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Introduction

A cosmological model predicts the evolution of the observed Universe given some initial conditions. The standard cosmological model [START_REF] Dodelson | Modern cosmology[END_REF][START_REF] Weinberg | [END_REF], called Λ Cold Dark Matter (ΛCDM), assumes that our Universe began in a hot Big Bang expansion from almost nothing at the very beginning of space-time. The ΛCDM model explains the formation, composition and evolution of our Universe starting from a quantum fluctuation close to Planck scale. Planck scales are so small that space-time itself has to be treated as a quantum object. To address such initial conditions properly we need a new quantum theory of space-time (Quantum Gravity), which we don't yet have. Such initial conditions violate energy conservation and are very unlikely as they have a low entropy ( [START_REF] Dyson | Disturbing Implications of a Cosmological Constant[END_REF][START_REF] Penrose | Before the big bang: An outrageous new perspective and its implications for particle physics[END_REF]).

Despite these shortfalls, the ΛCDM model seems very successful. But at the cost of introducing three more exotic ingredients or mathematical tricks: Inflation, Dark Matter and Dark Energy, for which we have no direct evidence or understanding at any fundamental level. Are they windows for new discoveries, like String Theory or new forms of matter/energy, or a signal that the paradigm needs to be replaced? Can we choose some different initial conditions and reproduce the success of ΛCDM model without those exotic fixes and within the known laws of Physics?

Here we present a brief review that summarizes several recent papers [START_REF] Gaztañaga | The size of our causal Universe[END_REF][START_REF] Gaztañaga | The cosmological constant as a zero action boundary[END_REF][START_REF] Fosalba | Explaining cosmological anisotropy: evidence for causal horizons from CMB data[END_REF][START_REF] Gaztanaga | The Black Hole Universe (BHU) from a FLRW cloud[END_REF][START_REF] Gaztanaga | The Cosmological Constant as Event Horizon[END_REF][START_REF] Camacho | A measurement of the scale of homogeneity in the Early Universe[END_REF][START_REF] Gaztañaga | A peek outside our Universe[END_REF] that suggest a simpler explanation: the Black Hole Universe (BHU). This review also includes some new results and ideas. Previous studies miss interpreted super horizon scales as scales that were outside the BHU. This is clarified here together with some new details regarding the Big Bounce and the observational interpretation of super horizon perturbations. In §2 we give a brief presentation of the ΛCDM model and its observational support. In §3 we present the BHU model using a Newtonian approach. This provides a non technical but accurate physical interpretation of the model and all its equations without any mathematical jargon. Appendix A-B presents a summary of the same BHU solution in the more rigorous GR approach. Appendix C present some new considerations of the possible effect of rotation in the BHU solution. We end with a Summary and Discussion that includes a review of related literature and previous results and a comparison between models.

Observational evidence for ΛCDM

We briefly discuss here the main observational evidence of the ΛCDM focusing on why exactly it needs those fixes. This review is not exhaustive or include all the relevant references. It is just a brief introduction and further work can be found in the references within. We assume flat topology.

The expansion of the Universe and the FLRW metric.

In 1929 Edwin Hubble published [START_REF] Hubble | A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae[END_REF] his famous diagram or linear relation (the Hublle law): 𝑟 = 𝐻𝑟 relating the radial distance 𝑟 of 46 galaxies to their radial recession velocity 𝑟 ≃ 𝑧𝑐, given by the redshift 𝑧 and the speed of light 𝑐 ( 𝑟 is the time 𝜏 derivative: 𝑟 ≡ 𝑑𝑟 𝑑 𝜏 ). Hubble used redshift 𝑧 from galaxy spectra estimated and published by Vesto [START_REF] Slipher | Radial velocity observations of spiral nebulae[END_REF] [START_REF] Slipher | Radial velocity observations of spiral nebulae[END_REF] and Cephid distances 𝑟 developed by Henrietta Leavitt [START_REF] Leavitt | Periods of 25 Variable Stars in the Small Magellanic Cloud[END_REF] and calibrated by E. Opik [START_REF] Opik | An estimate of the distance of the Andromeda Nebula[END_REF]. But it was George Lemaitre who first understood, in 1927 [START_REF] Lemaître | Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques[END_REF], the meaning of such discovery [START_REF] Elizalde | The True Story of Modern Cosmology: origins, main actors and breakthroughs[END_REF]: spacetime is expanding following the new theory of General Relativity (GR) by Albert Einstein [START_REF] Einstein | Die Grundlage der allgemeinen Relativitätstheorie[END_REF].

But you do not actually need GR to figure out the expansion equations. On large scales, the observable Universe looks homogeneous and isotropic. This alone, tell us that a physical radial distance 𝑟 has to scale as 𝑟 = 𝑎(𝜏) 𝜒, where 𝑎(𝜏) is a dimensionless scale factor and 𝜒 is a comoving coordinate, which is fixed ( 𝜒 = 0) for any comoving observer like us, moving with the Universe. This is the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric (i.e. Eq.A12). The observed expansion law follows from derivation: 𝑟 = 𝑎 𝜒 = 𝐻𝑟 where 𝐻 ≡ 𝑎/𝑎 is the Hubble expansion rate. Nowadays 𝐻 is measured to be 𝐻 0 ≃ 70 Km/s/Mpc, so a galaxy at 𝑟 ≃ 300Mpc has a recession velocity of 𝑟 ≃ 21, 000Km/s and a redshift 𝑧 ≃ 0.07. The Universe was 7% smaller at the time the light from that galaxy was emitted, 𝜏 ≃ 𝑟 𝑐 = 92Myr ago. The expansion time is 𝐻 -1 0 ≃ 14Gyr. Consider a spherically symmetric region of space 𝑟 < 𝑅 with a fix mass 𝑀 (like Lemaitre model [START_REF] Lemaître | Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extra-galactiques[END_REF]). We can use Gauss law (or Birkhoff theorem in GR [START_REF] Deser | Schwarzschild and Birkhoff a la Weyl[END_REF]) to ignore what is outside 𝑅 so the dynamics of 𝑅 will be given by the free-fall equation:

𝐸 = Φ + 𝐾 = 0 ⇒ 𝐾 = 1 2 𝑅 2 = 1 2 𝐻 2 𝑅 2 = -Φ = 𝐺 𝑀 𝑅 = 4𝜋𝐺 3 𝜌𝑅 2 (1) 
The above equation leads to

𝑟 -2 𝐻 ≡ 𝐻 2 (𝜏) = 8𝜋𝐺 3 𝜌(𝜏) (2) 
which is independent of 𝑅. This simple Newtonian derivation reproduces exactly the full solution to GR field equations (i.e. Eq.A13). At any time, the expansion rate 𝐻 2 is given by 𝜌. In our Universe we have measured their values today (𝜌 0 and 𝐻 0 ) to find that they do follow: 𝐻 2 0 = 8𝜋𝐺 𝜌 0 /3. We use units where the speed of light is 𝑐 = 1, and 𝑟 𝐻 ≡ 𝐻 -1 is called the Hubble Horizon. Energy-Mass conservation requires 𝜌 ∝ 𝑎 -3(1+𝜔) where 𝜔 = 𝑝/𝜌 is the equation of state of the fluid: 𝜔 = 0 for matter, 𝜔 = 1/3 for radiation and 𝜔 = -1 for vacuum. Given 𝑎 * = 𝑎(𝜏 * ) at some reference time 𝜏 * and 𝜏 = 0 at 𝑎 = 0, the solution to Eq.2 is:

𝐻 2 = 𝑎 𝑎 2 = 𝐻 2 * 𝑎 𝑎 * -3(1+𝜔) ⇒ 𝑎(𝜏) = 𝑎 * 3(1 + 𝜔) 2 𝜏𝐻 * 2 3(1+𝜔) ⇒ 𝑟 𝐻 = 3(1 + 𝜔) 2 𝜏 (3) 
During collapse 𝐻 and 𝜏 are negative. Note that 𝑟 𝐻 ∝ 𝑎 3(1+𝜔)/2 , so for regular matter (𝜔 > 0), it grows faster than comoving scales: 𝑟 = 𝑎 𝜒 (the opposite is true for 𝜔 = -1). Thus, for 𝜔 > 0 all scales become super horizon (𝑟 > 𝑟 𝐻 ) during collapse (𝐻 < 0) and re-enter the Hubble horizon during expansion. Also note that 𝑟 𝐻 increases with time 𝜏 (like the particle horizon). These equations are the exact solutions to GR for a FLRW metric, where 𝜏 is proper time for a comoving observer. Using Eq.2-3 we find:

𝜌 = [(1 + 𝜔) 𝜏] -2 6𝜋𝐺 ≃ 1.3 × 10 -12 𝑀 ⊙ Km 3 (1 + 𝜔)𝜏 seconds -2 (4) 
which tell us what is the density at any time 𝜏. In general 𝜌 could be made of several components 𝜌 𝑖 : 𝜌 = 𝑖 𝜌 𝑖 each with different 𝜔 𝑖 . The relative contributions are called cosmological parameters:

Ω 𝑖 ≡ 𝜌 𝑖 /𝜌, so that 𝑖 Ω 𝑖 = 1. As 𝜏 ⇒ 0 the matter density becomes very high and the radiation density dominates and gets hot: 𝑇 = 𝑇 0 /𝑎.

