

Oxidation of η 6-arene Complexes of Group VI Metals. Part 4. Molybdenum(II)-arene-carbonyl Compounds Containing Polyiodides

Fausto Calderazzo, Rinaldo Poli, Pier Francesco Zanazzi

▶ To cite this version:

Fausto Calderazzo, Rinaldo Poli, Pier Francesco Zanazzi. Oxidation of η 6-arene Complexes of Group VI Metals. Part 4. Molybdenum(II)-arene-carbonyl Compounds Containing Polyiodides. Gazzetta Chimica Italiana, 1988, 118, pp.595-601. hal-03574269

HAL Id: hal-03574269 https://hal.science/hal-03574269

Submitted on 15 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

OXIDATION OF η⁶-ARENE COMPLEXES OF GROUP VI METALS. IV (*). MOLYBDENUM(II) ARENE-CARBONYL COMPOUNDS CONTAINING POLYIODIDES (**)

FAUSTO CALDERAZZO (°) and RINALDO POLI (***)

Dipartimento di Chimica e Chimica Industriale, Sezione di Chimica Inorganica, Università di Pisa, via Risorgimento 35, I-56100 Pisa, Italv

PIER FRANCESCO ZANAZZI

Dipartimento di Scienze delle Terra, Sezione Cristallografia, Università di Perugia, p.za

Università, I-06100 Perugia, Italy

Summary – The reaction of Mo₂I₄(CO)₈ with [MoI(CO)₃(η^6 -C₆Me₆)]I₃ affords [MoI(CO)₃(η^6 -C₆Me₆)][MoI₂(I₃)(CO)₄], **1**, containing a coordinated tri-iodide ligand, as the major product. The reaction also affords small amounts of the complex [MoI(CO)₃(η^6 -C₆Me₆)]I₅, **2**. Compound **2** has also been synthesized by reacting [MoI(CO)₃(η^6 -C₆Me₆)]I₃ with I₂ in equimolar amounts or by interaction of Mo(CO)₃(η^6 -C₆Me₆) with I₂ in 1:3 molar ratio. The penta-iodide anions in compound **2** are arranged in an infinite chain of alternating I₃⁻ and I₂ groups with I···I contacts of 3.468(1) Å. *Crystal data*; compound **1**: orthorhombic; space group *Pna2*₁; *a* = 24.750(3), *b* = 11.521(3), *c* = 11.348(3) Å, *V* = 3236(1) Å³; *Z* = 4; *d_c* = 2.691 g cm⁻³; μ (Mo- K_{α}) = 61.35 cm⁻¹; *R* = 0.046 (R_w = 0.049) for 1827 reflections having $F_0^2 > 3\sigma(F_0^2)$; compound **2**: monoclinic; space group $P2_1/m$; *a* = 15.006(3), *b* = 9.647(3), *c* = 8.986(3) Å, β = 95.76(2)°; *V* = 1294.3(6) Å³; *Z* = 2; *d_c* = 2.830 g cm⁻³; μ (Mo- K_{α}) = 71.97 cm⁻¹; *R* = 0.042 (R_w = 0.051) for 1509 reflections having $F_0^2 > 3\sigma(F_0^2)$.

(*) For Part III, see preceding paper

(**) Work supported by the Consiglio Nazionale delle Ricerchc (CNR Roma) Progetto Finalizzato

"Chimica Fine e Secondaria".

(°) To whom correspondence should be addressed.

(***) Present address: University of Maryland, Department of Chemistry and Biochemistry, College Park, Maryland 20742, U.S.A.

In earlier papers of this series¹⁻³ we described the oxidation of molybdenum(0) tricarbonylarene complexes with I₂ and isolated and structurally characterised compounds containing the $[MoI(CO)_3(\eta^6\text{-}arene)]^+ \text{ cation and the } [Mo_2I_5(CO)_6]^- \text{ anion. The reaction between } Mo(CO)_3(\eta^6\text{-}arene)$ and I₂ in 1:1 molar ratio affords [MoI(CO)₃(η⁶-arene)][Mo₂I₅(CO)₆] as the kinetically-controlled product.¹ The anion is thermally unstable and the stability of the cation increases with the methyl substitution on the arene. With C₆Me₆ as the carbocyclic ligand, the cation is indefinitely stable; in this case, thermal decomposition affords $[MoI(CO)_3(\eta^6-arene)][MoI_3(CO)_4]$.¹ When the oxidation is performed with two moles of iodine per molybdenum(0) complex, the $[MoI(CO)_3(\eta^6-arene)]I_3$ complexes are formed, from which the BPh₄ salts can be prepared by ion metathesis. When the $[MoI(CO)_3(\eta^6-arene)][Mo_2I_5(CO)_6]$ salts are reacted with CO at atmospheric pressure and room temperature, the already known⁴ Mo₂I₄(CO)₈ can be prepared in high yields. Mo₃I₄(CO)₈ was found² to easily transfer a molecule of I2 to a number of substrates, being in turn reduced to the known⁵ $Mo_2I_2(CO)_8$. The following compounds were all found to catalyse the carbonylation of $[Mo(CO)_3(\eta^6$ arene) to Mo(CO)₆ in the parent arene as solvent:³ I₂, [MoI(CO)₃(η^6 -arene)][Mo₂I₅(CO)₆], Mo₂I₄(CO)₈. The mechanism of the catalysed reaction is believed to be related to a two-electron innersphere electron transfer taking place between $Mo(CO)_3(\eta^6-arene)$ and salts of the $[MoI(CO)_3(\eta^6-arene)]$ arene')]⁺ cations (arene' \neq arene).³

In the course of these studies, additional derivatives of the $[MoI(CO)_3(\eta^6-C_6Me_6)]^+$ cation were obtained, whose anions exhibit interesting free and coordinated polyiodide functionalities. The synthesis and structural characterisation of these derivatives are the subject of this paper.

