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This paper introduces a new family of prior models called Bernoulli-Gaussian-Mixtures (BGM), with a view to efficiently address sparse inverse problems in the Bayesian framework. The BGM family is based on continuous Location and Scale Mixtures of Gaussians (LSMG), which includes a wide range of symmetric and asymmetric heavy-tailed probability distributions. The decomposition of a distribution as a Gaussian mixture is a case of data augmentation from which we derive a Partially Collapsed Gibbs Sampler (PCGS) for the BGM, in a systematic way. the derived PCGS is shown to be more efficient than the standard Gibbs sampler, both in terms of number of iterations and CPU time. Moreover, special attention is paid to BGM involving a density defined over a real half-line. An asymptotically exact LSMG approximation is introduced, which allows us to expand the applicability of PCGS to cases such as BGM models with a non-negative support.

I. INTRODUCTION

S PARSE signal restoration problems arise in different fields such as geophysics, astronomy and compressed sensing. The objective is to find a sparse representation x of a signal y as a linear combination of a limited number of elements (atoms) taken from a given dictionary H. This problem is often referred to as subset selection because it consists in selecting a subset of columns of H, so that

y = Hx + ϵ, (1) 
where y is the N ×1 observed signal, H is a N ×K matrix with K < N , x is a K × 1 sparse signal with only L < K nonzero components (corresponding to weighting coefficients), and ϵ is a perturbation vector.

A reference method to estimate the sparse signal x consists in minimizing the squared residual error subject to a sparsity constraint:

min x ∥y -Hx∥ 2 s.t. ∥x∥ 0 ≤ L (2) 
where ∥•∥ and ∥•∥ 0 respectively stand for the Euclidean norm and the ℓ 0 pseudo-norm. However, ( 2) is an NP-hard combinatorial discrete problem [START_REF] Natarajan | Sparse approximate solutions to linear systems[END_REF]. An alternative is the convex relaxation of problem (2) which replaces the ℓ 0 pseudo-norm by the ℓ 1 norm [START_REF] Chen | Orthogonal least squares methods and their application to non-linear system identification[END_REF], [START_REF] Donoho | Fast solution of ℓ 1 -norm minimization problems when the solution may be sparse[END_REF], the sparsity of the solutions coming from the non-smooth character of the ℓ 1 norm at zero. Greedy algorithms, such as Matching Pursuit and its improved versions Orthogonal Matching Pursuit and Orthogonal Least Squares [START_REF] Chen | Orthogonal least squares methods and their application to non-linear system identification[END_REF], [START_REF] Pati | Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[END_REF], form another class of methods. Greedy algorithms iteratively recover the set of active atoms by incremental selections. In practice, a common difficulty shared by ℓ 0 , ℓ 1 and greedy methods is that L is often an unknown quantity.

In some application fields, such as spectroscopy [START_REF] Gulam Razul | Bayesian model selection and parameter estimation of nuclear emission spectra using RJMCMC[END_REF], [START_REF] Mazet | Déconvolution impulsionnelle positive myope[END_REF] and particle image recovery [START_REF] Barbu | A new approach for volume reconstruction in TomoPIV with the alternating direction method of multipliers[END_REF], the signal of interest x is nonnegative, in addition to being sparse. Nonnegative adaptations have been proposed for both convex relaxation [START_REF] Barbu | A new approach for volume reconstruction in TomoPIV with the alternating direction method of multipliers[END_REF], [START_REF] Efron | Least angle regression[END_REF] and greedy algorithms [START_REF] Yaghoobi | Fast non-negative orthogonal least squares[END_REF], [START_REF] Nguyen | Non-negative orthogonal greedy algorithms[END_REF].

On the other hand, we can also rely on hierarchical Bayesian models to explicitly account for sparsity. Such models incorporate an additional layer of hidden, binary components q = (q k ) to explictly encode for atom activation. Variables q k are generally considered as independent, identically distributed (i.i.d.) according to a Bernoulli law. Amplitudes x k are also considered as i.i.d. random variables, with a prior law defined conditionally to q k as:

x k |q k = 1 ∼ D(θ x ) x k |q k = 0 ∼ δ 0 (x k ) (3) 
where D(θ x ) stands for a distribution with parameters θ x , and δ 0 is the Dirac distribution. Let us remark that the sparsity level L = ∥x∥ 0 is governed by parameter ξ = P (q k = 1). In the sequel, priors of the form (3) are referred to as Bernoulli-D priors.

The posterior distribution of (q, x) can be derived thanks to the Bayes rule: p(q, x|y) ∝ p(y|q, x)p(x|q)P (q|ξ)

Under the usual white Gaussian noise assumption ϵ k ∼ N (0, σ 2 ϵ ), the data likelihood reads:

p(y|q, x) = (2π) -N 2 σ -N ϵ exp - ∥y -Hx∥ 2 2σ 2 ϵ . (5) 
The Bernoulli-Gaussian (BG) case where the distribution D is Gaussian is by far the most usual choice [START_REF] Kormylo | Maximum likelihood detection and estimation of Bernoulli-Gaussian processes[END_REF]- [START_REF] Ge | Enhanced sampling schemes for MCMC based blind Bernoulli-Gaussian deconvolution[END_REF]. Deterministic optimization algorithms [START_REF] Kormylo | Maximum likelihood detection and estimation of Bernoulli-Gaussian processes[END_REF], [START_REF] Champagnat | Deconvolution of sparse spike trains accounting for wavelet phase shifts and colored noise[END_REF] and Markov chain Monte Carlo techniques (MCMC) [START_REF] Cheng | Simultaneous wavelet estimation and deconvolution of reflection seismic signals[END_REF], [START_REF] Ge | Enhanced sampling schemes for MCMC based blind Bernoulli-Gaussian deconvolution[END_REF] have been proposed to compute the Maximum a Posteriori (MAP) and the Posterior Mean (PM) estimators, respectively.

In the MCMC framework, other priors have also been introduced:

• a Bernoulli-Laplace prior has been considered for pMRI reconstruction [START_REF] Chaabene | Sparse Bayesian pMRI reconstruction with complex bernoulli-laplace mixture priors[END_REF] and sparse EEG source localization [START_REF] Chaari | Sparse Bayesian regularization using Bernoulli-Laplacian priors[END_REF], [START_REF] Costa | Sparse EEG source localization using Bernoulli-Laplacian priors[END_REF].

• under the nonnegativity constraint, a Bernoulli-Truncated-Gaussian and a Bernoulli-Exponential have been proposed, respectively for blind spike train deconvolution [START_REF] Mazet | Déconvolution impulsionnelle positive myope[END_REF] and sparse image reconstruction [START_REF] Dobigeon | Hierarchical Bayesian sparse image reconstruction with application to MRFM[END_REF].

MCMC methods developed in the Bayesian framework constitute a powerful inference tool to address sparse inverse problems. For instance, in the sparse deconvolution context, where the dictionary entries are often strongly correlated, the BG prior associated to a Gibbs sampler was empirically shown to give better results than greedy algorithms and convex relaxation [START_REF] Bourguignon | Sparse deconvolution: Comparison of statistical and deterministic approaches[END_REF]. Moreover, in contrast with deterministic approaches, Bayesian sampling allows one to consider an unsupervised setting where the model hyper-parameters θ = [ξ, θ x , σ ϵ ] are unknown and estimated jointly with the parameters of interest, or integrated out. Finally, as MCMC algorithms provide samples of the parameters distributed according to their posterior law, we can easily obtain additional statistical characteristics of interest. For instance, posterior standard deviations provide measures of confidence on the estimated quantities.