Nucleosynthesis and CMB.

In 1964, Penzias and Wilson [START_REF] Penzias | A Measurement of Excess Antenna Temperature at 4080 Mc/s[END_REF] accidentally found a uniform Cosmic Microwave Background (CMB) radiation of temperature 𝑇 0 ≃ 3𝐾. Robert Dicke, James Peebles, P. G. Roll, and D. T. Wilkinson in the companion publication [START_REF] Dicke | Cosmic Black-Body Radiation[END_REF] interpret this radiation as a signature from the Big Bang: the oldest light in the Universe. This was first noticed in 1948 by R.Alpher and R.Herman [START_REF] Alpher | On the Relative Abundance of the Elements[END_REF][START_REF] Alpher | Predicting the CMB: The hazards of being first[END_REF] who developed the theory of the primordial Nucleosynthesis and predicted a leftover CMB radiation of 𝑇 0 ≃ 5𝐾, closed to the observed value. The idea behind is simple. Because the universe is expanding, when you imagine going back in time the density must get higher and higher, atoms will break and the resulting plasma will be dominated by radiation, like the interior of a star. If you simulate an expansion from such initial conditions you can build a prediction for the primordial abundance of elements and radiation that we observed today. This is called primordial Nucleosynthesis.

Hydrogen is the most abundant element measured in our Universe. Around ∼ 75% of the total mass of the atoms (nucleons) in the Universe is in form of hydrogen, the remaining 25% is mostly Helium. The abundance predicted by Nucleosynthesis depends on the cross section of several Nuclear Physics reactions, like the neutron capture or decay. These are proportional to the ratio 𝜂 = 𝜌 𝐵 /𝜌 𝑅 of the number density of baryons 𝜌 𝐵 (protons and neutrons) to that of photons, 𝜌 𝑅 , given by the CMB background temperature 𝑇 = 𝑇 0 /𝑎. So a measurement of the primordial element abundance and 𝜌 𝐵 can be used to predict 𝑇 0 . Nowadays we use the more precise measured value 𝑇 0 = 2.726𝐾 and the observed abundance to predict 𝜌 𝐵 . In relative units: Ω 𝐵 = 𝜌 𝐵 /𝜌 ≃ 0.05 [START_REF] Steigman | Primordial Nucleosynthesis in the Precision Cosmology Era[END_REF]. So that only ≃ 5% of the total energy-density in our Universe is made or regular matter (i.e. made of known baryons and leptons). The rest, according to ΛCDM , is made of Dark Matter and Dark Energy.

Cosmic Inflation and the horizon problem.

Cosmic Inflation [START_REF] Starobinski Ǐ | Spectrum of relict gravitational radiation and the early state of the universe[END_REF][START_REF] Guth | Inflationary universe: A possible solution to the horizon and flatness problems[END_REF][START_REF] Linde | A new inflationary universe scenario[END_REF][START_REF] Albrecht | Cosmology for GUT with Radiatively Induced Symmetry Breaking[END_REF] consists of a period of exponential expansion that must happened right after the beginning of time (𝜏 = 0). There are over a hundred versions and variations [START_REF] Weinberg | [END_REF][START_REF] Liddle | Observational tests of inflation[END_REF], but generically the model requires some hypothetical new scalar field (the inflaton) with negligible kinetic energy (𝜔 = -1) to dominate the very early universe. After expanding by a factor 𝑒 60 , inflation leaves the universe empty and we need a mechanism to stop inflation and create the matter and radiation that we observe today. This is called re-heating. All these components require some fine tuning and free parameters. But Inflation solves some important mysteries that we don't know how to fix otherwise within ΛCDM .

As mentioned below Eq.3, the structures that we observed today were not in causal contact in the past. We say that they were super horizon. Structures that are larger than 𝑟 𝐻 can not evolve because the time a perturbation takes to travel that distance is larger than the expansion time. How can these structures form if they were not in causal contact? This is the horizon problem. A clear evidence of this problem is the uniform CMB temperature across the full sky. The Hubble horizon 𝑟 𝐻 at CMB times only subtends about one degree in our sky. So causality can not explain the observed all sky CMB uniformity. The horizon problem is solved by inflation because during inflation structures of all scales become super horizon. After inflation ends, they re-enter the horizon (𝜔 = -1). Moreover reheating provides a very uniform temperature background at the end of inflation.

Structure formation and Dark Matter.

In 1992, NASA's Cosmic Background Explorer (COBE) satellite detected temperature variations of very small relative amplitude 𝛿 𝑇 ≃ 10 -5 in the CMB [START_REF] Smoot | Structure in the COBE Differential Microwave Radiometer First-Year Maps[END_REF]. We believe those were the seeds that grew under gravitational collapse to form star, galaxies and the cosmic web that we observe today. But where do the seeds come from? Models of Inflation propose that these seeds come from super horizon quantum fluctuations that were exponentially inflated during inflation. Inflation predicts a power law (almost scale invariant) spectrum of fluctuations which agrees with the shape measured by later CMB missions [START_REF] Spergel | First year WMAP observations: Determination of cosmological parameters[END_REF][START_REF]Planck 2018 results. VI. Cosmological parameters[END_REF][START_REF] Aiola | The Atacama Cosmology Telescope: DR4 maps and cosmological parameters[END_REF][START_REF] Dutcher | Measurements of the 𝐸-mode polarization and temperature-𝐸-mode correlation of the CMB from SPT-3G 2018 data[END_REF] and clustering in Galaxy Surveys [START_REF] Efstathiou | The cosmological constant and cold dark matter[END_REF][START_REF] Gaztanaga | Testing deprojection algorithms on mock angular catalogues: evidence for a break in the power spectrum[END_REF][START_REF] Gawiser | Extracting Primordial Density Fluctuations[END_REF][START_REF]DES Year 3 results: Cosmological constraints from galaxy clustering and weak lensing[END_REF]. But Inflation does not provide a specific prediction for 𝛿 𝑇 ≃ 10 -5 : it is just a free parameter of the model.

The measured 𝛿 𝑇 ≃ 10 -5 is too small to explain the observed structure in galaxy surveys today [START_REF] Efstathiou | COBE background radiation anisotropies and large-scale structure in the universe[END_REF]. Some fix is needed: galaxy bias [START_REF] Fry | Biasing and Hierarchical Statistics in Large-Scale Structure[END_REF][START_REF] Gaztañaga | Gravity's Smoking Gun?[END_REF] or a Λ term [START_REF] Efstathiou | The cosmological constant and cold dark matter[END_REF]. The shape of the spectrum of fluctuations (including the Baryon Acoustic Oscillations, BAO [START_REF] Eisenstein | Baryonic Features in the Matter Transfer Function[END_REF][START_REF] Eisenstein | Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies[END_REF][START_REF] Gaztañaga | Clustering of luminous red galaxies -IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z)[END_REF][START_REF] Gaztañaga | First Cosmological Constraints on Dark Energy from the Radial Baryon Acoustic Scale[END_REF]) in the CMB and Galaxy Surveys, also required another free component to agree with the ΛCDM model. They require a new type of matter, that we called Cold Dark Matter (CDM [START_REF] Davis | The evolution of large-scale structure in a universe dominated by cold dark matter[END_REF]) which is not made of regular matter (baryons) and interacts very weakly with matter or radiation (thus the name). CDM needs to be about 4 times more abundant than regular matter: Ω 𝐶𝐷 𝑀 ≃ 4Ω 𝐵 . Such CDM is also needed to understand the motion of galaxies in clusters [START_REF] Zwicky | On the Masses of Nebulae and of Clusters of Nebulae[END_REF], the galaxy rotational curves [START_REF] Rubin | Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions[END_REF], gravitational lensing [START_REF] Clowe | Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657-558: Direct Evidence for the Existence of Dark Matter[END_REF], galaxy evolution [START_REF] Davis | The evolution of large-scale structure in a universe dominated by cold dark matter[END_REF], cosmic flows [START_REF] Feldman | An Estimate of Ω 𝑚 without Conventional Priors[END_REF] and structure in galaxy maps [START_REF] Efstathiou | The cosmological constant and cold dark matter[END_REF][START_REF] Gaztanaga | Testing deprojection algorithms on mock angular catalogues: evidence for a break in the power spectrum[END_REF][START_REF] Gawiser | Extracting Primordial Density Fluctuations[END_REF][START_REF]DES Year 3 results: Cosmological constraints from galaxy clustering and weak lensing[END_REF]. Despite enormous observational efforts in the last 30yrs, such Dark Matter component has never been directly detected as a real particle or object. [START_REF] Bertone | Particle dark matter: evidence, candidates and constraints[END_REF][START_REF] Profumo | An Introduction to Particle Dark Matter[END_REF] 

Cosmic acceleration,Dark Energy and the static universe

Usually cosmic acceleration is defined by the adimensional coefficient 𝑞 ≡ ( 𝑎/𝑎)𝐻 -2 . Taking a derivative to Eq.3 we find 𝑞 = -1 2 (1 + 3𝜔). For regular matter we have 𝜔 > 0 so we expect the expansion to decelerate (𝑞 < 0) because of gravity. But the latest concordant measurements from Type Ia supernova (SN) [START_REF] Perlmutter | Measurements of Ω and Λ from 42 High-Redshift Supernovae[END_REF][START_REF] Riess | Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant[END_REF], galaxy clustering and CMB all agree with an expansion that tends to 𝜔 = -1.03 ± 0.03 [START_REF]DES Year 3 results: Cosmological constraints from galaxy clustering and weak lensing[END_REF] or 𝑞 ≃ 1 in our future.

