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ABSTRACT
In this paper, we study ideals spanned by polynomials or overcon-

vergent series in a Tate algebra. With state-of-the-art algorithms

for computing Tate Gröbner bases, even if the input is polynomials,

the size of the output grows with the required precision, both in

terms of the size of the coefficients and the size of the support of

the series.

We prove that ideals which are spanned by polynomials admit

a Tate Gröbner basis made of polynomials, and we propose an

algorithm, leveraging Mora’s weak normal form algorithm, for

computing it. As a result, the size of the output of this algorithm

grows linearly with the precision. Following the same ideas, we

propose an algorithm which computes an overconvergent basis

for an ideal spanned by overconvergent series. Finally, we prove

the existence of a universal analytic Gröbner basis for polynomial

ideals in Tate algebras, compatible with all convergence radii.
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1 INTRODUCTION
The study of 𝑝-adic geometric objects has taken significant im-

portance in the 20th century, as a crucial component of algebraic

number theory. Beyond polynomials and algebraic geometry, Tate

developed a theory of 𝑝-adic analytic varieties, called rigid geome-

try. This theory is now central to many developments in number
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theory. The fundamental underlying algebraic object is Tate alge-

bras, that is, algebras of convergent multivariate power series over

a complete discrete valuation field 𝐾 (for instance Q𝑝 ).
In earlier papers, the authors examined those Tate series from

a computational point of view, with the hope to develop an algo-

rithmic toolbox on par with what is available for polynomials. The

main result was that it is possible to define and compute Gröbner

bases of Tate ideals, in a way compatible with the usual theory

on polynomials over the residue field (e.g. F𝑝 ). We also examined

how different algorithms from the polynomial case transfer to Tate

settings.

A key property of Tate series is their convergence radius. Tate

algebras are parameterized by the convergence radius of their series.

If a series is convergent on a certain disk, it is certainly convergent

on all disks with smaller radius. This gives a natural embedding

of one Tate algebra into another if the convergence radii of the

latter are smaller than those of the former. This property is a key

feature of rigid geometry. In fact, the canonical embedding of 𝐾 [X]
into Tate algebras is a particular case of such an embedding, with

polynomials seen as series with infinite convergence radius.

Beyond this theoretical interest, recognizing and exploiting such

overconvergence properties would help making the algorithms

more efficient. Indeed, a limiting factor of the current algorithms

is the cost of the reductions, in particular as the precision grows.

Series with a larger convergence radius are series which converge

faster, and thus require to compute fewer terms while reducing.

The challenge in taking advantage of those properties lies in de-

signing algorithms ensuring that this overconvergence property is

preserved in the course of the algorithm.

In [6], we showed how to generalize the FGLM algorithm [11]

to Tate algebras. A result was that this algorithm allows, for zero-

dimensional Tate ideals embedded into a Tate algebra with a less

restrictive convergence condition, to convert the Gröbner basis.

This opens the possibility, for zero-dimensional ideals, of computing

a Gröbner basis in the smaller Tate algebra, where all series have the

stronger convergence property, and then using FGLM to convert

the result.

In this work, we consider ideals spanned by polynomials in a

Tate algebra, from this point of view of overconvergence. We show

that in this case, the ideal admits a Gröbner basis comprised only of

polynomials, and we propose an algorithm computing such a basis,

and working only with polynomials. The key ingredient is to use

a variant of Mora’s weak normal form [15] to compute the head

reductions instead of standard reduction. This algorithm computes

reductions up to an invertible factor, with the additional property

that all series appearing in the computations are actually polyno-

mials. In order to do so, it uses specific metrics, called écarts, to
select the polynomials to use for reduction at each step. This notion
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of écart is crucial in proving that the Gröbner basis computation

terminates. In the polynomial case, the écart is simply defined as

the difference between the degree of the polynomial and that of

its leading term, and in the Tate case we need to refine that with a

comparison on the set-difference of the supports of the polynomials.

The resulting algorithm offers a better control for the complexity

as a function of the precision. Concretely, given a set of polynomials

in Q[X], and a prime number 𝑝 , we consider the ideal 𝐼 spanned

by the polynomials in Q𝑝 {X}. Using existing algorithms for Tate

Gröbner bases, we can compute a Gröbner basis of 𝐼 modulo 𝑝𝑁

for all 𝑁 . But the output of such a computation will be truncated

series, and if we increase the precision 𝑁 , the size of their support

typically increases, and even quantifying that growth is not an

easy task. By contrast, the algorithm which we present here only

computes polynomials. So once the precision is large enough, the

supports will be completely determined and will not grow anymore.

Asymptotically, the size of the output grows linearly with the pre-

cision, and the complexity of the algorithm grows at the same rate

as the cost of coefficient arithmetic.

The same idea can be used for ideals spanned by overconvergent

series. With a further refinement of the écart in order to take the

valuation of the coefficients into account, we prove that Mora’s

algorithm allows to compute overconvergent remainders as a result

of reducing overconvergent series, and that the modified version of

Buchberger’s algorithm converges, and computes a basis comprised

of overconvergent series.

In later sections, we examine an application of those results for

ideals spanned by polynomials in a Tate algebra, namely eliminat-

ing variables. This operation is fundamental in effective algebraic

geometry, by allowing to compute various ideal operations such

as saturation or intersection. However, in the Tate setting, due to

the nature of the term ordering, computing an elimination ideal

by a Gröbner basis may fail. Concretely, even with an elimination

ordering, the leading term of a Tate series is determined by first

looking at the valuations of the coefficients, and so it is not enough

to look at the leading term to determine whether the series involves

the elimination variable or not.

We prove that for ideals spanned by polynomials, using Buch-

berger’s algorithm with Mora reductions, this problem does not

appear, and we are indeed able to eliminate variables. This allows

to recover all the usual ideal operations, and in particular proves

that polynomial ideals are stable under intersection and radical.

Finally, we consider the theory of universal Gröbner bases, that

is, sets which are a Gröbner basis for all monomial orderings. This

theory has proved useful in the classical setting, for instance leading

to algorithms for change of ordering. The key result is that any ideal

in a polynomial algebra has a finite universal Gröbner basis. This

allows to see the set of Gröbner bases of the ideal as a polyhedral

cone, and algorithms wandering on this cone have been developed

(see [1, 8, 12, 16]). Furthermore, connections with tropical geometry

have been explored (see [2, 14]).

This latter aspect motivates the quest for a similar notion in

the Tate setting. It could pave the way for the computation of

the tropical analytic variety defined by a polynomial ideal (see

[17]). However, it is not clear whether all Tate ideals admit a finite

universal Gröbner basis. The last result of this work is a proof that

polynomial ideals admit a finite universal analytic Gröbner basis,

valid regardless of the choice of the convergence radii.

2 SETTING
2.1 Term orders, Tate algebras and ideals
In order to fix notations, we briefly recall the definition of Tate

algebras and their theory of Gröbner bases (GB for short). Let 𝐾 be

a field with valuation val and let 𝐾◦
be the subring of 𝐾 consisting

of elements of nonnegative valuation. Let 𝜋 be a uniformizer of 𝐾 ,

that is an element of valuation 1. Let 𝐾ex ⊂ 𝐾 , be an exact field.

Typical examples of such a setting are 𝑝-adic fields like 𝐾 = Q𝑝
with 𝐾◦ = Z𝑝 , 𝜋 = 𝑝 and 𝐾ex = Q or Laurent series fields like

𝐾 = Q((𝑇 )) with 𝐾◦ = Q[[𝑇 ]], 𝜋 = 𝑇 and 𝐾ex = Q(𝑇 ).
Let r = (𝑟1, . . . , 𝑟𝑛) ∈ Q𝑛 . The Tate algebra 𝐾{X; r} is defined by:

𝐾{X; r} :=
{ ∑︁
i∈N𝑛

𝑎iXi
s.t. 𝑎i ∈ 𝐾 and val(𝑎i) − r·i −−−−−−−→

|i |→+∞
+∞

}
(1)

The tuple r is called the convergence log-radii of the Tate alge-

bra. We define the Gauss valuation of a term 𝑎iXi
as valr (𝑎iXi) =

val(𝑎i) − r·i, and the Gauss valuation of

∑
𝑎iXi ∈ 𝐾{X; r} as the

minimum of the Gauss valuations of its terms. The integral Tate

algebra ring 𝐾{X; r}◦ is the subring of 𝐾{X; r} consisting of ele-

ments with nonnegative valuation. A sequence (𝑓𝑛)𝑛∈N ∈ 𝐾{X; r}
converges to zero if valr (𝑓𝑛) −−−−−−→

𝑛→+∞
+∞.

We fix once and for all a classical monomial order ≤𝑚 on the set

of monomials Xi
. Given two terms 𝑎Xi

and 𝑏Xj
(with 𝑎, 𝑏 ∈ 𝐾×

),

we write 𝑎Xi <r 𝑏Xj
if valr (𝑎Xi) > valr (𝑏Xj), or valr (𝑎Xi) =

valr (𝑏Xj) and Xi <𝑚 Xj
. The leading term of a Tate series 𝑓 =∑

𝑎iXi ∈ 𝐾{X; r} is, by definition, its maximal term, and is denoted

by LTr (𝑓 ) . Its coefficient and its monomial are denoted LCr (𝑓 ) and
LMr (𝑓 ), with LTr (𝑓 ) = LCr (𝑓 ) × LMr (𝑓 ) . For 𝑓 , 𝑔 ∈ 𝐾{X; r}, we
define their S-polynomial as

S-Poly(𝑓 , 𝑔) = LTr (𝑔)
gcd(𝐿𝑇 (𝑓 ), LTr (𝑔))

𝑓 − LTr (𝑓 )
gcd(LTr (𝑓 ), LTr (𝑔))

𝑔.