Although PM estimation of q and x obtained using MCMC methods yields satisfactory results, the computational effort may be high if basic Bayesian sampling schemes are implemented. For instance, Gibbs sampling with a site-by-site updating scheme for (q, x) (as in [START_REF] Mazet | Déconvolution impulsionnelle positive myope[END_REF], [START_REF] Cheng | Simultaneous wavelet estimation and deconvolution of reflection seismic signals[END_REF], [START_REF] Dobigeon | Hierarchical Bayesian sparse image reconstruction with application to MRFM[END_REF]) lacks efficiency, because the outcome trajectory tends to get stuck around some configurations of the Bernoulli sequence q [21], [START_REF] Ge | A new MCMC algorithm for blind Bernoulli-Gaussian deconvolution[END_REF], leading to poor mixing properties.

In the BG prior case, improved sampling schemes have been proposed in [START_REF] Ge | Enhanced sampling schemes for MCMC based blind Bernoulli-Gaussian deconvolution[END_REF]. In particular, a Partially Collapsed Gibbs Sampler (PCGS) based on [START_REF] Van Dyk | Partially collapsed Gibbs samplers[END_REF] is proposed, which combines a step that samples q marginally with respect to x and other sampling steps involving x. Compared to standard Gibbs sampling, PCGS requires far less iterations to converge. Although the computing cost of each iteration of PCGS is higher, PCGS is significantly faster than standard Gibbs to solve unsupervised sparse deconvolution problems considered in [START_REF] Ge | Enhanced sampling schemes for MCMC based blind Bernoulli-Gaussian deconvolution[END_REF], [START_REF] Kail | Blind deconvolution of sparse pulse sequences under a minimum distance constraint: A partially collapsed Gibbs sampler method[END_REF]. Recently, Boudineau et al. [START_REF] Boudineau | Sampling schemes and parameter estimation for nonlinear Bernoulli-Gaussian sparse models[END_REF] extended PCGS to problems involving dictionaries with entries that non linearly depends on additional unknown parameters. Again, the resulting extended PCGS is shown to perform better that usual Gibbs sampling.

One key condition to adopt the PCGS strategy is the possibility to marginalize the amplitudes x out of the posterior. When a BG prior is dealt with, this condition is met since the Gaussian prior p(x|q) over x is conjugate to the data likelihood [START_REF] Gulam Razul | Bayesian model selection and parameter estimation of nuclear emission spectra using RJMCMC[END_REF]. As a consequence, the marginal posterior distribution:

P (q|y) ∝ p(y|q, x)p(x|q) dxP (q|ξ) (6) 
is still tractable. Unfortunately, such a useful property is not valid for any Bernoulli-D prior. The aim of this paper is to reconcile PCGS sampling with several useful cases of Bernoulli-D priors when D is not Gaussian. More specifically, we will concentrate on two important cases:

(S) D belongs to a family of heavy-tailed, symmetric densities supported on the whole real line such as the Laplace case; (P) D belongs to a family of asymmetrical densities supported on a real half-line such as the truncated Gaussian case. A key element of our contribution is to introduce latent variables, according to a data augmentation principle. Akin to many previous contributions, we will rely on continuous mixtures of Gaussians (CMG) to reach our goal. Scale Mixtures of Gaussians (SMG), and Location Mixtures of Gaussians (LMG) are two well-known families of CMG [START_REF] Champagnat | A connection between half-quadratic criteria and EM algorithms[END_REF]. In this paper, we will mainly consider Location and Scale Mixtures of Gaussians (LSMG), which is a family of CMG for which SMG are a particular case. The reason why we resort to a wider family than SMG will become clear in Sect. II-D. On the basis of LSMG decompositions, we will propose a new family of priors called Bernoulli-Gaussian-Mixtures (BGM).

Finally, we will devise an exact stochastic sampling scheme to deal with BGM priors, with better mixing properties than standard Gibbs sampling.

The organization of the paper is as follows. In Sect. II, we give a general overview of data augmentation based on continuous mixtures of Gaussians, with a focus on Location-Scale mixtures of Gaussians. Sect. III formally introduces the BGM prior in the Bayesian framework. The corresponding partially collapsed sampling strategy is presented in Sect. IV. In Sect. V, we empirically study the efficiency of the BGM prior and the corresponding PCGS sampler, in both (S) and (P) cases, through two sparse, unsupervised deconvolution problems. Finally, conclusions are drawn in Sect. VI.

II. DATA AUGMENTATION BY CONTINUOUS MIXTURES OF GAUSSIANS

A. Introduction

Inference schemes based on latent variables pertain to the data augmentation principle. More specifically, in the context of signal and image restoration, continuous mixtures of Gaussians (CMG) decompositions are commonly found.

Definition II.1 (CMG). A random variable X is said a CMG if it can be decomposed as

X = M + √ W Z, (7) 
where (M, W ) is a couple of random variables and Z ∼ N (0, 1) is independent of (M, W ). The joint probability measure of (M, W ) is supported by R × R + .

The measure of (M, W ) allows us to modulate the probability measure of X by tuning the mean or/and variance of the conditionally Gaussian variable (X | M, W ). Scale mixtures of Gaussians (SMG) and Location mixtures of Gaussians (LMG) correspond to cases where M or W becomes deterministic, respectively, so that only the variance or the mean of the Gaussian is modulated. Location-Scale mixtures of Gaussians (LSMG) correspond to a case where the mean and the variance are jointly modulated, as defined in Sect. II-B.

In a deterministic optimization perspective, reweighted least square algorithms [START_REF] Huber | Robust Statistics[END_REF] and half-quadratic algorithms [START_REF] Geman | Constrained restoration and the recovery of discontinuities[END_REF], [START_REF] Geman | Nonlinear image recovery with half-quadratic regularization[END_REF] can be interpreted as EM algorithms where the augmented dataset involves either an SMG or an LMG model [START_REF] Champagnat | A connection between half-quadratic criteria and EM algorithms[END_REF].

Stochastic samplers have also been proposed based on data augmentation involving CMG models, in order to derive more efficient Gibbs samplers:

• SMG [START_REF] Andrews | Scale mixtures of normal distributions[END_REF], [START_REF] West | On scale mixtures of normal distribution[END_REF] are more usually considered. For instance, [START_REF] Park | The Bayesian Lasso[END_REF] and [START_REF] Févotte | A Bayesian approach for blind separation of sparse sources[END_REF] rely on an exact data augmentation scheme that corresponds to the SMG decomposition of a Laplace and a Student's t distribution, respectively. • Some recent contributions rather consider LMG models.

LMG also play a key role in the data augmentation scheme introduced in [START_REF] Marnissi | An auxiliary variable method for Markov Chain Monte Carlo algorithms in high dimension[END_REF]. In [START_REF] Vono | Split-and-augmented Gibbs sampler-application to large-scale inference problems[END_REF], [START_REF] Vono | Asymptotically exact data augmentation: Models, properties, and algorithms[END_REF], more general families of location mixtures are introduced, with a special attention paid to the Gaussian case, although the connection with LMG remains implicit.

• In [START_REF] Snoussi | Bayesian blind separation of generalized hyperbolic processes in noisy and underdeterminate mixtures[END_REF], the data augmentation scheme corresponds to the LSMG decomposition of Generalized hyperbolic (GH) variables. Recently, [START_REF] Amrouche | A partially collapsed Gibbs sampler for unsupervised nonnegative sparse signal restoration[END_REF] proposed an approximate data augmentation scheme of the truncated Gaussian, also relying on the LSMG decomposition of the GH distribution. Here, we generalize the contribution of [START_REF] Amrouche | A partially collapsed Gibbs sampler for unsupervised nonnegative sparse signal restoration[END_REF] to the entire LSMG family, allowing one to consider heavy-tailed, possibly asymmetric, distributions.

B. Location-Scale Mixtures of Gaussians (LSMG)

Definition II.2 (LSMG). A random variable X is a locationscale mixture of Gaussians if

X = µ + βW + √ W Z (8) 
where β, µ ∈ R, Z ∼ N (0, σ 2 z ) and W > 0 being independent random variables, with σ z > 0. W will be called the mixing variable of X.

