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Abstract. We extend the existing encoding of abstract argumentation
frameworks in DL-PA (Dynamic Logic of Propositional Assignments) in
order to capture different formalisms for arguing with qualitative forms
of uncertainty. More in particular, we encode the main reasoning tasks
of (rich) incomplete argumentation frameworks and control argumenta-
tion frameworks. After that, and inspired by our encoding, we define
and study a new class of structures that are shown to be maximally
expressive: constrained incomplete argumentation frameworks.

Keywords: Incomplete argumentation frameworks · Dynamic logic of
propositional assignments · Control argumentation frameworks

1 Introduction

Formal argumentation has been proved to be a successful approach to non-
monotonic reasoning (see e.g. [15]), among many other applications [2,12].
Within the studies directed to provide a formal model for argument-based infer-
ence, abstract models of argumentation play a crucial role, as they answer a
rather fundamental question: how should a rational agent choose among a con-
flicting set of arguments those that are better justified? The adjective abstract
stresses that these models disregard the nature and structure of arguments, in
order to focus on the different semantics through which one could give a precise
answer to the question above. The foremost abstract model of argumentation
is the use of directed graphs, first proposed by Dung in [23] under the name of
argumentation frameworks (AFs), where nodes stand for arguments and arrows
stand for attacks among arguments.
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952215). Antonio Yuste-Ginel gratefully acknowledges funding received from the PhD
grant No. MECDFPU 2016/04113. 



Despite being an elegant and powerful tool, AFs have limited modelling capa-
bilities for many purposes. Consequently, many extensions of Dung’s model have
been proposed in the literature since its publication. Examples of such exten-
sions are the addition of a support relation [16], of recursive forms of attacks [6]
and of preferences among arguments [1]. An essential limitation that AFs come
equipped with is the assumption that the formalized agent has perfect knowledge
about the relevant arguments and attacks of the debate (that is, about the struc-
ture of the AF). This turns out to be an important shortcoming in adversarial
contexts, where usually one wants to model the information (i.e., the part of an
AF) that an agent thinks that her opponent entertains, and thus uncertainty nat-
urally pops up into the picture. However, the assumption of perfect knowledge
has been relaxed through the study of extensions of AFs that include differ-
ent forms of uncertainty, either through the use of probability [28] or through
qualitative methods. Among the second group of approaches, incomplete argu-
mentation frameworks (IAFs) [8–11,24] and control argumentation frameworks
(CAFs) [18,31] have recently received a lot of attention, resulting in a precise
complexity map of the different associated reasoning tasks as well as some appli-
cations [19].

Concurrently, a large number of works within formal argumentation have
focused on building a suitable logical theory for reasoning about argumentation
formalisms, with a special focus on AFs and their dynamics (see [13] for a recent
survey on the topic). The dynamic logic of propositional assignments (DL-PA)
[4] has been shown to be a useful tool for this enterprise [20–22]. DL-PA is a
well-behaved variant of propositional dynamic logic (PDL) [26], where atomic
programs are restricted to assignments of propositional variables to either Truth
or Falsity. It is expressive enough to capture all standard argumentation seman-
tics. When compared to encodings in propositional logic, DL-PA can capture
semantics that incorporate minimality or maximality criteria more succinctly.
Moreover, its advantages over other encodings of AFs in equally succinct lan-
guages (e.g. quantified Boolean formulas) have also been highlighted [21].

Contribution and Structure. In this paper, we explain how to extend the machin-
ery of [20–22] so as to use DL-PA for reasoning about different formalisms for
arguing with qualitative uncertainty. In particular, and after introducing the
basic tools (Sects. 2 and 3) we encode in DL-PA programs the main reasoning
tasks concerning incomplete argumentation frameworks (Sect. 4), their enriched
version (called rich incomplete argumentation frameworks [29]) (Sect. 5), and
control argumentation frameworks (Sect. 6). After that, and inspired by our
encoding, we define and study the expressive power of a new class of structures
for arguing with qualitative uncertainty: constrained incomplete argumentation
frameworks, whose naturally associated reasoning tasks are also encodable in
DL-PA (Sect. 7). We close the paper by discussing related work and pointing
out paths for future research in Sect. 8. Most of the proofs are merely sketched
for space reasons, details are left to the reader.



2 Background

General Notation for Sets of Arguments and Attack Relations. We assume a
finite, non-empty set of arguments U (the universe) as fixed from now on. We
moreover assume that U is big enough to accommodate our examples. Sets of
arguments (denoted A, sometimes with a superscript) are supposed to be subsets
of U ; and all conflict relations (denoted R, sometimes with a superscript) are
supposed to be defined over U (i.e., R ⊆ U × U). Given A ⊆ U and R ⊆ U × U ,
we use R|A to abbreviate R ∩ (A × A) (the restriction of R to A).