Dark Energy (DE) was introduced [START_REF] Huterer | Prospects for probing the dark energy via supernova distance measurements[END_REF] to account for 𝜔 < 0. But there is no fundamental understanding of what DE is or why 𝜔 ≃ -1. A natural candidate for DE is the cosmological constant Λ [START_REF] Einstein | Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie[END_REF][START_REF] Weinberg | The cosmological constant problem[END_REF][START_REF] Carroll | The cosmological constant[END_REF][START_REF] Peebles | The cosmological constant and dark energy[END_REF] which has 𝜔 = -1 and can also be thought as the ground state of a scalar field (the DE), similar to the Inflaton. Λ can also be a fundamental constant in GR, but this has some other complications [START_REF] Weinberg | The cosmological constant problem[END_REF][START_REF] Carroll | The cosmological constant[END_REF][START_REF] Peebles | The cosmological constant and dark energy[END_REF]. Including DE in the ΛCDM model is also needed to complete the energy budget for our Universe: 5% baryons (Ω 𝐵 ≃ 0.05), 25% Dark Matter (Ω 𝐷 𝑀 ≃ 0.25) and 70% DE (Ω Λ ≃ 0.7), so that Ω 𝐵 + Ω 𝐷 𝑀 + Ω Λ = 1, as needed. DE is also important to understand the Integrated Sachs-Wolfe (ISW) effect [START_REF] Crittenden | Looking for a Cosmological Constant with the Rees-Sciama Effect[END_REF][START_REF] Gaztañaga | New light on dark cosmos[END_REF], and to have a longer age estimate of 14 Gyr, which is needed both to account for the oldest stars and to have more time for structures to grow from the small CMB seeds 𝛿 𝑇 ≃ 10 -5 to the amplitude (and shape) we observe today in Galaxy Maps [START_REF] Efstathiou | The cosmological constant and cold dark matter[END_REF][START_REF] Efstathiou | COBE background radiation anisotropies and large-scale structure in the universe[END_REF].

Note how 𝑞 = 1 means 𝐻 = 0, so that 𝐻 becomes constant and all structures becomes super horizon and freeze, like in Inflation. In the physical frame (see §A.1) this corresponds to a static (deSitter) metric. We are used to repeat that the universe accelerates, but in the limit 𝑞 ⇒ 1 it is more physical to say that the universe becomes static, as proposed by Einstein [START_REF] Einstein | Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie[END_REF] when he introduced Λ.

Inside a Black Hole (BH)

In this section we will first point out that the above observations indicate that our Universe is inside a BH. This will lead to the BH Universe (BHU) model. We will them propose a new start for our Universe that could explain both the Big Bang expansion and why we are inside a BH.

What is a BH?

A BH is an object with a radial escape velocity 𝑅 = 𝑐 ≡ 1. The escape velocity 𝑅 is the minimum one needed to just escape the gravitational pull of a mass 𝑀. This requires: 1 2 𝑅 2 = 𝐺 𝑀 𝑅 . Thus, for a BH we have that 𝑅 ≡ 𝑟 𝑆 = 2𝐺 𝑀, which is called the Event Horizon. As events can not travel faster than 𝑐, nothing can escape from inside 𝑟 𝑆 . Thus we define a BH as an object of mass 𝑀 whose radius is:

𝑟 𝑠 = 2𝐺 𝑀 ≃ 2.9Km 𝑀 𝑀 ⊙ (5)
so that a solar mass BH has a radius of 2.9Km. The density of a BH only depends on 𝑟 𝑆 (or 𝑀): This value should be compared to the atomic nuclear saturation density:

𝜌 𝐵𝐻 = 𝑀 𝑉 = 3𝑀 4𝜋𝑟 3 𝑆 = 3𝑟 -2 𝑆 8𝜋𝐺 ≃ 9.8 × 10 -3 𝑀 ⊙ 𝑀 2 𝑀 ⊙ Km 3 (6)
𝜌 𝑁 𝑆 ≃ 2 × 10 -4 𝑀 ⊙ Km 3 (7)
which corresponds to the density of heavy nuclei and results from the Pauli exclusion principle. For a Neutron Star (NS) with 𝑀 ≃ 7𝑀 ⊙ both densities are the same: 𝜌 𝐵𝐻 = 𝜌 𝑁 𝑆 . This explains why typical NS stars are not larger than 𝑀 ≃ 7𝑀 ⊙ , as they could collapse first into a BH. This is illustrated by Fig. 1 which compares the collapse density of a fix mass cloud as a function radius to the density of a BH. The maximum observed 𝑀 for NS is closer to 𝑀 ≃ 2 -3𝑀 ⊙ [START_REF] Özel | Radii, and the Equation of State of Neutron Stars[END_REF] which agrees with more detailed considerations that include the equation of state 𝜔 estimates.

Inside a Black Hole

The density of a BH in Eq.6, is the exact density of our Universe in Eq.2 inside its Hubble Horizon 𝑟 𝐻 = 1/𝐻, as for 𝑅 = 𝑟 𝐻 the expansion law gives: 𝑅 = 𝐻𝑅 = 1. So the Hubble volume around us (𝑅 < 𝑟 𝐻 ) is causally disconnected from the rest (𝑅 > 𝑟 𝐻 ) and has the density of a BH. Very different observations (CMB, SN, BAO, lensing and LSS) indicate [START_REF]DES Year 3 results: Cosmological constraints from galaxy clustering and weak lensing[END_REF] that 𝐻 tends to a constant 𝐻 2 Λ = 𝐻 2 0 Ω Λ = 8 𝜋𝐺 3 𝜌 Λ (i.e. 𝜔 = -1) so the Universe asymptotically becomes static with a fixed radius ( 𝑟 Λ = 𝐻 -1 Λ ). Nothing can escape 𝑟 Λ and the mass inside is given by:

𝑀 = 4𝜋 3 𝑟 3 Λ 𝜌 Λ = 𝑟 Λ 2𝐺 (8) 
i.e: 𝑟 Λ = 2𝐺 𝑀. This is the definition of a BH. So we do live inside a BH of mass and size:

𝑀 ≃ 5 × 10 22 𝑀 ⊙ ; 𝑟 𝑆 = 𝑟 Λ = 𝑟 𝐻 (𝑎 = ∞) ≃ 6 × 10 22 km (9) 
for Ω Λ ≃ 0.7 and 𝐻 0 ≃ 70 Km/s/Mpc. Fig. 2 compares the BHU formation with that of a NS. Inside 𝑟 𝑆 ≃ 6 × 10 22 km the density is very small and nothing stops further collapse. So NS, galaxies and planets could also eventually form inside a BH. If we use 𝑟 𝑆 = 2𝐺 𝑀 in Eq.1 we find:

The Black Hole Universe (BHU)

𝑅 = [𝑟 2 𝐻 𝑟 𝑆 ] 1/3 ⇒ 𝑅(𝜏) = 3(1 + 𝜔) 2 
𝜏 1/3 * 𝜏 2/3 = 𝑟 𝑆 𝑎 𝑎 𝐵𝐻 1+𝜔 ( 10 
)
where 𝑎 𝐵𝐻 is the scale factor when the BH event horizon is reached. This equation give us the evolution of a finite FLRW cloud radius 𝑅(𝜏). Compared to Eq.3 we can see that 𝑅 grows slower than 𝑟 𝐻 so perturbations become superhorizon during collapse and re-enter during expansion. So the collapsing phase acts like Inflation. In units of 𝑟 𝐻 today 𝑐/𝐻 0 ≡ 1, at CMB times (𝑎 ≃ 10 -3 ): 𝑟 𝐻 ≃ 5 × 10 -5 , while 𝑅 is about 30 times larger. For constant 𝐻 = 𝐻 Λ we have 𝑅 = 𝑟 𝑆 , which is larger than 𝑅 0 today. Thus we are inside a BH. Note how for 𝑅 < 𝑟 𝑆 (i.e. inside the BH) Eq.10 indicates that there is a region with no matter: 𝑟 𝑆 > 𝑟 > 𝑅 and a region with matter outside the Hubble horizon 𝑅 > 𝑟 > 𝑟 𝐻 . This is illustrated in Fig. 3.

