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Compressed Raman methods allow classification be-
tween known chemical species with only few measure-
ments performed through binary filters. We propose a
methodology for binary filter optimization, in which
filters are modified at each pixel so that classification
can still be performed pixel by pixel with few measure-
ments acquired in parallel, while being able to recon-
struct a full spectrum when combining measurements
from several pixels. This approach is robust to inten-
sity variations between pixels. It relies on a generalized
Bhattacharyya bound and on the Cramér-Rao bound to
tailor filters with optimized performance. © 2022 Optica

Publishing Group

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Raman spectroscopy is commonly used to classify chemical
species. However, there is no need to acquire the entire spec-
trum to discriminate between species. Supervised methods can
leverage a priori information about the spectra to select only
some combinations of spectral components that are relevant
for classification. In order to obtain high speed classification
systems, compressed Raman approaches have been proposed [1–
11]. With these approaches only a few measurements on photon-
noise-limited sensors are performed after filtering of the Raman
radiation with binary filters designed to achieve high classifi-
cation performance between the different known species. In
particular the approach proposed in [8] enables to carry out su-
pervised classification with measurements performed in parallel.
Moreover, the number of measurements can be smaller than the
number of species to discriminate. Nevertheless, since all these
supervised compressed classification approaches have been de-
signed to discriminate between the reference species, they do
not question the validity of the model. Thus, if some calibration
issues occur or if an unexpected species is present in the sample,
these approaches may lead to erroneous classification results
and will not detect the problem.

In this letter, we propose a new compressed Raman strategy.
With this strategy, rather than always using the same binary
filters optimized for classification, the binary filters are modified
at each pixel so that the combination of measurements made on a
sufficient number of pixels allows the estimation of a full Raman
spectrum. This new strategy opens the possibility to question
the validity of the a priori or to re-calibrate the system during
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Fig. 1. Schematic diagram of the acquisition system for P = 2.

acquisition. We design a new binary filter selection strategy
that ensure the reliability of the classification performed on each
pixel and maximize the accuracy of spectrum estimation. Our
methodology relies on a generalized Bhattacharyya bound (GBB)
to control the probability of classification error [7, 8] and on the
Cramér-Rao bound (CRB) to quantify the accuracy of spectrum
estimation.

It is considered without loss of generality that acquisitions
are performed at different pixels (see Fig. 1). An alternative
would for example be to perform successively several acquisi-
tions on the same pixel. On each pixel the Raman scattering
radiation is filtered by a set of P orthogonal binary filters (OBF),
i.e. binary filters without frequency overlap. This enables to
perform the P measurements in parallel [5, 12]. The set of P fil-

ters used at pixel w is denoted by F(w) = (F(w)
1 , . . . , F(w)

P ) where

F(w)
m = (F(w)

m (1), . . . , F(w)
m (K))T is the mth filter, K the number

of frequency bins and .T the transpose operation. Since filters

are OBF, for each frequency bin k ∈ J1, KK, F(w)
m (k) = 0 or 1

and F(w)
m (k) F(w)

p (k) = 0 ∀m 6= p. Each filter is associated with
a photon-counting detector Dm and the number of photons re-

ceived on Dm through filter F(w)
m is denoted by n(w)

m . Following
[8], rather than fixing the measuring time, acquisition is stopped
on each pixel when the total number of detected photons reaches

a fixed value N (i.e. ∑P
m=1 n(w)

m = N). Let S = (S1, . . . , SK)
T de-

notes the normalized Raman spectrum of the measured radiation
(i.e. ∑K

k=1 Sk = 1). Sk is the average proportion of photons in
the frequency range [νk − δν/2, νk + δν/2] and it is assumed that
νk+1 − νk > δν (i.e. non-overlapping frequency bins). Let γ(w)

be the intensity at pixel w of the Raman radiation before filtering
and τ(w) the corresponding acquisition time. The mean number

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Letter Optics Letters 2

of photons detected by Dm is then

〈n(w)
m 〉 = τ(w)γ(w)

K

∑
k=1

F(w)
m (k) Sk = τ(w)γ(w)F(w)

m · S (1)

where · denotes the dot product and 〈 〉 the statistical mean.
Since the P measurements are performed in parallel, if a
photon emitted by a species with a spectrum S is detected
on the pixel w, the probability that it is detected by Dm is

p(w)
m = 〈n(w)

m 〉/ ∑P
p=1〈n

(w)
p 〉 = F(w)

m · S/ ∑P
p=1(F(w)

p · S). Fur-
thermore, we constrain the OBF sets to be lossless (LOBF), i.e.