EXPERIMENTAL

All operations were carried out under an atmosphere of prepurified nitrogen with standard Schlenk tube techniques. Solvents were purified by conventional methods and distilled prior to use. The IR spectra were recorded with a Perkin-Elmer 283 spectrophotometer, Solution spectra were measured on an expanded abscissa scale and calibrated with both CO and $H_2O_{(g)}$. Elemental analyses were carried out at the Istituto di Chimica Farmaceutica, Università di Pisa. The following compounds

were prepared according to published procedures:^{1,2} $Mo_2I_4(CO)_8$, $Mo(CO)_3(\eta^6-C_6Me_6)$, $[MoI(CO)_3(\eta^6-C_6Me_6)]I_3$.

REACTION OF Mo₂I₄(CO)₈ WITH [MoI(CO)₃(η^6 -C₆Me₆)]I₃. PREPARATION OF [MoI(CO)₃(η^6 -C₆Me₆)][MoI₂(I₃)(CO)₄], **1**.

Mo₂I₄(CO)₈ (0.24 g, 0.26 mmol) and [MoI(CO)₃(η^6 -C₆Me₆)]I₃ (0.45 g, 0.53 mmol) were mixed in dichloromethane (25 cm³). The resulting solution was immediately filtered and cooled to about -30 °C. Black crystals formed within several days. They were decanted and dried m vacuo. Yield: 0.37 g (54%). *Elem. anal.*, found % (calcd. for C₁₉H₁₈I₆Mo₂O₇): C, 17.2 (17.4); H, 1.3 (1.4). IR (Nujol mull): 2065 s, 2000 vs, 1975 s, 1280 w, 1065 w, 1015 w, 995 w, 560 m, 530 m, 510 m-s, 480 m, 460 m, 430 w, 425 sh, 400 w cm⁻¹. IR (CH₂Cl₂): 2066 s, 2010 vs, 1948 w cm⁻¹. A single crystal was used for the subsequent X-ray diffractometric experiment.

Among the pseudo-octahedrally-shaped crystals of **1**, a few black parallelepipedal crystals were noted. One of these was used in the X-ray study and found to correspond to compound **2** (see below).

PREPARATION or [MoI(CO)₃(η⁶-C₆Me₆)]I₅, 2

From $[MoI(CO)_3(\eta^6-C_6Me_6)]I_3$ and I_2 - Iodine (0.07 g, 0.27 mmol) was dissolved in dichloromethane (20 cm³) and 0.21 g (0.25 mmol) of $[MoI(CO)_3(\eta^6-C_6Me_6)]I_3$ was added. After brief stirring at room temperature, the reaction mixture was filtered and the solution cooled to about -30 °C. Dark needles precipitated out, which were decanted, washed with *n*-pentane and dried *in vacuo* (38% yield). *Elem. anal.*, found % (calcd for C₁₅H₁₈I₆MoO₃): C, 15.9 (16.3); H, 1.5 (1.6). The compound showed IR bands (Nujol) at: 2067 s, 2003 s, 1270 w, 1060 w, 1010 w, 990 w, 575 w, 555 m, 510 m, 455 m, 430 w and 400 vw cm⁻¹; IR (CH₂Cl₂): 2067 s and 2011 s cm⁻¹.

A single crystal was selected and found to have the primitive cell as that of the crystallographically characterised penta-iodide obtained as described above.

From $Mo(CO)_3(\eta^6-C_6Me_6)$ and I_2 in 1:3 molar ratio - Mo(CO)_3(\eta^6-C_6Me_6) (0.36 g, 1.05 mmol) was dissolved in toluene (50 cm³). This solution was added dropwise at room temperature to a solution of I₂ (0.80 g, 3.15 mmol) in 30 cm³ of the same solvent. The resulting black microcrystalline

precipitate was filtered off, washed with toluene $(3 \times 5 \text{ cm}^3)$ and dried *in vacuo*. Yield: 0.81 g (70%). The identity of this material with the penta-iodide was confirmed by IR (Nujol mull).

