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Numerical implementation of the eXtended Finite Element Method
for dynamic crack analysis

Ionel Nistor, Olivier Pantalé *, Serge Caperaa

L.G.P C.M.A.O – E.N.I.T, 47 Av d’Azereix BP 1629, 65016 Tarbes Cedex, France

Abstract

A numerical implementation of the eXtended Finite Element Method (X-FEM) to analyze crack propagation in a structure under
dynamic loading is presented in this paper. The arbitrary crack is treated by the X-FEM method without re-meshing but using an enrich-
ment of the classical displacement-based finite element approximation in the framework of the partition of unity method. Several algo-
rithms have been implemented, within an oriented object framework in C++, in the home made explicit FEM code. The new module,
called DynaCrack, included in the dynamic FEM code DynELA, evaluates the crack geometry, the propagation of the crack and allow
the post-processing of the numerical results. The module solves the system of discrete equations using an explicit integration scheme.
Some numerical examples illustrating the main features and the computational efficiency of the DynaCrack module for dynamic crack
propagation are presented in the last section of the paper.
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1. Introduction

The development of computational techniques for the
analysis of dynamic fracture and their implementation in
numerical codes are becoming more and more important
in recent years. Such interest is motivated by the desire to
predict both the initiation of a crack and its propagation
through the structure under dynamic loading. This is a typ-
ical case concerning impact applications where severe
dynamic loading induces damage and fracture of the mate-
rial. Several numerical approaches have been proposed in
the last decades for analyzing some discontinuous phenom-
ena, such as cracks and shear bands, occurring in structures
under quasi-static or dynamic loading.

The first category concerns the re-meshing methods that
are usually used for modeling cracks or other strong dis-
continuities in structures. Based on classical finite element

method (FEM), the geometry is usually re-meshed at each
time step during the discontinuity propagation. In the most
recent developments, the re-meshing area has been limited
to the immediate vicinity of the discontinuity to save com-
putational time. Because of its simplicity (a standard FEM
program and a re-meshing algorithm are sufficient to eval-
uate crack initiation and propagation), different versions of
this technique have been implemented in commercial codes,
especially for quasi-static analysis. Nevertheless, several
important drawbacks remain. The mesh dependence of
the crack is one of the main. The user must have ‘‘a priori’’
knowledge of the response of the model in order to gener-
ate an accurate initial mesh in the crack-tip region; beside
that, the direction of the crack propagation is usually very
sensitive with nodes alignment. Another important diffi-
culty is the remapping of the data attached to physical
points situated around the crack between the old mesh
and the new one. For dynamic fracture problems, this
approach remains quite difficult to apply.

Discontinuity methods appeared as an innovating tech-
nique to model crack growth using cohesive segments at
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the element’s interface without the necessity to introduce
supplementary nodes. This approach was used by Xu and
Needleman [1] and Camacho and Ortiz [2]. Its numerical
implementation for an explicit time integration scheme
was presented by Remmers and co-workers [3]. Based on
the use of the partition of unity method (PUM) developed
by Babuska and Melenk [4], a crack is represented by a
number of overlapping cohesive segments which are
inserted as discontinuities in the displacement field of the
elements cut by the crack. In this approach, the crack direc-
tion is limited to the element edges and thus the crack paths
are limited to specified directions [5]. Even based on sub-
stantial theoretical foundations, this approach is not still
completely well-contained. For instance, the link between
the parameters of the cohesive law used in the models with
measurable material properties is not well known.

The embedded discontinuity methods represent another
class of fracture methods that consider the crack at the ele-
ment level as a band of high strain. This approach was pro-
posed by Belytschko, Fish and Engelmann [6]. A good
description of these methods is given by Dvorkin et al.
[7], Simo et al. [8] and references quoted. Jirasek [9] pub-
lished a comparative study of these methods and showed
that there is three major classes of models with embedded
discontinuities. One of these classes is known as the stati-
cally and kinematically optimal non-symmetric (SKON)
formulation [9] which allow to represent both the kine-
matic and the static aspects properly and leads to an
improved numerical performance. It is able to effectively
represent the complete separation at later stages of the frac-
turing process without the transfer of spurious stress.
Recently Oliver and Huespe [10] presented a numerical
implementation of this approach based on the use of finite
elements with embedded discontinuities where both nodal
and elemental enrichments are taken into account.

Finally we present in this literature survey the eXtended
Finite Element Method (X-FEM). The general idea of this
method is to enrich the displacement approximation space
spanned by standard finite element shape functions with
some specific discontinuous functions. It is about an
approach based on PUM. To our knowledge, Belytschko
and Black [11] have been the first one to model a crack
using this approach. The name X-FEM was given by Moes
et al. [12] and Dolbow et al. [13] after the introduction of a
step function enrichment in the displacement field for the
elements entirely cut by the crack. This method we chosen
for implementation in the home made DynaCrack code in
order to carry out dynamic analysis of structures contain-
ing discontinuities.

Concerning the restricted application field relative to
dynamic crack analysis, a few contributions based on the
X-FEM formulation have been published. The major con-
tribution has been proposed by Belytschko et al. [5] with an
adaptation of the X-FEM approach for dynamic crack
analysis and the development of a new discontinuous
enrichment. They proposed a crack evolution model based
on the loss of hyperbolicity criterion. Réthoré et al. [14]

investigated some instability problems occurring in X-
FEM dynamic crack analysis. They proposed a technique
called ‘‘balance recovery method’’, that provide the ability
to evaluate both numerical stability and accuracy for any
type of projection used with varying meshes. Recently,
Menouillard et al. [15] proposed a new technique to evalu-
ate the lumped mass matrix for the enriched elements in X-
FEM. This is a non-trivial result because of the additional
degrees of freedom linked to the enriched nodes. This later
allows to use an explicit integration scheme where the crit-
ical time step does not tend to zero when the crack is in the
immediate vicinity of a node.

