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Abstract—Hyperspectral unmixing plays an important role in 
hyperspectral image processing and analysis. It aims to 
decompose mixed pixels into pure spectral signatures and their 
associated abundances. The hyperspectral image contains spatial 
information in neighborhood regions, and spectral signatures 
existing in the region also have high correlation. However, most 
autoencoder (AE) based unmixing methods are pixel-to-pixel 
methods and ignore these priors. It is helpful to add spectral-
spatial information into unmixing methods. A recent trend to deal 
with this problem is to use convolutional neural networks (CNNs). 
Our proposed framework uses 3D-CNN based networks to jointly 
learn spectral-spatial priors. Moreover, previous AE-based 
unmixing methods use fixed spectral signatures for each pure 
material. In our work, we use a carefully designed decoder to cope 
with the endmember variability issue, and variational inference 
strategy is applied to add uncertainty property into endmembers. 
To avoid over-fitting, we use structured sparsity regularizers to 
the encoder networks, and � 2,1-loss is added to the estimated 
abundances to guarantee the sparseness. Experimental results on 
both simulated and real data demonstrate the effectiveness of our 
proposed method.

Index Terms—Hyperspectral imaging, unmixing, endmember 
variability, 3D-CNN, structured sparsity, weight uncertainty.

I. INTRODUCTION

H YPERSPECTRAL imaging is a rapidly developing field 
in remote sensing, it incorporates both imaging and

spectral techniques [1], [2]. Benefiting from the high spectral 
resolution, it enables to analyze the materials in a more accurate 
manner and contribute to a wide range of applications, such as 
remote surveillance, environment monitoring, and food safety 
[3], [4]. However, because of the limited spatial resolution of 
hyperspectral sensors, a pixel of hyperspectral image may 
capture a scene containing more than one dis-tinct material, 
which makes a performance degradation for the further analysis 
of the hyperspectral image. Therefore, hyperspectral unmixing 
has become a hot topic to deal with

the mixed pixel problem. It aims to parse the mixed pixel into

a set of pure spectral signatures (named endmembers) and their

related fractional percentages (named abundances) [5], [6].

The most common approaches to address hyperspectral

unmixing can be divided into three categories, namely, super-

vised, semi-supervised and unsupervised methods. Supervised

methods solve the unmixing task with endmembers known as

a prior or extracted from endmember extraction methods. Then

the problem builds down to the estimation of abundances [7].

Semi-supervised methods estimate abundances along with

selecting proper endmembers from a given spectral library,

e.g., by imposing a sparse representation of the measured pixel

spectra over the library atoms [8]. Unsupervised approaches,

also termed as blind unmixing methods, simultaneously esti-

mate the endmembers and corresponding abundances from the

hyperspectral image with the number of endmembers known

as a prior [9]. The method proposed in this work belongs to

this latter category.

A. Motivation

Thanks to the spatial correlation and spectral similarity in

the neighboring pixels, properly using potential spectral-spatial

priors can effectively improve the unmixing performance.

Conventional unmixing algorithms usually exploit these priors

by plugging smoothness regularizers into the optimization

problem [7], [10]. Conversely, most deep learning (DL) based

blind unmixing frameworks are pixel-wise models and do not

fully exploit the spatial and spectral structures of hyperspectral

images. Recently, convolutional neural networks (CNNs) have

shown promising performance in image processing tasks, such

as image classification [11], [12] and object detection [13],

[14]. More recently, 3D-CNNs have shown to be a relevant tool

to extract meaningful information in both spatial and spectral

domains, with promising results with respect to a classification

task [15], [16]. In this work, we propose to leverage on the 3D-

CNN based framework to fully exploit spectral-spatial features

inherent of hyperspectral images to conduct unmixing.

In addition, selecting a proper mixing model is also a non-

trivial task. Many mixing models have been proposed in the

past decade to explain the relationship between endmembers

and abundance fractions [17], [18]. The linear mixing model

(LMM) is the most widely used model thanks to its com-

putational simplicity and its ease of physical interpretability.

However, due to varying illumination conditions, intrinsic

variability and multiple scatters among pure materials, the

LMM is not valid to accurately describe some real scenes.
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To cope with this issue, several nonlinear mixing models

have been proposed, including bilinear models [19], the Hapke

model [20] and kernel-based models [10], [21]. Nevertheless,

these models assume that each endmember can be charac-

terized by a unique spectral signature, thus neglecting any

spectral variability affecting the endmembers [18].

B. Our contributions

This paper introduces a CNN-based autoencoder (AE) net-

work to solve the unmixing problem. More precisely, the

encoder proposes a 3D-CNN architecture to jointly learn

spectral-spatial features of the hyperspectral images. The de-

coder leverages on the perturbed linear mixing model (PLMM)

to explicitly account for endmember variabilities. The main

contributions of this paper are summarized as follows:

• A novel 3D-CNN architecture is proposed to conduct

spectral unmixing. It can effectively extract spectral-

spatial features characterizing the image, which enhances

the unmixing performance.

• A decoder is specifically designed to account for end-

member variability. Variational Bayesian learning is con-

ducted to derive the probability distribution of the end-

members.

• Structured sparsity is included into the loss function to

regularize the structured shape of our encoder networks.

In particular, group lasso is conducted on different pat-

terns, namely, filter-wise group, channel-wise group and

layer-wise group. This regularizer can avoid over-fitting.

A sparsity-promoting regularization is also considered to

promote sparse abundances.

The paper is organized as follows. Section II briefly reviews

related works dealing with endmember variability and DL-

based unmixing approaches. Section III describes the pro-

posed 3D-CNN based framework and the proposed strategy

to account for the endmember variability within the proposed

architecture. Section V and VI compare the performance of

the proposed method with those obtained by state-of-the-

art unmixing methods. Finally, conclusions of our work are

presented in Section VII.

