐵 ∩ 𝐴 is preserved, allowing to fit into the framework of algorithms developped in [START_REF] Caruso | Gröbner bases over Tate algebras[END_REF][START_REF] Caruso | Signature-based algorithms for Gröbner bases over Tate algebras[END_REF][START_REF] Caruso | On FGLM Algorithms With Tate Algebras[END_REF] and in this article.

Application to ideal operations

Following §4 of [START_REF] Cox | Ideals, varieties, and algorithms[END_REF], if 𝐼 and 𝐽 are ideals then GBs of 𝐼 ∩ 𝐽 , 𝐼 : 𝐽 and 𝐼 : 𝐽 ∞ can be computed using elimination (e.g. 𝐼 ∩ 𝐽 = (𝑡𝐼 + (1 -𝑡) 𝐽 ) ∩ 𝐾 {X}).

One motivation for our work is Corollary 5.4, stating that any polynomial ideal in 𝐾 {X; r} admits a GB made of polynomials. It implies the following stability result on polynomial ideals: if 𝐼 and 𝐽 are ideals in 𝐾 {X; r} generated by polynomials, then so are: 𝐼 + 𝐽 , 𝐼 𝐽 , 𝐼 ∩ 𝐽 , 𝐼 : 𝐽 and 𝐼 : 𝐽 ∞ .

Homogenization and dehomogenization

We will rely on (de)-homogenization at some point in the computations. We consign here notations and basic properties. Given r ∈ Q 𝑛 , we extend the term order < r to 𝐾 [X, 𝑡] and 𝐾 {X, 𝑡; r, 0} Definition 3.4. Given two terms 𝑎X 𝛼 𝑡 𝑢 and 𝑏𝑋 𝛽 𝑡 𝑣 , we write that

𝑎X 𝛼 𝑡 𝑢 < r,0 𝑏𝑋 𝛽 𝑡 𝑣 if: • val r (𝑎X i ) > val r (𝑏X j ) (which is the same as val r,0 (𝑎X 𝛼 𝑡 𝑢 ) > val r,0 (𝑏𝑋 𝛽 𝑡 𝑣 )). • val r (𝑎X i ) = val r (𝑏X j ) and deg(X 𝛼 𝑡 𝑢 ) < deg(𝑋 𝛽 𝑡 𝑣 ). • val r (𝑎X i ) = val r (𝑏X j ), deg(X 𝛼 𝑡 𝑢 ) = deg(𝑋 𝛽 𝑡 𝑣 ) and X 𝛼 < 𝑚 X 𝛽 .
This defines a term order on 𝐾 {X, 𝑡; r, 0}.

This order is defined such that dehomogenization preserves leading terms of homogeneous polynomials of 𝐾 [X, 𝑡].

Lemma 3.5. Let r ∈ Q 𝑛 . Let ℎ ∈ 𝐾 [X, 𝑡] be a homogeneous poly- nomial. Then LT (r,0) (ℎ) * = LT r (ℎ * ). Let 𝑓 ∈ 𝐾 [X], then LT r (𝑓 ) = (LT (r,0) (𝑓 * )) * .
Proof. Thanks to the way we defined the term order on 𝐾 {X, 𝑡; r, 0} in Definition 3.4, if 𝑐 𝛼 𝑥 𝛼 𝑡 𝑢 and 𝑐 𝛽 𝑥 𝛽 𝑡 𝑣 are two terms of the same total degree such that 𝑐 𝛼 𝑥 𝛼 𝑡 𝑢 > r,0 𝑐 𝛽 𝑥 𝛽 𝑡 𝑣 , then 𝑐 𝛼 𝑥 𝛼 > r 𝑐 𝛽 𝑥 𝛽 . This is enough for the first part. For the second part, we can conclude using ℎ = 𝑓 * and the fact that 𝑓 = (𝑓 * ) * . □

WEAK NORMAL FORMS 4.1 Definitions

We present here how to adapt Mora's tangent cone algorithm to compute Weak Normal Forms over Tate algebras. The main consequence of this notion is that it will allow us, if the generating Tate series are polynomials, to do all computations on polynomials, avoiding any infinite division.

In this section, we fix some r ∈ Q 𝑛 . First, we recall the definition of weak normal forms, adapted to the framework of polynomial ideals in Tate algebras. Definition 4.1. A weak normal form is a map WNF : 𝐾 [X] × P (𝐾 [X]) → 𝐾 [X], such that, for all 𝑓 ∈ 𝐾 [X] and all 𝐺 ⊆ 𝐾 [X], the following holds:

(1) WNF(0, 𝐺) = 0 (2) If WNF(𝑓 , 𝐺) ≠ 0, then LT(WNF(𝑓 , 𝐺)) does not lie in the ideal spanned by the leading terms of 𝐺 (3) If 𝑓 ≠ 0, then there exists 𝑢 ∈ 𝐾 [X] invertible in 𝐾 {X; r} such that 𝑢 𝑓 -WNF(𝑓 , 𝐺) = 𝑔 ∈𝐺 𝑢 𝑔 𝑔 with the 𝑢 𝑔 's polynomials, LT r (𝑢 𝑔 𝑔) ≤ LT r (𝑓 ) with equality attained at most once. 1 In particular, if WNF(𝑓 , 𝐺) = 0, then 𝑓 lies in the ideal spanned by 𝐺. And if 𝐺 is a Gröbner basis, it is an equivalence.

Écarts

The first step in order to devise a new version of Mora's tangent cone algorithm is to provide a suitable écart function on polynomials. This function then drives the division algorithm. To do so, we adapt the écart functions from [START_REF] Mora | An Algorithm to Compute the Equations of Tangent Cones[END_REF] and [START_REF] Chan | Gröbner bases over fields with valuations[END_REF] to fit into the Tate algebra framework (see also [START_REF] Greuel | A Singular Introduction to Commutative Algebra[END_REF] for a general background on standard bases computations). 

Mora's Weak Normal Form algorithm

We first present a simple version of Mora's algorithm to compute a Weak Normal Form (WNF) of a polynomial modulo a finite set of polynomials. It differs from the multivariate division algorithm by adding intermediate reduced polynomials to the list of divisors, which induces a division which happens, not on the original divided polynomial, but on one of his multiples by an invertible polynomial (which does not modify the LT r 's).

Algorithm 1 WNF(𝑓 , 𝑔), Mora's Weak Normal Form algorithm

Input: 𝑓 , 𝑔 1 , . . . , 𝑔 𝑠 ∈ 𝐾 [X] Output: ℎ ∈ 𝐾 [X] such that for some 𝜇, 𝑢 1 , . . . , 𝑢 𝑠 ∈ 𝐾 [X], 𝜇 𝑓 = 𝑢 𝑖 𝑔 𝑖 + ℎ, 𝜇 is 
a polynomial such that val r (𝜇 -1) > 0, and when ℎ ≠ 0, LT r (ℎ) is divisible by no LT r (𝑔 𝑖 )'s. Moreover, LT r (𝑢 𝑖 𝑔 𝑖 ) ≤ LT r (𝑓 ). We may remark that if 𝜇 ∈ 𝐾 [X] is such that val r (𝜇 -1) > 0, then 𝜇 is invertible in 𝐾 {X; r}. Proof. Let us define the extended leading terms (with respect to Écart 1 ) as: LTE :

Termination

𝐾 [X] → 𝐾 [X, 𝑡] with 𝐿𝑇 𝐸 (𝑓 ) = LT r (𝑓 ) × 𝑡 Écart 1 (𝑓 ) .
Let us assume the algorithm does not terminate. It means that 𝑇 ℎ is never empty. From Prop 2.8 of [START_REF] Caruso | Gröbner bases over Tate algebras[END_REF], there exists some 𝑁 such that LTE(𝑇 (𝑣) ) is stable for 𝑣 ≥ 𝑁 .