A Gröbner basis (or GB for short) of an ideal 𝐼 of 𝐾{X; r} is, by
definition, a family (𝑔1, . . . , 𝑔𝑠 ) of elements of 𝐼 with the property

that for all 𝑓 ∈ 𝐼 , there exists an index 𝑖 ∈ {1, . . . , 𝑠} such that

LTr (𝑔𝑖 ) divides LTr (𝑓 ). The following theorem is proved in [4].

Theorem 2.1. Any ideal of 𝐾{X; r} or 𝐾{X; r}◦ admits a GB.

We define the monoid of terms 𝑇 {X; r} as the multiplicative

monoid consisting of the elements 𝑎X𝛼 with 𝑎 ∈ 𝐾×
and 𝛼 ∈ N𝑛 .

We let also 𝑇 {X; r}◦ be the submonoid of 𝑇 {X; r} consisting of

terms 𝑎Xi
for which valr (𝑎Xi) ≥ 0. The multiplicative group 𝐾×

(resp. (𝐾◦)×) embeds into 𝑇 {X; r} (resp. 𝑇 {X; r}◦). We set:

T{X; r} = 𝑇 {X; r}/𝐾×
and T{X; r}◦ = 𝑇 {X; r}◦/(𝐾◦)× .

We remark that𝐺 is a GB of an ideal 𝐼 in𝐾{X; r} (resp.𝐾{X; r}◦)
if and only if LTr (𝐺) generates LTr (𝐼 ) in T{X; r} (resp. T{X; r}◦).

2.2 Polynomial and overconvergent ideals
The main object of our studies is polynomials and overconvergent

series, and the ideals they span.



Definition 2.2. An ideal of 𝐾{X; r} is called a polynomial ideal if
it is spanned by polynomials in 𝐾 [X].

Let s ≤ r with respect to component-wise comparison: ∀𝑖 ∈
J1, 𝑛K, 𝑠𝑖 ≤ 𝑟𝑖 . A series 𝑓 =

∑
𝑖 𝑎iXi ∈ 𝐾{X; r} is called s-convergent

(or simply overconvergent if s is clear by the context) if

val(𝑎i) − s · i → |𝑖 |→∞ +∞. (2)

Equivalently, it means that 𝑓 is the image of an element of 𝐾{X; s}
under the canonical embedding. An ideal of 𝐾{X; r} is called s-
convergent if it is spanned by s-convergent series.

Remark 2.3. A polynomial ideal in 𝐾{X; r} contains more polyno-

mials than the ideal taken in 𝐾 [X]. For example, let r = (0) and
consider 𝑓 = 𝑋 + 𝑝𝑋 2

in Q𝑝 [𝑋 ]. In Q𝑝 [𝑋 ], the ideal spanned by 𝑓

is ⟨𝑓 ⟩ = ⟨𝑋 + 𝑝𝑋 2⟩.
On the other hand, in Q𝑝 {𝑋 }, 1 + 𝑝𝑋 is invertible with inverse∑
𝑖 (−𝑝)𝑖𝑋 𝑖 , and the ideal contains 𝑋 =

(∑
𝑖 (−𝑝)𝑖𝑋 𝑖

)
𝑓 .

The following structural results are immediate.

Proposition 2.4. Let s ≤ r. Let 𝐼 and 𝐽 be two polynomial (resp.
s-convergent) ideals in 𝐾{X; r}. Then:

(1) the sum 𝐼 + 𝐽 is a polynomial (resp. s-convergent) ideal;
(2) the product 𝐼 𝐽 is a polynomial (resp. s-convergent) ideal.

On the other hand, closure under elimination is not obvious, and

therefore closure under intersection or saturation is not immediate.

For intersection, it can be proved using that, as a completion of a

Noetherian ring, 𝐾{X; r} is flat over 𝐾{X; s}. Using Gröbner bases,

we present in Section 3.2 a constructive proof for polynomial ideals.

3 POLYNOMIAL IDEALS: TOOLS AND
MOTIVATIONS

Using elimination, we motivate our results with the closure of poly-

nomial ideals under some ideal operations including intersection

and saturation.

3.1 Elimination of one variable
Let𝐴 = 𝐾{𝑥1, . . . , 𝑥𝑛 ; 𝑟1, . . . , 𝑟𝑛} be a Tate algebra with tie-breaking
monomial ordering ≤𝑚𝐴

. Let 𝐵 = 𝐾{𝑡, 𝑥1, . . . , 𝑥𝑛 ; 𝑟0, 𝑟1, . . . , 𝑟𝑛} be
a Tate algebra above 𝐴. Let 𝐼 be an ideal of 𝐵. We would like to

compute a GB of the ideal 𝐼 ∩𝐴 in 𝐴 (for the monomial ordering

≤𝑚𝐴
). The definition of 𝐾{X; r} in (1) extends naturally to 𝑟𝑖 ∈

Q ∪ +∞ (𝑟𝑖 = +∞ meaning that any 𝑓 ∈ 𝐾{X; r} only posseses a

finite amount of monomials in 𝑥𝑖 ), as well as valr, LTr and GBs.

Proposition 3.1. If 𝑟0 = +∞ and ≤𝑚𝐴
is a block-monomial ordering

with 𝑡 bigger than any monomial not involving 𝑡, if 𝐺𝐵 is a GB of 𝐼
for the term ordering defined by the 𝑟𝑖 ’s and ≤𝑚𝐴

, then 𝐺𝐵 ∩𝐴 is a
GB of 𝐼 ∩𝐴.

Proof. Firstly, ⟨𝐺𝐵 ∩𝐴⟩𝐴 ⊂ 𝐼 ∩ 𝐴. Now, let us remark that if

𝑔 ∈ 𝐵 is such that LT(𝑔) ∈ 𝐴 then 𝑔 ∈ 𝐴. Indeed, as 𝑟0 = +∞ and

≤𝑚𝐴
is a block-monomial ordering, any term 𝑐𝑥𝛼 involving 𝑡 is

such that 𝑡 > LT(𝑔) so 𝑔 does not have any term involving 𝑡 .

As a consequence of this fact, if 𝑓 ∈ 𝐼 ∩𝐴 is divided by 𝐺𝐵 then

only elements of 𝐺𝐵 in 𝐴, with LT’s in 𝐴 will be involved, and as

𝐺𝐵 is a GB of 𝐼 , 𝑓 is reduced to 0. Consequently, the same division

to 0 happens for the division of 𝑓 by𝐺𝐵 ∩𝐴, so 𝐼 ∩𝐴 ⊂ ⟨𝐺𝐵 ∩𝐴⟩𝐴 ,
which concludes the proof. □

Corollary 3.2. For 𝑟0 big enough, the previous result for 𝐺𝐵 ∩𝐴 is
preserved, allowing to fit into the framework of algorithms developped
in [4–6] and in this article.

3.2 Application to ideal operations
Following §4 of [9], if 𝐼 and 𝐽 are ideals then GBs of 𝐼 ∩ 𝐽 , 𝐼 :

𝐽 and 𝐼 : 𝐽∞ can be computed using elimination (e.g. 𝐼 ∩ 𝐽 =

(𝑡𝐼 + (1 − 𝑡) 𝐽 ) ∩ 𝐾{X}).
One motivation for our work is Corollary 5.4, stating that any

polynomial ideal in 𝐾{X; r} admits a GB made of polynomials. It

implies the following stability result on polynomial ideals: if 𝐼 and

𝐽 are ideals in 𝐾{X; r} generated by polynomials, then so are: 𝐼 + 𝐽 ,
𝐼 𝐽 , 𝐼 ∩ 𝐽 , 𝐼 : 𝐽 and 𝐼 : 𝐽∞ .

3.3 Homogenization and dehomogenization
We will rely on (de)-homogenization at some point in the computa-

tions. We consign here notations and basic properties.

Definition 3.3. Let (·)∗ and (·)∗ be the homogenization and de-

homogenization applications between 𝐾 [X] and 𝐾 [X, 𝑡] . If 𝐼 is an
ideal in 𝐾 [X], we define 𝐼∗ to be the homogenization of this ideal

in 𝐾 [X, 𝑡] .

Given r ∈ Q𝑛 , we extend the term order <r to 𝐾 [X, 𝑡] and

𝐾 {X, 𝑡 ; r, 0}

Definition 3.4. Given two terms 𝑎X𝛼 𝑡𝑢 and 𝑏𝑋 𝛽𝑡𝑣 , we write that

𝑎X𝛼 𝑡𝑢 <r,0 𝑏𝑋
𝛽𝑡𝑣 if:

• valr (𝑎Xi) > valr (𝑏Xj) (which is the same as valr,0 (𝑎X𝛼 𝑡𝑢 ) >
valr,0 (𝑏𝑋 𝛽𝑡𝑣)).

