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Reduced-order modeling for unsteady transonic flows around an airfoil

High-transonic unsteady flows around an airfoil at zero angle of incidence and moderate Reynolds numbers are characterized by an unsteadiness induced by the von Kármán instability and buffet phenomenon interaction. These flows are investigated by means of low-dimensional modeling approaches. Reduced-order dynamical systems based on proper orthogonal decomposition are derived from a Galerkin projection of two-dimensional compressible Navier-Stokes equations. A specific formulation concerning density and pressure is considered. Reduced-order modeling accurately predicts unsteady transonic phenomena. ͓DOI: 10.1063/1.2800042͔ A proper orthogonal decomposition ͑POD͒ Galerkin method is proposed for reduced-order models ͑ROMs͒ of unsteady, high-transonic flows. The specific contribution of this study concerns the development of ROMs issued from the fully compressible time-dependent Navier-Stokes system and their application for the prediction of transonic unsteady flow features. The two-dimensional ͑2D͒ transonic flow around a NACA0012 airfoil at zero angle of incidence and moderate chord-based Reynolds number ͑Re ͓0.5, 1͔ ϫ 10 4 ͒ represents a challenging configuration to investigate due to the development of an unsteadiness triggered by compressibility effects. [START_REF] Bouhadji | Organised modes and shock-vortex interaction in unsteady viscous transonic flows around an aerofoil, Part I: Mach number effect[END_REF] At incompressible regimes ͑Mach number Ͻ0.3͒, this flow is steady. As Mach number ͑Ma͒ increases, an instability mode and unsteady phenomena emerge, leading to transition to turbulence. At Mach number 0.3, an undulation appears in the wake. The amplification of this phenomenon as the Mach number increases is responsible for the onset of the von Kármán instability. In the Mach number interval ͓0.5, 0.7͔, this mode becomes more pronounced and a periodic alternating vortex pattern is clearly developed. This phenomenon is induced by boundary layer separation downstream of supersonic regions. At Mach number 0.75, a lower frequency phenomenon that corresponds to the oscillation of supersonic pockets on each side of the airfoil is observed. This unsteadiness is the onset of the buffet phenomenon. It is characterized by a strong oscillation of the shock waves at higher Reynolds numbers. [START_REF] Seegmiller | Steady and unsteady transonic flow[END_REF][START_REF] Raghunathan | Transonic shock oscillations on NACA0012 aerofoil[END_REF] Fundamental frequencies of these two phenomena are clearly different at moderate Reynolds numbers. [START_REF] Bouhadji | Organised modes and shock-vortex interaction in unsteady viscous transonic flows around an aerofoil, Part I: Mach number effect[END_REF] Buffet has disappeared at Mach number 0.85, whereas von Kármán vortex shedding is observed until Ma= 0.95. In the present study, flow A ͑Ma = 0.80, Re= 10 4 ͒ is in the range of existence of both phenomena, as the monitoring of Mach number field and pressure coefficient on the airfoil illustrates ͑Fig. 1͒. Flow B ͑Ma = 0.85, Re= 0.5ϫ 10 4 ͒, which is strictly governed by the von Kármán instability, is considered for comparison purpose.

The model reduction method consists of a Galerkin projection of the Navier-Stokes equations onto a lowdimensional basis determined to reach optimal energy reconstruction. This basis is issued from a POD, 4 also known as Karhunen-Loève expansion 5 of flow variables. Various loworder dynamical models have been derived from the Navier-Stokes system under an incompressibility assumption, in 2D ͑Refs. 6-8͒ and in three-dimensional ͑3D͒ laminar cases [START_REF] Ma | A low-dimensional model for simulating three-dimensional cylinder flow[END_REF][START_REF] Buffoni | Low-dimensional modelling of a confined three-dimensional wake flow[END_REF] on the basis of direct numerical simulation datasets. For compressible flows and especially in high-transonic regimes, the coupling of kinematic and thermodynamic variables induces specific difficulties concerning state formulation and inner product involved in POD. In Ref. 11, a general framework is provided to derive low-order models based on inviscid Euler equations, via the POD-Galerkin approach, among others. Frequency-domain POD has been used to reach model reduction of subsonic and transonic flows on the basis of inviscid-viscous models, at high Reynolds numbers ͑10 6 and above͒. At first, these ROMs were based on a linearization of the dynamic perturbation about a nonlinear steady flow. This technique achieved efficient predictions of flows around airfoils and turbomachinery cascades oscillating at small amplitudes, [START_REF] Hall | Proper orthogonal decomposition technique for transonic aerodynamic flows[END_REF][START_REF] Epureanu | Reduced-order models of unsteady transonic viscous flows in turbomachinery[END_REF][START_REF] Epureanu | Reduced-order models of unsteady viscous flows in turbomachinery using viscous-inviscid coupling[END_REF] as well as in 3D aeroelasticity. [START_REF] Thomas | Three-dimensional transonic aeroelasticity using proper orthogonal decomposition-based reduced-order models[END_REF] Recently, a framework using automatic differentiation has been put forward to extend the previous methodology to nonlinear unsteady flow physics, applicable for large oscillations. [START_REF] Thomas | Using automatic differentiation to create a nonlinear reduced order model of a computational fluid dynamic solver[END_REF] This approach is promising for flow control based on forced pitching motion of an airfoil that can be envisaged in a further issue of the present study. An isentropic inner product [START_REF] Rowley | Model reduction for compressible flows using POD and Galerkin projection[END_REF] leads to compressible ROMs that are valid for moderate Mach numbers and cold flows. Investigations of stability properties of POD ROMs have been reported in Ref. 18. In the present study, a specific inner product ensuring POD dimensional consistency in the compressible case is defined. This is utilized to extract the POD basis and to perform a Galerkin projection of a modified state system [START_REF] Vigo | Extension of methods based on the proper orthogonal decomposition to the simulation of unsteady compressible Navier-Stokes flows[END_REF] onto the reduced-order subspace.