X-RAY CRYSTALLOGRAPHY

Compound 1^a — A crystal with approximate dimensions (mm) 0.15 x 0.10 x 0.09 was mounted on a computer-controlled Philips PW 1100 single-crystal automatic diffractometer, equipped with graphite monochromatized Mo- $K\alpha$, radiation ($\lambda = 0.71069$ Å). The crystals are orthorhombic. The cell dimensions, determined by a least-squares calculation based on the setting angles of 25 reflections with 20 angles ranging between 17 and 20°, are: a = 24.750(3), b = 11.521(3), c = 11.348(3) Å. The space group is *Pna*2₁ (from systematic extinctions and intensity statistics). The calculated density for four molecules of [MoI(CO)₃(η^6 -C₆Me₆)][MoI₂(I₃)(CO)₄], MW = 1311.3, in the unit cell is $d_c = 2.691$ g x cm⁻³. The absorption coefficient for Mo- $K\alpha$, is $\mu = 61.35$ cm⁻¹.

The intensities were collected up to 2 θ = 50°; the ω -2 θ scan technique was employed, the scan range being 1.2° and the speed 0.05° s⁻¹. A total of 3055 reflections was measured, of which 1228, having *I*<3 σ (*I*), were considered as "unobserved" and excluded from the refinement. Three standard reflections which were measured periodically showed no apparent variation in intensity during data collection. The data were corrected for Lorentz and polarization factors. A semiempirical absorption correction according to the method of North *et al.*,⁶ based on the intensity change during the azimuthal scans, was applied. A further correction was applied during the refinement according to the empirical method of Walker and Stuart.⁷ Transmission factors were in the range 0.93 - 0.49.

The structure was solved by direct methods with MULTAN-76⁸ and refined by the full-matrix least-squares method with the SHELX-76⁹ package of programmes. The benzene ring was constrained to a perfect hexagon (C-C = 1.395 Å) and refined as a rigid group. Anisotropic thermal parameters were refined for Mo, I and O atoms only. Concerning the C-O distances of the carbonyl groups linked in the cationic moiety, they are quite unrealistic, with values shorter than normally found. This can be due either to thermal motion, to positional disorder, or can simply be the result of errors in the measured intensities owing to a not completely adequate absorption correction. The

^{*a*} Atomic coordinates for this structure have been deposited with the Cambridge Crystallographic Data Centre and can be obtained on request from: The Director, Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.

refinement converged to *R* (unweighted) = 0.046 and R_w (weighted) = 0.049 [$w = (\sigma^2(F_o) + 0.0001 F_o^2)^{-1}$] for 200 parameters and 1827 observed reflections.

The atomic scattering factors were taken from ref. 9 for O and C and from ref. 10 for Mo and I; the correction for anomalous dispersion was included. The atomic coordinates are listed in table 1 and selected bond distances and angles are in table 2 (cation) and table 3 (anion).

TABLE 1. FRACTIONAL ATOMIC COORDINATES FOR $[MoI(CO)_3(\eta^6-C_6Me_6)][MoI_2(I_3)(CO)_4]$ (I) WITH E.S.D.'s REFERRED TO THE LEAST SIGNIFICANT FIGURE.

Atom	<u>X</u> /a	Y/b	Z/c
Mo(1)	0.4016(1)	0.4137(2)	0.3760
Mo(2)	0.5794(1)	1.0197(2)	0.3614(3)
I(1)	0.4252(1)	0.3976(3)	0.6174(3)
I(2)	0.6364(1)	0.9895(2)	0.5779(3)
I(3)	0.6139(1)	1.2564(2)	0.3427(3)
I(4)	0.6736(1)	0.9544(2)	0.2276(3)
I(5)	0.7285(1)	0.7268(2)	0.3206(3)
I(6)	0.7802(1)	0.5270(2)	0.3913(3)
O(1)	0.3926(8)	0.1619(19)	0.4213(26)
O(2)	0.4672(10)	0.3113(29)	0.1810(25)
O(3)	0.5051(11)	0.5274(18)	0.4155(22)
O(4)	0.4627(9)	0.9314(23)	0.3264(18)
O(5)	0.5465(11)	1.0931(21)	0.1025(16)
O(6)	0.5105(9)	1.1492(21)	0.5567(20)
O(7)	0.5848(10)	0.7507(19)	0.4075(25)
C(1)	0.4003(15)	0.2472(11)	0.4110(33)
C(2)	0.4470(13)	0.3490(32)	0.2518(25)
C(3)	0.4740(8)	0.4794(36)	0.3945(44)
C(4)	0.5053(13)	0.9648(24)	0.3364(29)
C(5)	0.5576(11)	1.0687(23)	0.1954(25)
C(6)	0.5373(12)	1.1028(23)	0.4869(25)
C(7)	0.5842(12)	0.8452(25)	0.3873(28)
C(8)	0.3506(8)	0.4894(15)	0.2189(12)
C(9)	0.3171(8)	0.4105(15)	0.2768(12)
C(10)	0.3044(8)	0.4271(15)	0.3854(12)
C(11)	0.3252(8)	0.5225(15)	0.4560(12)
C(12)	0.3587(8)	0.6014(15)	0.3980(12)
C(13)	0.3714(8)	0.5848(15)	0.2794(12)
C(14)	0.3605(15)	0.4779(32)	0.0873(40)
C(15)	0.2920(14)	0.3031(29)	0.2087(31)
C(16)	0.2669(15)	0.3329(33)	0.4605(34)
C(17)	0.3029(14)	0.5513(29)	0.5791(33)
C(18)	0.3807(19)	0.7092(38)	0.4711(42)