• valr (𝑎Xi) = valr (𝑏Xj) and deg(X𝛼 𝑡𝑢 ) < deg(𝑋 𝛽𝑡𝑣).
• valr (𝑎Xi) = valr (𝑏Xj), deg(X𝛼 𝑡𝑢 ) = deg(𝑋 𝛽𝑡𝑣) and X𝛼 <𝑚

X𝛽 .
This defines a term order on 𝐾 {X, 𝑡 ; r, 0}.

This order is defined such that dehomogenization preserves

leading terms of homogeneous polynomials of 𝐾 [X, 𝑡] .

Lemma 3.5. Let r ∈ Q𝑛 . Let ℎ ∈ 𝐾 [X, 𝑡] be a homogeneous poly-
nomial. Then LT(r,0) (ℎ)∗ = LTr (ℎ∗). Let 𝑓 ∈ 𝐾 [X], then LTr (𝑓 ) =
(LT(r,0) (𝑓 ∗))∗ .

Proof. Thanks to thewaywe defined the term order on𝐾 {X, 𝑡 ; r, 0}
in Definition 3.4, if 𝑐𝛼𝑥

𝛼 𝑡𝑢 and 𝑐𝛽𝑥
𝛽𝑡𝑣 are two terms of the same to-

tal degree such that 𝑐𝛼𝑥
𝛼 𝑡𝑢 >r,0 𝑐𝛽𝑥

𝛽𝑡𝑣, then 𝑐𝛼𝑥
𝛼 >r 𝑐𝛽𝑥

𝛽 . This

is enough for the first part. For the second part, we can conclude

using ℎ = 𝑓 ∗ and the fact that 𝑓 = (𝑓 ∗)∗ . □

4 WEAK NORMAL FORMS
4.1 Definitions
We present here how to adapt Mora’s tangent cone algorithm to

compute Weak Normal Forms over Tate algebras. The main con-

sequence of this notion is that it will allow us, if the generating

Tate series are polynomials, to do all computations on polynomials,

avoiding any infinite division.

In this section, we fix some r ∈ Q𝑛 . First, we recall the definition
of weak normal forms, adapted to the framework of polynomial

ideals in Tate algebras.



Definition 4.1. A weak normal form is a map WNF : 𝐾 [X] ×
P(𝐾 [X]) → 𝐾 [X], such that, for all 𝑓 ∈ 𝐾 [X] and all 𝐺 ⊆ 𝐾 [X],
the following holds:

(1) WNF(0,𝐺) = 0

(2) If WNF(𝑓 ,𝐺) ≠ 0, then LT(WNF(𝑓 ,𝐺)) does not lie in the

ideal spanned by the leading terms of 𝐺

(3) If 𝑓 ≠ 0, then there exists 𝑢 ∈ 𝐾 [X] invertible in 𝐾{X; r}
such that 𝑢𝑓 −WNF(𝑓 ,𝐺) = ∑

𝑔∈𝐺 𝑢𝑔𝑔 with the 𝑢𝑔’s poly-

nomials, LTr (𝑢𝑔𝑔) ≤ LTr (𝑓 ) with equality attained at most

once.
1

In particular, ifWNF(𝑓 ,𝐺) = 0, then 𝑓 lies in the ideal spanned

by 𝐺 . And if 𝐺 is a Gröbner basis, it is an equivalence.

4.2 Écarts
The first step in order to devise a new version ofMora’s tangent cone

algorithm is to provide a suitable écart function on polynomials.

This function then drives the division algorithm. To do so, we adapt

the écart functions from [15] and [7] to fit into the Tate algebra

framework (see also [13] for a general background on standard

bases computations).

Definition 4.2. For 𝑓 a polynomial, we define:

Écart1 (𝑓 ) := deg(𝑓 ) − deg(LMr (𝑓 )) .

Definition 4.3. For ℎ =
∑
𝑢 𝑏𝑢𝑥

𝑢
and 𝑔 =

∑
𝑢 𝑐𝑢𝑥

𝑢
two polynomi-

als, we define:

Écart2 (ℎ,𝑔) := card({𝑢 : 𝑏𝑢 = 0, 𝑐𝑢 ≠ 0}) .

4.3 Mora’s Weak Normal Form algorithm
We first present a simple version of Mora’s algorithm to compute

a Weak Normal Form (WNF) of a polynomial modulo a finite set

of polynomials. It differs from the multivariate division algorithm

by adding intermediate reduced polynomials to the list of divisors,

which induces a division which happens, not on the original divided

polynomial, but on one of his multiples by an invertible polynomial

(which does not modify the LTr’s).

Algorithm 1WNF(𝑓 , 𝑔), Mora’s Weak Normal Form algorithm

Input: 𝑓 , 𝑔1, . . . , 𝑔𝑠 ∈ 𝐾 [X]
Output: ℎ ∈ 𝐾 [X] such that for some 𝜇,𝑢1, . . . , 𝑢𝑠 ∈ 𝐾 [X], 𝜇 𝑓 =∑

𝑢𝑖𝑔𝑖 + ℎ,
𝜇 is a polynomial such that valr (𝜇 − 1) > 0, and when ℎ ≠ 0,

LTr (ℎ) is divisible by no LTr (𝑔𝑖 )’s.
Moreover, LTr (𝑢𝑖𝑔𝑖 ) ≤ LTr (𝑓 ).

1: ℎ := 𝑓 ;

2: 𝑇 := (𝑔1, . . . , 𝑔𝑠 ) ;
3: while ℎ ≠ 0 and 𝑇ℎ := {𝑔 ∈ 𝑇, LTr (𝑔) | LTr (ℎ)} ≠ ∅ do
4: choose 𝑔 ∈ 𝑇ℎ minimizing first Écart1 (𝑔) then

Écart2

(
ℎ,

LMr (ℎ)
LMr (𝑔) 𝑔

)
;

5: if Écart1 (𝑔) > Écart1 (ℎ), or Écart2 (ℎ, LMr (ℎ)
LMr (𝑔) 𝑔) > 0 then

6: 𝑇 := 𝑇 ∪ {ℎ};
7: ℎ := S-Poly(ℎ,𝑔) ;
8: return ℎ ;

1
This is sometimes called a strong Gröbner representation of 𝑓 by𝐺.

We may remark that if 𝜇 ∈ 𝐾 [X] is such that valr (𝜇 − 1) > 0,

then 𝜇 is invertible in 𝐾{X; r}.

4.4 Termination
Lemma 4.4. Algorithm 1 terminates.

Proof. Let us define the extended leading terms (with respect

to Écart1) as: LTE : 𝐾 [X] → 𝐾 [X, 𝑡] with 𝐿𝑇𝐸 (𝑓 ) = LTr (𝑓 ) ×
𝑡Écart1 (𝑓 ) .

Let us assume the algorithm does not terminate. It means that

𝑇ℎ is never empty. From Prop 2.8 of [4], there exists some 𝑁 such

that LTE(𝑇 (𝑣) ) is stable for 𝑣 ≥ 𝑁 .

For 𝑣 ≥ 𝑁, when ℎ𝑣 is processed, two possibilities can occur. If it

is not added to𝑇 on Line 6, it means that for the selected reducer 𝑔,

Écart1 (𝑔) ≤ Écart1 (ℎ𝑣) . If it is added, then LTE(ℎ𝑣) is in LTE(𝑇 (𝑣) )
and hence, there is some 𝑔 ∈ 𝑇 (𝑣)

such that LTE(𝑔) | LTE(ℎ𝑣) . It
means that Écart1 (𝑔) ≤ Écart1 (ℎ𝑣) and LTr (𝑔) | LTr (ℎ𝑣).

Thus, in both cases, the 𝑔 selected in Line 4 has to be such that

Écart1 (𝑔) ≤ Écart1 (ℎ𝑣). In consequence, starting from 𝑣 ≥ 𝑁,

deg(ℎ𝑣) can not increase, and is upper-bounded by 𝑑.

Thereafter, the amount of LMr (ℎ 𝑗 )’s and 𝑥𝛼 LMr (𝑔)’s for 𝑔 ∈ 𝑇
and deg(𝑥𝛼 LMr (𝑔)) ≤ 𝑑 is finite. Moreover, for the polynomials

reaching such an LMr, only a finite amount of supports are possible.

Therefore, there is some 𝑁2 > 𝑁 such that after the 𝑁2-th term,

𝑇 will not gain any new support for its polynomials nor their mono-

mial multiples of degree ≤ 𝑑. Then, for 𝑣 ≥ 𝑁2, the minimal Écart2

is 0. Indeed, if it is not 0, thenℎ𝑣 is added to𝑇 . But as 𝑣 ≥ 𝑁2, there is

a 𝑔 with LTr (𝑔) | LTr (ℎ𝑣) and 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 ( LMr (ℎ)
LMr (𝑔) 𝑔) = 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (ℎ𝑣),

and thus Écart2 ( LMr (ℎ)
LMr (𝑔) 𝑔, ℎ𝑣) = 0, which is a contradiction.