II. RELATED WORKS

A. AE-based hyperspectral unmixing

Nowadays, as an advanced machine learning method, DL

has demonstrated promising performance while addressing hy-

perspectral unmixing. DL-based unmixing approaches can be

divided into two main classes, namely, classifier-based models

and AE-based models. Classifier-based unmixing methods are

supervised approaches, which train the architecture to directly

map input spectra to abundance fractions. One limitation of

such approaches is that they are supervised and thus need

training data with ground-truth, which heavily limits their ap-

plicability because of the lack of labeled datasets. Conversely,

AE-based unmixing approaches are unsupervised and are not

limited the prior availability of training dataset. Some recently

proposed AE-based unmixing methods are briefly reviewed in

what follows.

Recently, there has been growing interest in proposing AE-

like deep architectures specifically dedicated to the unmixing

problem. By leveraging on a generative description of the

observed hyperspectral images, AE-based unmixing methods

allow the end-users to extract the endmember signatures and to

estimate the corresponding abundances simultaneously. For ex-

ample, the strategy in [22] used a regular multiple hidden layer

AE framework to conduct hyperspectral unmixing. However,

hyperspectral images are usually corrupted by noise or outliers,

which may lead to significant performance degradations. To

cope with this issue, denoising-oriented unmixing architectures

can be derived, see, e.g., [23] or, more recently, [24] where a

denoising constraint was included into the network to achieve

noise reduction. In [25] the authors followed a different route

by deriving a strategy to relevantly select noiseless samples

from the training set.

Since observed pixels are expected to contain a few elemen-

tary materials, sparse constraints have been also widely con-

sidered to regularize DNN-based unmixing methods. Specif-

ically, the work in [26] imposed an �1-norm to the latent

output to generate sparse unmixing results. In [24], an �2,1-
norm constraint was added to the weights of the last layer

of the encoder. Stacked nonnegative sparse AEs were also

introduced to observe sparse unmixing results [27]. All of the

aforementioned AE-based unmixing schemes were designed

following the standard LMM. Although exhibiting overall

good performance, this model can be inappropriate for some

real scenarios, due to the existence of multiple scatters or

the diversity of illumination conditions. Several attempts were

made to learn the nonlinearity, for instance by designing a

dedicated decoder [28], [29]. These works illustrate that DNN

shows superior efficiency to address the nonlinear unmixing

problem. However, hyperspectral images are also characterized

by spatial correlation among pixels. These correlations are

widely neglected by DNN-based architectures which only

focus on the spectral information and neglect the neighboring

correlation.

To fully exploit the spatial information, AE architectures

have been also designed to analyze hyperspectral data. For

instance, the authors of [30] used 2D-CNN to extract spatial

structures present in the hyperspectral images to be unmixed.

However, 2D-CNN methods analyze hyperspectral images

across bands independently, thus neglecting the spectral nature

of the data. Conversely, 3D-CNN are relevant architectures to

extract spatial-spectral features from multiple adjacent bands.

Some works exploit this ability of modeling spatial-spectral

data for hyperspectral image processing tasks, including super-

resolution [31], denoising [32] and inpainting [33]. Fig. 2

illustrates the key difference between the 2D and convolution

operations. In [34], a 3D-CNN based framework has shown

superior performance to incorporate spectral-spatial priors.

However, this latest approach assumed that the endmembers

were known and fixed a priori and neglected any spectral vari-

ability affecting their signatures. Besides, these architectures

are shallow and have limited ability to capture spatial informa-

tion and to mitigate the effects of the noise. Moreover, these

methods use batch-normalization to prevent over-fitting, but it

requires expensive computing resources and also significantly



3

increases the time of gradient calculations.

B. Hyperspectral unmixing with spectral variability
Spectral variability has been considered as one of the most

important issues in hyperspectral image processing. Several

reasons responsible for spectral variability can be identified.

First, the illumination conditions may greatly affect the shape

and the intensity of the spectral signatures over a unique image

or across several images, e.g., in case of multi-temporal acqui-

sitions. Second, the relief of the imaged surfaces, interactions

between neighboring pixels or microscopic scatters between

the materials may also induce fluctuations in the spectral

signatures. Recently, many researches have been conducted

to tackle the spectral variability issue, in particular when

performing spectral unmixing. These approaches are briefly

discussed below.
There are mainly three different classes of methods to

cope with the endmember variability problem. The first class

relies on several spectral instances of a given endmember to

represent each pure material. These instances can be extracted

from the image and subsequently clustered in groups usually

referred to bundles [35], [36]. These classes are generally built

according to the spectral attributes of the pixel signatures to

ensure spectral consistency within each endmember bundle

while maximizing the spectral dissimilarity between bundles.

Several methods proposed to exploit both spatial and spectral

information to extract these bundles [36]–[38]. Then each pixel

of the hyperspectral image can be unmixed by looking for

the most representative endmember in each bundle, leading

to the popular multiple endmember spectral mixture analysis

(MESMA) [39]. One major limitation of MESMA lies in

its high computational complexity due to the numbers of

combinations to be tested to identify the most representative

endmember spectra. To lighten this complexity, one strategy

consists in exploiting the expected sparsity of the pixel [40],

[41].
Other major limitations of the bundle-based methods are

that no explicit model is derived to describe the spectral

variability and they highly rely on the empirical definition

of the bundles, which may be limited to describe complex

models. To alleviate, many parametric of statistical mixing

models incorporating endmember variability have been in-

troduced. The extended linear mixing model (ELMM) uses

a linear combination of spatially correlated endmembers to

introduce variability [42]. The generalized extended linear

mixing model (GELMM) extends ELMM by defining a band-

dependent variation of the endmember signatures [43]. The

PLMM considers that each endmember is affected by an

addictive perturbation, which can capture the varying spectral-

spatial variabilities [44]. Conversely, statistical mixing models

were also proposed to derive a stochastic description of the

variability. Bayesian approaches were applied to learn the

distribution of endmembers, such as normal compositional

model (NCM) [45] and beta compositional model (BCM) [46].