LSMG have been introduced in [START_REF] Barndorff-Nielsen | Normal variance-mean mixtures and z distributions[END_REF] under the name of normal variance-mean mixtures (see also [START_REF] Yu | On normal variance-mean mixtures[END_REF]). LSMG are CMG since the normalized version of (8) identifies with [START_REF] Barbu | A new approach for volume reconstruction in TomoPIV with the alternating direction method of multipliers[END_REF] when M = µ + βW . LSMG have been used in financial [START_REF] Eberlein | Hyperbolic distributions in finance[END_REF], [START_REF] Protassov | EM-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions with fixed λ[END_REF], and statistical data analysis [START_REF] Karlis | Model-based clustering with nonelliptically contoured distributions[END_REF], [START_REF] Wraith | Location and scale mixtures of Gaussians with flexible tail behaviour: Properties, inference and application to multivariate clustering[END_REF] applications, for their ability to model asymmetric and/or heavy-tailed distributions. In particular, the Generalized-Hyperbolic family introduced in [START_REF] Barndorff-Nielsen | Exponentially decreasing distributions for the logarithm of particle size[END_REF] is a subfamily of LSMG distributions that encompasses several cases of interest [START_REF] Eberlein | Generalized hyperbolic and inverse Gaussian distributions: Limiting cases and approximation of processes[END_REF].

Table I gives some typical examples of LSMG distributions. Note that both AL and VG cases are limit cases of the GH family corresponding to GH(1, α, β, 0, µ) and GH(λ, α, β, 0, µ), respectively. In all cases, µ is a location parameter, while β tunes the skewness of the density.

In the next two subsections, we examine the (S) and (P) cases more carefully, the latter being substantially more complex.

C. S Case: Heavy-Tailed, Symmetric LSMG For β = 0, (8) defines a symmetric random variable about µ. Indeed, symmetric LSMG boil down to the family of shifted SMG. In Sect. V-B, we consider the case of Laplace VG(λ, α, β, µ) Generalized-Hyperbolic (GH) [START_REF] Barndorff-Nielsen | Exponentially decreasing distributions for the logarithm of particle size[END_REF] Generalized-Inverse-Gaussian [48] GH (λ, α, β, δ, µ) GIG(λ, γ, δ)

distribution in the framework of the BGM model proposed in Section III, to illustrate that PCGS provides an improved sampler in such a situation.

D. P Case: LSMG Approximations of Densities on R +

As stated above, CMG models cover a wide range of probability distributions. However, an obvious restriction is that the density of any CMG is supported on the whole real line. In the case of densities only defined over real half-lines, our key idea is to rely on LSMG approximations instead of LSMG decompositions. For the sake of simplicity, we will only deal with the case of R + , which is obtained by considering [START_REF] Efron | Least angle regression[END_REF] with µ = 0 and β > 0. Symmetrically, approximations of densities on R -will be obtained with µ = 0 and β < 0, and in both cases, shifted versions can be built by considering non-zero values of µ.

Let us consider a target density p * defined on R + , that we would like to approximately decompose as an LSMG. We have the following proposition.

Proposition II.1. Let X be an LSMG defined according to [START_REF] Efron | Least angle regression[END_REF] with µ = 0, β > 0, using a mixing variable W with a pdf q β (w) = β p * (βw).

(
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We have the following properties: (i) When β → ∞, the LSMG X converges in probability towards X * = βW , whose pdf is the target p * . (ii) If the first two moments of X * exist, then

E[X] = E[X * ] > 0, (10) 
var(X) = var(X * ) + σ 2 z β E[X * ] , (11) 
Corr(X, W ) = Corr(X, X * ) = 1 + σ 2 z E[X * ] β var(X * ) -1 2 , ( 12 
)
where Corr denotes the Pearson correlation coefficient.

Proof: See Appendix A. Let us denote p β the pdf of the LSMG X obtained along the lines of Proposition II.1. In view of (i), we will call p β an asymptotically Exact Location-Scale Approximation (ELSA) of the density p * . Parameter β will allow us to tune the quality of approximation, and ( 10)- [START_REF] Kormylo | Maximum likelihood detection and estimation of Bernoulli-Gaussian processes[END_REF] indicate that for any fixed β, p β can be viewed as a diffuse approximation of p * . In terms of approximation quality, large values of β are clearly optimal. However, in terms of sampling efficiency, the interest of such a data augmentation scheme is annihilated for large values of β since [START_REF] Champagnat | Unsupervised deconvolution of sparse spike trains using stochastic approximation[END_REF] implies that the larger β is, the more X and W are correlated. In practice, we must avoid too large values of β, and control the trade-off between the quality of the approximation and the efficiency of data augmentation.

Fig. 1 gives examples of the ELSA density p β when the target pdf p * is a truncated Gaussian density on R + [START_REF] Chopin | Fast simulation of truncated Gaussian distributions[END_REF]. In this case, we will denote the ELSA density p β ∼ NTG(0, σ z , β) for Normal-Trucated-Gaussian, with parameters β and σ z .

In comparison, we have also considered an LMG approximation X ′ = X * + ρZ, whose density p ′ ρ is simply a smoothed version of p * . Note that p ′ ρ is an Asymptotically exact data augmentation (AXDA) model, in the terminology of [START_REF] Vono | Asymptotically exact data augmentation: Models, properties, and algorithms[END_REF]. According to Proposition II.1(i), the ELSA model is also an AXDA model, although not considered in [START_REF] Vono | Asymptotically exact data augmentation: Models, properties, and algorithms[END_REF]. AXDA approximations of the LMG type share similar properties with Proposition II.1:

• p ′ ρ converges in probability towards p * when ρ → 0; • E[X ′ ] = E[X * ], var(X ′ ) = var(X * ) + ρ 2 σ 2 z ; • Corr(X ′ , X * ) = 1 + ρ 2 σ 2 z var(X * ) -1 2 .
Nonetheless, some features of the truncated Gaussian target are better preserved with ELSA: ∀ρ > 0, p ′ ρ is smooth at zero, while ∀β > 0, p β preserved the nonsmoothness of p * at zero. Moreover, p β reaches its maximum at zero and is monotonically decreasing on R + . For these reasons, we made the choice to build our PCGS strategy upon LSMG rather than LMG models. However, it would remain possible to develop a similar PCGS strategy on the basis of LMG models. The latter could be of interest when it happens difficult to define and manipulate LSMG approximations, such as the case of densities restricted to a finite interval.

p(x) p(x) p(x)
x Fig. 1. Examples of the ELSA pdf p β ∼ NTG(0, 1, β) (blue line) when σ 2 z = 1 and p * is the standard truncated Gaussian pdf N + (0, 1) (black dashed line). From top to bottom, β is set to 1, 3 and 9, respectively. For the sake of comparison, the red curve corresponds to the pdf of an LMG (coined AXDA in [START_REF] Vono | Asymptotically exact data augmentation: Models, properties, and algorithms[END_REF]) of the same approximation quality as p β in the sense of the total variation.

Finally, let us examine the scale invariance property of ELSA approximations. This is an important matter in practice since in many realistic applications to signal restoration, the scale of the unknown signals is also unknown and must be sampled within the MCMC framework. In such a situation, we need an ELSA model with a quality of approximation that does not fluctuate with the value of the scale parameter. Let X * s = sX * and W s = sW be scaled versions of X * and W , for a given s > 0. Let us define the LSMG

X s = βW s + W s Z s (13) 
with

Z s = √ sZ ∼ N (0, sσ 2 z ). (14) 
Then, X s = s(βW + √ W Z) = sX, and we have the following property.