C(19) 0.4063(16) 0.6814(33) 0.2128(38)

TABLE 2 - SELECTED BOND DISTANCES (Å) AND ANGLES (deg) FOR THE [MoI(CO)₃(η^{6} -C₆Me₆)]⁺ CATION IN COMPOUNDS **1** AND **2**, WITH E.S.D.'S IN PARENTHESES REFERRED

Compound 1		Compound 2		
Mo1-I1	2.807(3)	Mo-I1	2.822(2)	
Mo1-C1	1.96(2)	Mo-C1	1.99(2)	
Mo1-C2	1.95(3)	Mo-C2	2.02(2)	
Mo1-C3	1.96(3)	Mo-C3	2.43(1)	
Mo1-C8	2.35(2)	Mo-C4	2.46(2)	
Mo1-C9	2.37(2)	Mo-C5	2.37(1)	
Mo1-C10	2.42(2)	C1-O1	1.10(2)	
Mo1-C11	2.44(2)	C2-O2	1.10(3)	
Mo1-C12	2.42(2)	C3-C6	1.53(2)	
Mo1-C13	2.38(2)	C4-C7	1.48(2)	
C1-O1	1.01(3)	C5-C8	1.52(2)	
C2-O2	1.04(4)	C3-C4	1.43(2)	
C3-O3	1.00(4)	C4-C5	1.42(2)	
C8-C14	1.52(5)	C3-C3'	1.48(3)	
C9-C15	1.59(4)	C5-C5'	1.45(3)	
C10-C16	1.61(4)	C1-Mo-I1	72.9(4)	
C11-C17	1.54(4)	C1-Mo-I2	126.0(7)	
C12-C18	1.59(5)	C1-Mo-C2	76.7(8)	
C13-C19	1.60(4)	Mo-C1-O1	173(1)	
C1-Mo1-I1	75(1)	Mo-C2-O2	178(2)	
C2-Mo1-I1	124(1)			
C3-Mo1-I1	74.4(6)			
C1-Mo1-C2	77(1)			
C1-Mo1-C3	112(1)			
C2-Mo1-C3	72(1)			
Mo1-C1-O1	169(3)			
Mo1-C2-O2	173(3)			
Mo1-C3-O3	165(2)			

TO THE LEAST SIGNIFICANT FIGURE

TABLE 3 - SELECTED BOND DISTANCES (Å) AND ANGLES (deg) FOR THE $[MoI_2(I_3)(CO)_4]^-$

ANION IN COMPOUND 1, WITH E.S.D.'S IN PARENTHESES REFERRED TO THE LEAST

SIGNIFICANT DIGIT

Mo2-I2	2.854(5)	I2-Mo2-I3	91.9(1)
Mo2-I3	2.854(3)	I2-Mo2-I4	91.3(1)
Mo2-I4	2.882(4)	C4-Mo2-I2	123.2(9)
Mo2-C4	1.96(3)	C5-Mo2-I2	163.7(8)
Mo2-C5	2.04(3)	C6-Mo2-I2	72.8(9)
Mo2-C6	2.01(3)	C7-Mo2-I2	74.1(8)

Mo2-C7	2.03(3)	I3-Mo2-I4	88.2(1)
I4-I5	3.136(4)	C4-Mo2-I3	125.1(9)
I5-I6	2.753(3)	C5-Mo2-I3	75.3(8)
C4-O4	1.13(4)	C6-Mo2-I3	75.7(9)
C5-O5	1.12(3)	C7-Mo2-I3	159.0(8)
C6-O6	1.16(4)	C4-Mo2-I4	126.6(9)
C7-O7	1.11(4)	C5-Mo2-I4	78.4(8)
		C6-Mo2-I4	156.6(9)
		C7-Mo2-I4	76.8(8)
		C4-Mo2-C5	73(1)
		C4-Mo2-C6	77(1)
		C4-Mo2-C7	76(1)
		C5-Mo2-C6	123(1)
		C5-Mo2-C7	115(1)
		C6-Mo2-C7	113(1)
		Mo2-I4-I5	113.0(1)
		I4-I5-I6	176.8(1)
		Mo2-C4-O4	177(3)
		Mo2-C5-O5	178(3)
		Mo2-C6-O6	176(3)
		Mo2-C7-O7	176(3)

Compound 2^a - A crystal of approximate dimensions (mm) 0.25 x 0.10 x 0.05 protected in a glass capillary was mounted on the above-mentioned diffractometer. The crystals are monoclinic. The cell dimensions, determined as for compound 1, are: a = 15.006(3), b = 9.647(3), c = 8.986(3) Å, $\beta = 95.76(2)^\circ$, V = 1294.3(6) Å³. The space group is $P2_1/m$ (from systematic extinctions and intensity statistics). The calculated density is 2.830 g cm⁻³ for two molecules of [MoI(CO)₃(η^6 -C₆Me₆)]I₅ in the unit cell. The absorption coefficient for Mo- $K\alpha$, is $\mu = 71.97$ cm⁻¹. The intensities were collected up to $2\theta = 50^\circ$; the ω -2 θ scan technique was employed, the scan range being 1.6° and the speed 0.06° s⁻¹. A total of 2304 reflections was measured, 795 of which, having $I < 3\sigma(I)$, were considered as "unobserved" and excluded from the refinement. The data were treated as described previously for compound 1. Transmission factors were in the range 0.99 - 0.49.