Here we have obtained Eq.2 and Eq.10 just using Newtonian Mechanics with the definition of a BH. This is the same solution as the BH Universe (BHU) [START_REF] Gaztanaga | The Black Hole Universe (BHU) from a FLRW cloud[END_REF], which is an exact solution to GR and corresponds to a FLRW cloud as in Eq.1. Appendix A presents this same BHU solution within GR.

How did we end up inside a BH?

Our Universe must have collapsed to form a BH. Before it collapsed, the density is so small that there are no interactions other than gravity. Even radiation escapes the cloud. The density is still very low when 𝑀 approaches its corresponding event horizon 𝑅 = 𝑟 𝑆 = 2𝐺 𝑀, but the gravitational pull is still that of a BH. Radial comoving shells of matter are in free fall collapse, so they don't feel that pull. This is the Equivalence Principle. So the collapse continuous pass 𝑅 = 𝑟 𝑆 inside the BH. We take 𝜏 * in Eq.3 to correspond to the time 𝜏 𝐵𝐻 when 𝑟 𝐻 = -𝑟 𝑆 , i.e. FLRW cloud formed a BH:

𝜏 𝐵𝐻 = 𝜏 * = - 2 3(1 + 𝜔) 𝑟 𝑆 ≃ -11𝐺 𝑦𝑟 𝑠 (11) 
where we have used Eq.9 and 𝜔 ≃ 0 (the latest stages of the collapse could have 𝜔 ≃ 1/3, but they last a negligible time compare to matter domination). Thus the BH forms 11 Gyr before 𝜏 = 0 (the Big Bang) or 25Gyr ago. The collapse continued after the BH formation. In the last stages of the collapse atoms ionized and part of the energy transforms into heat. Radiation pressure could 𝑆 so that the expansion freezes before it reaches back to 𝑟 𝑆 . Blue shading (𝑅 < 𝑟 𝐻 ) indicates causal evolution of perturbations. White is approximated as empty space. Super horizon structures in-between 𝑅 and 𝑟 𝐻 (yellow shading) are "frozen" and they seed structure formation as they re-enter 𝑟 𝐻 . Contrary to Inflation, the super horizon spectrum of perturbations in the BHU has a cut-off at scales at 𝑅. 𝐻 𝑟 𝑆 ] 1/3 , so that 𝑅 grows slower than 𝑟 𝐻 . There is a region with matter outside the Hubble radius 𝑅 > 𝑟 > 𝑟 𝐻 (yellow shading) with super horizon (or frozen) perturbations. This solves the horizon problem in Cosmology and is a source for perturbations that enter the horizon as the metric expands, creating LSS and BAO in Cosmic Maps, pretty much like what is usually assumed for Cosmic Inflation. dominate the resulting plasma like in the interior of a star. This slows down the collapse. Fig. 4 shows the numerical BHU solution using Eq.3 and Eq.10.

The Big Crunch

As mentioned before, there is a region outside the Hubble Horizon 𝑅 > 𝑟 > 𝑟 𝐻 which is dynamically frozen (yellow shading in Fig. 34). This is the source for super horizon perturbations, which can be observed today in the CMB temperature maps. Any small irregularities 𝛿 ≡ Δ𝜌/𝜌 (like the particle composition of the fluid) will grow under gravity. This is the so call gravitational instability. The growth of 𝛿 can start early on within the FLRW cloud, well before 𝜏 𝐵𝐻 . The amplitude of 𝛿 from gravitational instability is scale invariant [START_REF] Zel'dovich | Gravitational instability: an approximate theory for large density perturbations[END_REF][START_REF] Harrison | Fluctuations at the Threshold of Classical Cosmology[END_REF][START_REF] Peebles | Primeval Adiabatic Perturbation in an Expanding Universe[END_REF]. In the linear regime, 𝛿 follows a damped harmonic oscillator equation whose solutions [START_REF] Bernardeau | Large-scale structure of the Universe and cosmological perturbation theory[END_REF] are 𝐷 + ∝ 𝑎 and 𝐷 -∝ 𝑎 -3/2 , which correspond to the growing and decaying mode during expansion. In the collapsing phase the damping term has a negative sign and fluctuations grow faster with time because 𝐷 -is the growing mode when 𝑎 goes to zero. It is therefore likely that galaxy, stars, planets or life could also form during the collapsing phase. The details might depend on the original FLRW cloud composition. As the cloud collapses and the background density increases the structures will disappear inside a hot Big Crunch, but the largest scale density perturbations will become super horizon (freeze out) and survive the Big Bounce, as they correspond to small variations of the background over large scales.

The Big Bounce

The energy density 𝜌 in Eq.4 is the same everywhere. By 𝜏 ≃ -10 -4 seconds, 𝜌 approaches nuclear saturation (GeV) in Eq.7. The radius of our Universe 𝑅 is close to the distance between Earth and the Sun. But the Hubble radius is only few Km (containing a few solar masses). So the situation is similar to the interior of a large collapsing star. We conjecture that this leads to a Big Bounce because of the Pauli exclusion principle of Quantum Mechanics. Neutron density is the highest stable density observed in nature. The collapse is halted by neutron degeneracy pressure, causing the implosion to rebound [START_REF] Baym | Physics of neutron stars[END_REF]. If the neutron material is elastic enough [START_REF] Bera | Does elasticity stabilize a magnetic neutron star?[END_REF] the collapse could just bounce into an expansion, pretty much like a bouncing of a ball. But if the expansion rate is too high, the collapse could also led to a supernova (SN) explosion. Global rotation of the FLRW cloud, could slow down the expansion rate (see Appendix C) and play some role in the bounce.

Stars explode as supernovas (SN) either because of runaway nuclear reactions or because of gravitational core-collapse. Protons and neutrons combine and form neutrinos by electron capture. The gravitational potential energy Φ of the collapse is converted into a neutrino burst. Neutrinos are reabsorbed by the infalling layers producing an SN explosion. For example, the Crab Nebula pulsar in Fig. 5 is thought to be a core collapse supernova that exploded releasing a total energy of 10 51 -10 52 ergs in the explosion. This energy is very similar to the FLRW collapsed energy of a 𝑀 ⊙ star within 𝑟 𝐻 ≃ 30Km. Recall that the collapse speed is 𝑐 for 𝑟 𝐻 , so this is also closed to the internal (or rest) energy in Einstein's most famous equation:

𝐸 = 𝑀 ⊙ 𝑐 2 .
The bounce is synchronized at different locations because the background density is the same everywhere in the FLRW cloud. The collapse energy is converted into expansion energy (𝐻 > 0). Neutron stars, small primordial BHs (PBHs [START_REF] Carr | Primordial Black Holes as Dark Matter: Recent Developments[END_REF]) or quark stars [START_REF] Itoh | Hydrostatic Equilibrium of Hypothetical Quark Stars[END_REF] could result as remnants of the SN explosions and they could contribute to the Dark Matter that we see today. The bounce happens at times and energy densities which are many orders of magnitudes away from Inflation or Planck times (𝜏 ≃ 10 -35 seconds or 10 19 GeV). So Quantum Gravity is not needed to understand the Big Bounce and there is no monopole problem [START_REF] Guth | Inflationary universe: A possible solution to the horizon and flatness problems[END_REF]. The idea needs to be worked out and simulated. Cold nuclear matter at neutron density is a major unsolved problem in modern physics [START_REF] Özel | Radii, and the Equation of State of Neutron Stars[END_REF], but a Big Bang from a Big Bounce seems more plausible that one that comes out of nothing.

The horizon problem

The farther back we observe an image in the sky, the older it is. The Big Bang, if we could see it, corresponds to a very distant spherical shell in the sky, represented by large red circles in Fig. 6. The furthest we can actually see is the CMB shell (dashed circle), which is quite close to 𝜏 = 0. This means that 𝑟 𝐻 (or corresponding comoving particle horizon 𝜒) subtends a very small angle in the sky. So no physical mechanism can create the uniform CMB temperature that we see across the full sky. The initial conditions in the Big Bang have to be uniform to start with. This is very unlikely if the Big Bang came out of nothing [START_REF] Dyson | Disturbing Implications of a Cosmological Constant[END_REF][START_REF] Guth | Inflationary universe: A possible solution to the horizon and flatness problems[END_REF]. But is exactly what we expect if the Big Bang originates from a uniform Big Bounce. This provides a solution to the Horizon problem without Inflation.