∑P
m=1 F(w)

m (k) = 1 ∀k ∈ J1, KK, so that every photon reaching the
filters is detected [12]. This guarantees that the average acqui-
sition time required to detect the N expected photons is finite
no matter the species (see Appendix A). Moreover, with LOBF,

p(w)
m simplifies into

p(w)
m = F(w)

m · S =
K

∑
k=1

F(w)
m (k) Sk. (2)

Since N is fixed, the vector n(w) = (n(w)
1 , . . . , n(w)

P )T that corre-
sponds to the number of detected photons follows a multinomial
distribution depending only on the spectrum S and the LOBF

set F(w) through the parameters p(w)
m and on N, i.e.

P(n(w) | S, w) = N!
P

∏
m=1

(
p(w)

m

)n(w)
m

n(w)
m !

. (3)

This distribution is independent of τ(w) and γ(w). Therefore,
classification and estimation performance are also independent
of these quantities, and in particular of intensity variations be-
tween pixels.

Let us assume that one aims to discriminate between M
species on each pixel w. Following [8], knowing the refer-
ence spectrum S(u) associated with each of the M species (with
u ∈ J1, MK), it is possible to perform classification from n(w) on
each pixel. Assuming that all species are equally likely to appear
(i.e. P(u) = 1/M ∀u), the classifier minimizing the probability
of classification error is [8]

û(w)
opt = argmax

u

[
P

∑
m=1

n(w)
m log p(w,u)

m

]
, (4)

where p(w,u)
m stands for the probability p(w)

m in Eq. (2) for the
spectrum S(u). As shown in [8] the probability of classification
error P(ε(w)) is upper-bounded by a generalized Bhattacharyya
bound (GBB) B(w) easier to interpret and to compute, i.e.

P(ε(w)) ≤ B(w) =
1
M ∑

u
∑

v>u

(
P

∑
m=1

√
p(w,u)

m p(w,v)
m

)N

. (5)

It is then possible to tailor F(w) to minimize B(w) hence an upper
bound on the probability of error [7, 8].

Contrary to classification between M species that can be per-
formed at each pixel using only P measurements (even with
P < M), the estimation of an unknown spectrum composed
of K > P frequency bins cannot be performed using measure-
ments acquired with a single OBF set (without using an a priori
information about the spectrum). Nevertheless, such an esti-
mation can be carried out by combining measurements made

with different OBF sets, as done for example using couples of
Hadamard filters [1]. Let n(1), . . . , n(W) be independent measure-
ments made on W pixels of a species with spectrum S obtained
using the LOBF sets F(1), . . . , F(W). The spectrum S can be es-
timated from these measurements because their distributions
only depend on S, on the LOBF sets and on N (see Eq. (2) and
Eq. (3)). Moreover, since their distributions are independent
from the radiation intensity γ(w), this strategy is robust to the
unknown variations of intensity from one pixel to another. A
standard approach to perform an accurate estimation consists
in looking for minimum variance estimators among unbiased
estimators. The Cramér-Rao bound (CRB) gives a lower bound
over the variance of any unbiased estimator [13]. Let σ2

k be the
variance of an unbiased estimator of Sk. Note that since S is nor-
malized there are only K− 1 unknown parameters to estimate.
Let now Υ = I−1

F be the CRB matrix where IF is the Fisher in-
formation matrix (FIM) defined as [IF]k,l = −〈∂Sk ∂Sl `〉 with l, k
∈ J1, K − 1K and ` = ∑W

w=1 logP(n(w)|S, w) the log likelihood
of the W measurements. Then,

σ2
k ≥ [Υ]k,k = [I−1

F ]k,k = CRBk ∀k ∈ J1, K− 1K. (6)