The present paper is organized as follows.A description of
the X-FEM with a focus on the explicit time integration
scheme is presented in Section 2. The main features of the
crack evolution model and its numerical implementation
are presented in Section 3. The entire procedure used for
the numerical integration in the DynELA FEM code [16] is
presented in Section 4. Numerical simulations illustrating
the robustness and the effectiveness of the implemented algo-
rithms are presented in Section 5. A brief review of the prob-
lems encounteredduring thiswork and some conclusions and
future works are reported in the last section of this paper.

2. eXtended Finite Element Method for dynamic crack

analysis

The crack representation in X-FEM is based on the
enrichment of the classical displacement-based finite ele-
ment approximation through the framework of the parti-
tion of unity method. Therefore, a crack is modeled by
introducing a set of additional degrees of freedom to the
nodes whose nodal shape function space intersects this
crack. Within the approach proposed by Moes et al. [12],
two types of nodal enrichments are considered in order
to model the crack. When an element is splitted in two
parts by the crack, all the nodes of this element are
enriched by the Heaviside step function, while, the West-
ergaard asymptotic function is used to enrich the nodes
of the elements containing the crack tips. Therefore, in a
2-D analysis for example, the nodes of fully-cut elements
have two classical degrees of freedom and two enriched
degrees of freedom modeling the strong displacement
jump. The nodes of the elements containing the crack-tip
have two classical degrees of freedom and four enriched
degrees of freedom based on the radial and angular behav-
ior of the asymptotic displacement field. As the crack prop-
agates and the crack-tip crosses the edges of the elements,
the enrichment status of some nodes of the structure
changes. This type of enrichment was implemented by
Sukumar et al. [17] for a quasi-static crack. Fig. 1a shows
a finite element mesh where the circled nodes are enriched
with the Heaviside step function, while the squared nodes
are enriched with the Westergaard functions.

As discussed by Belytschko et al. [5], this mixed enrich-
ment is not easy to incorporate in methods with time-
dependent solutions. Therefore, they proposed recently



another approach for the enrichment in dynamic applica-
tions. The basic idea is to avoid the near-tip enrichment
by imposing the crack-tip to cross one element at a time.
Essentially the crack-tip goes from edge to edge and the
enrichment for such a situation can be treated using only
Heaviside step functions. In Fig. 1b, we present for the
same mesh and arbitrary crack the new enrichment and
the new path for the crack resulting from this approach.
The major consequence of limiting the crack-tip position
at the element’s edge is that the modification of the direc-
tion will only occur at the element edges. The comparison
of Fig. 1a and b shows that the mesh size plays a more
important role, since a finer mesh helps to minimize the
errors due to the crack path approximation and the fact
that the crack tips are not taken into account. In the same
time, being a simpler procedure for implementation in
dynamic crack analysis, we have chosen to use it. This
involves a special choice in the crack evolution models
(as presented further in Section 3), in order to avoid that
the propagation models require quantities not accurately
computed within this framework.

2.1. Crack modeling in 2-D

To model a given crack geometry within the X-FEM
approach, a criterion for the selection of the enriched nodes
is necessary. In the mainly used approach in the literature
[12,17], the support of nodal shape functions is defined as
the union of the elements connected to the node I. If this
support of nodal shape functions is intersected by the
crack, then the node I is enriched with a discontinuous
function based on the Heaviside step function Hð~X Þ. The
use of the generalized Heaviside step function Hð~X Þ allows
to represent the ‘‘jump’’ in the displacement field across the
crack. In the proposed approach, Hð~X Þ takes the value +1
above the crack and ÿ1 below the crack for a given direc-
tion of the crack:

Hð~X Þ ¼ þ1; if ð~X ÿ ~X �Þ �~nP 0

ÿ1; otherwise

(

ð1Þ

where ~X is the considered point in the initial configuration,
~X � is the projection of ~X onto the crack and ~n is the unit
outward normal to the crack at ~X �. Each node I of the
mesh is associated to a shape function /Ið~X Þ. The new dis-
continuous displacement field ~uhð~X Þ for a N nodes mesh,
including NC enriched nodes, is therefore approximated by

~uhð~X Þ ¼
X

I2N
/Ið~X Þ~uI þ

X

I2NC

/Ið~X ÞHð~X Þ~aI ð2Þ

where ~uI denotes the classical degrees of freedom and ~aI are
the enriched degrees of freedom relative to node I. This ap-
proach is quite the same as the one proposed by Moes et al.
[12] except that the Westergaard contribution has been
removed.

The numerical implementation of X-FEM presented in
this paper was achieved for a 2-D analysis and a single type
of element: quadrilateral four nodes element and an exam-
ple illustrating the enrichment used is presented in Fig. 1b.