For 𝑣 ≥ 𝑁 , when ℎ 𝑣 is processed, two possibilities can occur. If it is not added to 𝑇 on Line 6, it means that for the selected reducer 𝑔,

Écart 1 (𝑔) ≤ Écart 1 (ℎ 𝑣 ). If it is added, then LTE(ℎ 𝑣 ) is in LTE(𝑇 (𝑣) )
and hence, there is some 𝑔 ∈ 𝑇 (𝑣) 

such that LTE(𝑔) | LTE(ℎ 𝑣 ). It means that Écart 1 (𝑔) ≤ Écart 1 (ℎ 𝑣 ) and LT r (𝑔) | LT r (ℎ 𝑣 ).
Thus, in both cases, the 𝑔 selected in Line 4 has to be such that Écart 1 (𝑔) ≤ Écart 1 (ℎ 𝑣 ). In consequence, starting from 𝑣 ≥ 𝑁 , deg(ℎ 𝑣 ) can not increase, and is upper-bounded by 𝑑.

Thereafter, the amount of LM r (ℎ 𝑗 )'s and 𝑥 𝛼 LM r (𝑔)'s for 𝑔 ∈ 𝑇 and deg(𝑥 𝛼 LM r (𝑔)) ≤ 𝑑 is finite. Moreover, for the polynomials reaching such an LM r , only a finite amount of supports are possible.

Therefore, there is some 𝑁 2 > 𝑁 such that after the 𝑁 2 -th term, 𝑇 will not gain any new support for its polynomials nor their monomial multiples of degree ≤ 𝑑. Then, for 𝑣 ≥ 𝑁 2 , the minimal Écart 2 is 0. Indeed, if it is not 0, then ℎ 𝑣 is added to 𝑇 . But as 𝑣 ≥ 𝑁 2 , there is a 𝑔 with LT r (𝑔) | LT r (ℎ 𝑣 ) and 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 ( LM r (ℎ) LM r (𝑔) 𝑔) = 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (ℎ 𝑣 ), and thus Écart 2 ( LM r (ℎ) LM r (𝑔) 𝑔, ℎ 𝑣 ) = 0, which is a contradiction. Hence, for 𝑚 ≥ 𝑁 2 necessarily, it means that Supp(ℎ 𝑚+1 ) ⊊ Supp(ℎ 𝑚 ) (the leading term of ℎ 𝑚 being canceled). Since the size of the support cannot decrease infinitely, the algorithm must terminate. □

Correctness

In order to prove correctness, we extend the algorithm so that the production of the cofactors is explicit (Algorithm 2). Correctness then comes from the following loop invariant: Lemma 4.5. For any 𝑗 ≥ 0,

(1)

𝜇 𝑗 𝑓 = ℎ 𝑗 + 𝑖 𝑢 𝑖,𝑗 𝑔 𝑖 , (2) 
val r (𝜇 𝑗 -1) > 0, (3) LT r (𝑢 𝑖,𝑗 𝑔 𝑖 ) ≤ LT r (𝑓 ), with equality attained at most once, and if so, always with the same 𝑖 for all 𝑗; (4) LT r (ℎ 𝑗+1 ) < LT r (ℎ 𝑗 ).

Proof. It is clearly true when entering the first loop.

The equality for the third item is attained once after the end of the first loop.

Inside the loop, there is no difficulty when the reduction is performed by one of the initial 𝑔 𝑖 's. One applies the fourth item to ensure that no second LT r (𝑢 𝑖,𝑗 𝑔 𝑖 ) reaches LT r (𝑓 ).

When the divisor 𝑔 was added to 𝑇 at a previous iteration of the algorithm, i.e. 𝑔 = ℎ 𝑚 for some 𝑚 < 𝑗, then the situation is the following. Firstly, the preservation of the fourth item is clear.

Then, as 𝑚 < 𝑗, we get from the fourth item of the loop invariant that LT r (ℎ 𝑗 ) < LT r (𝑔) and also LT r (𝑐 𝑣 𝑥 𝑣 𝑔) = LT r (ℎ 𝑗 ). It implies 𝑔 was added to 𝑇 at some previous iteration of the algorithm, so 𝑔 = ℎ 𝑚 for some 𝑚 < 𝑗 ; 𝑗 := 𝑗 + 1 ; 15: return 𝜇 𝑗 , 𝑢 1,𝑗 , . . . , 𝑢 𝑠,𝑗 , ℎ 𝑗 ; that val r (𝑐 𝑣 𝑥 𝑣 ) > 0. Hence, as val r (𝜇 𝑗 -1) > 0, the same is true for 𝜇 𝑗+1 := 𝜇 𝑗 -𝑐 𝑣 𝑥 𝑣 𝜇 𝑚 and the second item is preserved.

From 𝜇 𝑗 𝑓 = ℎ 𝑗 + 𝑖 𝑢 𝑖,𝑗 𝑔 𝑖 , and 𝜇 𝑚 𝑓 = ℎ 𝑚 + 𝑖 𝑢 𝑖,𝑚 𝑔 𝑖 𝑚, one gets (𝜇 𝑗 -𝑐 𝑣 𝑥 𝑣 𝜇 𝑚 ) 𝑓 = (ℎ 𝑗 -𝑐 𝑣 𝑥 𝑣 ℎ 𝑚 ) + 𝑖 (𝑢 𝑖,𝑗 -𝑐 𝑣 𝑥 𝑣 𝑢 𝑖,𝑚 )𝑔 𝑖 so 𝜇 𝑗+1 𝑓 = ℎ 𝑗+1 + 𝑖 𝑢 𝑖,𝑗+1 𝑔 𝑖 , and the first item is preserved.

As val r (𝑐 𝑣 𝑥 𝑣 ) > 0, then LT r (𝑐 𝑣 𝑥 𝑣 𝑢 𝑖,𝑚 ) < LT r (𝑢 𝑖,𝑚 ), so LT r (𝑢 𝑖,𝑗 -𝑐 𝑣 𝑥 𝑣 𝑢 𝑖,𝑚 ) ≤ max(LT r (𝑢 𝑖,𝑗 ), LT r (𝑐 𝑣 𝑥 𝑣 𝑢 𝑖,𝑚 )), ≤ max(LT r (𝑢 𝑖,𝑗 ), LT r (𝑢 𝑖,𝑚 )),

which is enough to obtain that the third item is preserved and concludes the proof. □ Corollary 4.6. Algorithm 1 computes a weak normal form.

Proof. We verify the three items of the definition of weak normal forms. If 𝑓 = 0, the algorithm immediately returns 0.

Assume that WNF(𝑓 , 𝐺) ≠ 0. This implies that after the last loop of the algorithm, 𝑇 ℎ = ∅, and since LT r (𝑇 ) contains the leading terms of 𝐺, LT r (WNF(𝑓 , 𝐺)) is not divisible by any of the LT r (𝐺).

Finally, the third item follows from the third item of Lemma 4.5. □ Corollary 4.7. If 𝐺, a finite set of polynomials, is a GB of 𝐼 r ⊂ 𝐾 {X; r}, then for any polynomial 𝑓 ∈ 𝐼 r , WNF(𝑓 , 𝐺) = 0.