The structure was solved by Patterson and direct methods and refined by the full-matrix leastsquares method as for compound **1** (see above). Several cycles of refinement with anisotropic thermal parameters assigned to Mo and I atoms converged to an *R* value of 0.042 for 1509 observations and 125 parameters. The R_w was 0.051 [$w = (\sigma^2(F_o))^{-1}$]. The atomic coordinates are in table 4 and relevant bond distances and angles are in tables 2 (cation) and 5 (anion). TABLE 4. FRACTIONAL ATOMIC COORDINATES FOR $[MoI(CO)_3(\eta^6-C_6Me_6)]I_5$ (2) WITH E.S.D.'s REFERRED TO THE LEAST SIGNIFICANT FIGURE.

Atom	<u>X</u> /a	Y/b	Z/c
Mo(1)	0.8748(1)	0.2500	0.2118(2)
I(1)	1.0141(1)	0.2500	0.0229(2)
I(2)	0.4642(1)	0.2500	0.1901(3)
I(3)	0.3042(1)	0.2500	0.3569(2)
I(4)	0.1459(1)	0.2500	0.5065(2)
I(5)	0.3266(1)	0.3927(2)	0.7677(2)
O(1)	0.9882(10)	0.5154(15)	0.2994(14)
O(2)	0.8958(14)	0.2500	0.5603(19)
C(1)	0.9486(10)	0.4187(19)	0.2615(16)
C(2)	0.8901(17)	0.2500	0.4374(30)
C(3)	0.7783(9)	0.3264(16)	0.3945(44)
C(4)	0.7495(11)	0.4002(16)	-0.0068(15)
C(5)	0.7273(10)	0.3251(17)	0.1175(16)
C(6)	0.8043(12)	0.4041(22)	0.2444(18)
C(7)	0.7390(14)	0.5530(18)	-0.1439(20)
C(8)	0.6959(13)	0.4074(22)	0.3742(18)

TABLE 5 - BOND DISTANCES (Å) AND ANGLES (deg) FOR THE $[\mathrm{I}_3{\cdot}\mathrm{I}_2]^{\text{-}}$ ANION IN

COMPOUND 2

12-13	2.955(5)	I2-I3-I4	177.7(1)
I3-I4	2.844(2)		
15-15'	2.753(3)		
$I2\cdots I5^{i}$	3.468(1)		

i = 1-x, 1-y, 1-z

Tables of thermal parameters and F_{o} - F_{c} have been deposited us Supplementary Material for both compounds **1** and **2** and can be obtained from Società Chimica Italiana, Viale Liegi 48, I-00198 Roma, Italy, upon full citation of the present article.

RESULTS AND DISCUSSION

As stated above, we found that $[MoI(CO)_3(\eta^6-C_6Me_6)][Mo_2I_5(CO)_6]$, **3**, thermally decomposes to $[MoI(CO)_3(\eta^6-C_6Me_6)][MoI_3(CO)_4]$, **4**. The crystals of the product were recovered together with a powder, believed to be MoI_2, see eq. 1. Compounds of the $[Mo_2I_5(CO)_6]^-$ anion with less methyl-

substituted arene groups failed to afford clean products, presumably because of the low stability of the cation. We were able to crystallographically characterise compound **4**, but we could not prepare it in a pure state because of difficulties in its separation from the insoluble MoI₂. In an attempt to find an alternative synthesis for compound **4**, we considered that the [MoI₃(CO)₄]⁻ anion could be prepared by reacting Mo₂I₄(CO)₈ with I⁻, according to eq. 2. We therefore treated Mo₂I₄(CO)₈ with [MoI₀(CO)₃(η^6 -C₆Me₆)]I₃ with the hope that a di-iodine molecule would be released from the I₃⁻ counter-anion to afford the stoichiometry of eq. 3. Our expectation was not fulfilled, and a compound analysing correctly for the derivative of the new [MoI₅(CO)₄]⁻ anion was obtained instead. The IR spectroscopic properties (see *Experimental*) were similar to those of the expected compound **4**, thus suggesting that the carbonyl groups have similar arrangements in [MoI₃(CO)₄]⁻ and in the new anion. An X-ray diffractometric study (*vide infra*) revealed that the latter contains a coordinated I₃ group. The [MoI₃(CO)₄]⁻ and [MoI₅(CO)₄]⁻ anions thus differ merely for one of the ligands being I⁻ in the former and I₃⁻ in the latter. We can therefore better formulate our compound I as [MoI(CO)₃(η^6 -C₆Me₆)][MoI₂(I₃)(CO)₄].

$$[MoI(CO)_{3}(\eta^{6}-C_{6}Me_{6})][Mo_{2}I_{5}(CO)_{6}] \rightarrow [MoI(CO)_{3}(\eta^{6}-C_{6}Me_{6})][MoI_{3}(CO)_{4}] + MoI_{2} + 2 CO \quad 1$$

$$Mo_{2}I_{4}(CO)_{8} + 2 I^{-} \rightarrow 2 [MoI_{3}(CO)_{4}]^{-} \qquad 2$$

$$Mo_{2}I_{4}(CO)_{8} + 2 [MoI(CO)_{3}(\eta^{6}-C_{6}Me_{6})]I_{3} \rightarrow 2 [MoI(CO)_{3}(\eta^{6}-C_{6}Me_{6})][MoI_{3}(CO)_{4}] + 2 I_{2} \qquad 3$$