After the Big Bang, the resulting radiation and plasma fluids cool down following the standard FLRW evolution (Nucleosynthesis and CMB recombination). The Big Bounce has super horizon irregularities from the collapsing phase which re-enter the horizon 𝑟 𝐻 as the expansion proceeds. These are the seeds for new structure (BAO and galaxies) that grow under gravitational instability, as illustrated in Fig. 5. The key difference with Inflation is that in the BHU the spectrum of incoming fluctuations have a cutoff for scales larger than 𝜆 > 2𝑅 (𝑘 < 𝜋/𝑅), while Inflation is scale invariant in all scales. This results in anomalous lack of the largest structures in the CMB sky temperature 𝑇 with respect to the predictions of Inflation. This particular CMB anomaly is well known but often interpreted in different ways [START_REF] Spergel | First year WMAP observations: Determination of cosmological parameters[END_REF][START_REF] Hinshaw | Two-Point Correlations in the COBE DMR Four-Year Anisotropy Maps[END_REF][START_REF] Gaztañaga | Two-point anisotropies in WMAP and the cosmic quadrupole[END_REF][START_REF] Efstathiou | Large-angle correlations in the cosmic microwave background[END_REF][START_REF] Schwarz | CMB anomalies after Planck[END_REF].

A related anomaly is shown in Fig. 6. It displays a sky map of relative variations in the fitted values of 𝜌 𝑚 (or cosmological parameter Ω 𝑚 = Ω 𝐵 + Ω 𝐷 𝑀 = 1 -Ω Λ ) over large regions around each position in the sky. There is a characteristic cutoff scale (or causal horizon) shown by grey circles labeled 𝐻 𝑖 . Same horizons are found for different cosmological parameters. This can be interpreted as a detection of super horizon fluctuations from the Big Bounce, with a cutoff given by the size of 𝐻 𝑖 . In Fig. 7 we compare the different cutoff scales with the predictions of the BHU. There is a good agreement for both comoving scales 𝜒𝐻 0 (left panel) and angular scales. These are independent because only the former depends on the measured values of 𝐻 0 in each horizon. A recent study of the homogeneity index in the CMB [START_REF] Camacho | A measurement of the scale of homogeneity in the Early Universe[END_REF], finds a cutoff scale Θ 𝐻 = 66 ± 9 degrees. This is shown as the black symbol in Fig. 7 for the mean values of Ω 𝑚 = 0.3 and 𝐻 0 = 67 Km/s/Mpc in the full CMB sky.

Dark Energy

During the expanding phase we need to include Ω Λ in the dynamics because the BH Event Horizon 𝑟 𝑆 forbids anything to escape. This appears in the action of GR as a Gibbons-Hawking-York (GHY) boundary term [START_REF] York | Role of Conformal Three-Geometry in the Dynamics of Gravitation[END_REF][START_REF] Gibbons | Cosmological event horizons, thermodynamics, and particle creation[END_REF][START_REF] Hawking | The gravitational Hamiltonian, action, entropy and surface terms[END_REF], which is equivalent to a Λ term when the evolution happens inside an expanding BH (see Appendix B). The measured Λ term is the Event Horizon of our BHU in Eq.9. In the standard Big Bang model there is no reason for cosmic acceleration. A new exotic ingredient, Dark Energy (DE), has to be added to account for this new evidence. Moreover, there is no fundamental understanding as to why the DE equation of state 𝜔 ≡ 𝜌/𝑝 should be so close to 𝜔 = -1 as found by the latest data compilations [START_REF]DES Year 3 results: Cosmological constraints from galaxy clustering and weak lensing[END_REF]. This is instead the natural outcome of the BHU because 𝜔 = -1 corresponds to a constant BH Event Horizon 𝑟 𝑆 = 𝑟 Λ . The expansion freezes and becomes static in the physical frame. For a comoving observer this looks like exponential inflation, Figure 6. The CMB sky represented as the surface of a sphere (two view angles) whose radius is the distance traveled by the CMB light to reach us (at the center of the sphere). The red circle represents the corresponding spherical surface from the Big Bang light (𝜏 = 0), if we could see it. The CMB particle horizon 𝜒 ∼ 𝑟 𝐻 (small red cones) is the distance travel by light between 𝜏 = 0 and 𝜏 𝐶 𝑀 𝐵 and subtends a very small angle in the observed CMB sky. Large grey circles on the CMB surface are therefore super-horizon boundaries (labeled H 1 , H 2 and H 3 ) in the relative variations of cosmological parameters (color scale) at different locations of the CMB sky [START_REF] Fosalba | Explaining cosmological anisotropy: evidence for causal horizons from CMB data[END_REF]. Regions 𝐻 𝑖 correspond to a cutoff in super horizon perturbations (of size 𝜃 ≃ 2𝑅/𝑑 𝐶 𝑀 𝐵 ≃ 60deg.) out of the 𝜏 = 0 surface. They are inside our BHU, but not causally connected (yellow region in Fig. 4). 6 and 𝜃 𝐻 from the homogeneity index [START_REF] Camacho | A measurement of the scale of homogeneity in the Early Universe[END_REF] in comoving 𝜒𝐻 0 and angular units, given the mean measured Ω 𝑚 and 𝐻 0 in each horizon. This is compared to the BHU predictions (2𝑅/𝑎, green), 𝜒 § [6] (dashed) and 𝜒 Λ = 𝑟 𝑆 /𝑎 (red) as a function of Ω 𝑚 . but both pictures are equivalent [START_REF] Gaztanaga | The Black Hole Universe (BHU) from a FLRW cloud[END_REF][START_REF] Mitra | Interpretational conflicts between the static and non-static forms of the de Sitter metric[END_REF]. As in the standard cosmological model, it takes 14 Gyrs to reach now (or 𝐻 0 ) from the Big Bounce.

Discusion & Conclusion

Inflation is believed to solve the flatness problem: why our universe has a flat global topology (or geometry) 𝑘 = 0? But given some matter content, GR can not give us its topology. This is a global property of spacetime that is either assumed or directly measured. The same applies to an intrinsic Λ term. Eq.2 and 10 in the BHU are also exact solutions in GR for 𝑘 ≠ Λ ≠ 0 by just replacing 𝑟 -2 𝐻 ≡ 𝐻 2 + 𝑘/𝑎 2 + Λ/3. But we use 𝑘 = Λ = 0 here because these are the values in empty space (for Minkowski metric) and there is no reason, within GR, that they should be different in the presence of matter. So we believe there is no flatness or Λ problem that needs to be solved. Such problems only arise when you include other considerations outside GR.

The ΛCDM model interprets cosmic acceleration as evidence for Dark Energy (or an intrinsic Λ term). We have shown instead that this is an indication that we live inside a BH of mass given by Eq.9. Such interpretation provides a fundamental explanation to the meaning of Λ (see also Appendix B). This results in the BHU solution to GR (see Appendix A), which we have reproduced here in Eq.10 just using simple Newtonian physics. The idea that the universe might be generated from the inside of a BH is not new and has extensive literature [START_REF] Easson | Universe generation from black hole interiors[END_REF][START_REF] Daghigh | False Vacuum Black Holes and Universes[END_REF][START_REF] Firouzjahi | Primordial Universe Inside the Black Hole and Inflation[END_REF][START_REF] Oshita | Creation of an inflationary universe out of a black hole[END_REF][START_REF] Dymnikova | Universes Inside a Black Hole with the de Sitter Interior[END_REF] which mostly focused in deSitter metric for the BH interior. The formation mechanisms involve some modifications or extensions of GR, often motivated by Quantum Gravity or String Theory. The BHU solution is also similar to the Bubble Universe and gravastar solutions [START_REF] Blau | Dynamics of false-vacuum bubbles[END_REF][START_REF] Frolov | Through a black hole into a new universe?[END_REF][START_REF] Aguirre | Dynamics and instability of false vacuum bubbles[END_REF][START_REF] Mazur | Surface tension and negative pressure interior of a non-singular 'black hole[END_REF][START_REF] Garriga | Black holes and the multiverse[END_REF][START_REF] Kusenko | Exploring Primordial Black Holes from the Multiverse with Optical Telescopes[END_REF]. But there are no surface terms (or Bubble) in the BHU and there is regular matter and radiation inside (see Appendix A). Several authors before have proposed that the FLRW metric could be the interior of a BH [START_REF] Pathria | The Universe as a Black Hole[END_REF][92][START_REF] Popławski | Universe in a Black Hole in Einstein-Cartan Gravity[END_REF][START_REF] Zhang | The Principles and Laws of Black Hole Universe[END_REF][START_REF] Smolin | Quantization of unimodular gravity and the cosmological constant problems[END_REF]. But these solutions were incompleted [START_REF] Knutsen | The idea of the universe as a black hole revisited[END_REF] or outside GR. Stuckey [START_REF] Stuckey | The observable universe inside a black hole[END_REF] showed that a dust filled FLRW metric can be joined to an outside BH metric. This is an independent precursor to the BHU model. Note that the BHU is located within a larger spacetime and is only homogeneous inside the event horizon. We don't know much about the larger spacetime, but it is in principle possible to observe light and matter that comes from outside. How did our Universe end up inside a BH? If it collapsed to form one, why is it expanding now? As illustrated in Fig. 4, the BHU has a mathematical singularity at 𝜏 = 0. As we approach that singularity causal regions become small so the physics involved is similar to that of stars. In nature we have never observe stable matter with densities larger than that of an atomic nuclei. We propose here that when the collapsed reaches nuclear saturation density it stops, explodes and bounces back, like a supernova. This is due to the same neutron degeneracy pressure that occurs in NS and atomic nuclei. The time before 𝜏 = 0 represents a causal horizon which divides the BHU into smaller solar mass regions that explode and bounce in sync as long as the density is the same. Superhorizon perturbations, produced during the collapse, will be sync out of phase and generate some irregularities. Further work is needed to understand the details and conditions for such Big Bounce to happen and to estimate the perturbations and composition and fraction of compact and difuse renmants that resulted from the SN explosions.