Proof. If 𝐺 is a GB of 𝐼 r , then when dividing 𝑓 ∈ 𝐼 r , on Line 3, 𝑇 ℎ is never empty. Indeed, from the first item of the loop invariant, ℎ 𝑗 = 𝜇 𝑗 𝑓 -𝑖 𝑢 𝑖,𝑗 𝑔 𝑖 means that ℎ 𝑗 ∈ 𝐼 r . Consequently, the algorithm can only terminate if ℎ reaches 0. □

BUCHBERGER'S ALGORITHM WITH WNF

Description of the algorithm

We prove Buchberger's criterion following the lines of §3.2 of [START_REF] Caruso | Gröbner bases over Tate algebras[END_REF]. We rely on a small variation of the technical Lemma 3.6 of [START_REF] Caruso | Gröbner bases over Tate algebras[END_REF], which is a generalization of [3, Sec. 2.10, Prop. 5]:

Lemma 5.1. Let ℎ 1 , . . . , ℎ 𝑚 ∈ 𝐾 {X; r} and 𝑡 1 , . . . , 𝑡 𝑚 ∈ 𝑇 {X; r}. We assume that the LT r (𝑡 𝑖 ℎ 𝑖 )'s all have the same image in T{X; r} and that LT r ( 𝑚 𝑖=1 𝑡 𝑖 ℎ 𝑖 ) < LT r (𝑡 1 ℎ 1 ).

Then 𝑚 ∑︁ 𝑖=1 𝑡 𝑖 ℎ 𝑖 = 𝑚-1 ∑︁ 𝑖=1 𝑡 ′ 𝑖 • S-Poly(ℎ 𝑖 , ℎ 𝑖+1 ) + 𝑡 ′ 𝑚 •ℎ 𝑚 for some 𝑡 ′ 1 , . . . , 𝑡 ′ 𝑚 ∈ 𝑇 {X; r} such that LT r (𝑡 ′ 𝑖 • S-Poly(ℎ 𝑖 , ℎ 𝑖+1 )) < LT r (𝑡 1 ℎ 1 ) for 𝑖 ∈ {1, . . . , 𝑚-1} and LT r (𝑡 ′ 𝑚 •ℎ 𝑚 ) < LT r (𝑡 1 ℎ 1 ).
Proof. By assumption, there exist 𝛼 ∈ N 𝑛 and 𝑑 1 , . . . , 𝑑 𝑚 ∈ 𝐾 × such that LT r (𝑡 𝑖 ℎ 𝑖 ) = 𝑑 𝑖 X 𝛼 for all 𝑖 ∈ {1, . . . , 𝑚}. Moreover all the 𝑑 𝑖 's have the same valuation, say 𝜇. Then val( 𝑖 𝑑 𝑖 ) > 𝜇. We define

𝑝 𝑖 = 𝑡 𝑖 ℎ 𝑖 𝑑 𝑖 , so that 𝑡 𝑖 ℎ 𝑖 = 𝑑 𝑖 𝑝 𝑖 . Then ∑︁ 𝑖 𝑡 𝑖 ℎ 𝑖 = 𝑑 1 (𝑝 1 -𝑝 2 ) + (𝑑 1 + 𝑑 2 )(𝑝 2 -𝑝 3 ) + • • • + (𝑑 1 + • • • + 𝑑 𝑚-1 )(𝑝 𝑚-1 -𝑝 𝑚 ) + (𝑑 1 + • • • + 𝑑 𝑚 )𝑝 𝑚 .
Observing that 𝑝 𝑖 -𝑝 𝑖+1 = 𝑡 ′ 𝑖 • S-Poly(ℎ 𝑖 , ℎ 𝑖+1 ) with 𝑡 ′ 𝑖 a term, we get the first 𝑡 ′ 𝑖 's and Proof. The ⇒ part is direct thanks to Corollary 4.7.

𝑡 ′ 𝑚 = 𝑖 𝑑 𝑖 𝑑 𝑚 𝑡 𝑚 . Then, since val( 𝑖 𝑑 𝑖 ) > 𝜇, clearly LT r (𝑡 ′ 𝑚 •ℎ 𝑚 ) < LT r (𝑡 1 ℎ 1 ). Moreover, for any 𝑖 ∈ {1, . . . , 𝑚-1}, due to the cancellation in S-Poly(ℎ 𝑖 , ℎ 𝑖+1 ), LT r (𝑝 𝑖 -𝑝 𝑖+1 ) < LT r (𝑝 𝑖 ) = LT r (𝑡 𝑖 ℎ 𝑖 ) 𝑑 𝑖 . Consid- ering valuations, 𝑘 ≤𝑖 𝑑 𝑘 • LT(𝑡 𝑖 ℎ 𝑖 ) 𝑑 𝑖 ≤ LT r (𝑡 𝑖 ℎ 𝑖 ).
Let us prove the ⇐ part. Let 𝑓 ∈ 𝐼 be such that LT r (𝑓 ) ∉ ⟨LT r (𝐺)⟩ . As 𝐺 generates 𝐼 , 𝑓 can be written as 𝑓 = 𝑠 𝑖=1 ℎ 𝑖 𝑔 𝑖 for some Tate series ℎ 𝑖 's in 𝐾 {X; r}.

Let 𝑡 = max 𝑖 LT r (ℎ 𝑖 𝑔 𝑖 ). As LT r (𝑓 ) ∉ ⟨LT r (𝐺)⟩, then LT r (𝑓 ) < 𝑡 . Consequently, among the decompositions of 𝑓 using 𝐺, there is one such that 𝑡 is minimal.

Let 𝐽 be the set of indices 𝑖 such that LT r (ℎ 𝑖 𝑔 𝑖 ) = 𝑐 𝑖 𝑡 for some

𝑐 𝑖 ∈ 𝑂 × 𝐾 . Let 𝑡 𝑖 = LT r (ℎ 𝑖 ) for 𝑖 ∈ 𝐽 . Let ℎ = 𝑖 ∈𝐽 𝑡 𝑖 𝑔 𝑖 .
We have LT r (ℎ) < 𝑡 and card(𝐽 ) ≥ 2 as a cancellation has to appear. We apply Lemma 5.1: there exist terms 𝑡 ′ 𝑗,𝑙 and 𝑡 ′ and an index 𝑗 0 ∈ 𝐽 such that ℎ = 𝑗,𝑙 ∈𝐽 𝑡 ′ 𝑗,𝑙 S-Poly(𝑔 𝑗 , 𝑔 𝑙 ) + 𝑡 ′ 𝑔 𝑗 0 and LT r (𝑡 ′ 𝑔 𝑗 0 ) < 𝑡 and LT r (𝑡 ′ 𝑗,𝑙 S-Poly(𝑔 𝑗 , 𝑔 𝑙 )) < 𝑡 . We can compute the WNF of the polynomial S-Poly(𝑔 𝑗 , 𝑔 𝑘 ) by 𝐺 and we get some invertible polynomial 𝑢 𝑗,𝑙 and polynomials 𝑣 Proof. If 𝑓 ∈ 𝐼 and 𝐺 ⊂ 𝐼 are polynomials, then WNF(𝑓 , 𝐺) is a polynomial of 𝐼 . As the S-Poly considered in Algo. 3 are polynomials in 𝐼 , we obtain the result. □

Precision and effective computations

We may remark firstly that, as we wrote all properties and proofs in terms of LT's, the algorithms of §3 and 4 are valid over 𝐾 {X; r} • .