In [47], a Gaussian mixture model (GMM) was proposed to

represent the endmember variability.
Finally, some DL-based frameworks have been also de-

signed to account for the endmember variability. For example,

the endmember-guided unmixing network (EG-net) proposed

in [48] introduced an additional network to address the end-

member variability problem. However, it was a self-supervised

method and needs some training data with associated ground-

truth, which limited its applicability to real-world scenario.

In [49], a variational AE (VAE) was trained to learn the

probability distribution of the endmembers. Then the decoder

was used as a black box to generate endmembers, and the

abundances were estimated by a classical optimization method.

Again, one drawback of this work is that it needs training data

to learn the generative model.

III. PROBLEM FORMULATION

LMM has been widely employed in unmixing, while it

remains inaccurate when facing with spectral variability. Alter-

natively, PLMM extends the conventional formulation LMM

by explicitly defining a parametric model describing the vari-

ability. More precisely, it includes a band- and pixel-wise

additive endmember perturbations to account for endmember

variabilities of low energy. This model has been widely used

in various contexts [44] including online [50] or distributed

[51] contexts and can account for deviations from the LMM.

It can be written as

ri =
P∑

p=1

(ep + dp,i)ap,i + ni (1)

where ri ∈ R
L is the measured spectrum in L spectral bands

associated with the ith pixel of the hyperspectral image, ep
denotes the pth nominal endmember signature. This nominal

signature is expected to be locally perturbed due to various

natural phenomena such as illumination variations and intrinsic

variability. These variations affect the nominal endmember

signature in each pixel individually and are modeled as an

additive perturbation, denoted dp,i for the pth endmember

perturbation in the ith pixel. The coefficient ap,i represents

the abundance of the ith pixel related to the pth endmember

and ni is a zero-mean Gaussian noise. In the sequel, we

assume that the number P of endmembers is known or can

be estimated, e.g., using HySime [52]. Using standard matrix

notations, the P nominal endmember spectra forms the matrix

denoted E ∈ R
L×P and A = [a1, . . . ,aN ] ∈ R

P×N is the

matrix whose ith column ai = [a1,i, . . . , aP,i]
T

is composed

of the abundance coefficients associated with the ith pixel.

The image to be unmixed is assumed to be composed of

Nr rows and Nc columns resulting in N = NrNc pixels

whose spectral signatures ri (i = 1, . . . , N ) can be arranged

in the 3-dimensional array R ∈ R
L×Nr×Nc or equivalently,

by lexicographically ordering these signatures, in the matrix

R ∈ R
L×N . The set of variability terms dp,i ∈ R

L (p =
1, . . . , P , i = 1, . . . , N ) are gathered in the 3-dimensional

array D ∈ R
L×P×N . Using these notations, PLMM applied

for the N pixels can be rewritten in a compact form as

R = M⊗A+N , (2)

where M ∈ R
L×P×N is a 3-dimensional array of the pixel-

wise perturbed endmember signatures, i.e.,

M:,:,i = E +D:,:,i � M i, i = 1, . . . , N (3)
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and ⊗ stands for a specific operator defined by

M⊗A = [M1a1, . . . ,MNaN ] . (4)

The noise matrix N = [n1, . . . ,nN ] satisfies nn ∼ N (0,Σ)
(n = 1, . . . , N ) with Σ = diag(δ21 , δ

2
2 , · · · , δ2L), i.e., the noise

is assumed to be pixel-wise independent but with a band-wise

signal-to-noise ratio (SNR).

The abundance maps are considered to satisfy two con-

straints, namely, abundance nonnegative constraint (ANC) and

abundance sum-to-one constraint (ASC), which are consistent

with the physical interpretation of the abundances. The end-

member matrix are also required to satisfy a nonnegativity

constraint (ENC). This set of constraints can be expressed as

A � 0, 1PA = 1N ,

E � 0, M � 0,
(5)

where � denotes an element-wise operator, 1P ∈ R
1×P and

1N ∈ R
1×N represent all-one row vectors.

IV. PROPOSED METHOD

This section details the proposed unmixing method, whose

architecture is depicted in Fig. 1. As previously, this method

is based on an AE framework able to deal with unsupervised

unmixing under endmember variability. Similarly to the most

conventional AEs, the architecture is divided into two parts,

namely, encoder and decoder. The encoder is designed to map

the input pixels into a lower dimensional representation, which

can be formulated as

H = E(R) (6)

where E(·) : R
L×Nr×Nc → R

P×Nr×Nc is a nonlinear

function and H is the compressed image representation that

can be reshaped in a matrix form as H ∈ R
P×N . To take

advantage of the spectral-spatial nature of the input data, this

part is specifically designed with 3D-CNNs. More details on

this encoding step are given in Section IV-A.

The decoder is applied to the lower representation to recon-

struct the input data, i.e.,

R̂ = D(H), (7)

where D(·) : RP×N → R
L×Nr×Nc is the decoding function.

In particular, this function is designed according to the fol-

lowing reconstruction model

R̂ = W ⊗H, (8)

where W ∈ R
L×P×N are the decoder weights whose specific

form will be defined later in (13), and R̂ ∈ R
L×N is the

reconstructed data. To account for endmember variability,

these weights are learnt within a probabilistic framework, as

detailed in Section IV-B.