Hence, for 𝑚 ≥ 𝑁2 necessarily, it means that Supp(ℎ𝑚+1) ⊊
Supp(ℎ𝑚) (the leading term of ℎ𝑚 being canceled). Since the size

of the support cannot decrease infinitely, the algorithm must termi-

nate. □

4.5 Correctness
In order to prove correctness, we extend the algorithm so that the

production of the cofactors is explicit (Algorithm 2).

Correctness then comes from the following loop invariant:

Lemma 4.5. For any 𝑗 ≥ 0,
(1) 𝜇 𝑗 𝑓 = ℎ 𝑗 +

∑
𝑖 𝑢𝑖, 𝑗𝑔𝑖 ,

(2) valr (𝜇 𝑗 − 1) > 0,

(3) LTr (𝑢𝑖, 𝑗𝑔𝑖 ) ≤ LTr (𝑓 ), with equality attained at most once,
and if so, always with the same 𝑖 for all 𝑗 ;

(4) LTr (ℎ 𝑗+1) < LTr (ℎ 𝑗 ) .

Proof. It is clearly true when entering the first loop.

The equality for the third item is attained once after the end of

the first loop.

Inside the loop, there is no difficulty when the reduction is per-

formed by one of the initial 𝑔𝑖 ’s. One applies the fourth item to

ensure that no second LTr (𝑢𝑖, 𝑗𝑔𝑖 ) reaches LTr (𝑓 ).
When the divisor 𝑔 was added to 𝑇 at a previous iteration of the

algorithm, i.e. 𝑔 = ℎ𝑚 for some 𝑚 < 𝑗, then the situation is the

following. Firstly, the preservation of the fourth item is clear.

Then, as𝑚 < 𝑗, we get from the fourth item of the loop invariant

that LTr (ℎ 𝑗 ) < LTr (𝑔) and also LTr (𝑐𝑣𝑥𝑣𝑔) = LTr (ℎ 𝑗 ) . It implies



Algorithm 2 Mora’s Weak Normal Form algorithm with cofactors

Input: 𝑓 , 𝑔1, . . . , 𝑔𝑠 ∈ 𝐾 [X]
Output: 𝜇,𝑢1, . . . , 𝑢𝑠 , ℎ ∈ 𝐾 [X] such that 𝜇𝑓 =

∑
𝑢𝑖𝑔𝑖 + ℎ

when ℎ ≠ 0, LTr (ℎ) is divisible by no LTr (𝑔𝑖 )’s and 𝜇 is a

polynomial such that valr (𝜇 − 1) > 0.

1: ℎ0 := 𝑓 , 𝜇0 = 1, 𝑢1,0 = · · · = 𝑢𝑠,0 = 0, 𝑗 = 0 ;

2: 𝑇 := (𝑔1, . . . , 𝑔𝑠 ) ;
3: while ℎ 𝑗 ≠ 0 and 𝑇ℎ 𝑗

:= {𝑔 ∈ 𝑇, LTr (𝑔) | LTr (ℎ 𝑗 )} ≠ ∅ do
4: choose 𝑔 ∈ 𝑇ℎ 𝑗

minimizing first Écart1 (𝑔) then

Écart2

(
ℎ 𝑗 ,

LMr (ℎ 𝑗 )
LMr (𝑔) 𝑔

)
;

5: if Écart1 (𝑔) > Écart1 (ℎ), or Écart2 (ℎ 𝑗 , LMr (ℎ)
LMr (𝑔) 𝑔) > 0 then

6: 𝑇 := 𝑇 ∪ {ℎ 𝑗 };
7: 𝑥𝑣 := LMr (ℎ 𝑗 )/LMr (𝑔), 𝑐𝑣 := 𝐿𝐶r (ℎ 𝑗 )/𝐿𝐶r (𝑔) ;
8: ℎ 𝑗+1 := S-Poly(ℎ 𝑗 , 𝑔) i.e. ℎ 𝑗+1 := ℎ 𝑗 − 𝑐𝑣𝑥𝑣𝑔 ;
9: if 𝑔 = 𝑔𝑚 for some 1 ≤ 𝑚 ≤ 𝑠 then
10: 𝑢𝑚,𝑗+1 := 𝑢𝑚,𝑗 + 𝑐𝑣𝑥𝑣, 𝑢𝑖, 𝑗+1 = 𝑢𝑖, 𝑗 for 𝑖 ≠𝑚, 𝜇 𝑗+1 := 𝜇 𝑗 ;
11: else
12: 𝑔 was added to 𝑇 at some previous iteration of the algo-

rithm, so 𝑔 = ℎ𝑚 for some𝑚 < 𝑗 ;

13: 𝜇 𝑗+1 := 𝜇 𝑗 − 𝑐𝑣𝑥𝑣𝜇𝑚, and for all 𝑖 ≤ 𝑠 , 𝑢𝑖, 𝑗+1 := 𝑢𝑖, 𝑗 −
𝑐𝑣𝑥

𝑣𝑢𝑖,𝑚 ;

14: 𝑗 := 𝑗 + 1 ;

15: return 𝜇 𝑗 , 𝑢1, 𝑗 , . . . , 𝑢𝑠,𝑗 , ℎ 𝑗 ;

that valr (𝑐𝑣𝑥𝑣) > 0. Hence, as valr (𝜇 𝑗 − 1) > 0, the same is true for

𝜇 𝑗+1 := 𝜇 𝑗 − 𝑐𝑣𝑥𝑣𝜇𝑚 and the second item is preserved.

From 𝜇 𝑗 𝑓 = ℎ 𝑗 +
∑
𝑖 𝑢𝑖, 𝑗𝑔𝑖 , and 𝜇𝑚 𝑓 = ℎ𝑚 + ∑

𝑖 𝑢𝑖,𝑚𝑔𝑖𝑚, one

gets (𝜇 𝑗 − 𝑐𝑣𝑥𝑣𝜇𝑚) 𝑓 = (ℎ 𝑗 − 𝑐𝑣𝑥𝑣ℎ𝑚) + ∑
𝑖 (𝑢𝑖, 𝑗 − 𝑐𝑣𝑥𝑣𝑢𝑖,𝑚)𝑔𝑖 so

𝜇 𝑗+1 𝑓 = ℎ 𝑗+1 +
∑
𝑖 𝑢𝑖, 𝑗+1𝑔𝑖 , and the first item is preserved.

As valr (𝑐𝑣𝑥𝑣) > 0, then LTr (𝑐𝑣𝑥𝑣𝑢𝑖,𝑚) < LTr (𝑢𝑖,𝑚), so

LTr (𝑢𝑖, 𝑗 − 𝑐𝑣𝑥𝑣𝑢𝑖,𝑚) ≤ max(LTr (𝑢𝑖, 𝑗 ), LTr (𝑐𝑣𝑥𝑣𝑢𝑖,𝑚)),
≤ max(LTr (𝑢𝑖, 𝑗 ), LTr (𝑢𝑖,𝑚)),

which is enough to obtain that the third item is preserved and

concludes the proof. □

Corollary 4.6. Algorithm 1 computes a weak normal form.

Proof. We verify the three items of the definition of weak nor-

mal forms. If 𝑓 = 0, the algorithm immediately returns 0.

Assume thatWNF(𝑓 ,𝐺) ≠ 0. This implies that after the last loop

of the algorithm, 𝑇ℎ = ∅, and since LTr (𝑇 ) contains the leading
terms of 𝐺 , LTr (WNF(𝑓 ,𝐺)) is not divisible by any of the LTr (𝐺).

Finally, the third item follows from the third item of Lemma 4.5.

□

Corollary 4.7. If 𝐺 , a finite set of polynomials, is a GB of 𝐼r ⊂
𝐾{X; r}, then for any polynomial 𝑓 ∈ 𝐼r, WNF(𝑓 ,𝐺) = 0.

Proof. If 𝐺 is a GB of 𝐼r, then when dividing 𝑓 ∈ 𝐼r, on Line 3,

𝑇ℎ is never empty. Indeed, from the first item of the loop invariant,

ℎ 𝑗 = 𝜇 𝑗 𝑓 −
∑
𝑖 𝑢𝑖, 𝑗𝑔𝑖 means thatℎ 𝑗 ∈ 𝐼r .Consequently, the algorithm

can only terminate if ℎ reaches 0. □

5 BUCHBERGER’S ALGORITHMWITHWNF

5.1 Description of the algorithm
We prove Buchberger’s criterion following the lines of §3.2 of [4].

We rely on a small variation of the technical Lemma 3.6 of [4],

which is a generalization of [3, Sec. 2.10, Prop. 5]:

Lemma 5.1. Let ℎ1, . . . , ℎ𝑚 ∈ 𝐾{X; r} and 𝑡1, . . . , 𝑡𝑚 ∈ 𝑇 {X; r}. We
assume that the LTr (𝑡𝑖ℎ𝑖 )’s all have the same image in T{X; r} and
that LTr (

∑𝑚
𝑖=1 𝑡𝑖ℎ𝑖 ) < LTr (𝑡1ℎ1). Then
𝑚∑︁
𝑖=1

𝑡𝑖ℎ𝑖 =

𝑚−1∑︁
𝑖=1

𝑡 ′𝑖 · S-Poly(ℎ𝑖 , ℎ𝑖+1) + 𝑡
′
𝑚 ·ℎ𝑚

for some 𝑡 ′
1
, . . . , 𝑡 ′𝑚 ∈ 𝑇 {X; r} such that LTr (𝑡 ′𝑖 · S-Poly(ℎ𝑖 , ℎ𝑖+1)) <

LTr (𝑡1ℎ1) for 𝑖 ∈ {1, . . . ,𝑚−1} and LTr (𝑡 ′𝑚 ·ℎ𝑚) < LTr (𝑡1ℎ1) .