2.1 Abstract Argumentation Frameworks and Their Stable
Semantics

An argumentation framework (AF) is a directed graph (A,R) [23], where A
stands for a set of arguments and R stands for a conflict-based relation among
them (typically, an attack relation).1 Argumentation semantics are meant to
capture the informal notion of a reasonable position in a debate (i.e. in an AF).
There is a large number of available semantics studied in the literature (see [5]).
For the sake of presentation we stick to stable semantics, but our approach can
be straightforwardly extended to the rest of standard semantics defined by Dung
[23], namely admissible, complete, grounded and preferred: it suffices to combine
our results with those of [20]. A set of arguments E ⊆ A is a stable extension
if (i) (E × E) ∩ R = ∅ (‘E is conflict-free’) and (ii) x ∈ A \ E implies that there
is a y ∈ E such that (y, x) ∈ R (‘E attacks every argument outside itself’). We
note st(A,R) the set of all stable extensions of (A,R). An argument x ∈ E is
said to be credulously (resp. sceptically) accepted if it belongs to at least one
(resp. every) extension.

As an example, for the AF (A0, R0) represented in the picture below we have
st(A0, R0) = {{b, e}, {c, d}}.

a

bc

de

2.2 Dynamic Logic of Propositional Assignments (DL-PA)

We shall use DL-PA as a the general logical framework of this paper. We start
by associating several kinds of propositional variables to arguments. To every
1 As A ⊆ U , we actually focus on finite AFs, as most of the literature does. This is an

essential limitation of our approach, as our encodings use formulas parametrised by
U , which makes finiteness of U necessary. Capturing some argumentation semantics
for the general case has been shown to require powerful logical languages, such as
modal μ-calculus for the grounded semantics [25].



set of arguments A ⊆ U we associate the set of awareness variables AWA =
{awx | x ∈ A}, and the set of acceptance variables INA = {inx | x ∈ A}.
Furthermore, to every relation R ⊆ U ×U we associate the set of attack variables
ATTR = {rx,y | (x, y) ∈ R}. The set of propositional variables of our logic is then

PrpU = AWU ∪ INU ∪ ATTU×U
= {awx | x ∈ U} ∪ {inx | x ∈ U} ∪ {rx,y | (x, y) ∈ U2}.

Then formulas and programs of DL-PA are defined by mutual recursion:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | [π]ϕ

π ::= +p | −p | ϕ? | (π;π) | (π ∪ π) | π�

where p ranges over PrpU . The formula [π]ϕ reads “ϕ is true after every possible
execution of π”. The program +p makes p true and −p makes p false. The
program ϕ? tests that ϕ is true (and fails when it is false). The program π1;π2

is the sequential composition of π1 and π2, and π1 ∪π2 is their nondeterministic
composition. Finally, π� is the execution of π ‘the other way round’. As usual,
skip abbreviates the program �?.

Formulas of DL-PA are interpreted over classical propositional valuations,
i.e., subsets of PrpU . Programs are interpreted as binary relations on the set of
all valuations. We use v , v ′, v ′′ to denote valuations. Again by mutual recursion,
the interpretation of modal formulas is:

v |= [π]ϕ if (v , v ′) ∈ ||π|| implies v ′ |= ϕ,

and the interpretation of programs ||π|| ⊆ 2PrpU × 2PrpU is:

||+p|| = {(v , v ′) | v ′ = v ∪ {p}}
||−p|| = {(v , v ′) | v ′ = v \ {p}}
||ϕ?|| = {(v , v) | v |= ϕ}

||π;π′|| = ||π|| ◦ ||π′||
||π ∪ π′|| = ||π|| ∪ ||π′||

||π�|| = ||π||−1

A formula ϕ is DL-PA satisfiable if v |= ϕ for some v , and it is valid if v |= ϕ
for every v . It is known that satisfiability, validity, and model-checking are all
PSPACE complete decision problems [3].

From Valuations to AFs and Backward. Each propositional valuation v ⊆ PrpU
represents an AF (Av , Rv ), where Av = {x ∈ U | awx ∈ v} and Rv = {(x, y) ∈
U2 | rx,y ∈ v}|Av

. The other way round, each AF (A,R) can be represented as a
propositional valuation v(A,R) = {awx | x ∈ A} ∪ {rx,y | (x, y) ∈ R}. Note that
if we start with a valuation v ′ we have that v(Av′ ,Rv′ ) = v ′ does not generally
hold (because a valuation can contain an attack variable ra,b with neither awa

nor awb being members of it). If we, however, start with an AF (A′, R′) we have
that (Av(A′,R′) , Rv(A′,R′)) = (A′, R′) is always the case.



3 Formalisms for Arguing with Qualitative Uncertainty

We now review three formalisms for representing qualitative uncertainty about
abstract argumentation frameworks. We start by presenting control argumenta-
tion frameworks (CAFs) [18], which besides uncertainty, also include a dynamic
component. After that, we introduce rich incomplete argumentation frameworks
(rIAFs) [29] and incomplete argumentation frameworks (IAFs) [8] as special cases
of CAFs.