In particular, if we work with r = (0, . . . , 0), then no division in 𝐾 is involved: as in [START_REF] Caruso | Gröbner bases over Tate algebras[END_REF], working at finite precision, no loss of absolute precision can occur.

Secondly, if we work in 𝐾 ex ⊂ 𝐾, all computations take place in 𝐾 ex . Hence if (𝑓 1 , . . . , 𝑓 𝑠 ) ∈ 𝐾 ex [X] and r ∈ Q 𝑛 , Algorithms 1 and 3 provide an algorithm working over 𝐾 ex to compute a GB of 𝐼 r made of polynomials in 𝐾 ex [X], without having to deal with any precision issue.

Toy Implementation

A toy implementation of the algorithms of this Section is available here: https://gist.github.com/TristanVaccon. We present some timings and features of the Algorithm in Appendix 8 on page 9.

MORA'S WNF AND OVERCONVERGENCE

We now consider the case of overconvergent series, and present a version of Mora's weak normal form algorithm for that case.

Écarts for overconvergence

Let 𝑓 , 𝑔 ∈ 𝐾 {X; s}, s ∈ Q 𝑛 , r ∈ Q 𝑛 , s ≥ r. We define écarts adapted to computation over 𝐾 {X; r} for series belonging also to 𝐾 {X; s}. Definition 6.1. We define the s-support of 𝑓 = 𝛼 ∈N 𝑛 𝑐 𝛼 X 𝛼 ∈ 𝐾 {X; s} as: Supp s (𝑓 ) = 𝛼 s.t. val s (𝑐 𝛼 X 𝛼 ) = val s (𝑓 ) .

Since 𝑓 ∈ 𝐾 {X; s}, Supp s (𝑓 ) is finite. Then, we define the (s, r)degree of 𝑓 as: Proof. For Écart s,r,0 (𝑓 ), it is a direct consequence of the definition of val s .

Now, let us take some 𝛼 ∈ Supp s (𝑓 ) such that (sr) • 𝛼 = deg s,r (𝑓 ). Let 𝑐 𝛼 be the coefficient of X 𝛼 in 𝑓 . Let LT r (𝑓 ) = 𝑐 𝛽 X 𝛽 . Then, by definition, val s (𝑐 𝛽 X 𝛽 ) ≥ val s (𝑓 ) = val s (𝑐 𝛼 X 𝛼 ), and val r (𝑐 𝛼 X 𝛼 ) ≥ val r (𝑐 𝛽 X 𝛽 ). Thus,

val(𝑐 𝛽 ) -s • 𝛽 ≥ val(𝑐 𝛼 ) -s • 𝛼, val(𝑐 𝛼 ) -r • 𝛼 ≥ val(𝑐 𝛽 ) -r • 𝛽, and then s • (𝛼 -𝛽) ≥ val(𝑐 𝛼 ) -val(𝑐 𝛽 ) ≥ r • (𝛼 -𝛽),
which implies that (sr) • (𝛼 -𝛽) ≥ 0. Since deg s,r (𝑓 ) = (sr) • 𝛼 and deg s,r (LT r (𝑓 )) = (s-r)•𝛽, we can conclude that Écart s,r,1 (𝑓 ) ≥ 0. □

WNF algorithm for overconvergent series

The algorithm is straightforward, using the adapted notions of écarts.

Algorithm In case of equality, then moreover,

deg s,r (ℎ 𝑚+1 ) ≤ deg s,r (ℎ 𝑚 ).
Proof. Since Écart s,r,0 (𝑔) ≤ Écart s,r,0 (ℎ 𝑚 ) and Écart s,r,0 (𝑔) = Écart s,r,0 (𝑡𝑔), then val s (LT r (𝑡𝑔))val s (𝑡𝑔) ≤ val s (LT r (ℎ 𝑚 ))val s (ℎ 𝑚 ). Moreover, LT r (𝑡𝑔) = LT r (ℎ 𝑚 ), so val s (𝑡𝑔) ≥ val s (ℎ 𝑚 ). By the ultrametric inequality, we then obtain that val s (ℎ 𝑚+1 ) ≥ val s (ℎ 𝑚 ). Now, if val s (ℎ 𝑚+1 ) = val s (ℎ 𝑚 ), the Supp s correspond to the same val s . If val s (𝑡𝑔) = val s (ℎ 𝑚 ), then since Écart s,r,1 (𝑔) = Écart s,r,1 (𝑡𝑔), the second hypothesis means that deg Proof. Let us assume that Algorithm 4 does not terminate for some inputs s > r and 𝑓 , 𝑔 1 , . . . , 𝑔 𝑠 ∈ 𝐾 {X; s}. Let ℎ 𝑚 be the value of ℎ when entering the 𝑚-th time in the while loop.

We eliminate successively the LT r (ℎ 𝑚 )'s, so by design, LT r (ℎ 𝑚 ) converges to zero.

Let 𝑑 1 , 𝑑 2 ∈ N be such that for any 𝑓 ∈ 𝐾 {X; s}, 𝑑 1 val s (𝑓 ) ∈ Z and 𝑑 2 deg s,r (𝑓 ) ∈ Z.

Let us define the extended leading term of ℎ ∈ 𝐾 {X; s} as: LTE(ℎ) := 𝑈 𝑑 1 Écart s,r,0 (ℎ) 𝑉 𝑑 2 Écart s,r,1 (ℎ) LT(ℎ) ∈ 𝐾 [X, 𝑈 , 𝑉 ].

Then, there is some 𝑁 1 ∈ N such that for 𝑚 ≥ 𝑁 1 , the monomial ideal of 𝐾 [X, 𝑈 , 𝑉 ] generated by the LTE's of the series in 𝑇 is constant (thanks to Prop. 2.8 of [START_REF] Caruso | Gröbner bases over Tate algebras[END_REF]). Thus for 𝑚 ≥ 𝑁 1 , if ℎ 𝑚 is not added to 𝑇 at the end of the while loop, then there is some 𝑔 ∈ 𝑇 ℎ 𝑚 such that Écart s,r,0 (𝑔) ≤ Écart s,r,0 (ℎ 𝑚 ). If it is added, then by definition of 𝑁 1 , it means that there is some 𝑔 ∈ 𝑇 such that LTE(𝑔) divides LTE(ℎ 𝑚 ), and this implies that LT(𝑔) | LT(ℎ 𝑚 ) and Écart s,r,0 (𝑔) ≤ Écart s,r,0 (ℎ 𝑚 ).

So in both cases, Écart s,r,0 (𝑔) ≤ Écart s,r,0 (ℎ 𝑚 ).

Then, if ℎ 𝑚 is not added to 𝑇 , it means that the minimal 𝑔 satisfies Écart s,r,1 (𝑔) ≤ Écart s,r,1 (ℎ 𝑚 ). If it is added to 𝑇 , then again, by definition of 𝑁 1 , it means that there is some 𝑔 ∈ 𝑇 such that LTE(𝑔) divides LTE(ℎ 𝑚 ), and this implies that LT(𝑔) | LT(ℎ 𝑚 ) and Écart s,r,0 (𝑔) ≤ Écart s,r,0 (ℎ 𝑚 ) and Écart s,r,1 (𝑔) ≤ Écart s,r,1 (ℎ 𝑚 ). So in both cases, the minimal 𝑔 for the reduction satisfies that Écart s,r,1 (𝑔) ≤ Écart s,r,1 (ℎ 𝑚 ).