The parameters of the network are estimated by back

propagation and using a stochastic gradient descent algorithm.

When comparing (8) with the matrix form of PLMM (2),

it clearly appears that the decoder mimics the output in

agreement with this model. Therefore, after the entire network

has been trained, the output of the encoder (i.e., the input of

the decoder) can be considered as abundances, the weights of

decoder are associated with endmembers. Interested readers

are invited to consult [53] for a thorough interpretation of the

relation between the decoder structure and mixture models.

Thus, a one-to-one correspondence can be drawn between

the endmember and abundance matrices on one side, and the

compressed representation and decoder weights on the other

side. Finally, the target quantities will be estimated as

M̂ ← W (endmember estimation) (9)

Â ← H (abundance estimation). (10)

A. Encoder

The proposed encoder is designed using CNNs with 3D

convolution kernels because of their ability to act in both

spatial and spectral dimensions. Fig. 2 illustrates the 3D

convolution operation and the architecture of the proposed

encoder is shown in Fig. 1 (left). It is composed of six CNN

layers where the number of filters decreases with the depth

of the layer. The first five layers use 3D convolution kernels

with spatial size of 3 × 3 to learn the spatial information.

The last layer uses 3D convolution kernel with spatial size

of 1× 1 to focus on compressing the spectral information. A

downsampling of factor 2 is applied to the feature maps in

the spectral dimension. Furthermore, instead of using dropout

to avoid over-fitting, we rather resort to a structured sparse

regularizer, which can not only avoid over-fitting but also

reduce the computing burden of the network. More details

are presented in Section IV-C. The spectral dimension of the

encoder output is set to the number P of endmembers. Leaky

ReLU is used as activation function of each layer. Softmax is

particularly selected as the activation function of the last layer

to ensure that the output satisfies ANC and ASC.

B. Decoder

Archetypical AE-based unmixing architectures usually as-

sume a fixed endmember signature for each pixel and are

not able to account for endmember variability. Conversely, in

this work, we aim at designing a decoder able to tackle this

challenge. As suggested by (9), the decoder weights W to be

learnt stand for the perturbed endmember signatures. To model

the uncertainty resulting for the variability, these weights are

assumed to be random variables whose posterior distribution

writes

P (W | H,R) =
P (H,R|W)P (W)

P (H,R)
. (11)

Unfortunately, deriving this posterior remains intractable. Thus

a variational approximation is proposed, which consists in

minimizing the Kullback-Leibler (KL) divergence between the

posterior in (11) and an instrumental distribution q(W | Z)
parameterized by Z. This can be formulated as the optimiza-

tion problem

min
Z

KL [q(W |Z)‖P (W |H,R)] . (12)

Directly minimizing (12) is still non-trivial due to the

stochastic nature of the weights. To alleviate, one resorts to
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Decoder

Hyperspectral 
image

Leaky ReLU3D-CNN layer

Encoder

Endmembers

Reconstructed 
image

Softmax

Fig. 1. The architecture of our proposed framework. It consists of two parts, encoder and decoder. The estimated abundances H are the output of encoder,
and the extracted endmembers W are the weights of decoder, which also devotes to the endmember variability task.

Fig. 2. Schematic illustration of 2D (a) and 3D (b) convolution operations.

the reparameterization trick by defining the mappings (p =
1, . . . , P ; i = 1, . . . , N )

wp,i = up + vp,i, (13)

where up and vp,i are considered as random variable with

vp,i ∼ N (0,Σp,i). In other words, the variational posterior

is assumed to obey a Gaussian distribution, and by assuming

independence on pixels and endmembers, can be factorized as

q(W |Z) =

N∏
i=1

P∏
p=1

N (wp,i;up,Σp,i) (14)

where, with a slight abuse of notations, N (·;a,B) denotes

the probability density function of the Gaussian distribution

of mean a and covariance matrix B.

Following the estimation strategy (9), by comparing (13)

with the PLMM formulation (1) or, more precisely, the

definition of the perturbed endmember signatures (3), the

pixel-independent mean vector up (p = 1, . . . , P ) can be

interpreted as the pth endmember nominal signature while

the stochastic pixel-dependent component vp,i is expected to

capture the endmember variability over pixels. Two strategies

are considered to model vp,i:

• First, to save computational resources and time, we

consider vp,i is band independent, i.e., it can be written

as vp,i = εp,iσp,i, where εp,i ∼ N (0, I). In other

words this model, referred as 3DCNN-var/I in the sequel,

assumed a diagonal covariance matrix Σp,i = σ2
p,iI with

σ2
p,i = log(1 + exp(φp,i)). The variational parameters

write Z = {U ,Φ} where U = [u1, . . . ,uP ] ∈ R
L×P

and Φ ∈ R
P×N with [Φ]p,i = φp,i. These parameters

can be updated according to the rules

U ← U − υ∇U

Φ ← Φ− υ∇Φ

(15)

where υ is the learning rate.

• Second, to account for correlation across bands, we

consider the richer model denoted 3DCNN-var/D defining

the perturbation as vp,i = Lp,iεp,i, where Lp,i is a

lower or upper triangular matrix with nonzero entries

on the diagonal. The off-diagonal elements define the

correlations between bands, and εp,i ∼ N (0, I). In this

case, the covariance matrix can be derived as Σp,i =
Lp,iL

T
p,i where Lp,i is the corresponding Cholesky factor.

More details can be found in [54], [55]. The variational
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parameters are Z = {U ,L} and can be updated using

the following rules

U ← U − υ∇U

L ← L− υ∇L.