A control argumentation framework is a triple CAF = (F,C,U) where:

– F = (AF , RF ) is the fixed part, with RF ⊆ (AF ∪ A?) × (AF ∪ A?), and both
AF and A? being two finite sets of arguments;

– U = (A?, (R? ∪ R↔)) is the uncertain part, where

R?, R↔ ⊆ (AF ∪ A?) × (AF ∪ A?)

and R↔ is symmetric and irreflexive;2

– C = (AC , RC) is the control part where AC is yet another finite set of argu-
ments and

RC ⊆ (AC × (AF ∪ A? ∪ AC)) ∪ ((AF ∪ A? ∪ AC) × AC);

– AF , A?, and AC are pairwise disjoint; and
– RF , R?, R↔, and RC are pairwise disjoint.

Standard AFs can be viewed as CAFs with empty uncertain and control
parts: CAFs where A?, R?, R↔, and AC are empty (and therefore RC is empty
by definition too).

Given a CAF = (F,C,U), a control configuration is a subset of control
arguments CFG ⊆ AC . The CAF associated to CFG is CAFCFG = (F,CCFG, U)
where CCFG = (CFG, RC |AF ∪A?∪ACFG

).

Epistemic Interpretation of CAFs. In order to throw some intuition, let us briefly
recall the epistemic interpretation of CAFs provided in [32]. A CAF can be
thought as modelling an agent (the proponent) who is trying to convince another
agent (the opponent) to accept certain argument(s). Under this interpretation,
F represents the arguments and attacks that the proponent knows the opponent
knows. U represents the argument and attacks such that the proponent is not
sure about how the opponent perceives them. In particular, R↔ is an conflict
relation such that the proponent knows that the opponent knows that these
attacks hold, but the direction of the attack according to the opponent’s per-
ception is unknown to the proponent. This makes perfect sense if we understand
conflict relations as defeat relations (as done in the field of structured argumen-
tation [14]). In this picture, the proponent can be sure about the opponent’s
perception of at least one of the attacks between a and b (for instance, because
2 Symmetry and irreflexivity of R↔ are not assumed in the original paper [18], but as

pointed out by [30,31], both assumptions can be made without loss of generality.



they have contradictory conclusions), but the proponent still lacks information
about the opponent’s knowledge so as to know how he (the opponent) perceives
the relative strength of a and b, and hence the direction of the defeat. As for
C = (AC , RC), it is supposed to be the part of the framework that depends on
the actions of the proponent. More precisely, it can be interpreted as private,
communicable knowledge of the proponent, i.e., the arguments and attacks such
that (i) they are known to the proponent, (ii) they are unknown to the oppo-
nent (and the proponent knows this). Moreover, CAFs make a strong assumption
about control arguments: (iii) the proponent is completely sure about the effects
of communicating each of them.

Example 1. With the above interpretation in mind, consider the CAF CAF0 =
(F0, C0, U0) where AF

0 = {a}, RF
0 = {(f, e)}, AU

0 = {c, e, f}, RU = {(f, c)},
R↔ = {(c, e), (e, c)}, AC

0 = {b, d} and RC
0 = {(b, a), (d, a), (c, b), (e, d)}.

We represent CAF0 graphically as follows:

a

bc

de

f

where solid circles stand for fixed arguments, normal arrows stand for fixed
attacks, dashed circles stand for uncertain arguments, dashed arrows stand for
uncertain attacks, dashed double arrows stand for symmetric attacks, squares
stand for control arguments, and double arrows for control attacks.

A fundamental notion for reasoning about CAFs (and the rest of formalisms
for qualitative uncertainty that will be studied here) is that of completion.

A completion of CAF = (F,C,U) is any AF (A∗, R∗) such that:

– (AF ∪ AC) ⊆ A∗ ⊆ (AF ∪ AC ∪ A?);
– (RF ∪ RC)|A∗ ⊆ R∗ ⊆ (RF ∪ RC ∪ R? ∪ R↔)|A∗ ; and
– for every x, y: (x, y) ∈ R↔ and x, y ∈ A∗ implies (x, y) ∈ R∗ or (y, x) ∈ R∗.

A completion can be seen as a provisional removal of uncertainty or, in epis-
temic terms, as a possible world (cf. [27,32]). This removal lets the proponent
reason under the assumption that the opponent’s AF is such-and-such. If we
identify standard AFs (A,R) with CAFs with empty uncertain and control parts
then (A,R) is the unique completion of itself.

The completions of CAF0 are depicted in Table 1.
A rich incomplete AF [29] is a pair rIAF = (F,U) where F and U are

exactly as in a CAF. A rich incomplete AF can be informally understood as a
CAF with empty AC and RC , i.e., where we abstract away from the dynamics.
We sometimes unravel F and U and represent rich incomplete AFs as tuples of
the form (AF , A?, RF , R?, R↔). The notion of completion is easily adapted to
rIAFs.



Table 1. Completions of CAF0. The column [1, 2,..., 6] and the row [A, B, C] are just
included for numbering purposes. Empty cells do not represent the empty completion
(∅, ∅).