Proof. By assumption, there exist 𝛼 ∈ N𝑛 and 𝑑1, . . . , 𝑑𝑚 ∈ 𝐾×

such that LTr (𝑡𝑖ℎ𝑖 ) = 𝑑𝑖X𝛼 for all 𝑖 ∈ {1, . . . ,𝑚}. Moreover all the

𝑑𝑖 ’s have the same valuation, say 𝜇. Then val(∑𝑖 𝑑𝑖 ) > 𝜇. We define

𝑝𝑖 =
𝑡𝑖ℎ𝑖
𝑑𝑖

, so that 𝑡𝑖ℎ𝑖 = 𝑑𝑖𝑝𝑖 . Then∑︁
𝑖

𝑡𝑖ℎ𝑖 = 𝑑1 (𝑝1 − 𝑝2) + (𝑑1 + 𝑑2) (𝑝2 − 𝑝3) + · · · +

(𝑑1 + · · · + 𝑑𝑚−1) (𝑝𝑚−1 − 𝑝𝑚) + (𝑑1 + · · · + 𝑑𝑚)𝑝𝑚 .
Observing that 𝑝𝑖 − 𝑝𝑖+1 = 𝑡 ′𝑖 · S-Poly(ℎ𝑖 , ℎ𝑖+1) with 𝑡

′
𝑖
a term, we

get the first 𝑡 ′
𝑖
’s and 𝑡 ′𝑚 =

∑
𝑖 𝑑𝑖
𝑑𝑚

𝑡𝑚 .

Then, since val(∑𝑖 𝑑𝑖 ) > 𝜇, clearly LTr (𝑡 ′𝑚 ·ℎ𝑚) < LTr (𝑡1ℎ1) .
Moreover, for any 𝑖 ∈ {1, . . . ,𝑚−1}, due to the cancellation in

S-Poly(ℎ𝑖 , ℎ𝑖+1), LTr (𝑝𝑖 − 𝑝𝑖+1) < LTr (𝑝𝑖 ) =
LTr (𝑡𝑖ℎ𝑖 )

𝑑𝑖
. Consid-

ering valuations,

∑
𝑘≤𝑖 𝑑𝑘 · LT(𝑡𝑖ℎ𝑖 )

𝑑𝑖
≤ LTr (𝑡𝑖ℎ𝑖 ) . Consequently,

LTr (𝑡 ′𝑖 · S-Poly(ℎ𝑖 , ℎ𝑖+1)) < LTr (𝑡𝑖ℎ𝑖 ), which concludes the proof.

□

Proposition 5.2 (Buchberger’s criterion). 𝐺 is a GB of 𝐼r if and
only if 𝐺 generates 𝐼r and WNF(S-Poly(𝑔𝑖 , 𝑔 𝑗 ),𝐺) = 0 for all pairs
𝑔𝑖 , 𝑔 𝑗 ∈ 𝐺 .

Proof. The⇒ part is direct thanks to Corollary 4.7.

Let us prove the ⇐ part. Let 𝑓 ∈ 𝐼 be such that LTr (𝑓 ) ∉

⟨LTr (𝐺)⟩ . As 𝐺 generates 𝐼 , 𝑓 can be written as 𝑓 =
∑𝑠
𝑖=1 ℎ𝑖𝑔𝑖

for some Tate series ℎ𝑖 ’s in 𝐾{X; r}.
Let 𝑡 = max𝑖 LTr (ℎ𝑖𝑔𝑖 ).As LTr (𝑓 ) ∉ ⟨LTr (𝐺)⟩, then LTr (𝑓 ) < 𝑡 .

Consequently, among the decompositions of 𝑓 using𝐺 , there is one

such that 𝑡 is minimal.

Let 𝐽 be the set of indices 𝑖 such that LTr (ℎ𝑖𝑔𝑖 ) = 𝑐𝑖𝑡 for some

𝑐𝑖 ∈ 𝑂×
𝐾
. Let 𝑡𝑖 = LTr (ℎ𝑖 ) for 𝑖 ∈ 𝐽 . Let ℎ =

∑
𝑖∈𝐽 𝑡𝑖𝑔𝑖 . We have

LTr (ℎ) < 𝑡 and card(𝐽 ) ≥ 2 as a cancellation has to appear. We

apply Lemma 5.1: there exist terms 𝑡 ′
𝑗,𝑙

and 𝑡 ′ and an index 𝑗0 ∈ 𝐽
such that ℎ =

∑
𝑗,𝑙 ∈𝐽 𝑡

′
𝑗,𝑙
S-Poly(𝑔 𝑗 , 𝑔𝑙 ) + 𝑡 ′𝑔 𝑗0 and LTr (𝑡 ′𝑔 𝑗0 ) < 𝑡

and LTr (𝑡 ′𝑗,𝑙 S-Poly(𝑔 𝑗 , 𝑔𝑙 )) < 𝑡 .We can compute the WNF of the

polynomial S-Poly(𝑔 𝑗 , 𝑔𝑘 ) by 𝐺 and we get some invertible poly-

nomial 𝑢 𝑗,𝑙 and polynomials 𝑣
( 𝑗,𝑙)
𝑖

such that: 𝑢 𝑗,𝑙 S-Poly(𝑔 𝑗 , 𝑔𝑙 ) =∑𝑠
𝑖=1 𝑣

( 𝑗,𝑙)
𝑖

𝑔𝑖 with LTr (𝑣 ( 𝑗,𝑙)𝑖
𝑔𝑖 ) ≤ LTr (S-Poly(𝑔 𝑗 , 𝑔𝑙 )) .

Multiplying by 𝑢−1
𝑗,𝑙

and summing those decompositions, we

get that

∑
𝑗,𝑙 ∈𝐽 𝑡

′
𝑗,𝑙
S-Poly(𝑔 𝑗 , 𝑔𝑙 ) =

∑𝑠
𝑖=1𝑤𝑖𝑔𝑖 with LTr (𝑤𝑖𝑔𝑖 ) ≤

max𝑗,𝑙 LTr (𝑢−1𝑗,𝑙 𝑣
( 𝑗,𝑙)
𝑖

𝑔𝑖 ) = max𝑗,𝑙 LTr (𝑣
( 𝑗,𝑙)
𝑖

𝑔𝑖 ). So LTr (𝑤𝑖𝑔𝑖 ) is less
than or equal to max𝑗,𝑙 LTr (𝑡 ′𝑗,𝑙 S-Poly(𝑔 𝑗 , 𝑔𝑙 )) and strictly smaller



than 𝑡 . Summing all summandswe then obtain a new decomposition

of 𝑓 contradicting the minimality of 𝑡 . □

Algorithm 3 Buchberger’s algorithm with Mora’s WNF

Input: 𝐹 := (𝑓1, . . . , 𝑓𝑠 ) a list of polynomials in 𝐾 [X] .
Output: 𝐺 a list of polynomials in 𝐾 [X] which is a GB of ⟨𝐹 ⟩
1: 𝐺 := 𝐹 ;

2: 𝑃 := {(𝑓 , 𝑔) | 𝑓 , 𝑔 ∈ 𝐺, 𝑓 ≠ 𝑔} ;
3: while 𝑃 ≠ ∅ do
4: choose and remove (𝑓 , 𝑔) from 𝑃 ;

5: ℎ := WNF(S-Poly(𝑓 , 𝑔),𝐺);
6: if ℎ ≠ 0 then
7: 𝑃 := 𝑃 ∪ {(ℎ, 𝑓 ) | 𝑓 ∈ 𝐺} ;
8: 𝐺 := 𝐺 ∪ {ℎ} ;
9: return 𝐺 ;

Proposition 5.3. Algorithm 3 terminates and is correct.

Proof. Correctness comes from Buchberger’s criterion. Termi-

nation is a consequence of Prop 2.8 of [4]. □

Corollary 5.4. If 𝐼 is generated by polynomials, then Algorithm 3
provides a GB of 𝐼r ⊂ 𝐾{X; r} made of polynomials of 𝐼 .

Proof. If 𝑓 ∈ 𝐼 and𝐺 ⊂ 𝐼 are polynomials, thenWNF(𝑓 ,𝐺) is a
polynomial of 𝐼 .As the S-Poly considered in Algo. 3 are polynomials

in 𝐼 , we obtain the result. □

5.2 Precision and effective computations
We may remark firstly that, as we wrote all properties and proofs

in terms of LT’s, the algorithms of §3 and 4 are valid over 𝐾{X; r}◦ .
In particular, if we work with r = (0, . . . , 0), then no division in 𝐾

is involved: as in [4], working at finite precision, no loss of absolute

precision can occur.