Assuming time/space separation, a classical truncated a͒ Electronic mail: bourguet@imft.fr POD expansion yields an approximation of each time/spacedependent quantity v as a finite linear combination of N pod specific eigenfunctions:

v͑x,t͒ = ͚ i=1 ϱ a i ͑t͒⌽ i ͑x͒ Ϸ ͚ i=1 N pod a i ͑t͒⌽ i ͑x͒, ͑1͒
where a i are time-dependent functions and ⌽ i orthonormalized stationary spatial modes determined as successive solutions of the following constrained optimization problem:

⌽ i+1 = arg max ⌿L 2 ͑⍀͒ d ͗͑v -⌸ i v,⌿͒ 2 ͘ subject to͑⌿,⌿͒ = 1,

͑2͒

where ͗•͘ represents time averaging operator, ⍀ ʚ R 2 is the spatial domain, ͑• , • ͒ is an inner product that has to be defined on L 2 ͑⍀͒ d , and ⌸ i is the orthogonal projector onto span͕⌽ 1 , . . . , ⌽ i ͖ for i Ն 1, with ⌸ 0 ϵ 0 p . Finding ⌽ i in Eq. ͑2͒ is equivalent to solve a Fredholm integral eigenvalue problem involving a v two-point space correlation tensor. In the discrete numerical context, the number of space discretization points ͑N x ͒ being large in front of the number of "high-order" temporal samples ͑N t ͒, "snapshot-POD" technique [START_REF] Sirovich | Turbulence and the dynamics of coherent structures. II-Symmetries and transformations[END_REF] is used, leading to an eigenproblem on time correlation matrix. In the case of multiple state variables especially in the compressible case ͑here, d = 4͒, the inner product adopted to extract the POD basis has to be carefully defined. [START_REF] Rowley | Model reduction for compressible flows using POD and Galerkin projection[END_REF] The following weighted spatial product is suggested:

͑v I ,v II ͒ = ͚ i=1 d ͵ ⍀ v i I v i II i 2 + dx, ͑3͒
where v I and v II are two states involving d variables and i 2 ͑x͒ = ͑1 / T s ͒͐ t 0 t 0 +T s ͑v i ͑x , t͒v i ͑x͒͒ 2 dt. T s is the snapshot storage period and v i ͑x͒ = ͗v i ͑x , • ͒͘. i 2 is the local temporal statistical variance of v i . is a small positive constant. This definition ensures POD dimensional consistency and leads to a considerable reduction of the number of degrees of free-dom; i.e., from 4 ϫ N x to N pod , with N pod ≪ N x and N pod ≪ N t . Time evolution of the whole state vector is then described by a single nondimensional dynamic for each POD mode. State variable fluctuations are approximated by