A B C

1

a

b

d

a

bc

d

a

b

de

2

a

bc

de

a

bc

de

a

bc

de

3

a

b

d

f a

bc

d

f a

bc

d

f

4

a

bc

de

f a

bc

de

f a

bc

de

f

5

a

bc

de

f a

bc

de

f a

bc

de

f

6

a

b

de

f



Example 2. Let rIAF0 = (AF
0 , AU

0 , RF
0 , RU

0 , R↔
0 ) where AF

0 = {a, b, d}, AU
0 =

{c, e, f}, RF
0 = {(b, a), (d, a), (c, b), (e, d), (f, e)}, RU

0 = {(f, c)}, and R↔
0 =

{(c, e), (e, c)}. Note that rIAF0 has exactly the same set of completions as CAF0

(from Example 1), that is, all those depicted in Table 1. Actually rIAF0 can be
seen as the full development of CAF0, i.e., CAF0 where all the control arguments
have been used by the proponent.

We represent rIAF0 graphically as follows:

a

bc

de

f

An incomplete AF [8] (IAF), is a rich IAF with empty R↔. We represent
IAFs as tuples of the form (A,A?, R,R?). There are some notable subclasses of
IAFs, well-studied in the literature, namely attack-incomplete AFs (att-IAFs,
for short), which are IAFs with empty A?; and argument-incomplete AFs
(arg-IAFs, for short), which are IAFs with empty R?. The notion of completion
is again straightforwardly relativised to IAFs.

Example 3. Let us consider IAF0 = (AF
0 , AU

0 , RF
0 , RU

0 ), where AF
0 = {a, b, d},

AU
0 = {c, e, f}, RF

0 = {(b, a), (d, a), (c, b), (e, d), (c, e), (e, c), (f, e)} and RU
0 =

{(f, c)}, graphically represented below. The set of completions of IAF0 is the one
depicted in Table 1 except for the cells B2, C2, B4, C4, B5 and C5 (as the
symmetric attack c ↔ e is now fixed).

a

bc

de

f

Given a control AF, CAF, we note completions(CAF) its set of completions
(and we do the same for IAFs and rIAFs).

Classic reasoning tasks such as extension enumeration or argument accep-
tance have been generalized from AFs to both IAFs and rIAFs. As an example,
let us consider the following one:

stable-Necessary-Credulous-Acceptance (st-NCA)
Given: A rich IAF rIAF = (AF , A?, RF , R?, R↔) and an argument a ∈ AF .
Question: Is it true that for every (A∗, R∗) ∈ completions(rIAF)
there is an E ∈ st(A∗, R∗) such that a ∈ E?

We can replace st by any other semantics as well as switch quantifiers in the
definition above in order to obtain different variants of the problem.



Regarding CAFs, defining relevant reasoning tasks gets slightly more com-
plicated, since we have to take into account their dynamic aspect (the control
part). In this context, a natural reasoning task is finding a control configuration
(that is, a set of control arguments) such that a certain argument gets accepted
by the opponent after the latter learns about them. Just as before, acceptabil-
ity is then relativised to quantification over completions and extensions. As an
example, let us consider:

stable-Necessary-Sceptical-Controllability (st-NSCon)
Given: A control argumentation framework
CAF = (F,C,U) and an argument a ∈ AF .
Question: Is it true that there is a configuration
CFG ⊆ AC such that for every completion (A∗, R∗)
of CAFCFG and for every E ∈ st(A∗, R∗), a ∈ E?

Expressivity via Sets of Completions. Following [29], we can compare the mod-
elling power of each of the previous formalisms for arguing with uncertainty
(IAFs, rIAFs and possibly others) using the sets of completions that they can
represent. Let (att-, arg-)IAF (resp. RIAF , CAF) denote the class of all (att-
,arg-)IAFs (resp. rIAFs, CAFs), and let X and Y be metavariables denoting
arbitrary classes of the previous list. We say that X is at least as expressive
as Y (in symbols, X � Y) if, for every Y ∈ Y there is a X ∈ X such that
completions(X) = completions(Y ). We use � to denote the strict counterpart of
�, we use 
 to denote the inverse of �, and we use ≡ to abbreviate � ∩ 
. For
instance, in [29], it was proved that RIAF � IAF .

4 Incomplete AFs in DL-PA

Our first aim is to capture incomplete AFs using DL-PA. More precisely, given an
incomplete argumentation framework IAF = (A,A?, R,R?), we want to design a
program makeCompIAF such that every valuation that is makeCompIAF-accessible
from the valuation vIAF associated to IAF represents a completion of IAF and,
vice versa, every completion of IAF is represented by at least one makeCompIAF-
successor of vIAF.

First of all, we associate to IAF its valuation

vIAF = v(AF ,RF )

= AWAF ∪ ATTRF

= {awx | x ∈ AF } ∪ {rx,y | (x, y) ∈ RF }.

Note that (AvIAF
, RvIAF

) is already a completion of IAF: it is the smallest one,
where only fixed arguments and fixed attacks between them are considered. What
we need to do in order to compute all the completions of IAF is varying the value
of propositional variables representing arguments in A? and attacks in R?. Let



us first define the DL-PA program that computes all possible combinations of
variables in a given set. Let P = {p1, ..., pn} be a subset of PrpU and define

vary(P) =
(
+p1 ∪ −p1

)
; ...;

(
+pn ∪ −pn

)
.