We can then apply Lemma 6.4: for any 𝑚 ≥ 𝑁 1 , val s (ℎ 𝑚+1 ) ≥ val s (ℎ 𝑚 ) and in case of equality, deg s,r (ℎ 𝑚+1 ) ≤ deg s,r (ℎ 𝑚 ).

Consequently, val s (ℎ 𝑚 ) is a non-decreasing sequence in 1 𝑑 1 Z. Hence, either it goes to +∞, or there is some 𝑁 2 ≥ 𝑁 1 such that val s (ℎ 𝑚 ) is constant for 𝑚 ≥ 𝑁 2 .

Let us assume that we are in this second case. Then deg s,r (ℎ 𝑚 ) is non-increasing (for 𝑚 ≥ 𝑁 2 ) and thus, upper-bounded. Let 𝑚 ≥ 𝑁 2 and 𝑡 = 𝑐 𝛼 X 𝛼 a term of ℎ 𝑚 in Supp s (ℎ 𝑚 ).

Then val s (ℎ 𝑚 ) = val s (𝑡) and val r (ℎ 𝑚 ) ≤ val r (𝑡) ≤ val s (𝑡) + (sr) • 𝛼 ≤ val s (ℎ 𝑚 ) + deg s,r (ℎ 𝑚 ).

Both val s (ℎ 𝑚 ) and deg s,r (ℎ 𝑚 ) are upper-bounded, while val r (ℎ 𝑚 ) → +∞. This is a contradiction. Consequently, val s (ℎ 𝑚 ) → +∞, which concludes the proof. □ Proposition 6.6. Algorithm 4 is correct and mutatis mutandis, computes a weak normal form.

Proof. Mutatis mutandis, the loop invariant in Lemma 4.5 is still valid. When 𝑓 does not reduce to zero by 𝑔 1 , . . . , 𝑔 𝑠 , there is no difficulty as Algorithm 4 terminates in a finite number of steps, and 𝜇, 𝑔 1 , . . . , 𝑔 𝑠 are polynomials, with 𝜇 invertible in 𝐾 {X; r}. When 𝑓 reduces to zero, we proved in Lemma 6.4, that val 𝑠 (ℎ 𝑚 ) is eventually increasing and going to +∞. We showed in the proof of Prop. 6.5 that eventually, 𝑇 is constant. It then proves that, for the 𝑔 on Line 4, for 𝑐 𝜈 𝑥 𝜈 = LT r (ℎ 𝑚 ) LT r (𝑔) , then val s (𝑐 𝜈 𝑥 𝜈 ) → +∞. This is enough to prove that the 𝜇, 𝑢 

UNIVERSAL GRÖBNER BASIS

In this Section, we prove that a polynomial ideal can only have a finite number of distinct initial ideals for varying log-radii r. To do so, we first prove the result for homogeneous ideals by adapting the classical proof for polynomial ideals and then use homogenization to generalize the result to non-homogeneous ideals.

Homogeneous ideal

The classical proof that a polynomial ideal has only finitely many initial ideals from page 427 of [START_REF] Cox | Using Algebraic Geometry[END_REF] (see also [START_REF] Sturmfels | Gröbner Bases and Convex Polytopes[END_REF]) can be adapted to our setting by relying on the following Lemma.

Lemma 7.1. If 𝐼 ⊂ 𝐾 [X] is a homogeneous ideal, if r ∈ Q 𝑛 , and if 𝐹 = (𝑓 1 , . . . , 𝑓 𝑠 ) ∈ 𝐼 𝑠 are homogeneous polynomials which do not form a GB of 𝐼 r , then there exists some homogeneous polynomial 𝑔 ∈ 𝐼 such that no term of 𝑔 is divisible by any of the LT r (𝑓 𝑖 )'s.

Proof. Since 𝐹 is not a GB of 𝐼 r , there exists some term 𝑐𝑥 𝛼 ∈ LT r (𝐼 r ) such that 𝑐𝑥 𝛼 ∉ ⟨LT r (𝑓 1 ), . . . , LT r (𝑓 𝑠 )⟩ . By the density of 𝐼 in 𝐼 r there is some polynomial ℎ ∈ 𝐼 such that LT r (ℎ) = 𝑐𝑥 𝛼 . Since 𝐼 is homogeneous, we can assume that so is ℎ.

By performing the tropical row-echelon algorithm of [START_REF] Vaccon | Matrix-F5 Algorithms and Tropical Gröbner Bases Computation[END_REF] (Algorithm 1) on a Macaulay matrix consisting of ℎ and the multiples of the elements of 𝐹 of degree deg(ℎ), we obtain 𝑔 such that no term of 𝑔 is divisible by any of the LT r (𝑓 𝑖 )'s. □

Using linear algebra along the same lines, we get the existence of polynomial reduced Gröbner bases. Lemma 7.2. If 𝐼 ⊂ 𝐾 [X] is a homogeneous ideal, if r ∈ Q 𝑛 , then there exists 𝐺 a reduced Gröbner basis of 𝐼 r made of finitely many homogeneous polynomials of 𝐼 .

Definition 3 . 3 .

 33 Let (•) * and (•) * be the homogenization and dehomogenization applications between 𝐾 [X] and 𝐾 [X, 𝑡]. If 𝐼 is an ideal in 𝐾 [X], we define 𝐼 * to be the homogenization of this ideal in 𝐾 [X, 𝑡].

Definition 4 . 2 .Definition 4 . 3 .

 4243 For 𝑓 a polynomial, we define: Écart 1 (𝑓 ) := deg(𝑓 )deg(LM r (𝑓 )). For ℎ = 𝑢 𝑏 𝑢 𝑥 𝑢 and 𝑔 = 𝑢 𝑐 𝑢 𝑥 𝑢 two polynomials, we define: Écart 2 (ℎ, 𝑔) := card({𝑢 : 𝑏 𝑢 = 0, 𝑐 𝑢 ≠ 0}).

1 : 5 :

 15 ℎ := 𝑓 ; 2: 𝑇 := (𝑔 1 , . . . , 𝑔 𝑠 ) ; 3: while ℎ ≠ 0 and𝑇 ℎ := {𝑔 ∈ 𝑇 , LT r (𝑔) | LT r (ℎ)} ≠ ∅ do 4: choose 𝑔 ∈ 𝑇 ℎ minimizing first Écart 1 (𝑔) then Écart 2 ℎ, LM r (ℎ) LM r (𝑔) 𝑔 ; if Écart 1 (𝑔) > Écart 1 (ℎ), or Écart 2 (ℎ, LM r (ℎ)LM r (𝑔) 𝑔) > 0 then 6:𝑇 := 𝑇 ∪ {ℎ};7:ℎ := S-Poly(ℎ, 𝑔) ; 8: return ℎ ; 1 This is sometimes called a strong Gröbner representation of 𝑓 by 𝐺 .

Lemma 4 . 4 .