2.2. Discrete equations

The proposed approach is based on an elastodynamics
behavior for the X-FEM analysis of a cracked homoge-
neous domain X, in the current configuration, as presented
in Fig. 2. The crack is represented by the boundary Cc used
to represent the two lips. A traction force vector~�t is applied
on the Neumann boundary Ct and~�u is the applied displace-
ment vector on the Dirichlet boundary Cu. It can be noted
that Cu [ Ct = C and Cu \ Ct = ;. Crack lips are considered
traction-free. Thus, we can write the strong form of the
momentum conservation law in terms of the Cauchy stress
tensor, for the current configuration described in Fig. 2, as
follows:

y

x

modeling with crack-tip functions

y

x

modeling with Heaviside functions

a b

Fig. 1. Crack modeling using X-FEM approach.



orij

oxj
þ qbi ÿ q€ui ¼ 0 2 X ð3Þ

rijnj ¼ �ti 2 Ct ð4Þ
ui ¼ �ui 2 Cu ð5Þ

where q is the current density,~b is the body force vector per
unit mass, r is the Cauchy stress tensor, ~n is the external
unit vector to C and (ÆÆ) is the second time derivative of
(). The weak form of the momentum equation in the cur-
rent configuration is then given by
Z

X

duiq€uidX ¼
Z

X

duiqbidXþ
Z

Ct

dui�tidCt

ÿ
Z

XnCc

o duið Þ
oxj

rijdX ð6Þ

where ui is the trial displacement field (see Eq. (2) for the
definition of ui) and dui is the test displacement field. The
equilibrium discrete system of equations for dynamic anal-
ysis with X-FEM is obtained from Eq. (6) using the stan-
dard Bubnov–Galerkin procedure. Substituting trial and
test displacement fields and their derivatives yield to the
following system:

Muu
IJ Mua

IJ

Mau
IJ Maa

IJ

� �
€uJ

€aJ

� �
þ F int

iI

Qint
iI

" #

ÿ F ext
iI

Qext
iI

� �
¼ 0 ð7Þ

where:

F int
iI ¼

Z

XnCc

o /Ið Þ
oxj

rijdX ð8Þ

F ext
iI ¼

Z

Ct

/I
�tidCþ

Z

X

/IqbidX ð9Þ

Qint
iI ¼

Z

XnCc

o /IHð Þ
oxj

rijdX ð10Þ

Qext
iI ¼

Z

Ct

ð/IHÞ�tidCþ
Z

X

ð/IHÞqbidX ð11Þ

Muu
IJ ¼

Z

X

q/I/JdX ð12Þ

Mua
IJ ¼

Z

X

q/Ið/JHÞdX ð13Þ

Maa
IJ ¼

Z

X

qð/IHÞð/JHÞdX ð14Þ

The details concerning the development of the terms in
Eqs. 8–14 for the quadrilateral four nodes finite element
are presented further in Section 4.3 and the assembling pro-
cedure in Section 4.4.

In this work the consistent mass matrix is used because
the enriched degrees of freedom obstruct its direct lumping
as reported by Belytschko et al. [5]. In fact, neglecting these
terms leads to suppress one of the essential information
concerning the coupling of the regular and enriched
degrees of freedom as de Borst et al. [18] observed. Even
the lumping technique proposed by Menouillard et al.
[15], for the case of Heaviside step function, does not takes
into account the coupling terms. The use of the entire mass
matrix increases the CPU time and requires a more power-
ful processor, but the analyzed models presented here usu-
ally contains a quite small number of degrees of freedom,
therefore, this choice has been adopted in order to preserve
the informations concerning the enrichment.

2.3. Explicit integration scheme

The explicit integration procedure used in the X-FEM
module DynaCrack uses the Chung–Hulbert [19] explicit
time integration scheme already implemented in the Dyn-
ELA code [20]. The time integration scheme is given by

€~unþ1 ¼
Mÿ1 F ext

n ÿ F int
n

ÿ �
ÿ aM €~un

1ÿ aM
ð15Þ

_~unþ1 ¼ _~un þ Dtnþ1 1ÿ cð Þ€~un þ c€~unþ1

h i
ð16Þ

~unþ1 ¼~un þ Dtnþ1
_~un þ Dt2nþ1

1

2
ÿ b

� �
€~un þ b€~unþ1

� �
ð17Þ

The main feature of this algorithm is the presence of a
numerical dissipation through its characteristic parameters
aM, b and c. The values of these parameters are given by
the following relations [20]:

aM ¼ 2qb ÿ 1

1þ qb

; b ¼ 5ÿ 3qb

1þ qbð Þ2 2ÿ qbð Þ
; c ¼ 3

2
ÿ aM

ð18Þ
where qb 2 [0, 1] defines the numerical dissipative character
of the algorithm. Setting qb = 1.0 leads to a conservative
algorithm while qb < 1.0 introduces numerical dissipation
in the scheme. In this work, the conservative algorithm is
considered. The integration time step is computed using
the following relation:

Dt ¼ f
le

wd

ð19Þ

where f is a safety factor (the value of f = 0.82 has been
used here) that accounts for numerical instabilities, le is
the characteristic length of the smallest element of the
structure and wd is the dilatational elastic wave speed of
the material. Note that the elements intersected by the

Γc

Γt

u

t

Γu

Ω

n

Fig. 2. Notations used for a 2-D domain.



crack are not taken into account for this computation in
order to avoid that the time step tend to zero when the
crack path is very close to an enriched node.