Secondly, if we work in 𝐾ex ⊂ 𝐾 , all computations take place in

𝐾ex
. Hence if (𝑓1, . . . , 𝑓𝑠 ) ∈ 𝐾ex [X] and r ∈ Q𝑛 , Algorithms 1 and

3 provide an algorithm working over 𝐾ex
to compute a GB of 𝐼r

made of polynomials in 𝐾ex [X], without having to deal with any

precision issue.

5.3 Toy Implementation
A toy implementation of the algorithms of this Section is avail-

able here: https://gist.github.com/TristanVaccon. We present some

timings and features of the Algorithm in Appendix 8 on page 9.

6 MORA’S WNF AND OVERCONVERGENCE
We now consider the case of overconvergent series, and present a

version of Mora’s weak normal form algorithm for that case.

6.1 Écarts for overconvergence
Let 𝑓 , 𝑔 ∈ 𝐾{X; s}, s ∈ Q𝑛, r ∈ Q𝑛, s ≥ r. We define écarts adapted

to computation over 𝐾{X; r} for series belonging also to 𝐾{X; s}.

Definition 6.1. We define the s-support of 𝑓 =
∑
𝛼 ∈N𝑛 𝑐𝛼X𝛼 ∈

𝐾{X; s} as:
Supps (𝑓 ) =

{
𝛼 s.t. vals (𝑐𝛼X𝛼 ) = vals (𝑓 )

}
.

Since 𝑓 ∈ 𝐾{X; s}, Supps (𝑓 ) is finite. Then, we define the (s, r)-
degree of 𝑓 as:

degs,r (𝑓 ) = max

𝛼 ∈Supps (𝑓 )
(s − r) · 𝛼.

Definition 6.2. We define:

Écarts,r,0 (𝑓 ) := vals (LTr (𝑓 )) − vals (𝑓 ),
Écarts,r,1 (𝑓 ) := degs,r (𝑓 ) − degs,r (LTr (𝑓 ))

Lemma 6.3. For 𝑓 ∈ 𝐾{X; s}, 𝑖 ∈ {0, 1} , Écarts,r,𝑖 (𝑓 ) ≥ 0.

Proof. For Écarts,r,0 (𝑓 ), it is a direct consequence of the defini-
tion of vals .

Now, let us take some 𝛼 ∈ Supps (𝑓 ) such that (s − r) · 𝛼 =

degs,r (𝑓 ). Let 𝑐𝛼 be the coefficient of X𝛼 in 𝑓 . Let LTr (𝑓 ) = 𝑐𝛽X𝛽 .
Then, by definition, vals (𝑐𝛽X𝛽 ) ≥ vals (𝑓 ) = vals (𝑐𝛼X𝛼 ), and
valr (𝑐𝛼X𝛼 ) ≥ valr (𝑐𝛽X𝛽 ) . Thus,

val(𝑐𝛽 ) − s · 𝛽 ≥ val(𝑐𝛼 ) − s · 𝛼,
val(𝑐𝛼 ) − r · 𝛼 ≥ val(𝑐𝛽 ) − r · 𝛽, and then

s · (𝛼 − 𝛽) ≥ val(𝑐𝛼 ) − val(𝑐𝛽 ) ≥ r · (𝛼 − 𝛽),

which implies that (s− r) · (𝛼 − 𝛽) ≥ 0. Since degs,r (𝑓 ) = (s− r) ·𝛼
and degs,r (LTr (𝑓 )) = (s−r) ·𝛽,we can conclude that Écarts,r,1 (𝑓 ) ≥
0. □

6.2 WNF algorithm for overconvergent series
The algorithm is straightforward, using the adapted notions of

écarts.

Algorithm 4WNF(𝑓 , 𝑔, 𝑠, 𝑟 ), Mora’s overconvergent Weak Normal

Form algorithm

Input: 𝑓 , 𝑔1, . . . , 𝑔𝑠 ∈ 𝐾{X; s}, s ∈ Q𝑛, r ∈ Q𝑛, s ≥ r
Output: ℎ ∈ 𝐾{X; s} such that for some 𝜇,𝑢1, . . . , 𝑢𝑠 ∈ 𝐾{X; s},

𝜇 𝑓 =
∑
𝑢𝑖𝑔𝑖 + ℎ,

when ℎ ≠ 0, LTr (ℎ) is divisible by no LTr (𝑔𝑖 )’s and 𝜇 is invert-
ible in 𝐾{X; r}. Moreover, LTr (𝑢𝑖𝑔𝑖 ) ≤ LTr (𝑓 ) .

1: ℎ := 𝑓 ;

2: 𝑇 := (𝑔1, . . . , 𝑔𝑠 ) ;
3: while ℎ ≠ 0 and 𝑇ℎ := {𝑔 ∈ 𝑇, LTr (𝑔) | LTr (ℎ)} ≠ ∅ do
4: choose 𝑔 ∈ 𝑇ℎ minimizing first Écarts,r,0 (𝑔), then

Écarts,r,1 (𝑔) ;
5: if Écarts,r,0 (𝑔) > Écarts,r,0 (ℎ), or Écarts,r,1 (𝑔) >

Écarts,r,1 (ℎ) then
6: 𝑇 := 𝑇 ∪ {ℎ};
7: ℎ := S-Poly(ℎ,𝑔) ;
8: return ℎ ;

6.3 Correctness and convergence
Lemma 6.4. If 𝑔 ∈ 𝑇ℎ𝑚 is such that:

• Écarts,r,0 (𝑔) ≤ Écarts,r,0 (ℎ𝑚),
• Écarts,r,1 (𝑔) ≤ Écarts,r,1 (ℎ𝑚),

and if 𝑡 = LTr (ℎ𝑚)/LTr (𝑔) and ℎ𝑚+1 = ℎ𝑚 − 𝑡𝑔, then

val𝑠 (ℎ𝑚+1) ≥ val𝑠 (ℎ𝑚) .

https://gist.github.com/TristanVaccon


In case of equality, then moreover,

degs,r (ℎ𝑚+1) ≤ degs,r (ℎ𝑚).

Proof. Since Écarts,r,0 (𝑔) ≤ Écarts,r,0 (ℎ𝑚) and Écarts,r,0 (𝑔) =

Écarts,r,0 (𝑡𝑔), then vals (LTr (𝑡𝑔)) − vals (𝑡𝑔) ≤ vals (LTr (ℎ𝑚)) −
vals (ℎ𝑚). Moreover, LTr (𝑡𝑔) = LTr (ℎ𝑚), so vals (𝑡𝑔) ≥ vals (ℎ𝑚) .
By the ultrametric inequality, we then obtain that vals (ℎ𝑚+1) ≥
vals (ℎ𝑚) . Now, if vals (ℎ𝑚+1) = vals (ℎ𝑚), the Supps correspond
to the same vals. If vals (𝑡𝑔) = vals (ℎ𝑚), then since Écarts,r,1 (𝑔) =
Écarts,r,1 (𝑡𝑔), the second hypothesis means that degs,r (ℎ𝑚+1) ≤
degs,r (ℎ𝑚) . Hence, degs,r (𝑡𝑔) − degs,r (LTr (𝑡𝑔)) ≤ degs,r (ℎ𝑚) −
degs,r (LTr (ℎ𝑚)) . From the equality LTr (𝑡𝑔) = LTr (ℎ𝑚), it fol-
lows that degs,r (𝑡𝑔) ≤ degs,r (ℎ𝑚). As ℎ𝑚+1 = ℎ𝑚 − 𝑡𝑔, then in

addition, Supps (ℎ𝑚+1) ⊂ Supps (ℎ𝑚) ∪ Supps (𝑡𝑠) and we can con-

clude that degs,r (ℎ𝑚+1) ≤ degs,r (ℎ𝑚). If vals (𝑡𝑔) > vals (ℎ𝑚), then
Supps (ℎ𝑚+1) = Supps (ℎ𝑚) and degs,r (ℎ𝑚+1) = degs,r (ℎ𝑚). □

Proposition 6.5. If r < s then either Algorithm 4 terminates in a
finite number of steps, or both LTr (ℎ) and LTs (ℎ) converge to 0.

Proof. Let us assume that Algorithm 4 does not terminate for

some inputs s > r and 𝑓 , 𝑔1, . . . , 𝑔𝑠 ∈ 𝐾{X; s}. Let ℎ𝑚 be the value

of ℎ when entering the𝑚-th time in the while loop.
We eliminate successively the LTr (ℎ𝑚)’s, so by design, LTr (ℎ𝑚)

converges to zero.

Let 𝑑1, 𝑑2 ∈ N be such that for any 𝑓 ∈ 𝐾{X; s}, 𝑑1vals (𝑓 ) ∈ Z
and 𝑑2 degs,r (𝑓 ) ∈ Z.

Let us define the extended leading term of ℎ ∈ 𝐾{X; s} as:

LTE(ℎ) := 𝑈𝑑1 Écarts,r,0 (ℎ)𝑉𝑑2 Écarts,r,1 (ℎ) LT(ℎ) ∈ 𝐾 [X,𝑈 ,𝑉 ] .
Then, there is some 𝑁1 ∈ N such that for𝑚 ≥ 𝑁1, the monomial

ideal of 𝐾 [X,𝑈 ,𝑉 ] generated by the LTE’s of the series in 𝑇 is

constant (thanks to Prop. 2.8 of [4]). Thus for 𝑚 ≥ 𝑁1, if ℎ𝑚 is

not added to 𝑇 at the end of the while loop, then there is some

𝑔 ∈ 𝑇ℎ𝑚 such that Écarts,r,0 (𝑔) ≤ Écarts,r,0 (ℎ𝑚). If it is added, then
by definition of 𝑁1, it means that there is some 𝑔 ∈ 𝑇 such that

LTE(𝑔) divides LTE(ℎ𝑚), and this implies that LT(𝑔) | LT(ℎ𝑚) and
Écarts,r,0 (𝑔) ≤ Écarts,r,0 (ℎ𝑚) .