 44 Algorithm 1 terminates.

Algorithm 2 5 : 7 :

 257 Mora's Weak Normal Form algorithm with cofactors Input: 𝑓 , 𝑔 1 , . . . , 𝑔 𝑠 ∈ 𝐾 [X] Output: 𝜇, 𝑢 1 , . . . , 𝑢 𝑠 , ℎ ∈ 𝐾 [X] such that 𝜇 𝑓 = 𝑢 𝑖 𝑔 𝑖 + ℎ when ℎ ≠ 0, LT r (ℎ) is divisible by no LT r (𝑔 𝑖 )'s and 𝜇 is a polynomial such that val r (𝜇 -1) > 0. 1:ℎ 0 := 𝑓 , 𝜇 0 = 1, 𝑢 1,0 = • • • = 𝑢 𝑠,0 = 0, 𝑗 = 0 ; 2: 𝑇 := (𝑔 1 , . . . , 𝑔 𝑠 ) ; 3: while ℎ 𝑗 ≠ 0 and 𝑇 ℎ 𝑗 := {𝑔 ∈ 𝑇 , LT r (𝑔) | LT r (ℎ 𝑗 )} ≠ ∅ do 4: choose 𝑔 ∈ 𝑇 ℎ 𝑗 minimizing first Écart 1 (𝑔) then Écart 2 ℎ 𝑗 , LM r (ℎ 𝑗 ) LM r (𝑔) 𝑔 ; if Écart 1 (𝑔) > Écart 1 (ℎ), or Écart 2 (ℎ 𝑗 , LM r (ℎ) LM r (𝑔) 𝑔) > 0 then 6: 𝑇 := 𝑇 ∪ {ℎ 𝑗 };𝑥 𝑣 := LM r (ℎ 𝑗 )/LM r (𝑔), 𝑐 𝑣 := 𝐿𝐶 r (ℎ 𝑗 )/𝐿𝐶 r (𝑔) ; 8: ℎ 𝑗+1 := S-Poly(ℎ 𝑗 , 𝑔) i.e. ℎ 𝑗+1 := ℎ 𝑗 -𝑐 𝑣 𝑥 𝑣 𝑔 ; 9:if 𝑔 = 𝑔 𝑚 for some 1 ≤ 𝑚 ≤ 𝑠 then 10:𝑢 𝑚,𝑗+1 := 𝑢 𝑚,𝑗 + 𝑐 𝑣 𝑥 𝑣 , 𝑢 𝑖,𝑗+1 = 𝑢 𝑖,𝑗 for 𝑖 ≠ 𝑚, 𝜇 𝑗+1 := 𝜇 𝑗 ;

13 :

 13 𝜇 𝑗+1 := 𝜇 𝑗 -𝑐 𝑣 𝑥 𝑣 𝜇 𝑚 , and for all 𝑖 ≤ 𝑠, 𝑢 𝑖,𝑗+1 := 𝑢 𝑖,𝑗 -𝑐 𝑣 𝑥 𝑣 𝑢 𝑖,𝑚 ; 14:

  Consequently, LT r (𝑡 ′ 𝑖 • S-Poly(ℎ 𝑖 , ℎ 𝑖+1 )) < LT r (𝑡 𝑖 ℎ 𝑖 ), which concludes the proof. □ Proposition 5.2 (Buchberger's criterion). 𝐺 is a GB of 𝐼 r if and only if 𝐺 generates 𝐼 r and WNF(S-Poly(𝑔 𝑖 , 𝑔 𝑗 ), 𝐺) = 0 for all pairs 𝑔 𝑖 , 𝑔 𝑗 ∈ 𝐺.

(Algorithm 3 6 :ℎ ≠ 0 then 7 : 8 :

 3678 𝑗,𝑙) 𝑖 such that: 𝑢 𝑗,𝑙 S-Poly(𝑔 𝑗 , 𝑔 𝑙 ) = 𝑠 𝑖=1 𝑣 ( 𝑗,𝑙) 𝑖 𝑔 𝑖 with LT r (𝑣 ( 𝑗,𝑙) 𝑖 𝑔 𝑖 ) ≤ LT r (S-Poly(𝑔 𝑗 , 𝑔 𝑙 )). Multiplying by 𝑢 -1 𝑗,𝑙 and summing those decompositions, we get that 𝑗,𝑙 ∈𝐽 𝑡 ′ 𝑗,𝑙 S-Poly(𝑔 𝑗 , 𝑔 𝑙 ) = 𝑠 𝑖=1 𝑤 𝑖 𝑔 𝑖 with LT r (𝑤 𝑖 𝑔 𝑖 ) ≤ max 𝑗,𝑙 LT r (𝑢 -1 𝑗,𝑙 𝑣 ( 𝑗,𝑙) 𝑖 𝑔 𝑖 ) = max 𝑗,𝑙 LT r (𝑣 ( 𝑗,𝑙) 𝑖 𝑔 𝑖 ). So LT r (𝑤 𝑖 𝑔 𝑖 ) is less than or equal to max 𝑗,𝑙 LT r (𝑡 ′ 𝑗,𝑙 S-Poly(𝑔 𝑗 , 𝑔 𝑙 )) and strictly smaller than 𝑡. Summing all summands we then obtain a new decomposition of 𝑓 contradicting the minimality of 𝑡 . □ Buchberger's algorithm with Mora's WNF Input: 𝐹 := (𝑓 1 , . . . , 𝑓 𝑠 ) a list of polynomials in 𝐾 [X]. Output: 𝐺 a list of polynomials in 𝐾 [X] which is a GB of ⟨𝐹 ⟩ 1: 𝐺 := 𝐹 ; 2: 𝑃 := {(𝑓 , 𝑔) | 𝑓 , 𝑔 ∈ 𝐺, 𝑓 ≠ 𝑔} ; 3: while 𝑃 ≠ ∅ do 4: choose and remove (𝑓 , 𝑔) from 𝑃 ; 5: ℎ := WNF(S-Poly(𝑓 , 𝑔), 𝐺); if 𝑃 := 𝑃 ∪ {(ℎ, 𝑓 ) | 𝑓 ∈ 𝐺 } ; 𝐺 := 𝐺 ∪ {ℎ} ; 9: return 𝐺 ; Proposition 5.3. Algorithm 3 terminates and is correct. Proof. Correctness comes from Buchberger's criterion. Termination is a consequence of Prop 2.8 of [4]. □ Corollary 5.4. If 𝐼 is generated by polynomials, then Algorithm 3 provides a GB of 𝐼 r ⊂ 𝐾 {X; r} made of polynomials of 𝐼 .

Definition 6 . 2 .Lemma 6 . 3 .

 6263 deg s,r (𝑓 ) = max 𝛼 ∈Supp s (𝑓 ) (sr) • 𝛼 . We define: Écart s,r,0 (𝑓 ) := val s (LT r (𝑓 ))val s (𝑓 ), Écart s,r,1 (𝑓 ) := deg s,r (𝑓 )deg s,r (LT r (𝑓 )) For 𝑓 ∈ 𝐾 {X; s}, 𝑖 ∈ {0, 1} , Écart s,r,𝑖 (𝑓 ) ≥ 0.

1 : 5 :

 15 ℎ := 𝑓 ; 2: 𝑇 := (𝑔 1 , . . . , 𝑔 𝑠 ) ; 3: while ℎ ≠ 0 and𝑇 ℎ := {𝑔 ∈ 𝑇 , LT r (𝑔) | LT r (ℎ)} ≠ ∅ do 4: choose 𝑔 ∈ 𝑇 ℎ minimizing first Écart s,r,0 (𝑔), then Écart s,r,1 (𝑔) ; if Écart s,r,0 (𝑔) > Écart s,r,0 (ℎ), or Écart s,r,1 (𝑔) > Écart s,r,1 (ℎ)then6: 𝑇 := 𝑇 ∪ {ℎ}; 7: ℎ := S-Poly(ℎ, 𝑔) ; 8: return ℎ ; 6.3 Correctness and convergence Lemma 6.4. If 𝑔 ∈ 𝑇 ℎ 𝑚 is such that: • Écart s,r,0 (𝑔) ≤ Écart s,r,0 (ℎ 𝑚 ), • Écart s,r,1 (𝑔) ≤ Écart s,r,1 (ℎ 𝑚 ), and if 𝑡 = LT r (ℎ 𝑚 )/LT r (𝑔) and ℎ 𝑚+1 = ℎ 𝑚 -𝑡𝑔, then val 𝑠 (ℎ 𝑚+1 ) ≥ val 𝑠 (ℎ 𝑚 ).