2.4. Cut elements partition

For the elements cut by the crack, a special procedure is
applied in X-FEM in order to integrate the discrete system
of equations. The main idea is not to perform a re-meshing
of these elements by adding supplementary nodes on the
intersecting points with the crack because this would be
contrary to the main principle of X-FEM (modeling of
the discontinuities without any dependence with the mesh
size and orientation). The main accepted concept in X-
FEM is the partitioning of these elements. A clear analysis
of ‘‘element partitioning versus re-meshing’’ is provided by
Sukumar and Prévost [17]. The partitioning procedure in
X-FEM is done for numerical integration purpose only,
and no additional degrees of freedom are introduced into
the discrete space during this operation. Subdividing these
elements into triangles in 2-D was proposed by many
authors [12,17,21], and several numerical integration
options were also presented. On the other way, an original
method to perform this integration without any subdivi-
sion of the cut elements has been recently proposed by Ven-
tura [22]. Special (higher-order) quadrature rules are
usually used for the numerical integration of the elements
that are partitioned in this way [12] like a six-point integra-
tion rule for triangular elements.

In this work, we subdivide the two zones on both sides
of the crack into sub-quadrilaterals, as shown in Fig. 3.
The main reason for this partitioning solution is related
to the numerical integration accuracy. The numerical com-
putation of the requested quantities such as stiffness
matrix, on the sub-quadrilaterals is achieved using the
same integration scheme as for all other element of the
mesh. In the same time, bilinear shape functions are used
to interpolate the fields in order to integrate them. This
approach has given more accurate results than the classic

sub-triangulation associated to a three or six-point integra-
tion rule. The entire geometrical procedure for partitioning
the cut elements and the numerical integration algorithm
are presented in Section 4.

3. Crack evolution model

For the complete characterization of the dynamic crack
propagation, beside the strong form given by Eqs. 3–5, a
crack evolution model providing the crack advancing crite-
ria (its direction and its velocity) is necessary. As men-
tioned earlier in the opening part in Section 2, the choice
of the crack evolution model implemented in DynaCrack
was strongly influenced by the enrichment. Since only the
Heaviside function is taken into account for the crack mod-
eling, the propagation is restricted from edge to edge of the
elements. The limitations related to this approach are a
quite inaccurate stress–strain evaluation in the immediate
vicinity of the crack tips and a loss of smoothness for some
fields because the crack propagates in fits and starts. On the
other hand, in the context of adapting classical models of
crack propagation to this enrichment type, this approach
is very attractive for numerical integration and good results
can be obtained as presented further in Section 5.

Several propagation criteria were studied and imple-
mented for dynamic crack propagation. The maximum cir-
cumferential stress criterion, also called the maximum
principal stress criterion by Erdogan et al. [23] was imple-
mented by Moes and Sukumar [12,17] in X-FEM for
quasi-static propagation and by Belytschko et al. [5] for
dynamic propagation. It sets that a crack will propagate
from its actual tip in the direction hc where the circumfer-
ential stress rhh is maximum. Physical models used for
computing crack propagation based on the energy release
rate calculation represent an other important class of crite-
ria for quasi-static and dynamic cracks. Freund [24] has
developed a criterion giving an analytical solution for the
DSIF (dynamic stress intensity factor) and the connection
to the energy release rate for a dynamic stationary crack.

Fig. 3. Partitioning of a four nodes element.



Those criteria have been used in other numerical methods
than the finite element method. Krysl and Belytschko [25]
and Duarte et al. [26] implemented these criteria in EFGM
(element free Galerkin method) and GFEM (generalized
finite element method), respectively, for a 3D dynamic
crack propagation.

In our X-FEM code, we have chosen to introduce a
physical crack evolution model based on Nishioka [27]
and Freund [24] approaches and have adapted it to our
considered enrichment. The definition of a physical crack
evolution model enhances some particular problems since
the modeling of the field in the immediate vicinity of the
tip is not very accurate in our approach. Therefore it was
difficult to obtain an accurate numerical solution around
the crack-tip. One of the possible solutions is then to
use the path-independent dynamic J-integral characterized
by the following features [28]:

• it has the physical meaning of a dynamic energy release
rate,

• it gives a unique value for an arbitrary path surrounding
the crack-tip,

• it can be related to the dynamic stress intensity factors
(DSIF).

The second feature mentioned above is the most inter-
esting one since it allows to use a contour-path quite far
from the crack-tip to evaluate the dynamic J-integral. This
allow to avoid the inaccurately computed asymptotic field
zone around the crack-tip. The analytical form of the J 0-
integral developed by Nishioka and Alturi [29] for moving
dynamic cracks is considered here:

J 0
k ¼

Z

CþCc

ðW þ UÞnk ÿ rijui;knj
� �

dC

þ
Z

S

q€uiui;k ÿ q _ui _ui;kð ÞdS ð20Þ

where, as presented in Fig. 4, W and U are the strain and
kinetic energy densities, respectively, S is an area inside
of C and Cc ¼ Cþ

c þ Cÿ
c represents the crack edge inside

of the considered contour C. Considering a plane strain ap-
proach, the J 0-integral components denoted by k in Eq.
(20) can be related to the DSIF by

J 00
1 ¼ 1

2l
AIðcsÞK2

I þ AIIðcsÞK2
II

� 	
; J 00

2

¼ ÿ 1

2l
AIVðcsÞKIKII ð21Þ

where AI,II,IV(cs) are coefficients depending on the propaga-
tion crack speed cs (see [24] for more details) and l is the
shear modulus of the material. The numerical value of
the dynamic energy release rate is given by

G ¼ J 0
1 cos h0 þ J 0

2 sin h0 ð22Þ

DSIF numerical values are extracted using the separation
components method proposed by Nishioka and Atluri