This provides a uniform start for the Big Bang, solving the horizon problem. The yellow shaded regions in Fig. 34show that the mass that collapsed into our BHU moved outside the horizon 𝑟 𝐻 . Superhorizon perturbations could seed structure (BAO and galaxies) as they re-enter 𝑟 𝐻 during expansion. The main differences with Inflation is the origin of those perturbations and the existence of a cutoff in the spectrum of fluctuations given by 𝑅(𝜏). As illustrated in Fig. 67, such cutoff has recently been measured in the CMB maps [START_REF] Fosalba | Explaining cosmological anisotropy: evidence for causal horizons from CMB data[END_REF][START_REF] Camacho | A measurement of the scale of homogeneity in the Early Universe[END_REF]. Current and future galaxy surveys are also able to measure this signal [START_REF] Gaztanaga | Testing deprojection algorithms on mock angular catalogues: evidence for a break in the power spectrum[END_REF]. The existence of super horizon perturbations could also be related to the tension in measurements of cosmological parameters from different cosmic scaletimes [START_REF] Riess | The expansion of the Universe is faster than expected[END_REF][START_REF] Valentino | In the realm of the Hubble tension-a review of solutions[END_REF][100] which have similar variations in cosmological parameters [START_REF] Fosalba | Explaining cosmological anisotropy: evidence for causal horizons from CMB data[END_REF]. The Big Bounce could also help us understand two remaining mysteries in the ΛCDM paradigm: the origin for the amplitude 𝛿 𝑇 ≃ 10 -5 in the CMB and the nature of Dark Matter. Structure formation during the collapse and bounce could be key to understand them. Compact remnants such as BHs or neutron could also be detected and account for all Dark Matter. In Appendix C we give some simple considerations on the role of BH rotation. These ideas requires further work and validation. Table 1 presents a comparison of ΛCDM and BHU solutions.

The BHU solution can also be used to understand the interior of a BH. This sounds similar to Smolin[101], who speculated that all final (e.g. BH) singularities 'bounce' or tunnel to initial singularities of new universes. But the bounce proposed here, based on Pauli exclusion principle in Quantum Mechanics, could avoid both the BH and the Big Bang mathematical singularity theorems [102,103]. That a non singular version of such solutions exist is clear from direct observation of stars and BHs. As stated by Ellis[104], the concept of physical infinity is not a scientific one. The Big Bounce also avoids the entropy paradox [START_REF] Dyson | Disturbing Implications of a Cosmological Constant[END_REF] in the Big Bang model in a similar way as proposed by Penrose [START_REF] Penrose | Before the big bang: An outrageous new perspective and its implications for particle physics[END_REF]. The difference is that the BHU does not require new laws of physics and there is no cyclic repetition, as it takes infinite of our proper time to reach 𝑟 𝑆 . Our Universe will end up trapped, static and frozen, just as first modeled by Einstein in 1917 [START_REF] Einstein | Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie[END_REF] when he introduced Λ. But Λ is just the Event Horizon of our BHU and therefore of a larger and older universe. 
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 1 Figure 1. Illustration of the collapse of one solar mass (1 𝑀 ⊙ , green dotted line) Neutron Star (NS). As the NS collapses the radius 𝑅 decreases and the density increases as 𝑅 -3 . The collapse stops (bounce back or explodes as a supernova) when the density reaches nuclear saturation 𝜌 𝑛𝑠 (green horizontal line). For masses larger that 7 𝑀 ⊙ (red dotted line) the cloud collapses first into a BH and matter gets trapped inside the event horizon 𝑟 𝑆 (black dashed line). A new star can collapse or expand inside the BH but it can not escape 𝑟 𝑆 .

Figure 2 .

 2 Figure 2. This is similar to Fig.1 but extending the scale to include a cloud of mass 𝑀 = 5 × 10 22 𝑀 ⊙ (red dotted line) which corresponds to the size of our Universe.

Figure 4 .

 4 Figure 4. Physical coordinate radius 𝑅 collapsing and expanding as a function of comoving time 𝜏. A spherical cloud of radius 𝑅 and mass 𝑀 starts collapsing free-fall under its own gravity. When it reaches 𝑅 = 𝑟 𝑆 = 2𝐺 𝑀 it becomes a BH (black sphere). The collapse proceeds inside the BH until it bounces into an expansion (the hot Big Bang). The BH Event Horizon 𝑟 𝑆 behaves like a cosmological constant with Λ = 3/𝑟 2𝑆 so that the expansion freezes before it reaches back to 𝑟 𝑆 . Blue shading (𝑅 < 𝑟 𝐻 ) indicates causal evolution of perturbations. White is approximated as empty space. Super horizon structures in-between 𝑅 and 𝑟 𝐻 (yellow shading) are "frozen" and they seed structure formation as they re-enter 𝑟 𝐻 . Contrary to Inflation, the super horizon spectrum of perturbations in the BHU has a cut-off at scales at 𝑅.

Figure 3 .

 3 Figure 3. Illustration of our Universe inside the event horizon 𝑟 𝑆 = 2𝐺 𝑀. This is a Schwarzschild (empty) metric outside (𝑟 > 𝑅) and a FLRW metric inside 𝑅 (red dashed line) with mass 𝑀. The Hubble radius 𝑟 𝐻 = 𝑐/𝐻 (dashed line) defines the volume inside causal contact (blue shading) from the center. The BHU solution in Eq.10 requires 𝑅 = [𝑟 2𝐻 𝑟 𝑆 ] 1/3 , so that 𝑅 grows slower than 𝑟 𝐻 . There is a region with matter outside the Hubble radius 𝑅 > 𝑟 > 𝑟 𝐻 (yellow shading) with super horizon (or frozen) perturbations. This solves the horizon problem in Cosmology and is a source for perturbations that enter the horizon as the metric expands, creating LSS and BAO in Cosmic Maps, pretty much like what is usually assumed for Cosmic Inflation.

Figure 5 .

 5 Figure 5. LEFT: The Crab Nebula explosion as observed in 1999 from the Hubble Space Telescope, 945yrs after it exploded. A pulsar remnant could be part of the Dark Matter. RIGHT: the MICE simulation[67] of our expanding Universe. The resulting structures look similar. Both are related in the Big Bounce model.

Figure 7 .

 7 Figure 7. Comparison of the causal horizon 𝐻 𝑖 sizes shown in Fig.6and 𝜃 𝐻 from the homogeneity index[START_REF] Camacho | A measurement of the scale of homogeneity in the Early Universe[END_REF] in comoving 𝜒𝐻 0 and angular units, given the mean measured Ω 𝑚 and 𝐻 0 in each horizon. This is compared to the BHU predictions (2𝑅/𝑎, green), 𝜒 § [6] (dashed) and 𝜒 Λ = 𝑟 𝑆 /𝑎 (red) as a function of Ω 𝑚 .

Figure A8 .

 A8 Figure A8. Representation of 𝑑𝑠 2 = (1 + 2Φ) -1 𝑑𝑟 2 + 𝑟 2 𝑑𝜃 2 in polar coordinates embedded in 3D flat space. Yellow region shows the 2D projection coverage in the true (𝑥, 𝑦) plane. From bottom left clockwise we show: deSitter (dS, 2Φ = -𝑟 2 /𝑟 2 * ), FLRW (𝑟 = 𝑟 (𝜏) < 𝑟 * , blue sphere inside dS) and Schwarzschild (SW, 2Φ = -𝑟 * /𝑟). In the top right we show a BHU with dS (or FLRW) interior and SW exterior joint at the Event Horizon 𝑟 * = 2𝐺 𝑀 = 1/𝐻 Λ (red circles). More generally, the BHU solution has two nested FLRW metrics join by SW metric (bottom right).