So in both cases, Écarts,r,0 (𝑔) ≤ Écarts,r,0 (ℎ𝑚).
Then, if ℎ𝑚 is not added to 𝑇 , it means that the minimal 𝑔 sat-

isfies Écarts,r,1 (𝑔) ≤ Écarts,r,1 (ℎ𝑚). If it is added to 𝑇 , then again,

by definition of 𝑁1, it means that there is some 𝑔 ∈ 𝑇 such that

LTE(𝑔) divides LTE(ℎ𝑚), and this implies that LT(𝑔) | LT(ℎ𝑚) and
Écarts,r,0 (𝑔) ≤ Écarts,r,0 (ℎ𝑚) and Écarts,r,1 (𝑔) ≤ Écarts,r,1 (ℎ𝑚) .
So in both cases, the minimal 𝑔 for the reduction satisfies that

Écarts,r,1 (𝑔) ≤ Écarts,r,1 (ℎ𝑚) .
We can then apply Lemma 6.4: for any𝑚 ≥ 𝑁1, vals (ℎ𝑚+1) ≥

vals (ℎ𝑚) and in case of equality, degs,r (ℎ𝑚+1) ≤ degs,r (ℎ𝑚).
Consequently, vals (ℎ𝑚) is a non-decreasing sequence in

1

𝑑1
Z.

Hence, either it goes to +∞, or there is some 𝑁2 ≥ 𝑁1 such that

vals (ℎ𝑚) is constant for𝑚 ≥ 𝑁2 .

Let us assume that we are in this second case. Then degs,r (ℎ𝑚) is
non-increasing (for𝑚 ≥ 𝑁2) and thus, upper-bounded. Let𝑚 ≥ 𝑁2

and 𝑡 = 𝑐𝛼X𝛼 a term of ℎ𝑚 in Supps (ℎ𝑚) .

Then vals (ℎ𝑚) = vals (𝑡) and
valr (ℎ𝑚) ≤ valr (𝑡) ≤ vals (𝑡) + (s − r) · 𝛼

≤ vals (ℎ𝑚) + degs,r (ℎ𝑚) .
Both vals (ℎ𝑚) and degs,r (ℎ𝑚) are upper-bounded, while valr (ℎ𝑚) →
+∞. This is a contradiction.

Consequently, vals (ℎ𝑚) → +∞, which concludes the proof. □

Proposition 6.6. Algorithm 4 is correct and mutatis mutandis, com-
putes a weak normal form.

Proof. Mutatis mutandis, the loop invariant in Lemma 4.5 is

still valid. When 𝑓 does not reduce to zero by 𝑔1, . . . , 𝑔𝑠 , there is no

difficulty as Algorithm 4 terminates in a finite number of steps, and

𝜇, 𝑔1, . . . , 𝑔𝑠 are polynomials, with 𝜇 invertible in 𝐾{X; r}.When 𝑓

reduces to zero, we proved in Lemma 6.4, that val𝑠 (ℎ𝑚) is eventually
increasing and going to +∞.We showed in the proof of Prop. 6.5

that eventually, 𝑇 is constant. It then proves that, for the 𝑔 on Line

4, for 𝑐𝜈𝑥
𝜈 =

(
LTr (ℎ𝑚)
LTr (𝑔)

)
, then vals (𝑐𝜈𝑥𝜈 ) → +∞. This is enough

to prove that the 𝜇,𝑢1, . . . , 𝑢𝑠 such that 𝜇𝑓 =
∑
𝑖 𝑢𝑖𝑔𝑖 are in 𝐾{X; s}

as expected. □

Remark 6.7. Section 5 can be extended with (almost) no modifica-

tion to compute GB in 𝐾{X; s} of an s-convergent ideal of 𝐾{X; r}.
One just needs to replace 𝐾 [X] by 𝐾{X; s} and use Algo. 4 in Buch-

berger’s algorithm.

7 UNIVERSAL GRÖBNER BASIS
In this Section, we prove that a polynomial ideal can only have a

finite number of distinct initial ideals for varying log-radii r. To do

so, we first prove the result for homogeneous ideals by adapting the

classical proof for polynomial ideals and then use homogenization

to generalize the result to non-homogeneous ideals.

7.1 Homogeneous ideal
The classical proof that a polynomial ideal has only finitely many

initial ideals from page 427 of [10] (see also [19]) can be adapted to

our setting by relying on the following Lemma.

Lemma 7.1. If 𝐼 ⊂ 𝐾 [X] is a homogeneous ideal, if r ∈ Q𝑛, and
if 𝐹 = (𝑓1, . . . , 𝑓𝑠 ) ∈ 𝐼𝑠 are homogeneous polynomials which do not
form a GB of 𝐼r, then there exists some homogeneous polynomial 𝑔 ∈ 𝐼
such that no term of 𝑔 is divisible by any of the LTr (𝑓𝑖 )’s.

Proof. Since 𝐹 is not a GB of 𝐼r, there exists some term 𝑐𝑥𝛼 ∈
LTr (𝐼r) such that 𝑐𝑥𝛼 ∉ ⟨LTr (𝑓1), . . . , LTr (𝑓𝑠 )⟩ . By the density of 𝐼

in 𝐼r there is some polynomial ℎ ∈ 𝐼 such that LTr (ℎ) = 𝑐𝑥𝛼 . Since
𝐼 is homogeneous, we can assume that so is ℎ.

By performing the tropical row-echelon algorithm of [21] (Algo-

rithm 1) on a Macaulay matrix consisting of ℎ and the multiples of

the elements of 𝐹 of degree deg(ℎ), we obtain 𝑔 such that no term

of 𝑔 is divisible by any of the LTr (𝑓𝑖 )’s. □

Using linear algebra along the same lines, we get the existence

of polynomial reduced Gröbner bases.

Lemma 7.2. If 𝐼 ⊂ 𝐾 [X] is a homogeneous ideal, if r ∈ Q𝑛, then
there exists 𝐺 a reduced Gröbner basis of 𝐼r made of finitely many
homogeneous polynomials of 𝐼 .



Proof. Thanks to Corollary 5.4, we get 𝐻 , a GB or 𝐼r made of

polynomials of 𝐼 . Since 𝐼 is homogeneous we can assume that in

addition, they are all homogeneous. Then again, for any 𝑔 ∈ 𝐺 , we
can perform inter-reduction by performing the tropical row-echelon

algorithm of [21] (Algorithm 1) on a Macaulay matrix consisting

of 𝑔 and the multiples of the elements of 𝐺 \ {𝑔} of degree deg(𝑔).
This is enough to conclude. □

Proposition 7.3. Let 𝐼 ⊂ 𝐾 [X] be a homogeneous ideal. Then the
set 𝑇𝑒𝑟𝑚𝑠 (𝐼 ) := {LT(𝐼r) ⧸ r ∈ Q𝑛} is finite.

Proof. Suppose that Terms(𝐼 ) is infinite. For any𝑀 ∈ Terms(𝐼 ),
we write ≤𝑀 for a term order defined by an r such that LT(𝐼r) = 𝑀.
Let Σ := {≤𝑀 ⧸ 𝑀 ∈ Terms(𝐼 )}. Our assumption states that Σ is

infinite.

Let 𝑓1 ∈ 𝐼 be a homogeneous polynomial. Since 𝑓1 has finitely

many terms, by the pigeonhole principle, there is an infinite set

Σ1 ⊂ Σ and a term𝑚1 of 𝑓1 such that for all ≤𝑀∈ Σ1, LT≤𝑀
(𝑓1) =

𝑚1 . Suppose that for some ≤1∈ Σ1 defined by some r1, (𝑓1) is a GB
of 𝐼r1 . Then, let ≤∈ Σ1 be defined by some r. We prove that (𝑓1) is
then a GB of 𝐼r . Indeed, by Lemma 7.1, if (𝑓1) is not a GB of 𝐼r there
is some ℎ ∈ 𝐼 such that no term of ℎ is divisible by LT≤ (𝑓1) . Since
LT≤ (𝑓1) = LT ≤1 (𝑓1) and (𝑓1) is a GB of 𝐼r1 this is a contradiction.
Consequently, for any ≤∈ Σ1 defined by some r, (𝑓1) is a GB of

𝐼r with LT≤ (𝑓1) = 𝑚1. However, this can not be the case as our

assumption was that there are infinitely many elements in Σ1 all
defining distinct LT’s for 𝐼 . Therefore, (𝑓1) is not a GB of 𝐼r .