(16)

The first strategy is simple, but it ignores the correlation

between spectral bands. The second one uses a full-covariance

matrix to define the correlation between the bands, at cost of

higher computational resources. Both models will be compared

in the experimental section to evaluate the trade-off between

performance and complexity (see Section V).

C. Overall loss function

The overall loss of the proposed framework is composed

of four terms designed to reach better unmixing performance.

They are detailed below.

Reconstruction loss – This term is classically introduced to

ensure consistency between input pixels and their correspond-

ing reconstructed pixels, i.e.,

Ldata =
1

N

∥∥∥R− R̂
∥∥∥2
F
. (17)

KL loss – The problem (12) can be turned into the maxi-

mization of the corresponding evidence lower bound (ELBO),

leading to the loss function

LKL = Eq(W|Z)

[
log

q(W |Z)

P (W)P (H,R|W)

]
. (18)

This loss is used to train the proposed decoder while account-

ing for the endmember variability. The loss function (18) can

be rewritten as

LKL = KL [q(W |Z)‖P (W)]− Eq(W|Z) [logP (H,R|W)] .
(19)

The first term of (19) is a KL term. The weights W are

assigned a separable prior distribution

P (W) =
N∏
i=1

P∏
p=1

N (
wp,i; ūp, Σ̄

)
(20)

where the ūp and Σ̄ are the prior means and covariance matri-

ces. In this work, based on the particular interpretation of the

weights (see previous section), the matrix Ū = [ū1, . . . , ūP ]
is chosen as crude estimates of the endmembers, e.g., pro-

vided by vertex component analysis (VCA) [56], such that

physically-based prior information on the endmembers can be

incorporated into the estimation procedure. Thus, the first term

in the right-hand side of (19) can be rewritten as

KL [q(W |Z)‖P (W)] =

1

2

∑
p,i

[
log

(
Σ̄

Σp,i

)
+ ‖up − ūp‖2Σ̄−1 + tr

(
Σ̄−1Σp,i

)− L

]
.

(21)

The structure of the prior covariance matrix Σ̄ is selected as

follows. For 3DCNN-var/I, we set Σ̄ = λI, where λ ∈ [0, 1]
adjusts the level of endmember perturbation. For the richer

model 3DCNN-var/D, Σ̄ is a symmetric positive definite

matrix. The elements of Σ̄ reduce as they are away from the

diagonal, as neighboring bands are usually more correlated.

We set Σ̄ as as a Teoplitz matrix following a 1st order

autoregressive structure with the ith element of the 1st row
denoted λi.

The second term of (19) can be approximated by Monte

Carlo sampling

Eq(W|Z) [logP (H,R|W)] ≈ 1

J

J∑
j=1

logP (H,R|W(j)),

(22)

In this work, the number of samples are chosen as J = N .

By writing P (H,R|W) = P (R|W ,H)P (H) and assuming

that

P (R|W ,H) = N (R; R̂,Σr), (23)

where R̂ = W ⊗ H , it appears that this second term only

depends on data fitting terms similar to (17), up to some

constants. Since the reconstruction error has been already

considered in the whole loss function, the KL loss boils down

to its first term (21).

Structured sparsity loss – Motivated by the fact that redun-

dant information is expected to be propagated through the

encoder, a structured sparsity is first introduced to regularize

the structure of the proposed encoder. This will have the

benefit of not only reducing the computational cost but also

avoiding over-fitting. Let S denote the number of layers

defining the encoder. The weights of the sth layer are gathered

in a 5-dimensional array Λ(s) ∈ R
Fs×Cs×Ds×Ms×Ks where

Fs is the number of filters, Cs is the channel size, and Ds,

Gs and Ks stand for the depth, width and height of the filter,

respectively. Three levels of group-sparsity are imposed and

described below.

• Filter-wise sparsity: Using consistent notation, ones de-

notes Λ
(s)
f,:,:,:,: is the f th filter of the sth layer. Filter-wise

sparsity is imposed for each layer, according to

Lsp-filter =
S∑

s=1

⎛
⎝ Fs∑

f=1

∥∥∥Λ(s)
f,:,:,:,:

∥∥∥
F

⎞
⎠ . (24)

• Channel-wise sparsity: Similarly,Λ
(s)
:,c,:,:,: stands for the c-

th channel of the sth layer and the group sparsity accross

channels writes function on the structured sparsity of

channels can be defined as:

Lsp-channel =
S∑

s=1

(
Cs∑
c=1

∥∥∥Λ(i)
:,c,:,:,:

∥∥∥
F

)
. (25)

• Layer-wise sparsity: Finally, the depth of the encoder is

regularized by considering the group-sparsity promoting

term

Lsp-layer =
S∑

s=1

∥∥∥Λ(s)
∥∥∥
F
. (26)

By using these structured group-sparsity regularizers, irrele-

vant filters and/or channels can be implicitly removed. More-

over, the layer-wise sparsity makes weights get small values

to avoid over-fitting.



7

50 100 150 200

0.9

0.95

1

1.05
1

L

2

3

Fig. 3. An example of the randomly generated affine function to mimic
endmember variability.

Besides, since only a few endmembers are expected to

contributed to each measured pixel spectrum, the abundances

are also accompanied by a sparsity promoting regularization

[6]. It is formulated as:

Lsp-abu =

P∑
i=1

‖Hi,:‖2 = ‖H‖2,1 , (27)

where Hi,: is the ith row of the abundance matrix H .