(Note that the order of the propositional variables does not matter.) With this
abbreviation at hand we are able to define the program to compute the comple-
tions we are after:

makeCompIAF = vary(AWA?); vary(ATTR?).

The next proposition shows that our original target is reached.

Proposition 1. Let IAF = (A,A?, R,R?), then

– If (vIAF, v) ∈ ||makeCompIAF||, then (Av , Rv ) ∈ completions(IAF).
– If (A∗, R∗) ∈ completions(IAF), then (vIAF, v(A∗,R∗)) ∈ ||makeCompIAF||.

Proof. For the first item, suppose (vIAF, v) ∈ ||makeCompIAF||. We recall that
||vary(P )|| = {(v ′, v ′′) | (v ′ \ v ′′) ∪ (v ′′ \ v ′) ⊆ P} for any set of atoms P [21].3

Hence, by the semantics of the sequential composition operator ;, we have that
(vIAF, v) ∈ ||makeCompIAF|| amounts to saying that the set of variables whose
truth values differs from vIAF to v , formally the set (v \ vIAF)∪ (vIAF \ v), must be
a subset of AWA? ∪ATTR? . But, since all variables from AWA? ∪ATTR? are false
in vIAF by definition, we have that v = vIAF ∪ P for some P ⊆ AWA? ∪ ATTR? .
From this statement, and applying the definition of (Av, Rv) and the one of
completion, we obtain that (Av , Rv ) ∈ completions(IAF).

For the second item, suppose that (A∗, R∗) ∈ completions(IAF), which
amounts to AF ⊆ A∗ ⊆ AF ∪ A? and RF

|A∗ ⊆ R∗ ⊆ (RF ∪ R?)|A∗ . Now, remem-
ber that v(A∗,R∗) = AWA∗ ∪ ATTR∗ . From the two previous statements and the
definition of vIAF, we can deduce that the set of variables whose truth values
differ from v to v(A∗,R∗) must be a subset of AWA? ∪ ATTR? , which, as argued
before, amounts to saying that (vIAF, v(A∗,R∗)) ∈ ||makeCompIAF||.

Using this result together with the general technique to compute extensions
provided in [20,22], we can reduce reasoning problems in IAFs to model-checking
problems in DL-PA. Note that we need an encoding of argumentation semantics
that takes into account our “awareness” variables. As shown in [22], the following
propositional schema characterizes the stable semantics in awareness-relativised
AFs:

Stable =
∧
x∈U

(
(inx → awx) ∧
(
awx → (inx ↔ ¬

∨
y∈U

(iny ∧ ry,x ∧ awx ∧ awy)
))

.

3 Note that vary is noted flipSome in [21].



The authors show that v is a model of Stable if and only if {x ∈ U | inx ∈ v} is
a stable extension of (Av, Rv). Note that Stable is actually parametrised by U ,
but we drop it to simplify notation.

The program makeExtst = vary(INU );Stable? nondeterministically builds all
possible stable extensions by first varying the values of the ‘in’ variables and
then checking that a stable valuation has been obtained [20,22]. Our general
technique is then illustrated by the following result.

Proposition 2. Let IAF = (A,A?, R,R?), and a ∈ AF , then the answer to st-
NCA with input IAF and a is yes iff vIAF |= [makeCompIAF]〈makeExtst〉ina.

Proof (Sketched). The result follows from the definition of the reasoning task, the
correctness of makeExtst ([20,21]), Proposition 1, and the semantics of DL-PA.

5 Rich Incomplete AFs in DL-PA

Things get slightly more complicated when computing the completions of a rich
IAF in DL-PA, since the program vary does not suffice to compute the symmetric
attacks of R↔. We can, however, find a specific program for this purpose.

First of all, given rIAF = (AF , A?, RF , R?, R↔), we associate to rIAF its
valuation

vrIAF = v(AF ,RF )

= AWAF ∪ ATTRF

= {awx | x ∈ AF } ∪ {rx,y | (x, y) ∈ RF }.

Note that, contrarily to what happened with IAFs, (AvrIAF
, RvrIAF

) is not always
a completion of rIAF (this is false as soon as R↔ ∩ (AF × AF ) is not empty).
Let us now define the program that will be used to compute the presence of
elements of R↔ in each completion. Let ATTR = {rx1,y1 , ..., rxn,yn

} be a set of
attack variables, and define

dis(ATTR) = (+rx1,y1 ∪ +ry1,x1) ; . . . ; (+rxn,yn
∪ +ryn,xn

) .

Intuitively, dis makes true at least one of the pairs from the set {(xi, yi), (yi, xi)},
for each 1 ≤ i ≤ n. Moreover, when applied to symmetric relations, dis makes
true either (xi, yi), or (yi, xi), or both. We have now the tools to define the
program makeComp in its version for rIAFs. Let rIAF = (AF , A?, RF , R?, R↔),
and define

makeComprIAF = vary(AWA?); vary(ATTR?); dis(ATTR↔).