Proposition II.2 (Scale invariance). Let p * s and p β,s denote the pdf of X * s and X s , respectively. The total variation of the approximation error p β,s -p * s does not depend on the scale s:

R |p β,s (x) -p * s (x)| dx = R |p β (x) -p * (x)| dx. (15) 
Moreover:

0 -∞ p β,s (x) dx = 0 -∞ p β (x) dx. (16) 
Proof: Identities ( 15)-( 16) straightforwardly derive from the fact that both X s = sX and X * s = sX * hold. Let us remark that we need to modulate the variance of the generating Gaussian in an appropriate way to get a scale invariance property on the approximation error. We could not get a similar result using a Gaussian variable with a normalized variance.

III. BERNOULLI-GAUSSIAN-MIXTURE MODEL

A. Prior Distribution

Definition III.1. A Bernoulli-Gaussian-Mixture (BGM) is a Bernoulli-D model when D is an LSMG:

• q is distributed according to an independent Bernoulli law B(ξ): for any vector q ∈ {0, 1} K ,

P (q; ξ) = K k=1 ξ k (1 -ξ) 1-k ;
• w is an independent random vector of variable length, each variable w k being defined when q k = 1 only, according to a pdf p W (•; θ w ) on R + ; • x is an independent random vector of length K defined conditionally to q and w as:

if q k = 0, x k = 0, if q k = 1, x k |w k , s ∼ N (sβw k , s 2 w k ); so that x k |(q k = 1
) is distributed according to an LSMG distribution with µ = 0. The latter is driven by the skewness parameter β, the scale s > 0 and the shape parameters of p W (•; θ w ).

Distribution D is an LSMG model that corresponds either to an (S) (for β = 0) or a (P) (for β > 0) case according to Sect. II-C and II-D, respectively. Note that we introduced a scale parameter s that will be considered unknown, while parameter β (which controls the degree of approximation between D and a target distribution D * with ELSA) will be considered fixed. On the other hand, we will also consider θ w to be known, for the sake of simplicity. Assuming that θ w is unknown would naturally add a sampling step in the considered MCMC algorithm. In [START_REF] Snoussi | Bayesian blind separation of generalized hyperbolic processes in noisy and underdeterminate mixtures[END_REF], the design of such a step when W is a GIG is examined in detail.

Finally, note that we have fixed σ z = 1 in (8), so that x k |w k ∼ N (βw k , w k ) when s = 1. In other words, the adopted LSMG model matches the usual definition (involving a normalized Gaussian) when (and only when) the scale is unity, which is a natural choice.

B. Posterior Distribution

The additive noise ϵ is considered Gaussian and zero-mean, with covariance Γ ϵ . The posterior distribution reads:

p(q, x, w, θ|y) ∝ |Γ ϵ | -1 2 exp - 1 2 y -Hx 2 Γ -1 ϵ × p(x, w|q, θ)P (q|ξ)p(θ) (17) 
where ∝ denotes the proportionality sign, x and H respectively gather the entries x k and the columns h k for which q k = 1, θ = {ξ, Γ ϵ , s} are the hyper-parameters to be sampled, and ∥v∥

2 A = v t Av.

C. Partially Marginalized Posterior Distribution

From [START_REF] Chaari | Sparse Bayesian regularization using Bernoulli-Laplacian priors[END_REF], one can deduce that x|q, w, y, θ ∼ N (µ 1 , Γ 1 ), with

µ 1 = E X | y, q, w, θ = Γ 1 H t Γ -1 ϵ y + Γ -1 0 µ 0 , (18) 
Γ 1 = cov X | y, q, w, θ = H t Γ -1 ϵ H + Γ -1 0 -1 , (19) 
where

µ 0 = E X | q, w, θ = sβw, Γ 0 = cov X | q, w, θ = s 2 W,
with W = diag{w}. As a consequence, the marginalized posterior of (q,w,θ) with respect to x reads p(w, θ|q, y)P (q|θ, y) ∝ |B| -1 2 P (q|ξ)p(θ)

k p W (w k ; θ w ) × exp - 1 2 y t B -1 y + µ t 0 C -1 µ 0 -2y t Dµ 0 where B -1 = Γ -1 ϵ -Γ -1 ϵ HΓ 1 H t Γ -1 ϵ , (20) 
C -1 = Γ -1 0 -Γ -1 0 Γ 1 Γ -1 0 , (21) 
D = Γ -1 ϵ HΓ 1 Γ -1 0 , (22) 
are N × N , L × L, and N × L, respectively, with L = k q k .

D. Hyper-Parameter Sampling

In order to generate samples of the hyper-parameter vector θ = (ξ, Γ ϵ , s), a prior distribution p(θ) needs to be defined. Firstly, we naturally suppose that ξ, Γ ϵ , s are independent.

• We choose an uninformative conjugate prior Be(1, 1) (i.e., a Beta distribution) for ξ, such that its posterior distribution is given by ξ ∼ Be(L + 1, K -L + 1).

• For the sake of simplicity, we only deal with the white noise case, i.e., Γ ϵ = σ 2 ϵ I N , where I N is the identity matrix of size N , so that we only need to sample the scalar parameter σ 2 ϵ . We then consider an uninformative conjugate prior IG(1, 1) (i.e., Inverse-Gamma distribution) such that its posterior is IG N 2 + 1, 1 2 ∥y -Hx∥ 2 + 1 .

Note that handling more complex noise covariance structures would have no impact on the other sampling steps. • We consider an Inverse-Gamma uninformative prior s 2 ∼ IG(1, 1) for the scale parameter. In the (S) case, the chosen prior is conjugate and the posterior is

s 2 ∼ IG L + 1, 1 2 ∥x∥ 2 W -1 + 1 .
In the (P) case, the posterior is not a standard law. A random walk Metropolis-Hastings step with a truncated Gaussian proposal will then be used within the PCGS. Finally, let us mention that hyper-parameters ξ and σ 2 ϵ are independent of w and s given y, q, x, so their sampling does not depend on s, β, and p W .

IV. PCGS FOR THE BGM MODEL

The proposed PCGS sampling strategy is summarized in Algorithm 1. At each iteration, first sample q k and w k for each k marginally with respect to x, then sample x and finally the hyper-parameters θ from their posterior.

Algorithm 1: Proposed PCGS algorithm At each iteration t:

1) for all k in 1, . . . , K, draw q k , w k |q -k , w -k , θ, y according to Algorithm 2 2) draw x|q, w, θ, y (Gaussian distribution) 3) draw θ|q, w, x, y While Step 2 is a fairly easy task since x is a Gaussian vector of size L, Step 1 is more complex. To begin with, each w k is defined only if q k = 1, so that the posterior distribution is defined in a space with a varying dimension. Reversible-Jump (RJ) MCMC methods [START_REF] Green | Reversible jump Markov Chain Monte Carlo computation and Bayesian model determination[END_REF] are suited to manage jumps between subspaces of different dimensions. For the problem considered here, two states can be distinguished; whether q k = 1 and w k ∈ R + , or q k = 0 and w k is not defined. The RJ-MCMC framework allows to jump between these two states using the following moves:

• Birth: from state q k = 0, propose (q ′ k = 1, w ′ k ), • Death: from state (q k = 1, w k ), propose q ′ k = 0, • Update: from state (q k = 1, w k ), propose (q ′ k = 1, w ′ k ).
Let us denote p uu ′ the probability of proposing a move from the state u to u ′ . Since we systematically propose a birth move when q k = 0 then p 01 = 1. Otherwise, when q k = 1, it is reasonable to randomly propose either a death or an update move with equal probabilities p 10 = p 11 = 1 2 . The w ′ k candidates are chosen according to the following proposal distributions.

• Birth: w ′ k is sampled according to its prior density, so q 01 (w ′ k ) = p W (w ′ k ; θ w ). • Death: the proposal is deterministic and w k is no longer defined.