To conclude, the sparsity term included into the overall loss

function is decomposed as

Lsp = Lsp-filter + Lsp-channel + Lsp-layer + Lsp-abu. (28)

Endmember smoothness loss – The endmember perturbation

terms are assumed to be spectrally smooth. According to the

estimation strategy (9), and the reparametrization (13), the

perturbation term affecting the pth endmember in the ith pixel

can be identified as vp,i ∈ R
L in (13). By gathering all

these terms in the 3-dimensional array V ∈ R
L×P×N , the

spectral smoothness of these perturbations can be promoted

by considering the penalty

Lsmooth =
1

NP

L−1∑
�=1

‖V�,:,: − V�+1,:,:‖2F, (29)

To summarize, the loss function of the proposed framework

writes

Lall = Ldata + αLKL + βLsp + γLsmooth, (30)

where α, β and γ are positive regularization parameters.

V. EXPERIMENTS ON SYNTHETIC IMAGES

A. Synthetic data

For a quantitative performance evaluation with respect

(w.r.t.) to state-of-the-art unmixing methods, experiments are

first conducted on synthetic hyperspectral images. Each gen-

erated image is of size 256 × 256 with 224 spectral bands

and is composed of P = 4 endmembers. The abundance

maps of this set of images are generated using HYDRA

toolbox with spatial correlation between local regions 1. The

1Available online at http://www.ehu.es/ccwintco/index.php/Hyperspectral
Imagery Synthesis tools for MATLAB

TABLE I
RMSE, MSAD AND RE RESULTS OF ABLATION STUDY USING DIFFERENT

LOSS FUNCTIONS. BEST RESULTS ARE REPORTED IN BOLD.

Loss functions RSME mSAD RE
Ldata 0.0567 0.0742 0.0031

Ldata + LKL 0.0478 0.0651 0.0023

Ldata + LKL + Lsp 0.0451 0.0607 0.0019

Ldata + LKL + Lsp + Lsmooth 0.0424 0.0544 0.0017

TABLE II
RMSE, MSAD AND RE RESULTS USING VARIOUS SPARSE REGULARIZERS

AND THEIR COMBINATIONS.

Loss functions RMSE mSAD RE
Ldata + LKL + Lsmooth + Lsp-filter 0.0452 0.0592 0.0017

Ldata + LKL + Lsmooth + Lsp-channel 0.0465 0.0598 0.0018

Ldata + LKL + Lsmooth + Lsp-layer 0.0461 0.0605 0.0018

Ldata + LKL + Lsmooth + Lsp 0.0424 0.0544 0.0017

10 20 30 40 50
Epochs

0.05

0.1

0.15

0.2
R

M
SE

10 dB
20 dB
30 dB

Fig. 4. Synthetic data: RMSE as a function of epochs.

nominal endmember spectral signatures are extracted from

the USGS spectral library, which are captured using a Beck-

man 5270 spectrometer covering wavelength from 400nm to

2500nm. To introduce physically plausible spectral variability,

these signatures are perturbed following the strategy proposed

in [44]. More precisely, they are multiplied by piece-wise

affine functions, whose one particular example is depicted in

Fig. 3. For a amount of variability chosen as c = 0.15, such
an affine function is built by drawing four parameters, namely,

ξi ∼ U(1 − c, 1 + c), i = {1, 2, 3} and Lbreak ∈ {1, · · · , L}.
Note a different affine function is generated for each endmem-

ber and each pixel. The mixtures are corrupted by a zero mean

additive Gaussian noise. The generated data sets are identified

with different signal-to-noise ratios, namely, 10dB, 20dB and

30dB.

B. Performance figures-of-merit

The unmixing performance is evaluated w.r.t. several

figures-of-merit. First, the abundance estimation is assessed
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Fig. 5. Synthetic data (SNR = 30dB): RMSE as functions of the parameters
α, β, γ, learning rate, batch size and λ.

by the root mean square error (RMSE)

RMSE =

√√√√ 1

NP

N∑
i=1

‖ai − âi‖2, (31)

where âi is the estimated abundances, and ai is the reference

abundances. The estimation performance in terms of end-

members is evaluated by computing the mean spectral angle

distance (mSAD)

mSAD =
1

NP

N∑
i=1

P∑
p=1

arccos

( 〈mp,i | m̂p,i〉
‖mp,i‖2‖m̂p,i‖2

)
, (32)

where m̂p,i and mp,i refer to the true and estimated pth
endmember in the ith pixel. Finally, the reconstructed error

(RE) is considered to measure data fitting

RE =
1

NL
‖R− R̂‖2F, (33)

where R̂ are the reconstructed pixels.

C. Ablation analysis

First, an ablation study is conducted to assess the relevance

of the different term of the overall loss function (30). The

experiments are conducted on a dataset characterized by the

SNR chosen as SNR = 20dB. The unmixing results are

reported in Table I.

These results show that the sole use of the reconstructed

loss in the objective function ensures the completion of

the unmixing task, but with a limited accuracy. Including

proper regularization can enhance the unmixing performance.

Through the introducing of KL loss, the ability of the proposed

framework to model the endmember variability is improved.

Moreover, sparse constraints are expected to decrease over-

fitting effects, which may explain the observed corresponding

gain. Moreover, promoting sparse abundances takes advantage

of a well-documented property inherent to real scenes. The use

of the smoothness term guarantees a moderate variation of the

endmember variability. To summarize, all terms included in

the overall loss function seem to be relevant to reach optimal

performances. As an illustration, Fig. 4 presents the RMSE as

the number of epochs.

We also conduct an experiment to compare the interest

of using the sparsity-promoting regularizations introduced in

Section IV-C. The unmixing results are reported in Table II.

We observe that all these regularizations lead to significant

improvement of the performance, and the combination of all of

them provide the best results. Note that the unmixing results of

our proposed method are the results of 3DCNN-var/D unless

specifically denoted.