The formation of the tri-iodide-containing anion can therefore be described as indicated in eq. 4. This shows that the Lewis base power of the I⁻ ion, although reduced upon interaction with the Lewis acidity of I₂ in the formation of the I₃⁻ ion, is still sufficient to cause the bridge splitting of $Mo_2I_4(CO)_8$ required by reaction 4.

$$Mo_{2}I_{4}(CO)_{8} + 2 I_{3}^{-} \rightarrow 2 [MoI_{2}(I_{3})(CO)_{4}]^{-}$$

$$4$$

We could not prepare compound 4 by using the simple iodide derivative $[MoI(CO)_3(\eta^6-C_6Me_6)]I$, since the latter is unknown and indications exist¹ suggesting its intrinsic instability.

Figure 1 shows a view of the cation and anion of compound **1**. The cation will be discussed in more detail in a following section, together with that of compound **2**. Will it suffice here to observe that its stoichiometry and arrangement of ligands in a four-legged piano-stool geometry is like those found earlier for other similar d^4 ions.^{1,11}

Fig. 1. ORTEP view of the cation (a) and the anion (b) of compound 1, $[MoI(CO)_3(\eta^6 - C_6Me_6)][MoI_2(I_3)(CO)_4]$.

The anion (figure 1b) has substantially the same geometry found¹ for $[MoI_3(CO)_5]^-$, *i.e.* the seven ligands are in a capped octahedral arrangement, the C4 carbonyl group capping the triangular face defined by the other three carbonyl groups. The I⁻ and I₃⁻ ligands define the opposite triangular face. The ideal $C_{3\nu}$ symmetry of $[MoI_3(CO)_4]^-$ is reduced to C_1 by the presence of the I₃ ligand. Bond distances and angles related to the coordination of the molybdenum centre agree well with those of the $[MoI_3(CO)_4]^-$ anion.¹ The only major difference is the length of the Mo-I₃ bond [2.882(4) Å], slightly but significantly longer than that of the Mo-I bonds [av. 2.860(5) Å]. This is expected on the grounds of a reduced Lewis basicity of the I₃⁻ ion with respect to I⁻. The I₃ ligand is practically linear $[I4-I5-I6, 176.8(1)^\circ]$ and binds the molybdenum centre with an angle of 113.0(1)° to the donor atom. Although the existence of the tri-iodide ligand I₃ has been suggested earlier^{12a-c} for some species, no transition metal-bonded I₃ ligands have been structurally characterised so far. It is interesting to note that in the nickel(II) compound^{12d} Ni[*o*-C₆H₄(PMe₂)₂]₂(I₃).2I₂, the I₃ group is at non-bonding distance from the central metal atom [Ni···I₃, 3.491(1) Å] and it interacts with an I₂ unit. A somewhat related example is represented by Pt₂(Me₂CHCS₂)₄I₂·I₂, which shows axial iodide ligands weakly interacting [3.476(2) and 3.518(2) Å] with an I₂ molecule.^{12e}

The Mo-I4-I5 angle of 113.0(1)° can be compared with the angle at the central atom of the I₅⁻ anion (which is related to the tri-atomic anion of compound **1** if one considers I₅⁻ to be the result of the donation of two electrons from I₃⁻ to the Lewis acid I₂), which is, for example, 95° in NMe₄I₅,¹³ 840 in the KI₃/KI₅ complex of valinomycin,^{14a} 88.18(6)° in [Fe(S₂CNEt₃)₃]I₅,^{14b} 110.1° in (ChinH)I₃·I₂ (Chin = chinuclidine),¹⁵ 84.8° in (phenacetin)₂·HI₅,¹⁶ 90.7 and 96.5° in {[Fe(η^5 -C₅H₅)(η^5 -C₅H₄)]₂Se}I₃·I₂·½CH₂Cl₂,¹⁷ 82.1 and 82.7° in [C₆H₄N₂Se·C₆H₅N₂Se]I₃·I₂,¹⁸ and finally 86.1(1)° in [MoI(CO)₃(η^6 -C₆Me₆)]I₅ (*vide infra*). The quite wide range of values for such an angle suggests that this parameter is probably highly dependent on packing forces. In the anion of compound **1**, the van der Waals interactions between the I₃⁻ group and the I⁻ ligands are most likely important too. These interactions might also be responsible for the orientation of the I₃ group, which is along a direction closest to I2 rather than symmetrical with respect to the bridging iodides and to the C5 and C7 carbonyl groups (in the latter case, the anion would have attained C_s symmetry).