Using Eq. (2) and Eq. (3), as shown in Appendix B,

IF = N G Q GT = N (G
√

Q)(G
√

Q)T , (7)

where the matrix G ∈ {−1, 0, 1}(K−1)×WP is defined by

G = (δF(1), δF(2), . . . , δF(W)), (8)

with [δF(w)]k,m = F(w)
m (k)− F(w)

m (K) for k ∈ J1, K− 1K and m ∈
J1, PK, and Q ∈ R+

WP×WP is diagonal with coefficients

[Q]i,i=P(w−1)+m = 1/p(w)
m . (9)

The CRB being a function of the LOBF sets, the trace of the CRB
matrix tr Υ = ∑K−1

k=1 CRBk can be used to select the sets. Indeed,
minimizing tr Υ is equivalent to minimize the mean squared
error (MSE) of any unbiased and efficient estimator of S. To com-
pute the CRB and therefore to quantify the estimation precision
independently of the choice of the estimator, it is necessary to
select LOBF sets such that IF is invertible. Eq. (7) shows that IF
is the Gram matrix of the rows of G

√
Q. Thus, IF is invertible if

and only if the rank of G is equal to K− 1. Since LOBF sets are
used, ∑P

m=1[δF(w)]k,m = 0 ∀w, k and the maximum number of
linearly independent columns in G is W(P− 1). Consequently,
the minimum number of LOBF sets necessary for IF to be invert-

ible is Winf =
⌈

K−1
P−1

⌉
, where dxe denotes the smallest integer

greater or equal to x.
One possibility to minimize the probability of classification

error is to select the LOBF set that minimizes the GBB and apply
it on each pixel. However, this does not allow to estimate the
spectrum. We need to accept a loss in classification performance
at each pixel in order to be able to make an accurate spectrum
estimation from several pixels. We quantify classification per-
formance with the GBB and spectrum estimation accuracy with
the trace of the CRB matrix. Based on these two criteria, several
approaches can be envisaged to optimize the LOBF sets. In the
procedure proposed in this paper, we first optimize V randomly
initialized LOBF sets to minimize their GBB, which results in
a pool of LOBF sets able to perform an accurate classification.
In this objective we use the same algorithm as in [7, 8], to the
exception that it does not perform a fixed number of iterations
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Fig. 2. tr Υ (left) and B (right) function of W. Computation done
for P = 2 and P = 4 filters generated with M = 4 spectra having
K = 64 frequency bins and for N = 500 photons per pixel.

but stops when a local minimum of B is reached. The objective
is then to select from this pool the W LOBF sets minimizing the
trace of the CRB matrix. To this end, the algorithm selects the
LOBF sets one by one, determining at each step the set leading
to the highest decrease of tr Υ.

Since the CRB depends on the unknown spectrum to estimate
we choose to select our sets with the CRB of the flat spectrum
(i.e. Sflat(k) = 1/K ∀k). Other solutions could be envisaged
such as using the average of tr Υ over the reference spectra or
using other a priori. Moreover, during the first steps of the
selection, IF is not invertible. Thus, we have empirically chosen
that the algorithm selects the LOBF set leading to the highest
increase in the rank of IF and, in case of ambiguity, the set
minimizing the trace of the pseudo-inverse of IF. Furthermore,
the GBB optimization algorithm used to generate the initial pool
tends to converge to LOBF sets that are similar. We need a
sufficient diversity of sets so that IF is invertible. One solution
is to roll back the last L iterations of the GBB optimization and
add the corresponding sets to the pool. Another solution is to
set V � Winf. Throughout all the following L = 5 and V =
2000. Typically, the computation time of the whole procedure is
two minutes for M=4, P=2, K=64 and W=126 with a standard
computer, but this optimization can be performed off-line, i.e.
before starting the acquisitions.