The following proposition shows that the above program is correct.

Proposition 3. Let rIAF = (AF , A?, RF , R?, R↔), then:

– If (vrIAF, v) ∈ ||makeComprIAF||, then (Av , Rv ) ∈ completions(rIAF).



– If (A∗, R∗) ∈ completions(rIAF), then (vrIAF, v(A∗,R∗)) ∈ ||makeComprIAF||.
Proof (Sketched). The proof is analogous to the one of Proposition 1, but tak-
ing into account the observation that, when applied to the symmetric relation
R↔ = {(x1, y1), (y1, x1), ..., (xn, yn), (yn, xn)}, every execution of dis(ATTR↔)
makes true either rxi,yi

, or ryi,xi
or both, for every 1 ≤ i ≤ n.

Again, acceptance problems can be reduced to model-checking problems. As
an example, consider the following reduction, where st-PSA stands for stable-
Possible-Sceptical Acceptance.

Proposition 4. Let rIAF = (AF , A?, RF , R?, R↔), and let a ∈ AF , then the
answer to st-PSA with input rIAF and a is yes iff

vrIAF |= 〈makeComprIAF〉[makeExtst]ina.

Proof (Sketched). The result follows from the definition of the reasoning prob-
lem, the correctness of makeExtst [20,21], Proposition 3, and the semantics of
DL-PA.

6 Control AFs in DL-PA

We now move to control argumentation frameworks. Regarding uncertainty, con-
trol argumentation frameworks are essentially rich incomplete argumentation
frameworks; however, the delicate part is their dynamic component, i.e., the
control part.

First, given a CAF CAF = (F,C,U), we define its associated valuation as

vCAF = v(AF ,RF ∪RC)

= AWAF ∪ ATTRF ∪ ATTRC

= {awx | x ∈ AF } ∪ {rx,y | (x, y) ∈ RF } ∪ {rx,y | (x, y) ∈ RC}.

Note that vCAF contains all attack variables corresponding to control attacks,
but none of them appear in (AvCAF

, RvCAF
), since none of the control arguments

has been communicated yet. This highlights the fact that in the epistemic inter-
pretation of CAFs, the proponent knows how the opponent will perceive the
attack relations regarding all communicable arguments (a point that might be
subject to criticism).

To capture the dynamic component of CAF we define the following program:

controlCAF = vary(AWAC ).

Intuitively, controlCAF nondeterministically chooses some of the possible control
configurations of CAF (i.e., some subset of control arguments).

What about completions? As mentioned, if we restrict to uncertainty, CAFs
are essentially rIAFs [29]. Hence, once we have computed some control configu-
ration, it suffices to use the same program as for rIAFs:

makeCompCAF = vary(AWA?); vary(ATTR?); dis(ATTR↔).

We again state a correctness result:



Proposition 5. Let CAF = (F,C,U).

– If (vCAF, v) ∈ ||controlCAF;makeCompCAF||, then there is a control configura-
tion CFG ⊆ AC and a completion (A∗, R∗) of CAFCFG such that (Av , Rv ) =
(A∗, R∗).

– For every control configuration CFG ⊆ AC and every (A∗, R∗) ∈
completions(CAFCFG) there is a valuation v ∈ 2PrpU such that (vCAF, v) ∈
||controlCAF;makeCompCAF|| and (Av , Rv ) = (A∗, R∗).

Proof (Sketched). The proof is analogous to those of Propositions 1 and 3. The
essential difference lies in the fact that the previous execution of controlCAF is
needed to nondeterministically choose a control configuration of CAF. Also, note
that ATTRC ⊆ vCAF is essential for obtaining the needed control attacks in the
corresponding completion.

We can then combine the previous programs with makeExt in order to reduce
controllability problems to model-checking problems in DL-PA. As an example,
consider the following.

Proposition 6. Let CAF = (F,C,U) and a ∈ AF . The answer to st-NSCon
with input CAF and a is yes if and only if

vCAF |= 〈controlCAF〉[makeCompCAF; makeExtst]ina.

Proof (Sketched). The result follows from the definition of the reasoning task,
the correctness of makeExtst [20,21], Proposition 5, and the semantics of DL-PA.

7 Constrained Incomplete AFs and Their Encoding
in DL-PA

We now move to study a very general class of structures for modelling quali-
tative uncertainty about AFs: constrained incomplete AFs. To the best of our
knowledge, these structures have not been studied before in the literature. They
are however inspired by the notion of constrained AF [17], and by the encoding
of other structures in DL-PA as undertaken in this paper.

Let U be given, a constrained incomplete AF (cIAF) is a pair cIAF =
(U , ϕ) where ϕ is a Boolean formula built over the set of propositional variables
AWU ∪ ATTU×U . The set of completions of a given cIAF is defined as

completions(U , ϕ) = {(Av , Rv ) | v ⊆ PrpU and v |= ϕ}.