[29]. This method has been retained because it avoids the
need to compute the J 0

2 value since this one is known to
be sensitive to the near crack-tip singular stress solution.
In the separation components method, only the J 0

1 (non-af-
fected by the near crack-tip singular solution) and the nor-
mal and tangential crack-tip opening displacement
components (dn and dt) contributes to the DSIF evaluation:

KI ¼ dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lJ 00

1 as

AIðcsÞ d2nas þ d2t ad
ÿ �

s

;

KII ¼ dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lJ 00

1 as

AIIðcsÞ d2nas þ d2t ad
ÿ �

s

ð23Þ

where as and ad are functions depending on the crack prop-
agation speed cs, the shear wave speed ws and dilatational
wave speed wd by

as ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1ÿ c2s
w2

s

s

; ad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1ÿ c2s
w2

d

s

ð24Þ

The crack propagation model uses the DSIF to answer for
the essential questions: is the crack propagates, and if it’s
true, in what direction and how quickly? Hence, the crack
will propagate if the value of the energy release rate G com-
puted from Eq. (22) is greater or equal to a critical limit
Gcrit given by

Gcrit ¼ KID csð Þ 1ÿ m2

E
ð25Þ

where KID(cs) is the dynamic fracture toughness, assumed
here equal to bK ID a constant value considered as an intrin-
sic material property, E and m are the Young coefficient and
the Poisson ratio, respectively. The direction of the crack
propagation is then given by

hc ¼ 2 arctan
1

4

KI

KII

ÿ signðKIIÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KI

KII

� �2

þ 8

s0

@

1

A

8
<

:

9
=

;;

if KII 6¼ 0 ð26Þ

and by hc = 0 if KII = 0. The term sign(KII) inside of the
previous equation leads to a positive stress intensity factor
along the direction given by hc. The crack speed is provided
by the numerical propagation algorithm, since the crack-tip
advances one edge at a time. As mentioned in Ref. [5], this
edge-to-edge approach achieves closure by the discretiza-

Γc

+

Γc
–

x 0
y

0
Γ

Γ
εVε

θ

n

0

V–Vε

Fig. 4. Evaluation path scheme for the J 0-integral.



tion but the coarse meshes must be avoid. The numerical
algorithms implemented for computing the parameters of
this crack evolution model will be presented in Section 4.

4. Numerical implementation of the DynaCrack module

The DynELA explicit finite element program [16] has
been used for the implementation of the X-FEM crack
propagation module. This FEM program is written in
C++ and developed within an object-oriented program-
ming (OOP) approach. This feature presents a very well
defined mechanism for modular design and re-use of code:
in our case this has allowed to develop the new module
DynaCrack, re-using several objects already implemented.
Some new classes have been implemented and other have
been specialized for this application using the inheritance
mechanism. In the following sub-sections, we present the
major steps of this implementation, pointing out the char-
acteristic keys of X-FEM. Concerning the notation, all
keywords related to the DynaCrack code such as the class
names, method names, object names . . . are written using a
typewriter font.

4.1. Crack representation and implementation

The crack is represented by the class CrackFunction
containing a list of p + 1 points Xc = {xi}i2[0,p]. Within this
representation, the two points x0 and xp are the crack tips.
The initial crack at time t = 0 is defined through the input
data file according to the initial geometry of the crack. The
CrackFunction class contains a dynamic list updated
when adding new points as the crack propagates.

One of the most useful method of this class returns the
sign of the Heaviside function for any given point. The
so called method IsOnPositiveSide() returns a Bool-
ean value: true for positive side (i.e. the Heaviside function
H = 1) and false for negative side (i.e. the Heaviside func-
tion H = ÿ1) based on geometric predicate evaluation.
This is done by computing the projection of this point onto
the closest crack segment.

In the presented X-FEM approach, the mesh contains
both classical and enriched nodes, therefore, the class
XNode, inherited from the class Node is used for handling
the supplementary degrees of freedom (dof) corresponding
to the enriched nodes. A specific flag XType is then used to
identify the status of the nodes. During the computation,
the status of some nodes changes from normal to enriched
because of the crack propagation. The method getXR-

Type() is called at each integration time step and is used
to update the status of the elements. A method based on an
efficient BoundingBox algorithm is used to find the nodes
around the crack. For all the elements of the structure three
flags are considered according to theirs status:

x elements

TypeX ÿ enriched elements ðfrom 1 to 3 enriched nodesÞ
TypeR ÿ completely cut elements ð4 enriched nodesÞ
TypeN ÿ normal elements ðno enriched nodesÞ

8
><

>:

Fig. 5 illustrates this aspect for an X-FEM mesh; the en-
riched nodes are the encircled ones. The two nodes at both
end of the edge where the crack-tip is situated are enriched
with the Heaviside step function. In the approach proposed
by Moes et al. [12] those two nodes are enriched using the
Westergaard functions leading to the step function for
h = p.

4.2. Partition algorithm

Once the elements status have been updated for the cur-
rent time step, the partitioning of the so-called TypeR ele-
ments is done using the methods of the XPartition class.
An arbitrary crack geometry in a structure discretized with
4-nodes quadrilateral finite elements leads to one of the two
situations for cut elements: the crack intersects two oppo-
site or two adjoining edges (see Fig. 3 for more details).
The algorithms implemented in the XPartition class
compute the partition of the elements. As an illustration,
the algorithm for the partition of the element presented
in Fig. 6 is reported in Box 1.

y

x

X

R

N

Fig. 5. Enriched element types definition.