  4 WNF(𝑓 , 𝑔, 𝑠, 𝑟 ), Mora's overconvergent Weak Normal Form algorithm Input: 𝑓 , 𝑔 1 , . . . , 𝑔 𝑠 ∈ 𝐾 {X; s}, s ∈ Q 𝑛 , r ∈ Q 𝑛 , s ≥ r Output: ℎ ∈ 𝐾 {X; s} such that for some 𝜇, 𝑢 1 , . . . , 𝑢 𝑠 ∈ 𝐾 {X; s}, 𝜇 𝑓 = 𝑢 𝑖 𝑔 𝑖 + ℎ, when ℎ ≠ 0, LT r (ℎ) is divisible by no LT r (𝑔 𝑖 )'s and 𝜇 is invertible in 𝐾 {X; r}. Moreover, LT r (𝑢 𝑖 𝑔 𝑖 ) ≤ LT r (𝑓 ).

  s,r (ℎ 𝑚+1 ) ≤ deg s,r (ℎ 𝑚 ). Hence, deg s,r (𝑡𝑔)deg s,r (LT r (𝑡𝑔)) ≤ deg s,r (ℎ 𝑚 )deg s,r (LT r (ℎ 𝑚 )). From the equality LT r (𝑡𝑔) = LT r (ℎ 𝑚 ), it follows that deg s,r (𝑡𝑔) ≤ deg s,r (ℎ 𝑚 ). As ℎ 𝑚+1 = ℎ 𝑚 -𝑡𝑔, then in addition, Supp s (ℎ 𝑚+1 ) ⊂ Supp s (ℎ 𝑚 ) ∪ Supp s (𝑡𝑠) and we can conclude that deg s,r (ℎ 𝑚+1 ) ≤ deg s,r (ℎ 𝑚 ). If val s (𝑡𝑔) > val s (ℎ 𝑚 ), then Supp s (ℎ 𝑚+1 ) = Supp s (ℎ 𝑚 ) and deg s,r (ℎ 𝑚+1 ) = deg s,r (ℎ 𝑚 ).□ Proposition 6.5. If r < s then either Algorithm 4 terminates in a finite number of steps, or both LT r (ℎ) and LT s (ℎ) converge to 0.

  1 , . . . , 𝑢 𝑠 such that 𝜇 𝑓 = 𝑖 𝑢 𝑖 𝑔 𝑖 are in 𝐾 {X; s} as expected. □ Remark 6.7. Section 5 can be extended with (almost) no modification to compute GB in 𝐾 {X; s} of an s-convergent ideal of 𝐾 {X; r}. One just needs to replace 𝐾 [X] by 𝐾 {X; s} and use Algo. 4 in Buchberger's algorithm.

An example of such a reduction slowly converging to 0 in the algorithms of[START_REF] Caruso | Gröbner bases over Tate algebras[END_REF][START_REF] Caruso | Signature-based algorithms for Gröbner bases over Tate algebras[END_REF] is the reduction of 𝑋 by 𝑋 -𝑝𝑋 2 for log-radii 0, leading to intermediate remainders 𝑝𝑋 2 , 𝑝 2 𝑋

, . . . , 𝑝 𝑘 𝑋 𝑘+1 , . . . .
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Proof. Thanks to Corollary 5.4, we get 𝐻 , a GB or 𝐼 r made of polynomials of 𝐼 . Since 𝐼 is homogeneous we can assume that in addition, they are all homogeneous. Then again, for any 𝑔 ∈ 𝐺, we can perform inter-reduction by performing the tropical row-echelon algorithm of [START_REF] Vaccon | Matrix-F5 Algorithms and Tropical Gröbner Bases Computation[END_REF] (Algorithm 1) on a Macaulay matrix consisting of 𝑔 and the multiples of the elements of 𝐺 \ {𝑔} of degree deg(𝑔). This is enough to conclude. □ Proposition 7.3. Let 𝐼 ⊂ 𝐾 [X] be a homogeneous ideal. Then the set 𝑇 𝑒𝑟𝑚𝑠 (𝐼 ) := {LT(𝐼 r ) ⧸ r ∈ Q 𝑛 } is finite.

Proof. Suppose that Terms(𝐼 ) is infinite. For any 𝑀 ∈ Terms(𝐼 ), we write ≤ 𝑀 for a term order defined by an r such that LT(𝐼 r ) = 𝑀. Let Σ := {≤ 𝑀 ⧸ 𝑀 ∈ Terms(𝐼 )}. Our assumption states that Σ is infinite.

Let 𝑓 1 ∈ 𝐼 be a homogeneous polynomial. Since 𝑓 1 has finitely many terms, by the pigeonhole principle, there is an infinite set Σ 1 ⊂ Σ and a term 𝑚 1 of 𝑓 1 such that for all ≤ 𝑀 ∈ Σ 1 , LT ≤ 𝑀 (𝑓 1 ) = 𝑚 1 . Suppose that for some ≤ 1 ∈ Σ 1 defined by some r 1 , (𝑓 1 ) is a GB of 𝐼 r 1 . Then, let ≤∈ Σ 1 be defined by some r. We prove that (𝑓 1 ) is then a GB of 𝐼 r . Indeed, by Lemma 7.1, if (𝑓 1 ) is not a GB of 𝐼 r there is some ℎ ∈ 𝐼 such that no term of ℎ is divisible by LT ≤ (𝑓 1 ). Since LT ≤ (𝑓 1 ) = LT ≤ 1 (𝑓 1 ) and (𝑓 1 ) is a GB of 𝐼 r 1 this is a contradiction. Consequently, for any ≤∈ Σ 1 defined by some r, (𝑓 1 ) is a GB of 𝐼 r with LT ≤ (𝑓 1 ) = 𝑚 1 . However, this can not be the case as our assumption was that there are infinitely many elements in Σ 1 all defining distinct LT's for 𝐼 . Therefore, (𝑓 1 ) is not a GB of 𝐼 r .

By Lemma 7.1 there is some homogeneous 𝑓 2 ∈ 𝐼 such that no term of 𝑓 2 is divisible by 𝑚 1 . Then again, since 𝑓 2 has finitely many terms, by the pigeonhole principle, there is an infinite set Σ 2 ⊂ Σ 1 and a term 𝑚 2 of 𝑓 2 such that for all ≤ 𝑀 ∈ Σ 2 , LT ≤ 𝑀 (𝑓 2 ) = 𝑚 2 (and also since Σ 2 ⊂ Σ 1 , LT ≤ 𝑀 (𝑓 1 ) = 𝑚 1 ).