We note c-IAF the class of all constrained incomplete argumentations frame-
works.

Example 4. Let us consider cIAF1 = (U , ϕ) with U = {a, b} and ϕ = (awa ∧
awb) ∧ (ra,b ∨ rb,a) ∧ ¬(ra,b ∧ rb,a) ∧ ¬ra,a ∧ ¬rb,b. The completions of cIAF1 are:

a • •b a • •b



Proposition 7. cIAFs are strictly more expressive than IAFs and rIAFs. In
other words, for every (r)IAF, there is a cIAF with the same set of completions;
but there is a cIAF such that no (r)IAF has the same set of completions.

Proof. We only have to prove c-IAF � RIAF (as c-IAF � IAF follows from
RIAF � IAF [29] and the transitivity of �).

For the first part of the statement (for every rIAF there is a cIAF with
the same set of completions), let rIAF be a rIAF with completions(rIAF) =
{(A∗

1, R
∗
1), ..., (A

∗
n, R∗

n)}. Note that, for any AF (A,R) defined over U , we can
write its theory (see e.g. [22]), that is, the formula

Th(A,R) =
∧

x∈A

awx ∧
∧

x∈U\A

¬awx ∧
∧

(x,y)∈R

rx,y ∧
∧

(x,y)∈U2\R

¬rx,y.

It is then easy to show that for any valuation v ⊆ PrpU , we have that v |=
Th(A,R) iff (Av , Rv) = (A,R). Now, letting ρ =

∨
1≤i≤n Th(A∗

i , R
∗
i ), we have

that

completions(U , ρ) = completions(rIAF).

In order to prove the second half of the proposition, it suffices to use the cIAF of
Example 4 (called cIAF0). Reasoning towards contradiction, suppose that there
is a rIAF rIAF = (AF , A?, RF , R?, R↔) with the same set of completions as
cIAF0. Then (a, b) ∈ RF ∪R? ∪R↔ (since (a, b) appears in a completion of rIAF).
We show that the last statement is absurd. If (a, b) ∈ RF , then (a, b) should
appear in all completions of rIAF where a and b are present, but this is not true.
If (a, b) ∈ R?, we reason by cases on (b, a) ∈ RF ∪ R? ∪ R↔: the first one is
impossible, since (b, a) would be in every completion where a and b appear, and
that is not the case; the second one is absurd because we would have an extension
with neither (a, b) nor (b, a), and this is not the case; the third one is impossible
because it would imply (a, b) ∈ R↔, but we have assumed that (a, b) ∈ R?, and
we know that R? ∩ R↔ = ∅ by definition. Finally, suppose that (a, b) ∈ R↔,
which implies (b, a) ∈ R↔ (by symmetry of R↔), which is impossible because
we would have a completion with both (a, b) and (b, a), but this is not the case.

Note that in the first part of the proof we have used an argument that works
for any set of directed graphs with domain U (and not only for the completions
of a given rIAF), hence we can state that:

Corollary 1. For any set S of directed graphs with domain U , there is a cIAF
cIAF such that S = completions(cIAF).

In words, cIAFs are a maximally expressive formalism for representing qual-
itative uncertainty about AFs. Figure 1 depicts the relative expressivity of the
different formalisms adding qualitative uncertainty to abstract argumentation
that we have discussed in this paper.



AF

att-IAF

arg-IAF

IAF

RIAF

CAF

c-IAF

Fig. 1. Relative expressivity of formalisms for qualitative uncertainty in formal argu-
mentation. An arrow from X to Y means that X � Y. Transitive and reflexive arrows
are omitted.

The Need of cIAFs. Besides being mathematically interesting, one may wonder
why one should use cIAFs. Our main motivation is that, while the computational
complexity of reasoning tasks associated to the previously introduced formalisms
((r)IAFs and subclasses) is well-known and relatively low, their modelling power
is rather limited. Consider, for instance, a proponent reasoning about the view of
her opponent on a very simple debate, containing only two arguments {a, b}. Sup-
pose that a is an argument about public health policies stated by the right-wing
presidential candidate. Similarly, b is an argument stated by the left-wing candi-
date. Imagine that a and b have contradictory conclusions, so they are mutually
incompatible. Let us informally understand R as a defeat relation here, that is,
a relation based on logical incompatibility plus some kind of epistemic-based
assessment of the involved arguments (for instance, regarding the reliability of
their premisses), as it is usually done in structured argumentation. Now, suppose
our proponent knows that her opponent is polarized, in the sense that he (the
opponent) is already inclined towards one side of the political spectrum, but she
does not know which one; then the possible AFs that the agent attributes to
her opponent are exactly the completions of cIAF1 (see Example 4). As we have
shown in the proof of Proposition 7, there is no rIAF (and therefore no IAF)
with that exact set of completions as cIAF1.

Let us now show how cIAFs can be captured using DL-PA. Let cIAF = (U , ϕ),
and define its associated valuation simply as the empty set, that is, vcIAF = ∅.
(Actually any valuation over PrpU will do the job.) The program that generates
all completions of cIAF is defined as

makeCompcIAF = vary(AWU ); vary(ATTU×U );ϕ?.