Algorithm 2: Sampling q k and w k using the RJ framework if q k = 0 then • birth:

propose q ′ k = 1 and w ′ k ∼ q 01 (w ′ k ) accept with probability α 01 . else

• death (with probability p 10 ):

propose q ′ k = 0 accept with probability α 10 .

• update (with probability p 11 = 1 -p 10 ):

-

propose q ′ k = 1 and w ′ k ∼ q (i)
11 (w ′ k ) where i ∈ {1, 2} with equiprobability accept with probability α (i) [START_REF] Kormylo | Maximum likelihood detection and estimation of Bernoulli-Gaussian processes[END_REF] . end

• Update: a mix between two proposals is considered.

The first one is made according to the prior density q

(1)

11 (w ′ k ) = p W (w ′ k ; θ w )
, allowing a better exploration of R + . The second one performs a local exploration of the posterior according to a random-walk Metropolis-Hastings scheme [START_REF] Bourguignon | Spectral analysis of irregularly sampled data using a Bernoulli-Gaussian model with free frequencies[END_REF], [START_REF] Andrieu | Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC[END_REF], with a proposal density q

(2) 11 corresponding to a truncated Gaussian N + (w k , σ 2 w ). Parameter σ w is tuned to ensure an optimal acceptance rate, a common choice being 30%. The reader may refer to [START_REF] Roberts | Optimal scaling for various Metropolis-Hastings algorithms[END_REF] for a review on optimal scaling of Metropolis-Hastings algorithms. The resulting RJ-MCMC step is summarized in Algorithm 2. To ensure the reversibility property, and thus the invariance of the Markov chain with respect to the posterior distribution [START_REF] Green | Reversible jump Markov Chain Monte Carlo computation and Bayesian model determination[END_REF], [START_REF] Waagepetersen | A tutorial on reversible jump MCMC with a view toward applications in QTL-mapping[END_REF], the candidates are accepted according to α uu ′ = min{1, r uu ′ }, where r 01 = p(w ′ |q ′ , θ, y)P (q ′ |θ, y) p 10 p(w|q, θ, y)P (q|θ, y) p 01 q 01 (w ′ k )

, r 10 = p(w ′ |q ′ , θ, y)P (q|θ, y) p 01 q 01 (w ′ k ) p(w|q, θ, y)P (q|θ, y) p 10 , r

p(w ′ |q ′ , θ, y)P (q ′ |θ, y)q

(1)

11 (w k ) p(w|q, θ, y)P (q|θ, y)q

(1) 11 (w ′ k ) , r (2) 11 = 
p(w ′ |q ′ , θ, y)P (q ′ |θ, y) p(w|q, θ, y)P (q|θ, y)

η(w k ) η(w ′ k ) with η(w) = 1 + erf w √ 2σw .
The latter expressions can be made more explicit according to:

r 01 = exp χ 01 - 1 2 ψ(B (1) , B) + ϕ 1 -ϕ (23) 
r 10 = exp χ 10 - 1 2 ψ B (0) , B + ϕ 0 -ϕ (24) r (1) 
11 = exp -

1 2 ψ B (1) , B + ϕ 1 -ϕ (25) r 
(2)

11 = r (1) 11 p W (w ′ k ; θ w ) p W (w k ; θ w ) η(w k ) η(w ′ k ) (26) 
with:

χ uu ′ = ln P (q k = u ′ |ξ) P (q k = u|ξ) p u ′ u p uu ′ (27) ψ(B, B ′ ) = ln |B| -ln |B ′ | + y t (B ′ ) -1 -B -1 y (28) ϕ = µ t 0 C -1 µ 0 -2y t Dµ 0 (29) 
ϕ u = µ t 0(u) C -1 (u) µ 0(u) -2y t D (u) µ 0(u) (30) 
where for a given matrix (or vector) A, A (0) and A (1) respectively correspond to A with a modification implied by

• q ′ k = 0 in position k, • q ′ k = 1 and w ′ k in position k.
Note that function ψ implicitly depends on y, while matrices B and C depend on q and w through matrix Γ 1 according to [START_REF] Bourguignon | Sparse deconvolution: Comparison of statistical and deterministic approaches[END_REF], ( 21) and [START_REF] Dobigeon | Hierarchical Bayesian sparse image reconstruction with application to MRFM[END_REF].

A direct implementation of Algorithm 2 using ( 23)-( 26) would require to compute many matrix inverses and determinants, which would be inefficient. We rather propose to extend the recursive implementation technique introduced in [START_REF] Ge | Enhanced sampling schemes for MCMC based blind Bernoulli-Gaussian deconvolution[END_REF]. Under the usual Bernoulli-Gaussian prior considered therein, µ 0 = 0 and the covariance matrix Γ 0 is proportional to identity (which means that matrices C and D are irrelevant). We propose an efficient implementation that extends [START_REF] Ge | Enhanced sampling schemes for MCMC based blind Bernoulli-Gaussian deconvolution[END_REF] to any diagonal covariance matrix Γ 0 and expectation vectors µ 0 . A key point is to recursively handle Cholesky factors instead of matrices B, C and D (more details are given in Appendix B).

Let us emphasize that the cost per iteration of the PCGS is highly dependent on the efficient computation of the ratios r uu , which crucially depend on that of function ψ. Clearly, the direct computation of ψ according to [START_REF] Geman | Constrained restoration and the recovery of discontinuities[END_REF] is inefficient, as the latter requires to invert matrix B -1 and to evaluate |B|, which scales as O(N 3 ). Thanks to the mathematical simplifications given in Appendix B-A, the computation of ψ boils down to the evaluation of scalars ρ ′ q k and γ ′ q k , given by ( 41) and [START_REF] Protassov | EM-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions with fixed λ[END_REF], which scales in the most general case (i.e., no favorable structure for the noise covariance Γ ϵ and for the dictionary H) as O(N 2 ). Moreover, the computational complexity can be further reduced in some favorable situations:

• when the noise is assumed independent (i.e., Γ ϵ is diagonal), ( 41) and ( 42) scale as O(N L); • when the noise is assumed i.i.d. and H t H and Hy can be computed and stored once for all (as is the deconvolution case of Sect. V-B), the computational complexity of ( 41) and ( 42) can be brought down to O(L 2 ) as described in Appendix B-F; • when the noise is assumed i.i.d. and H is a sparse matrix (as is the semi-blind deconvolution case of Sect. V-C), ( 41) and ( 42) scale as O(L 2 ) using the strategy of Appendix B-F, considering that the on-the-fly computation of H t H and Hy is inexpensive. Furthermore, thanks to the simplifications of Appendix B-D, computation of function ϕ does not require that of matrices C -1 and D, and its cost is lower than that of ψ. Finally, in the (S) case, function ϕ is irrelevant as µ 0 = 0.

Open source Matlab implementations of the proposed PCGS sampler are available on codeOcean. Two distinct codes are provided, dealing with the (S) case [START_REF] Amrouche | Matlab code for efficient sampling of Bernoulli-Gaussian-Mixtures for sparse signal restoration -Symmetric (S) case[END_REF] and the (P) case [START_REF] Amrouche | Matlab code for efficient sampling of Bernoulli-Gaussian-Mixtures for sparse signal restoration -Asymmetric (P) case[END_REF], respectively.

V. NUMERICAL VALIDATIONS

A. Simulation framework

In order to compare the practical efficiency of the proposed PCGS sampler to that of a standard Gibbs strategy, we propose a couple of experiments. The first is a sparse deconvolution problem under a Bernoulli-Laplace prior [START_REF] Chaabene | Sparse Bayesian pMRI reconstruction with complex bernoulli-laplace mixture priors[END_REF], [START_REF] Costa | Sparse EEG source localization using Bernoulli-Laplacian priors[END_REF], which is an example of a heavy-tailed, symmetric density as dealt in Sect. II-C. In the second one, we consider in addition a nonnegativty constraint that is handled thanks to a Bernoulli-Truncated-Gaussian prior [START_REF] Mazet | Déconvolution impulsionnelle positive myope[END_REF], so that we are now in the situation dealt in Sect. II-D.