D. Comparison with state-of-the-art methods

The performance of the proposed method is compared to

those of eight state-of-the-art unmixing methods. The first

three methods are recent DNN based unmixing methods using

fixed endmembers. The other methods chosen for comparison

are designed to handle endmember variability. Their principles

and implementation are briefly recalled in what follows.

1) SDNMF: the method proposed in [57] is a sparse con-

strained deep NMF method for unmixing. We set λ =
0.1, μ = 0.1 and α = 0.1 in our work. Abundances and

endmembers have been initialized by full constrained

least square (FCLS) method [58] and vertex component

analysis (VCA) [56] outputs, respectively.

2) DAEN: this work [59] is a deep autoencoder based

unmixing method. We set μ = 0.1 and λ = 0.1. VCA
is used to initialize the endmembers.

3) SNMF-Net: the method proposed in [60] is a model-

and learning-based unmixing method. It unrolls the

optimization of Lp-sparsity constrained NMF unmixing

method into a deep alternating neural network.

4) ELMM: the method proposed in [42] considers spectral

variability and spatial information. Pixel wise scaling

factors are used to take into account the endmember

variability. We set the stopping tolerances εa, εs and

εΨ to 1 × 10−3. We set λa = 0.05, λs = 0.001 and

λΨ = 0.001. FCLS and VCA outputs are applied for

initialization.

5) GELMM: the method proposed in [43] generalizes

ELMM by assuming that the scaling factors are band

dependent. The experimental settings of this method are

the same as the ELMM.

6) PLMM: the method proposed in [44] uses a pure

material with an additive perturbation accounting for

endmember variability. The tolerance for stopping is set

to 1 × 10−3. We set αp = 0.05, βp = 2.5 × 10−5 and

γ = 1 in our experiments. Abundances and endmembers

have been also initialized by FCLS and VCA outputs.

7) DGEM: the method in [49] proposes a deep gener-

ative endmember model based on VAE to deal with

endmember variability. An optimized method is then

used to estimate the abundances. The deep generative

endmember model is trained with Adam optimizer, and
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TABLE III
SYNTHETIC DATA: ESTIMATION PERFORMANCE.

10 dB 20 dB 30 dB

RMSE mSAD RE RMSE mSAD RE RMSE mSAD RE
SDNMF 0.0932 0.4688 0.0824 0.0688 0.4207 0.0481 0.0523 0.3153 0.0238

DAEN 0.0848 0.1855 0.0843 0.0592 0.1559 0.0405 0.0505 0.0701 0.0176

SNMF-Net 0.0914 0.1858 0.1240 0.0861 0.0886 0.0892 0.0589 0.0545 0.0234

ELMM 0.1168 0.1986 0.0303 0.1026 0.1370 0.0102 0.0892 0.1140 0.0080

GELMM 0.1371 0.3633 0.0287 0.0833 0.2759 0.0068 0.0715 0.2714 0.0063

PLMM 0.1716 0.1771 0.0250 0.0846 0.0813 0.0033 0.0495 0.0491 0.0011

DGEM 0.0834 0.0906 0.0229 0.0498 0.0601 0.0029 0.0443 0.0555 0.0014

PGMSU 0.0859 0.0922 0.0335 0.0556 0.0624 0.0193 0.0402 0.0479 0.0073

3DCNN-var/I 0.0604 0.0671 0.0150 0.0433 0.0552 0.0017 0.0355 0.0470 0.0002

3DCNN-var/D 0.0595 0.0668 0.0149 0.0424 0.0544 0.0017 0.0348 0.0469 0.0002

50 100 150 200
Bands

0

0.2

0.4

0.6

0.8

R
ef

le
ct

an
ce

GT
=1  10-3

=0

50 100 150 200
Bands

0

0.2

0.4

0.6

R
ef

le
ct

an
ce

GT
=1  10-3

=0

50 100 150 200
Bands

0

0.2

0.4

0.6

0.8

R
ef

le
ct

an
ce

GT
=1  10-3

=0
50 100 150 200

Bands

0.2

0.4

0.6

0.8

R
ef

le
ct

an
ce

GT
=1  10-3

=0

Fig. 6. Synthetic data (SNR = 20dB, one randomly selected pixel): actual
endmembers (red) and endmembers estimated with γ = 1×10−3 (blue) and
γ = 0 (cyan).

the number of epoch is set to 50. We set λA = 0.01
and λZ = 0.1 in our experiments. Abundances and

endmembers have been initialized by FCLS and VCA

outputs.

8) PGMSU: the work in [61] proposes a VAE-based frame-

work for hyperspectral unmixing accounting for end-

member variability. We set λ1 = 0.1, λ2 = 5, λ3 = 1
and η = 0.1 in our work.

9) The proposed methods (both 3DCNN-var/I and 3DCNN-

var/D) have been implemented on Pytorch. Adam opti-

mizer is used to train the framework. The learning rate is

set to 1×10−3. The number of training epoch is fixed to

50. The weight decay parameter is set to 1× 10−5. The

hyperparameters adjusting the weights of the respective

terms in the overall loss function have been chosen as

α = 1×10−5, β = 1×10−4, γ = 1×10−4 and λ = 0.5.
Note that the results have been averaged over 10 Monte

Carlo runs.