Proposition 8. Let cIAF = (U , ϕ), then:

– If (vcIAF, v) ∈ ||makeCompcIAF||, then (Av , Rv ) ∈ completions(cIAF).
– If (A∗, R∗) ∈ completions(cIAF), then (vcIAF, v(A∗,R∗)) ∈ ||makeCompcIAF||.
Proof (Sketched). Note that the interpretation of vary(AWU ); vary(ATTU×U ),
when restricted to 2PrpU \INU , is actually the total relation 2PrpU \INU × 2PrpU \INU .
Hence from vcIAF = ∅ we have an execution of vary(AWU ); vary(ATTU×U ) that
goes to any valuation in 2PrpU \INU . Then, the execution of ϕ? filters those valu-
ations of 2PrpU \INU that satisfy the constraint of cIAF, i.e. the set of valuations



of 2PrpU \INU representing the set of completions of cIAF. As an illustration of the
proof, consider Fig. 2.

a • •bv1 a • •b v2

∅

Fig. 2. Completions of cIAF1 seen as valuations over Prp{a,b}. Dashed double arrows

represent the interpretation of makeCompcIAF (the other valuations over Prp{a,b} are
omitted).

Reasoning problems for IAFs can be easily adapted to cIAFs: we just have
to ensure that the argument about which we formulate the query belongs to all
completions. As an example, consider:

stable-Necessary-Credulous-Acceptance (st-NCA)
Given: A constrained IAF cIAF = (U , ϕ)
and an argument a ∈ U such that |= ϕ → awa.
Question: Is it true that for every
(A∗, R∗) ∈ completions(cIAF)
there is an E ∈ st(A∗, R∗) such that a ∈ E?

Note that requiring |= ϕ → awa amounts to requiring a ∈ A for all (A,R) ∈
completions(U , ϕ). Once again, we can reduce acceptability problems in cIAFs
to DL-PA model-checking problems. As an example, we have the following:

Proposition 9. Let cIAF = (U , ϕ) and let a ∈ U such that |= ϕ → awa, then
the answer to st-PSA with input cIAF and a is yes if and only if

vcIAF |= 〈makeCompcIAF〉[makeExtst]ina.

Proof (Sketched). The result follows from from the definition of the reasoning
task, the correctness of makeExtst ([20,21]), Proposition 8, and the semantics of
DL-PA.

8 Discussion and Future Work

Getting Closer to the Model-Checking Approach. Our encoding of formalisms for
arguing with qualitative uncertainty can be qualified as hybrid, since it combines



some previous semantic reasoning with reasoning inside DL-PA. For instance,
in order to compute the completions of an IAF, one first needs to find its asso-
ciated valuation (reasoning outside the logic, using semantic objects), then has
to write down the makeComp program, and finally reasoning in DL-PA to find
the makeComp-successors of the associated valuation. We followed this hybrid
method because we found intuitive the identification of directed graphs with
propositional valuations over PrpU . However, we can adopt results from [20–22]
to get a more homogeneous method here. For instance, let IAF = (A,A?, R,R?)
be an IAF, instead of computing its associated valuation, we can write down a
propositional formula that characterizes its fixed elements (similarly to what is
done in [20] for standard AFs):

Th(IAF) =
∧

x∈AF

awx ∧
∧

x∈U\AF

¬awx ∧
∧

(x,y)∈RF

rx,y

∧
(x,y)∈U2\RF

¬rx,y.

If we combine this formula with the makeComp program and the inverse operator
we obtain a formula whose models completely characterize the set of completions
of IAF:

completions(IAF) = {(Av, Rv) | v ∈ ||〈(Th(IAF)?;makeCompIAF
)�〉�||}.

Comparison to QBF Encodings. As mentioned before, all we have done in DL-PA
can as well be done in equally expressive logical frameworks like propositional
logic or quantified Boolean formulas (QBF). The advantage over the former is
that (1) some semantics can be expressed more compactly in DL-PA, and (2) the
reasoning problems can be expressed directly as DL-PA programs. The advan-
tage over QBFs is that the DL-PA encoding of reasoning problems by means of
programs is more natural than the rather complex QBF encodings that one can
find in the literature. Actually, most of the works on arguing with qualitative
uncertainty use QBF encodings and algorithms for determining the complexity
of associated reasoning tasks (see e.g. [8] or [31]). All advantages already pointed
out by [21] of using DL-PA instead of QBF for encoding argumentative semantics
are preserved by our encodings. In particular, “extension construction programs
such as makeExtσ capture things in a more general, flexible and natural way than
a QBF encoding”. This enables a straightforward extension of our results to all
semantics that have been encoded in DL-PA (admissible, complete, grounded,
preferred) and potentially others.

Dynamics and Uncertainty. The dynamic nature of our approach also paves the
way for a systematic study of the different dynamic extensions of IAFs (e.g. in
order to enforce arguments, as done in [7]) and the rest of formalisms studied
here, which we leave for future work.
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