We illustrate the interest of the proposed approach on an ex-
ample with M = 4 species with spectra composed of K = 64 fre-
quency bins, for N = 500 photons detected per pixel. These spec-

tra are randomly generated as S(u)
k = X(u)

k / ∑K
l=1 X(u)

l , where

X(u)
k are exponential random variables. This process draws

uniformly distributed samples from the simplex of normalized
spectra. The evolution of the performance of classification and
spectrum estimation are plotted as a function of W in Fig.2.
More precisely, rather than plotting tr Υ for a given spectrum
we plot on Fig.2.a the empirical mean of tr Υ over 103 uniformly
drawn normalized spectra and denote it tr Υ. We also plot on
Fig.2.b the mean Bhattacharyya bound over the W LOBF sets,
i.e. B = ∑W

w=1 B(w)/W.
We first analyse the performance of the proposed approach

with P = 2 filters (see Fig.2, solid red lines). Fig.2.a shows
that the FIM is invertible as soon as W reaches Winf = 63 sets.

As suggested by Eq. (7), tr Υ is a decreasing function of W. At
first, tr Υ decreases faster than 1/W and then slows down until
it reaches an asymptote in 1/W. For W = 63 tr Υ is equal to
9.8× 10−3, whereas for W = 126 it is equal to 2.0× 10−3. On
the other hand, Fig.2.b shows that B stays between 1.5× 10−2

and 1.6× 10−3.
As a comparison we plot the classification performance of the

LOBF set of the optimized pool with the lowest GBB (see Fig.2.b,
dotted green line), which corresponds to the approach proposed
in [8]. As expected B is smaller than with the proposed approach
but it is not possible to calculate tr Υ because the FIM is not
invertible. Note that classification and estimation performance
can in general be improved by increasing the total number of
photons detected per pixel, N. Indeed, according to Eq. (7), tr Υ

is proportional to 1/N while B varies asymptotically as a power
of N. For W = 63 the sets generated using our approach would
need 3 times more photons to perform as well in classification
as the set with the lowest GBB (see Fig.2.b, bottom black arrow).

Another category of LOBF sets with P = 2 that is widely
used for spectrum estimation is derived from the Hadamard S-
Matrix [1, 2, 14]. The performance of such sets with W = 63 are
shown in Fig.2 (yellow discs). The value of tr Υ obtained with
these Hadamard sets is lower than with the proposed approach,
which confirms the interest of using them for estimation. In
fact, it would require 5.1 times more photons to our sets to have
the same estimation performance (see Fig.2.a, black arrow). On
the other hand, the GBB corresponding to these sets is greater
and they need over 100 times more photons to reach the same
B as our sets for P = 2 (see Fig.2.b, top black arrow). The
proposed approach therefore allows to find a trade-off between
classification and spectrum estimation performance.

To improve performance, rather than increasing N, one can
increase the number of filters per set, P. Going from P = 2 to
P = 4 filters without changing N (see Fig.2, blue dashed lines)
improves both classification and estimation performance. For
W = 63 and P = 4 the proposed sets reach the performance
of the Hadamard sets in terms of tr Υ while the mean GBB is
under 5× 10−16, which guarantees a very small probability of
classification error. Furthermore, the FIM is invertible as soon as
W = 21 when P = 4 instead of W = 63 when P = 2.

Once N and the LOBF sets have been chosen, one can use
them for classification and spectrum estimation. Fig.3 displays
the classification and estimation performance of the LOBF sets
built with our method for P = 2 and W = 126 for the experiment
shown in Fig.2. The probability of classification error with the
classifier of Eq. (4) has been evaluated using a Monte-Carlo sim-
ulation with 105 samples per pixel for each of the M spectra. The
variance of the pseudo inverse (PI) estimator when estimating
the spectrum shown in Fig.2 (top) has been evaluated using a
Monte-Carlo simulation with 104 samples per pixel. All sam-
ples were generated following the multinomial distribution of
Eq. (3). The empirical probabilities of error per pixel and empiri-
cal variances per frequency bin resulting of the simulations are
denoted respectively by P̂(ε(w)) and σ̂2

k . Eq. (2) shows that the
PI estimator of the spectrum S is Ŝ = (HHT)−1H v, with v the
concatenation of the W vectors 1