Table 1 :

 1 Model comparison. Observations that require explanation.

	Cosmic observation	ΛCDM explanation	BHU explanation
	Expansion law	FLRW metric	FLRW metric
	Element abundance	Nucleosynthesis	Nucleosynthesis
	Cosmic Microwave Background (CMB)	recombination	recombination
	All sky CMB uniformity	Inflation	Uniform Big Bounce
	Cosmic acceleration, BAO & ISW	Dark Energy	BH event horizon size
	14Gyr age since 𝜏 = 0	Dark Energy	BH event horizon size
	Rotational curves & Cosmic flows	Dark Matter	BHs, NSs remnants of Big Bounce
	Ω 𝑚 > Ω 𝐵 & gravitational lensing	Dark Matter	BHs, NSs remnants of Big Bounce
	CMB fluctuations 𝛿𝑇 = 10 -5	free parameter	Big Crunch perturbations
	Ω 𝑚 /Ω 𝐵 ≃ 4	free parameter	fraction of compact to difuse renmants
	Ω Λ /Ω 𝑚 ≃ 3	free parameter	time to event Horizon
	Large scales anomalies in CMB	Cosmic Variance (bad luck)	super-horizon cutoff 𝜆 < 2𝑅
	anomalies in cosmological parameters	Systematic effects	super-horizon perturbations
	flat universe 𝑘 = 0	Inflation	Minkowski metric
	monopole problem	Inflation	low energy Big Bounce
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Appendix A Exact solution in General Relativity

The flat FLRW metric in comoving coordinates 𝜉 𝛼 = (𝜏, 𝜒, 𝜃, 𝛿), corresponds to an homogeneous and isotropic space:

where we have introduced the solid angle: 𝑑Ω 2 = 𝑑𝜃 2 + sin 𝜃 2 𝑑𝛿 2 . The scale factor, 𝑎(𝜏), describes the expansion/contraction as a function of comoving or cosmic time 𝜏 (proper time for a comoving observer). For a perfect fluid Eq.A35 with density 𝜌 and pressure 𝑝, the solution to Einstein's field equations Eq.A34 is well known [105]:

where Ω 𝑚 (or 𝜌 𝑚 ) represent the matter density today (𝑎 = 1), Ω 𝑅 is the radiation, 𝜌 vac represents vacuum energy: 𝜌 vac = -𝑝 vac = 𝑉 (𝜑) and 𝜌 Λ = -𝑝 Λ is the effective cosmological constant density. Note that Λ (the raw value) is always constant, but 𝜌 Λ (effective value) can change if 𝜌 𝑣𝑎𝑐 changes. Given 𝜌(𝜏) and 𝑝(𝜏) we can use the above equations to find 𝑎(𝜏).

Consider next the most general form of a metric with spherical symmetry in physical or Schwarzschild (SW) coordinates (𝑡, 𝑟, 𝜃, 𝜑) [START_REF] Dodelson | Modern cosmology[END_REF]105]:

where Φ = Φ(𝑡, 𝑟) and Ψ = Φ(𝑡, 𝑟) are the generic gravitational potentials. The Weyl potential Φ 𝑊 is the geometric mean of the two:

Ψ describes propagation of non-relativist particles and Φ 𝑊 the propagation of light. The solution to Einstein's field equations Eq.A34 for empty space (𝜌 = 𝑝 = 𝜌 Λ = 0) results in the Schwarzschild (SW) metric:

which describes a singular BH of mass 𝑀 at 𝑟 = 0. The solution for 𝜌 = 𝑝 = 𝑀 = 0, but 𝜌 Λ ≠ 0 results in deSitter (dS) metric:

We also consider a generalization of dS metric, which we call dS extension (dSE), which is just a recast of the general case:

and arbitrary Ψ. 

with 2Φ = -𝑟 2 𝐻 2 and arbitrary 𝑎(𝜏) and Ψ, we find:

In other words, these two metrics are the same:

dSE metric in Eq.A19 with 2Φ = -𝑟 2 𝐻 2 corresponds to the FLRW metric with 𝐻 (𝑡, 𝑟) = 𝐻 (𝜏): this is a hypersphere of radius 𝑟 𝐻 that tends to 𝑟 Λ (see Fig. A8). This frame duality can be understood as a Lorentz contraction 𝛾 = 1/ √ 1 -𝑢 2 where the velocity 𝑢 = 𝑟 is given by the expansion law: 𝑟 = 𝐻𝑟. An observer in the SW frame, not moving with the fluid, sees the moving fluid element 𝑎𝑑𝜒 contracted by the Lorentz factor 𝛾: 𝑎𝑑𝜒 ⇒ 𝛾𝑑𝑟.

Appendix A.2 The BHU solution

We next look for solutions where we have matter 𝜌 𝑚 = 𝜌 𝑚 (𝑡, 𝑟) and radiation 𝜌 𝑅 = 𝜌 𝑅 (𝑡, 𝑟) inside some radius 𝑅 and empty space outside:

When 𝑅 > 𝑟 𝑆 we call this a FLRW cloud and when 𝑅 < 𝑟 𝑆 this is a BH Universe. For 𝑟 > 𝑅, we have the SW metric. For the interior we use the dSE notation in EqA19: 2Φ(𝑡, 𝑟) ≡ -𝑟 2 𝐻 2 (𝑡, 𝑟) ≡ -𝑟 2 /𝑟 2 𝐻 , so that:

At the junction 𝑟 = 𝑅, we reproduce Eq.10. For 𝑟 < 𝑅 we can change variables as in Eq.A20-A22. In the comoving frame of Eq.A22, from every point inside de BHU, comoving observers will have the illusion of an homogeneous and isotropic space-time around them, with a fixed Hubble-Lemaitre expansion 𝐻 (𝜏). This converts dSE metric into FLRW metric. So the solution is 𝐻 (𝑡, 𝑟) = 𝐻 (𝜏) and 𝑅(𝜏) = [𝑟 𝑆 /𝐻 2 (𝜏)] 1/3 . Given 𝜌(𝜏) and 𝑝(𝜏) in the interior we can use Eq.A13 to find 𝐻 (𝜏) and 𝑅(𝜏):

This corresponds to a homogeneous FLRW cloud of fix mass 𝑀 = 𝑟 𝑆 /2𝐺 in Eq.2 and Eq.10. This solution exist for any content inside 𝑅 [START_REF] Gaztanaga | The Black Hole Universe (BHU) from a FLRW cloud[END_REF]. Fig. A8 shows a spatial representation of the SW, dS, FLRW and BHU solutions.

Appendix A.3 Junction conditions

We can arrive at the same BHU solution using Israel's junction conditions ([106,107]). We can combine two solutions with different energy content, as in Eq.A23, to find a new solution. To do that we need to find an hypersurface junction Σ to match them well. In our case, this will be given by 𝑅. The junction conditions require that the metric and its derivative (the extrinsic curvature 𝐾) match at Σ. The join metric them provides a new solution to GR. In many cases, like in the Bubble Universes or gravastar [START_REF] Blau | Dynamics of false-vacuum bubbles[END_REF][START_REF] Frolov | Through a black hole into a new universe?[END_REF][START_REF] Aguirre | Dynamics and instability of false vacuum bubbles[END_REF][START_REF] Mazur | Surface tension and negative pressure interior of a non-singular 'black hole[END_REF][START_REF] Garriga | Black holes and the multiverse[END_REF][START_REF] Kusenko | Exploring Primordial Black Holes from the Multiverse with Optical Telescopes[END_REF], which match dS and SW metric, this does not work and the junction requires a surface term (the bubble) to glue both solutions together. For the BHU there are no surface terms [START_REF] Gaztanaga | The Black Hole Universe (BHU) from a FLRW cloud[END_REF] which shows that this is an exact solution. In the limit where the FLRW has constant 𝐻 (i.e our future), the BHU solution corresponds to match between dS and SW metric. So a Bubble Universe without bubble.