By Lemma 7.1 there is some homogeneous 𝑓2 ∈ 𝐼 such that no

term of 𝑓2 is divisible by𝑚1 . Then again, since 𝑓2 has finitely many

terms, by the pigeonhole principle, there is an infinite set Σ2 ⊂ Σ1
and a term𝑚2 of 𝑓2 such that for all ≤𝑀∈ Σ2, LT≤𝑀

(𝑓2) =𝑚2 (and

also since Σ2 ⊂ Σ1, LT≤𝑀
(𝑓1) =𝑚1).

The same argument as above shows that for any ≤∈ Σ2 defined
by some r, (𝑓1, 𝑓2) is not GB of 𝐼r . Then again, by Lemma 7.1 there is

some homogeneous 𝑓3 ∈ 𝐼 such that no term of 𝑓3 is divisible by any

of (𝑚1,𝑚2). Since 𝑓3 has finitely many terms, by the pigeonhole

principle, there is an infinite set Σ3 ⊂ Σ2 and a term𝑚3 of 𝑓3 such

that for all ≤𝑀∈ Σ3, LT≤𝑀
(𝑓3) = 𝑚3 (and also since Σ3 ⊂ Σ2,

LT≤𝑀
(𝑓1) =𝑚1, LT≤𝑀

(𝑓2) =𝑚2).

Continuing the same way, we produce a descending chain of

infinite subsets Σ ⊃ Σ1 ⊃ Σ2 ⊃ Σ3 ⊃ . . . and an infinite strictly

ascending chain of ideals ⟨𝑚1⟩ ⊂ ⟨𝑚1,𝑚2⟩ ⊂ ⟨𝑚1,𝑚2,𝑚3⟩ ⊂ . . . in

T{X}. This contradicts Prop. 2.8 of [4] and concludes the proof. □

Theorem 7.4. Let 𝐼 ⊂ 𝐾 [X] be a homogeneous ideal. Then there
exists a finite set 𝐺 ⊂ 𝐼 ⊂ 𝐾 [X] made of homogeneous polynomials
which is a universal analytic Gröbner basis of 𝐼 : for any r ∈ Q𝑛, 𝐺 is
a GB of 𝐼𝑟 .

Proof. By Prop 7.3, there are only finitely many initial ideals

possible. We prove that for two term-orders ≤1 and ≤2 (defined by

r1 and r2), if they define the same initial ideal, then they have the

same reduced Gröbner basis. Indeed, let 𝐺1 and 𝐺2 be the reduced

Gröbner bases given by Lemma 7.2. They have the same LT’s. Let

𝑔1 ∈ 𝐺1 and 𝑔2 ∈ 𝐺2 having a common LT. Then 𝑔1 − 𝑔2 ∈ 𝐼 with
no monomial divisible by any of the LT(𝐺𝑖 )’s. Hence 𝑔1 = 𝑔2, and
𝐺1 and 𝐺2 are equal up to permutation.

Consequently, all term orders giving rise to the same initial ideal

share the same reduced GB. Consequently, only a finite amount of

reduced GB for the 𝐼r’s are possible. By concatening all of them, we

obtain the desired universal analytic Gröbner basis. □

7.2 Non-Homogeneous ideal
Lemma 7.5. Let 𝐼 ⊂ 𝐾 [X] be a polynomial ideal and r ∈ Q𝑛 .
Let (ℎ1, . . . , ℎ𝑠 ) be a finite Gröbner basis of (𝐼∗) (𝑟,0) ⊂ 𝐾 {X, 𝑡 ; r, 0}
made of homogeneous polynomials of 𝐼∗ (hence in 𝐾 [X, 𝑡]). Then
(ℎ1,∗, . . . , ℎ𝑠,∗) is a Gröbner basis of 𝐼𝑟 .

Proof. Firstly, due to being dehomogenization of elements of

𝐼∗, the ℎ𝑖,∗’s are in 𝐼 .
Secondly, by Corollary 5.4, it is enough to check that for any

𝑓 ∈ 𝐼 , LTr (𝑓 ) is divisible by one of the LTr (ℎ𝑖,∗)’s.
Let 𝑓 ∈ 𝐼 . Then 𝑓 ∗ ∈ 𝐼∗ ⊂ (𝐼∗) (𝑟,0) so there is some 𝑖 such

that LT(r,0) (ℎ𝑖 ) divides LT(r,0) (𝑓 ∗). Then thanks to Lemma 3.5,

LTr (𝑓 ) = LT(r,0) (𝑓 ∗)∗, LTr (ℎ𝑖,∗) = LT(r,0) (ℎ𝑖 )∗, and monomial

divisibility is preserved by dehomogenization. So LTr (ℎ𝑖,∗) divides
LTr (𝑓 ) and the proof is complete. □

We can then prove the main theorem of this section.

Theorem 7.6. Let 𝐼 ⊂ 𝐾 [X] be an ideal. Then the set 𝑇𝑒𝑟𝑚𝑠 (𝐼 ) :=
{LT(𝐼r) ⧸ r ∈ Q𝑛} is finite.

Proof. Thanks to Lemma 7.5, there is a surjection fromTerms(𝐼∗)
to Terms(𝐼 ) . The first set is finite thanks to Proposition 7.3, so the

second is also, which concludes the proof. □

We can also obtain the existence of universal Gröbner bases for

any polynomial ideal in 𝐾 [X] .

Theorem 7.7. Let 𝐼 ⊂ 𝐾 [X] be an ideal. Then there exists a finite
set 𝐺 ⊂ 𝐼 ⊂ 𝐾 [X] which is a universal analytic Gröbner basis of 𝐼 :
for any r ∈ Q𝑛, 𝐺 is a GB of 𝐼𝑟 .

Proof. Thanks to Lemma 7.5, it is enough to dehomogenize a

universal analytic GB of 𝐼∗ to obtain the desired universal analytic

GB of 𝐼 . □

7.3 New challenges
One can relate the previous result to the Remark 8.8 of [17] on

the foundations of computations in tropical analytic geometry, on

universal analytic GB and on tropical bases.

We say that 𝐹 ⊂ 𝐼 is a tropical basis of 𝐼 if for any r ∈ Q𝑛 : there
is 𝑔 ∈ 𝐼 such that valr (𝑔) is reached by only one term if and only if

there is 𝑓 ∈ 𝐹 such that valr (𝑓 ) is reached by only one term.

It leaves us with the following challenges:

(1) Give an algorithm to compute a universal analytic Gröbner

basis of a polynomial ideal.

(2) Give an algorithm to compute a tropical basis of a polynomial

ideal.

(3) Generalize universal analytic GB to overconvergent ideals

or to varying center of polydisks of convergence.

We shall remark that in our context, due to the fact that we take

the valuation of the coefficients into account, then, contrary to

the classical case of Gröbner fans for polynomials over a field, the

Gröbner complex is in general not a cone.



Timings (s) Entry precision in Q𝑝 [X] or Q𝑝 {X; (0, . . . , 0)}
system 𝑝 algo 2

4
2
5

2
6

2
7

2
8

2
9

2
20

Cyclic 5 2

Mora ∞ ∞ ∞ ∞ ∞ ∞ ∞
Vapote 0.86 1.0 1.5 2.3 3.8 7.2 ∞

Katsura 3 2

Mora 0.031 0.047 0.031 0.063 0.047 0.032 0.5

Vapote 0.063 2.2 140 4500 ∞ ∞ ∞

Katsura 6 2

Mora 1.2 0.98 0.94 1.0 1.1 1.0 2.3

Vapote 170 ∞ ∞ ∞ ∞ ∞ ∞
Table 1: Precision and timing for Algo 3 and Vapote [5]. The log-radii is (0, . . . , 0).
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8 APPENDIX: TIMINGS
We present here with Table 1 some timings for our toy implementa-

tion of Algorithm 3 acting on special systems in Q[X] ⊂ Q2 [X] ⊂
Q2 {X; 0, . . . , 0} . The ∞ symbols means that 12 hours were not

enough for the algorithm to terminate.

Most of the time the algorithms of [4, 5] vastly outperforms our

implementation (as seen in the Cyclic case).

However, this is not always the case and with the Katsura sys-

tems, our implementation displays two remarkable features of our

algorithm:

• Reductions can be significantly faster: no problem with re-

ductions converging possibly slowly to zero
2

• The dependency on the precision can be significantly smaller

than that of the algorithms of [4, 5], allowing in some cases

many orders of magnitude of additional digits in less time.

Please note the special shape of the Katsura 6 system inQ𝑝 [𝑋1, . . . , 𝑋6]
for r = (0, . . . , 0) and 𝑝 = 2: its defining polynomials already con-

tains the leading monomials 𝑋1, 𝑋2, 𝑋4, explaining in part why this

computation is not as hard as for classical Gröbner bases.

Computations over Q are not presented in the timings are they

are significantly slower due to coefficients growth.

One can try all examples at https://gist.github.com/TristanVaccon.

2
An example of such a reduction slowly converging to 0 in the algorithms of [4, 5]

is the reduction of 𝑋 by 𝑋 − 𝑝𝑋 2
for log-radii 0, leading to intermediate remainders

𝑝𝑋 2, 𝑝2𝑋 3, . . . , 𝑝𝑘𝑋𝑘+1, . . . .

http://home.imf.au.dk/jensen/software/gfan/gfan.html
http://www.sagemath.org
https://gist.github.com/TristanVaccon
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