v i ͑x,t͒ -v i ͑x͒ Ϸ ͚ j=1 N pod a j ͑t͒⌽ j v i ͑x͒. ͑4͒
The POD is performed on the fluctuations because spatial POD modes can only respect homogeneous boundary conditions. Two-dimensional Navier-Stokes simulations are issued from ICARE/IMFT compressible finite volume solver, validated for the present test cases with a C-type grid ͑N x = 369 ϫ 89 nodes͒. [START_REF] Bouhadji | Organised modes and shock-vortex interaction in unsteady viscous transonic flows around an aerofoil, Part I: Mach number effect[END_REF] In flow A, the "high-order" dataset contains N t = 2200 snapshots collected regularly over one buffet period of the established flow ͑⌬ t = 1.9ϫ 10 -5 s͒, which corresponds approximately to 20 von Kármán periods. N t = 100 samples are stored over one period of vortex shedding in flow B ͑⌬ t = 2.6ϫ 10 -5 s͒. After performing POD basis extraction, the mode truncation is founded on the statistical content conveyed by the first N pod modes I N pod = ͚ i=1 N pod i / ͚ i=1 N t i , where i are time/space two-point correlation matrix eigenvalues. I N pod = 99.9% is arbitrarily chosen, which induces N pod = 16 in flow A, whereas ten modes are sufficient in B ͑Fig. 2͒. Flow A involves more complex flow dynamics, which implies a significant increase of the informational content conveyed by the second pair of modes ͑18.5% versus 2% in flow B͒.

Direct POD expansion of conservative variables in Navier-Stokes governing equations leads to fractional expressions that do not allow trivial Galerkin projections. However, an alternative is suggested by Ref. 19 to derive quadratic fluxes for compressible Navier-Stokes system by considering a modified formulation of state vector U = ͓ , u 1 , u 2 , e͔ t → U ˆ= ͓1 / , u 1 , u 2 , p͔ t . is the density and u i are velocity components. e represents total energy, defined by e = C v T + ͑u 1 2 + u 2 2 ͒ / 2, where T is the temperature and C v the specific heat coefficient. p is the thermodynamic pressure, which satisfies the ideal gas law p = RT, and R is the ideal gas constant. The corresponding modified state system is projected onto the truncated POD basis, for i = 1 , . . . , N pod : 

͑U ˆ,t + A

␣ U ˆ,␣ ,⌽ i ͒ = ͑F ␣,␣ v -G ␣ v ,⌽ i ͒. ͑5͒
POD expansion is applied to state variables, leading to following approximations:

A i Ϸ ͚ j=1 N pod +1 a j à ΄ ⌽ j Ãu i -⌽ j Ã͑1/͒ ␦ 1i -⌽ j Ã͑1/͒ ␦ 2i 0 0 ⌽ j Ãu i 0 ⌽ j Ã͑1/͒ ␦ 1i 0 0 ⌽ j Ãu i ⌽ j Ã͑1/͒ ␦ 2i 0 ␥⌽ j Ãp ␦ 1i ␥⌽ j Ãp ␦ 2i ⌽ j Ãu i ΅ , ͑6͒ F i v Ϸ ͚ j,k=1 N pod +1 a j à a k à ΄ 0 ⌽ j Ã͑1/͒ ͓͑⌽ k,i Ãu 1 + ⌽ k,1 Ãu i ͒ + ⌽ k,␣ Ãu ␣ ␦ 1i ͔ ⌽ j Ã͑1/͒ ͓͑⌽ k,i Ãu 2 + ⌽ k,2 Ãu i ͒ + ⌽ k,␣ Ãu ␣ ␦ 2i ͔ ␥ Pr ͓⌽ j Ãp ⌽ k,i Ã͑1/͒ + ⌽ j,i Ãp ⌽ k Ã͑1/͒ ͔ ΅ , ͑7͒ G i v Ϸ ͚ j,k=1 N pod +1 a j à a k à ΄ 0 ⌽ j,i Ã͑1/͒ ͓͑⌽ k,i Ãu 1 + ⌽ k,1 Ãu i ͒ + ⌽ k,␣ Ãu ␣ ␦ 1i ͔ ⌽ j,i Ã͑1/͒ ͓͑⌽ k,i Ãu 2 + ⌽ k,2 Ãu i ͒ + ⌽ k,␣ Ãu ␣ ␦ 2i ͔ ͑1 -␥͒⌽ j,i Ãu ␣ ͓͑⌽ k,i Ãu ␣ + ⌽ k,␣ Ãu i ͒ + ⌽ k,␤ Ãu ␤ ␦ ␣i ͔ ΅ ,