The I-I bond lengths of the I₃ moiety are quite asymmetric [I4-I5, 3.136(4) Å; I5-I6, 2.753(3) Å], and suggest that the bonding description as an iodide ion simultaneously donating to the Mo(II) and I₂ Lewis acids, see **1**, is best suited to this species. A similar situation is found in the I₅⁻ anion, the lengths of the bonds to the central atom being longer than those to the outer atoms {*e.g.* 3.14 *vs.* 2.81 Å in NMe₄I₅,¹³ 3.09 *vs.* 2.76 Å in the KI₃/KI₅ complex of valinomycin^{14a} and 3.08 *vs.* 2.82 Å in [Fe(S₂CNEt₂)₃]I₅,^{14b} average value reported].

A closer examination of the crystalline material obtained in the reaction between $Mo_2I_4(CO)_8$ and $[MoI(CO)_3(\eta^6-C_6Me_6)]I_3$ revealed that a small amount of crystals having a different shape from those of compound **1** was also present. A preliminary crystallographic investigation showed different unit cell parameters from those of compound **1**. A crystallographic study was then undertaken and the compound resulted to have the formulation $[MoI(CO)_3(\eta^6-C_6Me_6)]I_5$, **2**. Figure 2 shows a view of the compound. The cation, which lies on a plane of symmetry (C2-O2-Mo1-I1, symmetry group C_s), is identical to that of compound **1**. The anion consists of an infinite chain of alternating I₃⁻ and I₂ groups and is therefore best described as {[I₃·I₂]⁻}_∞. The particular arrangement of the I₃⁻ and I₂ units, *i.e.* that of a monodimensional polymer, appears to have a precedent only in the structure^{12c} of Ni[o-C₆H₄(PMe₂)₂]₂(I₃)₂·2I₂. The other known compounds containing I₅⁻ have the anion either as separate units^{13,14} or as a two-dimensional (layered)¹⁵⁻¹⁸ structure. The I-I bond lengths in the I₃⁻ moiety of compound **2** are asymmetric [2.955(2) *vs.* 2.844(2) Å] but not as much as in the discrete I₅⁻ anions^{13,14} or as in the I₃ ligand of the anion of compound **1** discussed above. The bonding interactions in the anion of compound **2** can be regarded as intermediate between those in the discrete I₅⁻ ions^{13,14} and those in the two-dimensional polymers,¹⁵⁻¹⁸ the latter always exhibiting a symmetrical I₃ moiety. The contact distance between I₃⁻ and I₂ groups [I2…I5, 3.468(1) Å] and the I-I distance in the I₂ group [2.753(3) Å] are close to those typical of the layered structures (in the ranges 3.45 - 3.76 Å and 2.74 - 2.75 Å, respectively).

Fig. 2 - ORTEP view of the cation (a) and the anion (b) of compound 2, $[MoI(CO)_3(\eta^6-C_6Me_6)]I_5$.

Once established the nature of the minor product of reaction 3, we tried to explain its formation. Compound 2 can be visualized as resulting from the interaction between $[MoI(CO)_3(\eta^6-C_6Me_6)]I_3$ and a molecule of I₂, see eq. 5. We know from previous work that Mo₂I₄(CO)₈ can act as a donor of I₂, according to eq. 6. Reaction 6 is known to proceed in the opposite direction, but it can be driven to its right in the presence of a reducing or an I-subtracting agent. The tri-iodide derivative could then be sufficient for this purpose.

$$[MoI(CO)_3(\eta^6-C_6Me_6)]I_3 + I_2 \rightarrow [MoI(CO)_3(\eta^6-C_6Me_6)]I_5 \qquad 5$$

$$Mo_2I_4(CO)_8 \rightarrow Mo_2I_2(CO)_8 + I_2 \qquad 6$$

We cannot, however, prove this suggestion beyond any doubt since the amount of the hypothetical $Mo_2I_2(CO)_8$ formed according to eq. 6 was too low to allow its certain identification by spectroscopic methods. On the other hand, we were able to show that reaction 5 represents a good method for preparing 2 in gram quantities. The solution IR spectrum of 2 is, as expected, identical to that of the corresponding tri-iodide derivative in the carbonyl stretching region.¹ In addition to elemental analysis, the identity of the product of reaction 5 with the penta-iodide is proved by the determination of the unit cell parameters on a single crystal, which gave values identical, within experimental error, to those of the crystallographically characterised material.

Compound **2** was also obtained by a third method consisting of treating $Mo(CO)_3(\eta^6-C_6Me_6)$ with I₂ in a 1:3 molar ratio, sec eq. 7.

$$Mo(CO)_{3}(\eta^{6}-C_{6}Me_{6}) + 3 I_{2} \rightarrow [MoI(CO)_{3}(\eta^{6}-C_{6}Me_{6})]I_{5}$$

$$7$$

An interesting aspect of these results is the reluctance of molybdenum to be oxidised beyond the +II oxidation state. As a matter of fact, compound **2**, similar to all other compounds of the $[MoI(CO)_3(\eta^6-C_6Me_6)]^+$ cation isolated so far, is indefinitely stable at room temperature, even in air.