The unmixing results are reported in Table III. The pro-

posed methods provide competitive abundance estimation and
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Fig. 7. Synthetic data (SNR = 20dB): estimated nominal endmember
signatures (black) and their corresponding estimated variability (red shaded
region).

endmember extraction results. In particular they achieve good

RMSE, aSAD and RE results. These results confirm the

effectiveness of the proposed methods, and also indicate that

they are more robust to endmember variability. Fig. 8 depicts

the abundance maps estimated by the compared methods

for the data set corrupted by a noise with SNR = 30dB.
After a visual inspection, the abundance maps recovered by

the proposed methods seem to be in better agreement with

the actual abundance maps. We also observe that 3DCNN-

var/D gets better unmixing results than 3DCNN-var/I, which

indicates the usefulness of considering correlations across

spectral bands. Under the same hardware sources, the run-

ning time of 3DCNN-var/I is 390s, and 3DCNN-var/D is

1740s, which shows the trade-off between performance and

complexity. Fig. 7 shows the nominal spectral signature as

well as the variability of the endmembers estimated by the

proposed method (3DCNN-var/D) on the dataset characterized

by a noise level of SNR = 20dB. These results are in

agreement with an expected spectrally smooth variation around
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Fig. 8. Synthetic data (SNR = 30dB): actual abundance maps (1st column) and estimated abundance maps (2nd to 11th columns).

TABLE IV
RE COMPARISON OF THE JASPER RIDGE DATA AND URBAN DATA. BEST

RESULTS ARE REPORTED IN BOLD.

Jasper Ridge Urban

SDNMF 0.0198 0.0432

DAEN 0.0162 0.0185

SNMF-Net 0.0151 0.0172

ELMM 0.0274 0.0122

GELMM 0.0573 0.0121

PLMM 0.0565 0.0118

DGEM 0.0143 0.0112

PGMSU 0.0174 0.0167

3DCNN-var/I 0.0137 0.0105

3DCNN-var/D 0.0129 0.0103

a nominal signature, demonstrating the ability of the proposed

method to handle endmember variability. The parameters of

the proposed methods have been selected empirically, using a

grid search strategy to choose a set of parameters providing

the best unmixing results. Fig. 5 shows the sensitivity of the

proposed method (3DCNN-var/D) with respect to α, β, γ,
learning rate, batch size and λ. It can be observed the method

exhibits satisfactory RMSE within a reasonable range around

the optimal parameter values.

VI. EXPERIMENTS ON REAL IMAGES

To further assess the performance and effectiveness of the

proposed method, this section reports experiments conducted

on real images. Two well-known datasets, namely Jasper Ridge

image and Urban image, are considered. The unmixing results

of compared algorithms, namely, SDNMF, DAEN, SNMF,

ELMM, GELMM, PLMM, DGEM and PGMSU are also

presented.

Fig. 9. Jasper image: scatter plot after projection onto the first two principal
components. From left to right and top to bottom: ELMM, GELMM, PLMM,
DGEM, PGMSU, 3DCNN-var/I and 3DCNN-var/D.

A. Description of the images

The Jasper Ridge image2 was collected by the airborne

visible/infraed imaging spectrometer (AVIRIS) sensor. The

scene contains 224 bands covering from 380nm to 2500nm,

2Data available online at https://rslab.ut.ac.ir/data.
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Fig. 10. Jasper image: estimated abundance maps.

Fig. 11. Urban image: estimated abundance maps.

with a spectral resolution up to 9.46nm. To mitigate the water

absorption and atmosphere effects, noisy bands (1–3, 108–

112, 154–166 and 220–224) have been removed, leading to

L = 198 remaining bands. A sub-image of 100×100 pixels has
been considered in this experiments. Four main endmembers

were identified as “tree”, “water”, “soil” and “road”.

The second scene is the Urban dataset. It was recorded by

the hyperspectral digital imagery collection experiment (HY-

DICE) sensor, and contains 210 bands covering the spectral

range 400 − 2400nm. After removing the noisy and water

absorption bands (1–4, 76, 87, 101–111, 136–153 and 198–

210), L = 162 bands are exploited. The image is composed

of an area of 307× 307 pixels where each pixel corresponds

to a 2m×2m area. Five endmembers have been previously

identified as “asphalt”, “grass”, “tree”, “roof” and “soil”.

B. Results

The learning rate, training epoch and weight decay pa-

rameters used for the proposed method in the real data

experiments are the same as those used in synthetic data. In

this experiment, α, β, γ and λ are set to 3× 10−6, 3× 10−5,

5× 10−3 and 0.1, respectively. Fig. 10 and Fig. 11 show the

estimated abundance maps for the Jasper Ridge and Urban

datasets, respectively. Compared with other algorithms, the

proposed method provides clearer estimated abundance maps

with sharper edges.

Fig. 9 depicts the scatter plot of the Jasper dataset after pro-

jection onto a plane identified by principal component analysis.

The estimated endmembers are also depicted for the compared

methods. PLMM and the proposed methods seem to provide

the most consistent results. Fig. 12 shows the distribution of

the endmembers extracted from the Urban dataset. All these

results demonstrate the efficicency of the proposed method
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Fig. 12. Urban image: estimated nominal endmember signatures (black) and their corresponding estimated variability (red shaded region).

to cope with endmember variability. Since no ground truth

is available to evaluate the estimation performance in terms

of abundances and endmembers, only RE is considered as a

figure-of-merit. The metrics are reported in Table IV. They

show that the proposed method gets the lowest REs.

VII. CONCLUSION

In this work, we proposed a novel deep autoencoder based

framework for blind unmixing, which also accounts for spec-

tral variability. 3D-CNN based architecture was applied to

jointly learn spectral-spatial image features, and variational

Bayesian learning strategy was applied to approximate the

endmember distributions. Structured sparsity-based regulariza-

tions were included into the loss function to avoid over-fitting

and to promote sparse abundances. Experiments conducted

on synthetic and real data show the superior performance

of the proposed method when compared to state-of-the-art

algorithms. Future works will explore the benefit of more

complex deep architectures to model endmember variability.
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