Box 1 Partitioning algorithm

1. Compute the intersection points, xc1 and xc2;
2. Build the {pi}i=1. . .4 xpoints using nodes

location;
3. Compute the positive and negative centroids, C+

and Cÿ;
4. Get the median points, mj, for all sub-domain

segments;
5. Build pointsPositifs and pointsNega-

tifs lists;
6. Build Surf2D surfaces.



Two more classes are used to hold the informations for
points and surfaces created during the partition, XPoint
and Surf2D, respectively. As the element is sub-divided
into two sub-domains, a ‘‘positive’’ one and a ‘‘negative’’
one (according to enriched nodes sign), two lists of
XPoint objects are created, pointsPositifs fpþi g
and pointsNegatifs fpÿj g, as reported in Fig. 6. The
XPoint list contains the intersection points between the
crack and the element edges, xc1 and xc2, the node locations
and all middle points ml of the edges arranged in counter-
clockwise order. From the computation of the sub-domain
centroids (C+ and Cÿ), two lists of Surf2D quadrilateral
sub-surfaces are generated, fSþ

i g and fSÿ
i g. Those two

sub-surfaces are used for the numerical integration of the
conservative laws and their respective contributions are
summed.

4.3. Setting-up of the matrices

One of the main consequence of the additionals dof from
a numerical point of view is the variable size of the elemen-
tary matrices, according to the element status: cut, enriched
or normal. In this work, we adopted a block formalism for
the setting-up of the matrices as described here after.

The numerical implementation of the DynaCrack mod-
ule has been done for a 4-node quadrilateral element. For a
standard element (TypeN), the elementary dof vector con-
tains eight terms (two dof for each node) and the displace-
ment field is approximated by standard shape functions.
For the enriched or cut elements, the size of the elementary
dof vector is larger (10, 12 or 14 dof for TypeX and 16 dof

for TypeR). A choice concerning the dof placement is nec-
essary: do we put all enriched dof in the second part of the
vector after the classical ones as proposed by Sukumar
et al. [17] or do we keep in order all dof (both classical

and enriched) for each node? As this choice has no real
impact on the final solution, we adopted the later and
called this one the ‘‘block approach’’ as each node is stored
with his ‘‘block’’ of dof. For a TypeR element, the elemen-
tary dof vector is therefore given by

ue
T ¼ ux1; uy1; ax1; ay1; . . . ; ux4; uy4; ax4; ay4f g

ð27Þ
where uxi, uyi are the standard dof and axi, ayi are the en-
riched dof for the node i. Starting from the displacement
approximation Eq. (2), the shape functions matrix N and
the derivatives of the shape functions matrix B, for the
TypeR element, are given by

N ¼ Ns1 Nh1 Ns2 Nh2 Ns3 Nh3 Ns4 Nh4½ � ð28Þ
B ¼ Bs1 Bh1 Bs2 Bh2 Bs3 Bh3 Bs4 Bh4½ � ð29Þ
where the block matrices Ns, Nh, Bs and Bh are

Bsi ¼
/i;x 0

0 /i;y

/i;y /i;x

2

64

3

75; Nsi ¼
/i 0

0 /i

" #

ð30Þ

Bhi ¼
H/i;x 0

0 H/i;y

H/i;y H/i;x

2

64

3

75; Nhi ¼
H/i 0

0 H/i

" #

ð31Þ

For TypeX elements, both N and B matrices contains Nh

and Bh blocks only for the enriched nodes. A detailed flow-
chart of the algorithm for the computing of the elementary
stiffness matrix for a TypeR element is reported in Fig. 7.
This one returns the stiffness matrix resulting from the
numerical integration over both positive and negative do-
mains Surf2D by a Gaussian quadrature (see Fig. 6).
The algorithm for the mass matrix computation is obtained
straightforward.
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Fig. 6. Integration of a partitioned element.



4.4. Assembly procedure

The global mass matrix, stiffness matrix and external
force vector assembling procedure is specific since the ele-
mentary corresponding matrices sizes differ from element
to element depending on the status. To get round this,
the XAllocation class has been specifically developed.
The main feature of this class is to allow a dynamic map-
ping between both local and global positions of a dof as
illustrated in Fig. 8. This bi-directional link is performed
by the methods loc2glob and glob2loc. The former
returns the global position of a dof depending on the node
Id and the local dof position while the later gives the
reversed mapping. The assembly of the mass matrix, stiff-
ness matrix and external force vector are achieved in a like

manner, looping over all elements of the mesh and taking
into account the status of each node.

4.5. Implementation of the crack evolution model

Numerical algorithms implemented for the crack evolu-
tion model refer mainly to the energy release rate computa-
tion and the DSIF extraction presented earlier. The
components of the J 0-integral are numerically evaluated
in DynaCrack considering a symmetrical rectangular path
centered at the crack-tip as presented in Fig. 9. As the edges
of the path are set parallel to the system axis and the terms
inside Eq. (20) are computed with respect to the normal
unit vector orientation, the first term in Eq. (20), noted
JC
k , is given by

JC
k ¼ JAD

k þ JDE
k þ JEF

k þ J FA
k þ JBÿC

k þ JCBþ
k ð32Þ

where the six components in the right hand side are com-
puted along the corresponding segments with respect to
notations reported in Fig. 9. The first component of the
J 0-integral (for k = 1) is given by