͑8͒

where a à = ͓1 , a 1 , . . . , a pod ͔ = ͓1 , a͔ and ⌽ à = ͓U ˆ, ⌽ 1 , . . . , ⌽ pod ͔. is the fluid viscosity, is the Lamé coefficient, ␥ the polytropic coefficient, Pr the Prandtl number, and ␦ ij is the Kronecker symbol. • ,t and • ,i denote, respec- tively, time and space derivatives. For more clarity, Greek subscripts are used to specify implicit summations and POD expansions are explicit. Only time-independent boundary conditions are prescribed. In particular, no-slip condition and constant temperature are imposed on the airfoil. The modified state system being quadratic, the Galerkin projection onto the truncated POD basis yields a quadratic polynomial ordinary differential equation system, as in the incompressible case, for i = 1 , . . . , N pod :

a ˙i = ͑C i + C i s ͒ + ͚ j=1 N pod ͑L ij + L ij s ͒a j + ͚ j,k=1 N pod Q ijk a j a k = f i ͑C s ,L s ,a͒, ͑9͒ 
a i ͑t 0 ͒ = ͓U ˆ͑•,t 0 ͒ -U ˆ,⌽ i ͔.
C i , L ij , and Q ijk are constant coefficients issued from the Galerkin projection of the modified state system ͑5͒. Linear and constant terms are involved because of time-averaged value subtraction. As reported in Ref. 21, POD Galerkin ROM is structurally unstable, which leads to dynamic amplitude growth/decrease and phase-lag occurring when performing long time integrations. Many calibration and stabilization methods have been reported in the literature: addition of artificial dissipations, [START_REF] Sirisup | A spectral viscosity method for correcting the long-term behavior of POD models[END_REF] "data-driven" optimizations, [START_REF] Galletti | Low-order modelling of laminar flow regimes past a confined square cylinder[END_REF] addition of "shift modes" in the empirical basis, [START_REF] Noack | A hierarchy of low-dimensional models for the transient and post-transient cylinder wake[END_REF] and more recently, an "intrinsic stabilization" procedure, [START_REF] Kalb | An intrinsic stabilization scheme for proper orthogonal decomposition based low-dimensional models[END_REF] among others. In the present study, C i s and L ij s coefficients are determined so as to minimize the mean square of prediction error with respect to reference dynamics:

J͑C s , L s ͒ = 1 2 ͚ i=1 N pod ͚ j=1 N t ͕a i ͑t j ͒ -a i ͑t 0 ͒ -͐ t 0 t j f i ͓C s , L s , a rom ͑t͔͒dt͖ 2
, where a rom are predicted dynamics issued from Eq. ͑9͒. In a similar way to Ref. 25 in the incompressible case, this optimization problem is turned into a linear system resolution by considering reference dynamics in the Cauchy problem integration. ROM integration is performed with a fourth-order-accurate Runge-Kutta scheme over a snapshot temporal horizon.

As presented in Fig. 3, POD methodology enables an efficient identification of the main phenomena responsible for flow unsteadiness ͑flow A͒. The buffet phenomenon is efficiently described by the two first modes, whereas the following pair is related to the high-frequency von Kármán instability. Moreover, POD modes provide information concerning flow topology and spatial correlations: as can be observed on ⌽ 1 p , the oscillation of supersonic pockets on each side of the airfoil is clearly correlated with slow pressure fluctuations and flow meandering occurring in the near wake, at buffet frequency. POD mode dynamics also exhibit this physical decoupling. As shown in Fig. 4, a strong interaction between the two phenomena appears on seventh mode. In contrast, each of the first six modes exhibits the effect of only one frequency. The dynamics issued from ROM integration present an excellent match with those issued from the Navier-Stokes simulation, even for the last modes ͑Fig. 4͒. The relative state variable prediction error based on the consistent inner product ͓Eq. ͑3͔͒ is monitored at each time step and remains lower than ͑1.5ϫ 10 -6 ͒% for both flows, which is in the same order of magnitude as POD basis truncation error.

To summarize, a low-dimensional model for compressible flows has been derived via POD-Galerkin methodology on the basis of a modified formulation of Navier-Stokes governing equations. The flow physics are governed by two main unsteady phenomena induced by compressibility effects, i.e., von Kármán instability and buffeting, which were well identified by POD analysis. The stabilized ROM achieved faithful unsteadiness predictions in the hightransonic regime.

FIG. 1 .

 1 FIG. 1. ͑Color online͒ Instantaneous Mach number field and nondimensional pressure coefficient as a function of time, near the leading edge ͑x 1 / c , x 2 / c͒ = ͑0.105, ± 0.047͒ ͑black͒ and near the trailing edge ͑x 1 / c , x 2 / c͒ = ͑0.92, ± 0.011͒ ͑gray͒ at Ma= 0.80 and Re= 10 4 ͑flow A͒.

FIG. 3 .

 3 FIG. 3. ͑Color online͒ First four odd spatial POD modes associated to pressure in flow A ͑Ma= 0.80, Re= 10 4 ͒, where the von Kármán instability interacts with the buffet phenomenon. Positive ͑negative͒ values are denoted by solid ͑dashed͒ lines.