To empirically compare the computing time of the different samplers, we make use of Brooks and Gelman's graphical method to assess convergence [START_REF] Brooks | General methods for monitoring convergence of iterative simulations[END_REF]. It relies on the computation of a multivariate potential scale reduction factor (MPSRF) defined as

R = T -1 T + J + 1 J λ V -1 intra V inter ,
where λ(A) denotes the largest eigenvalue of matrix A.

V intra and V inter are respectively intra-chain and inter-chain covariance matrices estimated from J independent Markov chains {x j,t ; j = 1,

• • • , J; t = 1, • • • , T } of length T : V intra = 1 J(T -1) j,t (x j,t -x j ) (x j,t -x j ) t , V inter = 1 J -1 j (x j -x) (x j -x) t ,
where x j and x denote the empirical mean of chain j and the global mean, respectively. In the following section, we focus on the MPSRFs measured on the amplitude chains. A lower MPSRF value means a better mixing property. Convergence of the chains is diagnosed when the MPSRF is close to one. As suggested in [START_REF] Brooks | General methods for monitoring convergence of iterative simulations[END_REF], we have chosen a threshold of 1.2. In order to compute the MPSRF, the chains are divided into batches of ∆ T samples each, and the convergence is detected every ∆ T samples only, so that a difference of ±∆ T is not significant. Moreover, the MPSRF is computed over the second halves of the Markov chains to get rid of the burn-in time period.

For all experiments presented in this paper, we have used J = 10 Markov chains. We have also set ∆ T = 1000, and a maximum number of iterations T max = 10 5 . The simulations were run using MATLAB on a computer with Intel Xeon Gold 6226R processors, with a CPUs clocked at 2.9 GHz. Each experiment needed 6000 simulated chains, and took four days of computations, including the computation related to the MPSRF. We intentionally performed the computations on a single thread, in order to measure CPU times in a reliable way. This means that in practice, computing times will be significantly smaller than the obtained CPU times, with an acceleration factor depending on the number of available threads. Moreover, since PCGS involves more complex matrix operations than standard Gibbs, multi-threaded computations could be more favorable to PCGS. Once the convergence is diagnosed (or when the maximum number of iterations is reached), the location of the nonzero amplitudes are estimated according to:

qk = 1, if t∈E q (t) k > 0.5|E|, 0, otherwise,
with E the set of indices t such that t ∈ (T c , T c + 1000], T c being the index at which the chains have reached the convergence threshold, so that |E| = 1000. Then the nonzero amplitudes are estimated by computing the empirical mean of x k |q k = 1 as follows:

xk = t∈E x (t) k t∈E q (t) k .
The hyper-parameters are estimated by computing the empirical mean of their respective chains over the set E.

B. Sparse Deconvolution: Bernoulli-Laplace (BL)

A dataset of 300 simulated sparse signals of length K = 300 was generated according to a Bernoulli-Laplace (BL) prior. The Laplace density is a well-known case that admits an exact decomposition as a scale mixture of Gaussians distribution. The parameter of the Bernoulli sequence was tuned such that the number of non-zero components ranges between L ≈ 12 and L ≈ 30, and the amplitude standard deviation is 0.01. The sparse signals are convolved by an impulse response defined as

h n (f h ) = cos n -10 10 πf h e -|0.225n-2| 1.5 , (31) 
for n = 0, . . . , 20 and f h = 3.5. The dataset is then divided in three, each data vector y being corrupted with a centered i.i.d. Gaussian noise achieving a signal-to-noise ratio SNR y of 15, 12 and 9 dB, respectively. An example is given in Fig. 2 for SNR y = 9 dB.

For each data vector, we have performed a deconvolution with a BL prior, using either the PCGS sampler (see Matlab code [START_REF] Amrouche | Matlab code for efficient sampling of Bernoulli-Gaussian-Mixtures for sparse signal restoration -Symmetric (S) case[END_REF]) or a standard Gibbs sampler. It is unsupervised in the sense that hyper-parameters θ = [ξ, σ ϵ , s] are unknown. Fig. 3 gives an example in a case where both samplers yield iterations and the CPU time required to reach convergence for each sampler among the 100 simulated cases. PCGS clearly needs fewer iterations than standard Gibbs to converge. Moreover, its number of iterations has much smaller variations. These results meet the conclusions of [START_REF] Ge | Enhanced sampling schemes for MCMC based blind Bernoulli-Gaussian deconvolution[END_REF], that the PCGS strategy enhances the mixing properties of the sampler, enabling a better exploration of the posterior distribution. PCGS always converged in less than T max = 10 5 iterations (actually, all the chains converged in less than 2 × 10 4 iterations), whereas the Gibbs sampler failed to converge within T max iterations in 59 cases, representing about 20% of the 300 datasets.

Although the cost per iteration is larger for PCGS, it needs less CPU time thanks to our recursive implementation. In terms of average CPU time, the two samplers required 11 and 80 seconds respectively, which represents an average acceleration factor of at least1 7.

Fig. 5 gives a statistical analysis of precision and recall [58] of the estimates qk . A precision score of one would mean that every detected spike is a true one, even if not all true spikes were detected. A recall score of one would mean that all true spikes were detected, even if irrelevant spikes were also detected. The results show that the two samplers yields similar estimation results, although slightly in favor of PCGS. In particular, according to Fig. 5(a), more than 90% of the detected spikes are relevant on average, at all three SNR y values. We attribute the lower quality of the Gibbs output to the fact that Gibbs chains are poorly mixing, except at low SNR. The erratic convergence of the Gibbs sampler has already been reported in the BG case [START_REF] Ge | Enhanced sampling schemes for MCMC based blind Bernoulli-Gaussian deconvolution[END_REF], [START_REF] Bourguignon | Bernoulli-Gaussian spectral analysis of unevenly spaced astrophysical data[END_REF].

Finally, the average recall values range between 0.5 to 0.7, indicating that a significant proportion of spikes are not detected. However, in the context of noisy sparse deconvolution, spikes with small amplitudes cannot be distinguished from the noise (this is clear on the example of Figs. 2 and3), which also explains why the recall value decreases with smaller SNR values.

C. Nonnegative Sparse deconvolution: Bernoulli-Truncated-Gaussian (BTG)

Let us now consider the problem of nonnegative sparse deconvolution when the nonzero signal amplitudes are distributed according to a truncated Gaussian. This is a case where the target distribution does not admit an exact decomposition as a mixture of Gaussian distributions.

A dataset of 300 sparse signals was generated according to a Bernoulli-Truncated-Gaussian (BTG) model [START_REF] Mazet | Déconvolution impulsionnelle positive myope[END_REF] An example is given in Fig. 6) for SNR y = 12 dB. The rest of the numerical procedure is identical to that of Sect. V-B. The PCGS sampler (see Matlab code [START_REF] Amrouche | Matlab code for efficient sampling of Bernoulli-Gaussian-Mixtures for sparse signal restoration -Asymmetric (P) case[END_REF]) and a standard Gibbs sampler were run on each of the 300 data vectors. In the former case, we relied on the results of Sect. II-D to approximate the BTG prior. More precisely, we set s = 1 and p W ∼ N + (0, β -2 ), the value of β being a priori fixed to β = 10, such that x k |q k = 1 ∼ NTG(0, 1, 10). Let us stress that parameter β controls approximation quality, and more specifically the probability of having negative amplitudes. Here, our choice yields P (x k ≤ 0|q k = 1) ≈ 0.03 and TV = 0.1.