CATIONS OF COMPOUNDS 1 AND 2: ORIENTATION OF THE ARENE RING

In Part I of this series of papers,¹ we presented a qualitative discussion about the orientation of the arene ring in half-sandwiched compounds of d^4 cations. The complexes can be regarded as "eclipsed" when two hexagon vertices are along the directions of two of the M-L vectors in the projection along the M-arene axis, as in **II**, and "staggered" when the arene hexagon is rotated by

15°, as in **III**, with respect to the "eclipsed" situation. In ref. 1 we also presented the first structurally characterized "staggered" complexes, namely $[MoI(CO)_3(\eta^6-C_6H_3Me_3-1,3,5)]^+$ (with $[Mo_2I_5(CO)_5]^-$ as counteranion) and $[MoI(CO)_3(\eta^6-C_6Me_6)]^+$ (with the counteranion $[MoI_3(CO)_4^-$, compound **4**). The conclusion was reached that steric effects win over the electronic ones for those cations, and that both these effects must indeed be very small. The suggestion was made¹ that packing forces may be sufficient to cause the rearrangement from one conformation to the other for the same cation. This hypothesis is now fully confirmed by the results presented in this paper: the cation $[MoI(CO)_3(\eta^6-C_6Me_6)]^+$, which is common to compounds **1**, **2** and **4** is eclipsed (type **II**) in compounds **1** and **2** (see figures 1 and 2), while is staggered (type **III**) in compound **4**. The comparison between **1** and **4** is particularly striking, since the only difference there is I₃⁻ vs. I⁻ for one of the ligands in the anion. This is yet sufficient to determine a different orientation of the arene ligand in the solid state.

A scholarship (Borsa di Perfezionamento, 1983-1985) by the Scuola Normale Superiore di Pisa to R.P. is gratefully acknowledged.

Received September 17th 1987

REFERENCES

- A. BARBATI, F. CALDERAZZO, R. POLI, P.F. ZANAZZI, J. Chem. Soc., Dalton Trans., 2569 (1986).
- (2) F. CALDERAZZO, R. POLI, P.F. ZANAZZI, Gazz. Chim. Ital., 118, 583 (1988).
- (3) A. BARBATI, F. CALDERAZZO, R. POLI, Gazz. Chim. Ital., 118, 589 (1988).

- (4) R. COLTON, J. RIX, Aust. J. Chem., 22, 305 (1969).
- (5) G. SCHMID, R. BOESE, E. WELZ, Chem. Ber., 108, 260 (1975).
- (6) A.C.T. NORTH, D.C. PHILLIPS, F.C. MATHEWS, Acta Cryst., A24, 351 (1968).
- (7) N. WALKER, D. STUART, Acta Cryst., A39, 158 (1983).
- (8) P. MAIN L. LESSINGER, M.M. WOOLFSON, G. GERMAIN, G.P. DECLERCQ, "A system of computer programs for the automatic solution of crystal structures from X-ray diffraction data", University of York, England, and Université de Louvain, Belgium, 1976.
- (9) G.M. SHELDRICK, "SHELX-76, a program for crystal structure determination", University of Cambridge, 1976.
- (10) "International tables for X-ray crystallography", Kynoch Press, Birmingham, 1974, Vol. 4, pp. 99-101.
- (11) (a) M.R. SNOW, P. PAULING, M.H.B, STIDDARD, Aust. J. Chem., 22, 709 (1969); (b) F. CALDERAZZO, G. PAMPALONI, D. VITALI, P.F. ZANAZZI, J. Chem. Soc., Dalton Trans., 1993 (1982).
- (12) (a) E.A. PASEK, D.K. STRAUB, *Inorg. Chim. Acta*, 21, 23 (1977); (b) F. CALDERAZZO, F. MARCHETTI, R. POLI, D. VITALI, P.F. ZANAZZI, *J. Chem. Soc., Dalton Trans.*, 1665 (1982); (c) C.J. CAMERON, D.E. WIGLEY, T.E. WOOD, R.A. WALTON, *J. Organometal. Chem.*, 255, 345 (1983); (d) L.R. GRAY, S.J. HIGGINS, W. LEVASON, M. WEBSTER, *J. Chem. Soc., Dalton Trans.*, 1433 (1984); (e) C. BELLITTO, M. BONAMICO, G. DESSY, V. FARES, A. FLAMINI, *J. Chem. Soc., Dalton Trans.*, 595 (1986).
- (13) J. BROEKEMA, E.E. HAVINGA, E.H. WIEBENGA, Acta Cryst., 10, 596 (1957).
- (14) (a) K. NEUPERT-LAVES, M. DOBLER, *Helv. Chim. Acta*, 58, 432 (1975); (b) C.L. RASTON,
 A.H WHITE, D. PETRIDIS, D. TAYLOR, *J. Chem. Soc.*, *Dalton Trans.*, 1928 (1930).
- (15) J. JANDER, H. PRITZKOW, K.U. TROMMSDORFF, Z. Naturforsch., Teil B, 30, 720 (1975).
- (16) F.H. HFRBSTEIN, M. KAPON, Phil. Trans. Royal Soc. London, 291, 199 (1979).
- (17) J.A. KRAMER, F.H. HERBSTEIN, D.N. HENDRICKSON, J. Am. Chem. Soc., 102, 2293 (1980).
- (18) A. GIEREN, T. HUBNER, V. LAMM, R. NEIDLEIN, D. DROSTE, Z. Anorg. Allg. Chem., 523, 33 (1985).