N n(w) and H = (F(1), . . . , F(W))
the concatenation of the W sets of filters. The PI estimator is
unbiased. Indeed 〈Ŝ〉 = (HHT)−1H〈v〉 and since 〈v〉 = HTS,
〈Ŝ〉 = S. Moreover in this simulation, its variance is close to the
CRB. Note that the PI estimator does not guarantee the positivity
nor the sum-to-one. The proposed OBF selection algorithm leads
to P̂(ε(w)) between 3.3× 10−5 and 2.2× 10−2 and σ̂2

k between
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Fig. 3. Monte-Carlo simulation. Top : Spectrum S to be esti-
mated (in blue) along with the interval of confidence of the PI
estimator at ±σ̂k (in red). Middle : CRBk (in blue) along with the
corresponding empirical variances σ̂2

k (in red). Bottom : Bhat-
tacharyya bounds B(w) (in blue) along with the corresponding
empirical probabilities of error P̂(ε(w)) (in red). Error bars are
± the corresponding empirical standard deviation in all graphs.
Simulation comprises W = 126 optimized sets of P = 2 filters
and N = 500 photons per pixel.

2.6× 10−5 and 5.1× 10−5.
In conclusion, we propose a methodology that enables to per-

form classification between known species on each pixel with a
number of filters smaller than the number of species to discrim-
inate, while being able to estimate a full spectrum combining
a sufficient number of measurements made with different sets
of filters. The LOBF sets built with our method achieve a trade-
off between the GBB and the CRB, enabling to perform both
reliable classification and accurate estimation. It allows one to
determine a priori the minimum number N of photons per pixel
required to achieve the desired performance. However, note
that if the measured number of photons is different from the one
initially expected, both classification and estimation can still be
performed. One obvious perspective to this work is to imple-
ment this approach on a real optical setup. This would enable
to update on-the-fly the reference spectra used for classification
or to perform anomaly detection. Of course, since spectrum
estimation requires to combine several pixels, a straightforward
estimation in a sliding window will generate errors when the
window includes pixels of different species. To solve this issue,
segmentation strategies or robust estimation methods have to
be developed. A careful study on the way to distribute the W
OBF sets on the imaging plane also has to be carried out.

A. LOSSLESS ORTHOGONAL BINARY FILTERS (LOBF)

Let τ
(w)
N be the acquisition time that has been necessary to detect

N photons at pixel w. Since ∑P
m=1 n(w)

m = N, Eq. (1), leads to

〈τ(w)
N 〉 = N

γ(w)(∑P
m=1 F(w)

m )·S
. For OBF with loss, ∑P

m=1 F(w)
m (k) = 0

for at least one bin k. Thus there exist spectra for which

(∑P
m=1 F(w)

m ) · S = 0, and then 〈τ(w)
N 〉 → ∞. With lossless OBF,

∑P
m=1 F(w)

m (k) = 1 ∀k and since ∑K
k=1 Sk = 1, 〈τ(w)

N 〉 = N/γ(w),
which is finite for any S provided γ(w) > 0. Moreover, it allows
a direct estimation of γ(w) by measuring the acquisition time.

B. FISHER INFORMATION MATRIX FOR LOBF SETS

Eq. (3) shows that the log-likelihood of W measures
n(1), . . . , n(W) of a spectrum S is:

` =
W

∑
w=1

[
log N! +

P

∑
m=1

n(w)
m log p(w)

m − log(n(w)
m !)

]
. (10)

Since SK = 1− ∑K−1
k=1 Sk, then ∂Sk p(w)

m = F(w)
m (k)− F(w)

m (K) =

δF(w)
m (k) for k ∈ J1, K− 1K and thus

∂`

∂Sk
=

W

∑
w=1

P

∑
m=1

δF(w)
m (k) n(w)

m

p(w)
m

∀k ∈ J1, K− 1K

∂2`

∂Sk∂Sl
= −

W

∑
w=1

P

∑
m=1

δF(w)
m (k) n(w)

m δF(w)
m (l)

(p(w)
m )2

∀k, l ∈ J1, K− 1K.

Since 〈n(w)
m 〉 = Np(w)

m and [IF]k,l = −〈∂Sk ∂Sl `〉, IF = N G Q GT ,
with G and Q from Eq. (8) and Eq. (9).
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