In the considered unsupervised framework, hyperparameters θ = [ξ, σ ϵ , s] are unknown. In addition, we consider a semi-blind scenario where the parameter f h of the impulse response is also unknown. It is thus sampled using a Metropolis-Hasting step similarly to [START_REF] Mazet | Déconvolution impulsionnelle positive myope[END_REF]. Fig. 7 gives an example of the estimated sparse signal x, where the two samplers yield indistinguishable estimates, despite the approximation needed by PCGS. Fig. 7(c) shows the evolution of the MPSRF w.r.t. the number of iterations. PCGS and Gibbs converged in 2×10 3 and 31×10 3 iterations, respectively. Akin to Fig. 3(c), Fig. 7(c) shows that the MPSRF decreases in a regular way for PCGS, while it is more erratic for standard Gibbs. In this case, the two samplers converged in about 10 and 33 respectively, which means that PCGS was approximately three times faster than standard Gibbs.

Fig. 8 summarizes the set of results. The computational efficiency of Gibbs sampler still suffers from the same limitations as in the previous experiment. In particular, it produces chains for which the iteration number before convergence strongly varies, which is not the case for PCGS. The Gibbs sampler even failed to pass the MPSRF convergence test within T max = 10 5 iterations in 79 cases (around 26% of the 300 cases), while PCGS always converged in less than 2×10 4 iterations. In terms of CPU time, the average acceleration factor is at least 4, as the two samplers require on average 14 and at least 55 seconds. Given the convergence issues of the Gibbs sampler, the true acceleration factor is significantly larger than 4.

In terms of signal restoration quality, Fig. 9 shows that PCGS has similar overall performances than Gibbs. In particular, the recall values are comparable for both samplers. The precision, however, is slightly lower for PCGS in this case, which is due to the approximation required by the former. The precision of the PCGS could be improved by choosing a larger value of parameter β, which controls the quality of the ELSA approximation, at the price of a lower sampling efficiency according to Proposition II.1-(ii).

Moreover, despite the approximation required by PCGS, in particular the fact that the support of the ELSA distribution is not restricted to R + , none of the 300 estimated signals contains a negative amplitude. This confirms that in the tested examples, the adopted value of β yields a PCGS sampler with both a favorable computational efficiency (compared to the standard Gibbs alternative), and a good approximation of the posterior probability. The LSMG family is rich enough to incorporate scale mixtures of Gaussians, which are symmetric, but also asymmetric densities. In this paper, we paid particular attention to the limit case where D approximates a distribution restricted to the positive half-line.

In order to efficiently produce samples from the posterior, we proposed an extension of the partially collapsed Gibbs sampling scheme proposed in [START_REF] Ge | Enhanced sampling schemes for MCMC based blind Bernoulli-Gaussian deconvolution[END_REF] in the Bernoulli-Gaussian case. Extensive simulation results have shown that the proposed scheme enjoys significantly better mixing properties than the standard Gibbs strategy.

A practical limit of our contribution is found when the number of nonzero components to restore is large, since the cost per iteration of the proposed PCGS scales as O(L 2 ), where L is the number of nonzero elements at the current iteration. Indeed, PCGS has a computing cost per iteration comparable to that of a deterministic, greedy algorithm such as SBR [START_REF] Soussen | From Bernoulli-Gaussian deconvolution to sparse signal restoration[END_REF], while it needs a larger number of iterations. The latter point is justified, since the goal of PCGS is to sample from the posterior law, whereas SBR only solves a local minimization problem.

An interesting perspective will be to consider the case of densities supported on an interval, such as the beta density. For such densities, LSMG do not provide approximations of an acceptable quality, and it is an open question to find a suited family of continuous Gaussian mixture models. APPENDIX A PROOF OF PROPOSITION II.1 (i) Given ( 9) and µ = 0, it is a simple matter to check that the pdf of X * = βW is p * . Moreover, according to (8), we have

X -X * = √ W Z = V √ β , (32) 
where V = Z √ X * . Finally, for any random variable V with pdf p V , the scaled version [START_REF] Park | The Bayesian Lasso[END_REF] converges in probability towards 0 when β → ∞, since for any ϵ > 0,

P |V | √ β ≥ ϵ = 1 - ϵ √ β -ϵ √ β p V (v) dv → 0. (ii) We have X = X * + √ W Z, so it is immediate that E[X] = E[X * ]
because Z is zero-mean and independent from W . Moreover, Markov's inequality applied to X * states that

P (X * ≥ a) ≤ E[X * ]
a for all a > 0. Hence, E[X * ] ≥ aP (X * ≥ a), and there is at least an a > 0 for which P (X * ≥ a) > 0, otherwise X * would be almost surely zero (in contradiction with the fact that X * admits a pdf).

Moreover,

E X 2 = E (X * ) 2 + E W Z 2 + 2E √ W X * Z = E (X * ) 2 + σ 2 z E[W ] , because Z is independent from √ W X * . We obtain (11) since W = 1 β X * . Finally, Corr(X, W ) = Corr(X, X * ) since there is a linear relation between W and X * . Additionally, E[XX * ] = E (X * ) 2 + √ W X * Z = E (X * ) 2 , so the Pearson correla- tion coefficient between X and X * reads Corr(X, X * ) = E[XX * ] -E[X] E[X * ] var(X)var(X * ) = var(X * ) var(X) ,
which leads to (12) after simplification.

APPENDIX B EFFICIENT IMPLEMENTATION OF PCGS

In Appendix B-A, we show how we can rely on a recursive update of matrix B to efficiently compute ψ, and thus the ratios r uu ′ .

A. Computation of ψ

Using the matrix inversion lemma, we can deduce from ( 20

) that B = Γ ϵ + HΓ 0 H t . (33) 
Moreover,

B (0) = Γ ϵ + ℓ̸ =k|q ℓ =1 s 2 w ℓ h ℓ h t ℓ , B (1) = B (0) + s 2 w ′ k h k h t k , so that B (1-q k ) -B (q k ) = (-1) q k s 2 w ′ k h k h t k (34) 
Using the matrix inversion lemma again yields

B -1 (1-q k ) = B (q k ) + (-1) q k s 2 w ′ k h k h t k -1 = B -1 (q k ) -B -1 (q k ) h k (ρ ′ q k ) -1 h t k B -1 (q k ) where ρ ′ q k = ρ q k (w ′ k ) = (-1) q k (s 2 w ′ k ) -1 + h t k B -1 (q k ) h k . Hence, B -1 (1-q k ) -B -1 (q k ) = -(ρ ′ q k ) -1 B -1 (q k ) h k h t k B -1 (q k ) so y t B -1 (1-q k ) -B -1 (q k ) y = (ρ ′ q k ) -1 (γ ′ q k ) 2 (35) 
with

γ ′ q k = γ q k (w ′ k ) = h t k B -1 (q k ) y.
Taking the determinant of (34) using the matrix determinant lemma,

B (1-q k ) = B (q k ) + (-1) q k s 2 w ′ k h k h t k = 1 + h t k B -1 (q k ) (-1) q k s 2 w ′ k h k B (q k ) B (1-q k ) = (-1) q k s 2 w ′ k ρ ′ q k B (q k ) . (36) 
From ( 35) and [START_REF] Vono | Asymptotically exact data augmentation: Models, properties, and algorithms[END_REF] we have

ψ(B (1-q k ) , B (q k ) ) = ln (-1) q k s 2 w ′ k ρ ′ q k - (γ ′ q k ) 2 ρ ′ q k (37) 
According to ( 23) and ( 24), ( 37) is applicable to the computation of r 01 (with q k = 0) and of r 10 (with q k = 1 and w ′ k = w ). For the update step, one use that:

ψ(B 1 , B) = ψ(B 1 , B 0 ) -ψ(B, B 0 ), = ln w ′ k ρ ′ 0 w k ρ 0 - (γ ′ 0 ) 2 ρ ′ 0 + γ 2 0 ρ 0 . (38) 
We propose to rely on [START_REF] Snoussi | Bayesian blind separation of generalized hyperbolic processes in noisy and underdeterminate mixtures[END_REF] and [START_REF] Amrouche | A partially collapsed Gibbs sampler for unsupervised nonnegative sparse signal restoration[END_REF] to evaluate function ψ, but we still need an efficient way to compute ρ q k and γ q k . One possibility is to rely on the matrix inversion lemma again. Akin to [START_REF] Ge | Enhanced sampling schemes for MCMC based blind Bernoulli-Gaussian deconvolution[END_REF], we rather make use of Cholesky factorizations.