To see this consider the case where Σ is given by 𝑅 in the freefall collapse of a FLRW cloud of fixed mass 𝑀. For matter domination this corresponds to 𝑅 = 𝑎(𝜏) 𝜒 * as in Eq.10, where 𝜒 * = 𝑟 𝑆 /𝑎 𝐵𝐻 is fixed. The induced 3D metric on Σ is ℎ - 𝛼𝛽 with coordinates 𝑑𝑦 𝛼 = (𝑑𝜏, 𝑑𝛿, 𝑑𝜃):

For the outside SW frame, the junction Σ + is described by 𝑟 = 𝑅(𝜏) and 𝑡 = 𝑇 (𝜏), where 𝜏 is the FLRW comoving time and 𝑡 the time in the physical frame. We then have:

where the dot refers to derivatives with respect to 𝜏. The metric ℎ + induced in the outside SW metric is:

where 𝐹 ≡ 1 -𝑟 𝑆 /𝑅. Comparing Eq.A26 with Eq.A28, the first matching conditions ℎ -= ℎ + are then:

For any given 𝑎(𝜏) and 𝜒 * we can find both 𝑅(𝜏) and 𝛽(𝜏). We also want the derivative of the metric to be continuous at Σ. For this, we estimate the extrinsic curvature 𝐾 ± normal to Σ ± from each side of the hypersurface:

where 𝑒 𝑎 𝛼 = 𝜕𝑥 𝑎 /𝜕𝑦 𝛼 and 𝑛 𝑎 is the 4D vector normal to Σ. The outward 4D velocity is 𝑢 𝑎 = 𝑒 𝑎 𝜏 = (1, 0, 0, 0) and the normal to Σ - on the inside is then 𝑛 -= (0, 𝑎, 0, 0). On the outside 𝑢 𝑎 = ( 𝑇, 𝑅, 0, 0) and 𝑛 + = (-𝑅, 𝑇, 0, 0). It is straightforward to verify that: 𝑛 𝑎 𝑢 𝑎 = 0 and 𝑛 𝑎 𝑛 𝑎 = +1 (for a timelike surface) for both 𝑛 -and 𝑛 + . We then find that the extrinsic curvature in Eq.A30 to the Σ junction, estimated with the inside FLRW metric, i.e. 𝐾 -is:

For the SW metric:

where we have used the definition of 𝛽 in Eq.A29. In both cases 𝐾 𝛿 𝛿 = sin 2 𝜃𝐾 𝜃 𝜃 , so that when 𝐾 - 𝜃 𝜃 = 𝐾 + 𝜃 𝜃 it follows that 𝐾 - 𝛿 𝛿 = 𝐾 + 𝛿 𝛿 . Comparing Eq.A31 with Eq.A32, the matching conditions 𝐾 - 𝛼𝛽 = 𝐾 + 𝛼𝛽 require 𝛽 = 1, which using Eq.A29 gives:𝑅 = 𝑟 2 𝐻 𝑟 𝑆 1/3 . This reproduces the junction in Eq.10. So the two metrics and derivatives (the extrinsic curvature) are identical in the hypersurface defined by 𝑅. This completes the proof that the FLRW cloud is an exact solution of GR without surface terms. For more detailes see [START_REF] Gaztanaga | The Black Hole Universe (BHU) from a FLRW cloud[END_REF].

Appendix B The Action of GR and the Λ term

Consider the Einstein-Hilbert action ([105,108]):

where 𝑑𝑉 4 = √ -𝑔𝑑 4 𝑥 is the invariant volume element, 𝑉 4 is the volume of the 4D spacetime manifold, 𝑅 = 𝑅 𝜇 𝜇 = 𝑔 𝜇𝜈 𝑅 𝜇𝜈 is the Ricci scalar curvature and L the Lagrangian of the energy-matter content. We can obtain Einstein's field equations (EFE) for the metric field 𝑔 𝜇𝜈 from this action by requiring 𝑆 to be stationary 𝛿𝑆 = 0 under arbitrary variations of the metric 𝛿𝑔 𝜇𝜈 . The solution is ( [START_REF] Einstein | Die Grundlage der allgemeinen Relativitätstheorie[END_REF]105]):

where 𝐺 𝜇𝜈 ≡ 𝑅 𝜇𝜈 -1 2 𝑔 𝜇𝜈 𝑅. For perfect fluid in spherical coordinates:

where 𝜌, and 𝑝 are the energy-matter density and pressure. This fluid can be made of several components, each with a different equation of state 𝑝 = 𝜔𝜌. Eq.A34 requires that boundary terms vanish (e.g. see [105,109,110]). If there are boundaries to the dynamic equations, we need to add a Gibbons-Hawking-York (GHY) boundary term [START_REF] York | Role of Conformal Three-Geometry in the Dynamics of Gravitation[END_REF][START_REF] Gibbons | Cosmological event horizons, thermodynamics, and particle creation[END_REF][START_REF] Hawking | The gravitational Hamiltonian, action, entropy and surface terms[END_REF] to the action in Eq.A33:

so that the total actions is 𝑆 + 𝑆 𝐺𝐻𝑌 and 𝐾 is the trace of the extrinsic curvature at the boundary 𝜕𝑉 4 and ℎ is the induced metric. The expansion that happens inside an isolated BH is bounded by its event horizon 𝑟 < 𝑟 𝑆 and we need to add the GHY boundary term 𝑆 𝐺𝐻𝑌 . The integral is over the induced metric at 𝜕𝑉 4 , which for a time-like junction 𝑑𝜒 = 0 corresponds to 𝑅 = 𝑟 𝑆 :

So the only remaing degrees of freedom in the action are time 𝜏 and the angular coordinates. We can use this metric and the trace of the extrinsic curvature at 𝑅 = 𝑟 𝑆 to estimate 𝐾 = -2/𝑟 𝑆 from Eq.A31. This result is also valid for a null geodesic [START_REF] Gaztanaga | The Black Hole Universe (BHU) from a FLRW cloud[END_REF]. We then have:

The Λ contribution to the action in Eq.A33 is: 𝑆 Λ = -Λ𝑉 4 /(8𝜋𝐺) = -𝑟 3 𝑆 Λ𝜏/3𝐺 where we have estimated the total 4D volume 𝑉 4 as that bounded by 𝜕𝑉 4 inside 𝑟 < 𝑟 𝑆 . i.e.: 𝑉 4 = 2𝑉 3 𝜏, where the factor 2 accounts for the fact that 𝑉 3 = 4𝜋𝑟 3 𝑆 /3 is covered twice, first during collapse and again during expansion. Comparing the two terms we can see that we need Λ = 3𝑟 -2 𝑆 or equivalently 𝑟 Λ = 𝑟 𝑆 to cancel the boundary term. In other words: evolution inside a BH event horizon induces a Λ term in the EFE even when there is no Λ term to start with. Such event horizon becomes a boundary for outgoing geodesics, i.e. expanding solutions. This provides a fundamental interpretation to the observed Λ as a causal boundary [START_REF] Gaztañaga | The size of our causal Universe[END_REF][START_REF] Gaztañaga | The cosmological constant as a zero action boundary[END_REF].

Appendix C Outside our BHU: a rotating cloud

If the FLRW cloud is not totally isolated it could have some rotation. This could be a way to infer if there is something outside our BHU. Any rotation, no matter how small, could prevent or interfere with the cloud collapse. Can we detect such rotation? A rotating BH is a bit more difficult to model because spherical symmetry is lost and the BH becomes oblate (i.e. the Kerr metric [111]):

where 𝑟 𝐽 = 𝐽/𝑀 is the ratio between the angular momentum 𝐽 and the BH mass. A detailed analysis of this case is outside the scope of this review, but we will make some energetic considerations to understand the possible impact of such rotation on the Big Bounce. We assume that both mass 𝑀 and angular momentum 𝐽 are conserved, so 𝑟 𝐽 is constant. We also assume that 𝑟 𝐽 ≪ 𝑟 𝑆 so during the collapse we can neglect deviations from spherical symmetry. If we start from the FLRW cloud of size 𝑅 and mass 𝑀 with some small initial rotation, 𝜃: 𝐽 𝑀

As 𝑅 gets smaller, 𝜃 will become larger. The kinetic energy term in Eq.1 will have another contribution 2𝐾 = 𝑅 2 + 𝜃 2 𝑅 2 , so that Eq.2 becomes: where in the last step we have used Eq.10 and Eq.3 for a collapsing FLRW cloud with equation of state 𝜔. So rotation acts like a radiation term of negative energy density. Rotation is negligible, except when 𝑎 ⇒ 0 when rotation tends to delay the collapse, as it reduces the expansion rate 𝐻. Unless angular momentum is lost some other way, the rotation component will dominate (stop the collapse) for:

Closed to the Big Bounce, when radiation dominates (𝜔 = 1/3) with neutron energy densities (GeV) we have 𝑎 ≃ 10 -12 𝑎 𝐵𝐻 . So the condition for the rotation not to interfere with the collapse is:

Equivalently, as 𝑟 𝑆 ≃ 𝐻 -1 0 (see Eq.9), 𝜃 𝐵𝐻 in Eq.A40 has to be 𝜃 𝐵𝐻 ≪ 10 -8 𝐻 0 (A44) so less than 10 -8 cycles per Hubble time. Such small contribution is undetectable in today's expansion law (Ω 𝐽 ≃ 10 -16 in Eq.A41) or during recombination, but it could be bounded using Nucleosynthesis or affect the Big Bounce.