JAD
1 ¼

Z D

A

ÿ W þ Uð Þ þ r11

ou

ox1
þ r12

ov

ox1

� �
dx2 ð33Þ

JDE
1 ¼

Z E

D

r22

ov

ox1
þ r12

ou

ox1

� �
dx1 ð34Þ

JEF
1 ¼

Z F

E

W þ Uð Þ ÿ r11

ou

ox1
ÿ r12

ov

ox1

� �
dx2 ð35Þ

J FA
1 ¼

Z A

F

ÿr22

ov

ox1
ÿ r12

ou

ox1

� �
dx1 ð36Þ

JBÿC
1 ¼

Z C

Bÿ
r22

ov

ox1
þ r12

ou

ox1

� �
dx1 ð37Þ

JCBþ
1 ¼

Z Bþ

C

ÿr22

ov

ox1
ÿ r12

ou

ox1

� �
dx1 ð38Þ

The second component for k = 2 are obtained in a straight-
forward manner. In the above equations, the strain and the
kinetic energies are given by

W ¼ 1

2
r11e11 þ r22e22 þ 2r12e12½ � ð39Þ

U ¼ 1

2
q _u1 _u1 þ _u2 _u2½ � ð40Þ

The second term, noted J S
1, of Eq. (20) is given by

J S
1 ¼

Z

S

q €u
ou

ox1
þ €v

ov

ox1

� �
ÿ _u

o _u

ox1
þ _v

o_v

ox1

� �� �
dS ð41Þ

The computation of this integral is numerically done by
evaluating the integrand terms for all Gauss points inside
of the considered path. Concerning the elements intersected
by the integral path, in light gray in Fig. 9, only theirs inte-
gration points inside of the path are considered for the
above computation. This is done by the method com-

puteJ of the XExplicitSolver class dedicated to the
explicit time integration and the crack propagation pro-
cessing. A partitioning algorithm is used to split the path’s

Fig. 7. Flowchart for stiffness matrix computation of a partitioned

element.



segments into a set of equal sub-segments Dx, and to gen-
erate a list of geometric points corresponding to the middle
of those sub-segments. The numerical values for stresses,
strains, ou

oxi
and ov

oxi
are interpolated to the above mentioned

points. The numerical integration is based on a classic
Gauss quadrature. As observed in Fig. 9, this evaluation
is done over a 8L · 8L quadrilateral domain (L being the
largest edge of the element containing the crack-tip). Once
the J 0-integral is computed, the dynamic energy release rate
is determined by Eq. (22) and the DSIF components are ex-
tracted using Eq. (23). Chessa et al. [30] have shown that
the numerical evaluation of the crack-tip opening displace-
ments (dn and dt), contributing to KI and KII, depends only
on the enrichment dof by

d ¼ 2
X4

j¼1

N jaj ð42Þ

Some numerical results proving the effectiveness of the
numerical evaluation of the J 0-integral are presented in Sec-
tion 5.

5. Numerical examples

In this section, we present some numerical results con-
cerning the propagation of a crack in Mode I for a rectan-
gular plate subjected to an impact load and the analysis of
a finite plate with an inclined crack subjected to a mixed
mode fracture.

The first problem, illustrated in Fig. 10, was proposed
by Lu et al. [31], Krysl et al. [25] and Belytschko et al.

Fig. 8. Allocation procedure illustration.

Fig. 9. J-integral rectangular path.

(t)σ

(t)σ

h
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y
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h/2

a

Fig. 10. Model used for the crack propagation.



[32] using EFGM, by Duarte et al. [26] using GFEM, and
by Belytschko et al. [5] using X-FEM among many others.
Two uniform quadrilateral meshes are presented in this
paper to illustrate the independence of the crack propaga-

tion with the mesh size: a coarse mesh (51 · 21 elements),
and a finer mesh (65 · 25 elements). The crack-tip is
located at the center of the plate, as shown in Fig. 10,
and the crack is horizontal.
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Fig. 11. Energy release rate time-history plot for the stationary crack.
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Fig. 12. Mode I DSIF time-history plot for the stationary crack.

Fig. 13. von Mises stress field for the stationary crack.



A linear elastic material behavior with E = 200 GPa,
m = 0.3 and q = 7833 kg/m3 is considered and a critical
value for fracture toughness KIDcrit

¼ 1:5 MPa
ffiffiffiffi
m

p
is used

in the dynamic crack evolution model. Only a stationary
crack is considered in the first part and the dimensions
are l = 10 m and h = 4m. Only a boundary traction force
with a magnitude of 63750 Pa is applied in accordance with
the model proposed by Duarte et al. [26]. The computed
and the analytical mode-I DSIF and the dynamic energy
release rate reported in Figs. 11 and 12. Both figures show
a quite good agreement and the non-dependence of the
solution with the mesh size. On both figures, one can
observe, after t = 7.5 · 10ÿ4 s, quite strong oscillations dis-
turbing the numerical solutions. Actually, as mentioned in
[26], for the same test, it occurs because of the finite dimen-
sions of the plate whose boundary reflect the elastic waves.
This elastic waves perturbing the displacements, strains and
stresses fields used for the J 0-integral evaluation. The expli-
cit integration algorithm favour and maintain also these
oscillations in absence of plasticity behavior.