The same argument as above shows that for any ≤∈ Σ 2 defined by some r, (𝑓 1 , 𝑓 ) is not GB of 𝐼 r . Then again, by Lemma 7.1 there is some homogeneous 𝑓 3 ∈ 𝐼 such that no term of 𝑓 3 is divisible by any of (𝑚 1 , 𝑚 2 ). Since 𝑓 3 has finitely many terms, by the pigeonhole principle, there is an infinite set Σ 3 ⊂ Σ 2 and a term 𝑚 3 of 𝑓 3 such that for all ≤ 𝑀 ∈ Σ 3 , LT ≤ 𝑀 (𝑓 3 ) = 𝑚 3 (and also since

Continuing the same way, we produce a descending chain of infinite subsets Σ ⊃ Σ 1 ⊃ Σ 2 ⊃ Σ 3 ⊃ . . . and an infinite strictly ascending chain of ideals [START_REF] Caruso | Gröbner bases over Tate algebras[END_REF] and concludes the proof. □ Theorem 7.4. Let 𝐼 ⊂ 𝐾 [X] be a homogeneous ideal. Then there exists a finite set 𝐺 ⊂ 𝐼 ⊂ 𝐾 [X] made of homogeneous polynomials which is a universal analytic Gröbner basis of 𝐼 : for any r ∈ Q 𝑛 , 𝐺 is a GB of 𝐼 𝑟 .

Proof. By Prop 7.3, there are only finitely many initial ideals possible. We prove that for two term-orders ≤ 1 and ≤ 2 (defined by r 1 and r 2 ), if they define the same initial ideal, then they have the same reduced Gröbner basis. Indeed, let 𝐺 1 and 𝐺 2 be the reduced Gröbner bases given by Lemma 7.2. They have the same LT's. Let 𝑔 1 ∈ 𝐺 1 and 𝑔 2 ∈ 𝐺 2 having a common LT. Then 𝑔 1 -𝑔 2 ∈ 𝐼 with no monomial divisible by any of the LT(𝐺 𝑖 )'s. Hence 𝑔 1 = 𝑔 2 , and 𝐺 1 and 𝐺 2 are equal up to permutation.

Consequently, all term orders giving rise to the same initial ideal share the same reduced GB. Consequently, only a finite amount of reduced GB for the 𝐼 r 's are possible. By concatening all of them, we obtain the desired universal analytic Gröbner basis. □ 7.2 Non-Homogeneous ideal Lemma 7.5. Let 𝐼 ⊂ 𝐾 [X] be a polynomial ideal and r ∈ Q 𝑛 . Let (ℎ 1 , . . . , ℎ 𝑠 ) be a finite Gröbner basis of (𝐼 * ) (𝑟,0) ⊂ 𝐾 {X, 𝑡; r, 0} made of homogeneous polynomials of 𝐼 * (hence in 𝐾 [X, 𝑡]). Then (ℎ 1, * , . . . , ℎ 𝑠, * ) is a Gröbner basis of 𝐼 𝑟 .

Proof. Firstly, due to being dehomogenization of elements of 𝐼 * , the ℎ 𝑖, * 's are in 𝐼 .

Secondly, by Corollary 5.4, it is enough to check that for any 𝑓 ∈ 𝐼 , LT r (𝑓 ) is divisible by one of the LT r (ℎ 𝑖, * )'s.

Let 𝑓 ∈ 𝐼 . Then 𝑓 * ∈ 𝐼 * ⊂ (𝐼 * ) (𝑟,0) so there is some 𝑖 such that LT (r,0) (ℎ 𝑖 ) divides LT (r,0) (𝑓 * ). Then thanks to Lemma 3.5, LT r (𝑓 ) = LT (r,0) (𝑓 * ) * , LT r (ℎ 𝑖, * ) = LT (r,0) (ℎ 𝑖 ) * , and monomial divisibility is preserved by dehomogenization. So LT r (ℎ 𝑖, * ) divides LT r (𝑓 ) and the proof is complete. □

We can then prove the main theorem of this section.

Theorem 7.6. Let 𝐼 ⊂ 𝐾 [X] be an ideal. Then the set 𝑇 𝑒𝑟𝑚𝑠 (𝐼 )

Proof. Thanks to Lemma 7.5, there is a surjection from Terms(𝐼 * ) to Terms(𝐼 ). The first set is finite thanks to Proposition 7.3, so the second is also, which concludes the proof. □

We can also obtain the existence of universal Gröbner bases for any polynomial ideal in 𝐾 [X].

Theorem 7.7. Let 𝐼 ⊂ 𝐾 [X] be an ideal. Then there exists a finite set 𝐺 ⊂ 𝐼 ⊂ 𝐾 [X] which is a universal analytic Gröbner basis of 𝐼 : for any r ∈ Q 𝑛 , 𝐺 is a GB of 𝐼 𝑟 .

Proof. Thanks to Lemma 7.5, it is enough to dehomogenize a universal analytic GB of 𝐼 * to obtain the desired universal analytic GB of 𝐼 . □

New challenges

One can relate the previous result to the Remark 8.8 of [START_REF] Rabinoff | Tropical analytic geometry, Newton polygons, and tropical intersections[END_REF] on the foundations of computations in tropical analytic geometry, on universal analytic GB and on tropical bases. We say that 𝐹 ⊂ 𝐼 is a tropical basis of 𝐼 if for any r ∈ Q 𝑛 : there is 𝑔 ∈ 𝐼 such that val r (𝑔) is reached by only one term if and only if there is 𝑓 ∈ 𝐹 such that val r (𝑓 ) is reached by only one term.

It leaves us with the following challenges:

(1) Give an algorithm to compute a universal analytic Gröbner basis of a polynomial ideal. (2) Give an algorithm to compute a tropical basis of a polynomial ideal. (3) Generalize universal analytic GB to overconvergent ideals or to varying center of polydisks of convergence. We shall remark that in our context, due to the fact that we take the valuation of the coefficients into account, then, contrary to the classical case of Gröbner fans for polynomials over a field, the Gröbner complex is in general not a cone. 1: Precision and timing for Algo 3 and Vapote [START_REF] Caruso | Signature-based algorithms for Gröbner bases over Tate algebras[END_REF]. The log-radii is (0, . . . , 0).

APPENDIX: TIMINGS

We present here with Table 1 some timings for our toy implementation of Algorithm 3 acting on special systems in Q

The ∞ symbols means that 12 hours were not enough for the algorithm to terminate.

Most of the time the algorithms of [START_REF] Caruso | Gröbner bases over Tate algebras[END_REF][START_REF] Caruso | Signature-based algorithms for Gröbner bases over Tate algebras[END_REF] vastly outperforms our implementation (as seen in the Cyclic case).

However, this is not always the case and with the Katsura systems, our implementation displays two remarkable features of our algorithm:

• Reductions can be significantly faster: no problem with reductions converging possibly slowly to zero 2 • The dependency on the precision can be significantly smaller than that of the algorithms of [START_REF] Caruso | Gröbner bases over Tate algebras[END_REF][START_REF] Caruso | Signature-based algorithms for Gröbner bases over Tate algebras[END_REF], allowing in some cases many orders of magnitude of additional digits in less time. Please note the special shape of the Katsura 6 system in Q 𝑝 [𝑋 1 , . . . , 𝑋 6 ] for r = (0, . . . , 0) and 𝑝 = 2: its defining polynomials already contains the leading monomials 𝑋 1 , 𝑋 2 , 𝑋 4 , explaining in part why this computation is not as hard as for classical Gröbner bases.

Computations over Q are not presented in the timings are they are significantly slower due to coefficients growth.

One can try all examples at https://gist.github.com/TristanVaccon.