Fig. 13 is a contour-plot of the von Mises stresses field at
the end of the computation for the coarse mesh. In this
later the expected form of the stress field gradient near

the crack-tip can be observed. Fig. 14 reports the vertical
displacement field contour-plot and shows the jump in
the vertical displacement on both sides of the crack. It must
be mentioned that because of the finite dimensions of the
plate, some elastic waves are reflected by the boundaries
when the simulation time increases. Those reflected elastic
waves are perturbing the numerical solution and this one is
no longer in accordance with the analytic solution.

For the analysis of the crack propagation, the dimen-
sions of the rectangular plate are l = 0.1 m and
h = 0.04 m and the applied traction force magnitude is
1 MPa. The same conditions were adopted by Belytschko
et al. [5]. Fig. 15 reports the evolution of the mode I DSIF
for both fine and coarse meshes. The crack propagation ini-
tiates quite at the same instant for the two considered
meshes, t ’ 14 ls for the fine mesh and t ’ 15 ls for the
coarse mesh. The crack-tip advances through 8 elements
for the fine mesh and through seven elements for the coarse
mesh. The exact final crack-tip propagations are
dx = 6.23 · 10ÿ2 m and dx = 6.37 · 10ÿ2 m for the fine
and coarse meshes, respectively. The crack propagation
speed is in the range [1000,2200] m/s. This is below the
Rayleigh wave speed. Those results agree quite well with

Fig. 14. Vertical displacement component for the stationary crack.



the one obtained by Belytschko et al. [5] and allow to val-
idate the proposed approach.

The second problem presented in Fig. 16a is the analysis
of an inclined crack in a finite plate. The purpose here is to
compare the numerical results obtained by DynaCrack for
the DSIF in a mixed mode fracture with the results
obtained by the Abaqus FEM code for the same simula-
tion. The reference length of the plate is L = 1 m and a
boundary traction force with a magnitude r = 1 · 103 Pa
is applied via a step function. The material considered is
the same as the one used in the previous example and three
different uniform quadrilateral meshes are considered: (i)
20 · 35, (ii) 25 · 44 and (iii) 30 · 53 elements. The equiva-

lent model simulated with the Abaqus software is com-
posed of 911 non-structured elements and the mesh
conforms with the crack geometry.

Stress distribution fields given by the X-FEM analysis at
the end of the computation time (t = 0.1 s) are illustrated in
Fig. 16b. Here again, the stress field has the expected shape
around the crack-tip. Table 1 reports the numerical values
for the fracture parameters (DSIF and dynamic energy
release rate) obtained at the end of the analysis by both
FEM codes. The results obtained by the path-independent
integral technique with DynaCrack agree quite well with
the ones obtained using Abaqus. The differences observed
for the KII values are related to the inaccurate field repre-
sentation around the crack-tip because we used a quite sim-
plistic X-FEM enrichment used in this work. More
explicitly, these differences are related to the different man-
ner used in Abaqus for computing KII since the second
equation for extracting KI and KII (the first one being the
one of the energy release rate) is related to the stress field
around crack-tip, obviously more accurately represented
in this case.

Fig. 15. Mode I DSIF time-history plot for the moving crack.

Fig. 16. Inclined crack problem in a finite plate.

Table 1

Numerical results obtained for the inclined crack problem

Parameter Fine

mesh

Middle

mesh

Coarse

mesh

Abaqus

Elements number 1590 1100 700 911

G [J/m2] 1.18 · 10ÿ3 1.26 · 10ÿ3 1.36 · 10ÿ3 1.23 · 10ÿ3

KI ½Pa
ffiffiffiffi
m

p � 1521.7 1617.9 1624.2 1480.4

KII ½Pa
ffiffiffiffi
m

p � ÿ404.4 ÿ460.9 ÿ493.8 ÿ722.4



6. Conclusions

The development of a dynamic crack propagation mod-
ule based on the X-FEM approach and its implementation
in an explicit finite element code has been presented in this
paper. Some specific algorithms have been developed and
programmed using the C++ language in order to imple-
ment the main features of the X-FEM. The main challenges
of this work concerns the treatment of the dynamic nodes
enrichments with additional degrees of freedom for the rep-
resentation of the crack while this one propagates through
the structure. The approach used for the numerical integra-
tion of the mass and stiffness matrices and the vector force
have also been presented with the retained approach to
manage of a variable size for the global degree of freedom
vector. The implementation of a crack propagation crite-
rion adapted to our specific crack-tip enrichment has also
been presented. Finally two numerical examples have also
been presented to show the effectiveness of the proposed
algorithms.

Concerning the results obtained for these numerical
examples, it was clearly pointed out that some supplemen-
tary works on our code are needed in order to improve
them. First of all a new type of finite element (3-node trian-
gle) will be tested for searching a better conditioning of the
elementary matrix. The impact of the Westergaard crack-
tip enrichment must be studied also to evaluate the poten-
tial gain in accuracy. Several contributions on the dynamic
analysis using X-FEM were published since our works
began, especially concerning the numerical integration
schemes, and next we will try to apply some of such con-
cepts recently developed in order to improve the time inte-
gration algorithm.

Future works and further developments of this code
concerns the initiation of the crack, i.e. the evolution from
a continuous structure to a fissured one, the computation
of the crack propagation within a plastic deformable body
and the introduction of the contact between the lips of the
crack. The most recent developments concern a new for-
malism for the treatment of the crack based on a mixed
extended element free Galerkin (X-EFG) and a FEM
model. The main advantage of this approach is to propose
an implicit enrichment, i.e. no additional dof are used. This
may allow to get round of some problems encountered in
this work, for example the mass matrix diagonalization.
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