B. Cholesky Factorization

Let G = H √ Γ 0 = s H Diag{w}, so that B = Γ ϵ + GG t . Using the matrix inversion lemma, we have

B -1 = (Γ ϵ + GG t ) -1 = Γ -1 ϵ -Γ -1 ϵ GS -1 G t Γ -1 ϵ where S = G t Γ -1 ϵ G + I L (39) 
is an L×L positive-definite matrix. The Cholesky factorization of its inverse reads

S -1 = F t F, (40) 
where F is an L × L upper triangular matrix. Akin to [START_REF] Ge | Enhanced sampling schemes for MCMC based blind Bernoulli-Gaussian deconvolution[END_REF], we will handle matrix F rather than B, which is N × N . Let us stress that ρ ′ q k and γ ′ q k take the form:

ρ ′ q k = (-1) q k (s 2 w ′ k ) -1 + h t k Γ -1 ϵ h k -F (q k ) G t (q k ) Γ -1 ϵ h k t F (q k ) G t (q k ) Γ -1 ϵ h k , (41) 
γ ′ q k = h t k Γ -1 ϵ y -F (q k ) G t (q k ) Γ -1 ϵ h k t F (q k ) G t (q k ) Γ -1 ϵ y. (42) 
C. Efficient Update of matrix G and Cholesky Factor F 1) Birth moves: In the case of birth moves, the update of matrix G is straightforward if the new column s √ w k h k is simply added at the end of the matrix. Let G k denotes the matrix G (1) for which the column s √ w k h k is the last one,

i.e., G k = G (0) s √ w k h k .
Note that the order in which the columns are stacked in matrix G has a direct influence on matrix F. To keep track of the column positioning, we introduce an index vector o

= [o 1 , • • • , o L ] such that o k is the position of column s √ w k h k inside matrix G. Let S k = S (1) and F k = F (1) when G k = G (0) with F k = F 11 f 12 0 f 22 , (43) 
where F 11 , f 12 and f 22 are an upper triangular matrix, a column vector and a scalar, respectively. It follows that

F t k F k = F t 11 F 11 F t 11 f 12 f t 12 F 11 f t 12 f 12 + f 2 22 ( 44 
)
For a birth move, given the definition of G k , by [START_REF] Barndorff-Nielsen | Normal variance-mean mixtures and z distributions[END_REF], [START_REF] Yu | On normal variance-mean mixtures[END_REF] and using a block-wise matrix inversion formula, the update from F (0) to F (1) yields

F t k F k = F t (1) F (1) = F t (0) F (0) + ρ 0 b 0 b t 0 s -1 w -1 2 k b 0 s -1 w -1 2 k b t 0 (s 2 w k ) -1 ρ -1 0 (45) where b 0 = -F t (0) F -1 (0) G t (0) Γ -1 ϵ h k ρ -1 0 . It is straightforward to see that F t (1) F (1) = F t (0) F (0) + vv t with F (0) = F (0) 0 t 0 0 and v = v 1 v 2 = b 0 √ ρ 0 s -1 w -1 2 k / √ ρ 0 .
(46) As a consequence, F (1) can be computed using a rank-1 Cholesky update:

F (1) = cholupdate(F (0) , v, +). ( 47 
)
2) Death moves: For a death move, s √ w k h k must be removed and vector o must be updated accordingly.

When the column to be removed is the last one, i.e., o k = L, the updating is straightforward. From [START_REF] Barndorff-Nielsen | Exponentially decreasing distributions for the logarithm of particle size[END_REF] we have:

F t (0) F (0) = F t 11 F 11 -ρ 0 b 0 b t 0 = F t 11 F 11 -v 1 v t 1
thus F (0) can be computed using a rank-1 Cholesky downdate:

F (0) = cholupdate(F 11 , v 1 , -) (48) 
where v 1 = b 0 √ ρ 0 . In this case, ρ 0 and b 0 can be directly extracted from matrix F (1) by identifying [START_REF] Wraith | Location and scale mixtures of Gaussians with flexible tail behaviour: Properties, inference and application to multivariate clustering[END_REF] with [START_REF] Barndorff-Nielsen | Exponentially decreasing distributions for the logarithm of particle size[END_REF]: 

ρ 0 = s 2 w k (f t 12 f 12 + f 2 22 ) -1 , b 0 = s √ w k F t 11 f 12 . When o k < L, i.
However, one has to keep in mind that F t k ̸ = P t F (1) P given that P t F (1) P is not a triangular matrix. Nevertheless, [START_REF] Chopin | Fast simulation of truncated Gaussian distributions[END_REF] allows to compute b 0 et ρ 0 directly from F (1) and F 11 using an additional rank-1 Cholesky update. Let

F (1) = f l f k f r =   f ll f lk f lr 0 f kk f kr 0 0 f rr   (50) 
From ( 44), ( 45), ( 49) and ( 50) we have Finally, F (0) can be computed via [START_REF] Jørgensen | Statistical Properties of the Generalized Inverse Gaussian Distribution[END_REF].

3) Update moves: In the case of an update move, matrices G and F keep the same size. For matrix G, one has to substitute s √ w k h k with s w ′ k h k . For matrix F, one has to perform a death update of column s √ w k h k followed by a birth update of s w ′ k h k .

D. Computation of ϕ

Recall that ϕ u is defined by [START_REF] Andrews | Scale mixtures of normal distributions[END_REF]. Its computation can be simplified using the results of Appendix B-C. From ( 40), [START_REF] Kotz | The Laplace distribution and generalizations[END_REF] and [START_REF] Jørgensen | Statistical Properties of the Generalized Inverse Gaussian Distribution[END_REF] one can show that:

ϕ 1 -ϕ = β 2 w ′ k -V 2 -2βV y t Γ -1 ϵ G (1) v (51) 
in the birth move [START_REF] Van Dyk | Partially collapsed Gibbs samplers[END_REF], with v = b 0 ρ E. Efficient Sampling of the Amplitudes x From ( 19) and ( 39), we have that

Γ -1 1 = H t Γ -1 ϵ H + Γ -1 0 , = Γ -1 2 0 Γ 1 2 0 H t Γ -1 ϵ HΓ 1 2 0 + I N Γ -1 2 0 , = Γ -1 2 0 SΓ -1 2 0 , so Γ 1 = Γ 1 2 0 S -1 Γ 1 2 0 = Γ 1 2 0 F t FΓ 1 2
0 , and hence,

µ 1 = Γ 1 2 0 F t FG t Γ -1 ϵ y + FΓ -1 2 0 µ x .
Finally, the amplitudes x can be sampled efficiently as x = µ 1 + Γ 1 2 0 F t u where u ∼ N (0, I L ).

F. Further simplification for problems with a fixed dictionary

The efficient implementation described above can be further optimized when the noise is considered i.i.d. and the quantities H = H t H and z = H t y can be computed and stored beforehand. The strategy is to iteratively update G = G t h k and z = G t y instead of matrix G. Thus, for a birth move, G and z can be updated as follows:

G (1) = G (1) , s √ w k h k t , z (1) = z (0) , s √ w k z k t .
For a death move, the column s √ w k h k and the scalar s √ w k z k must be removed from G (1) and z (1) , respectively.

Finally, for an update move, one has to perform a death move of the current atom followed by a birth move of the new atom. Given G and z, the expression of ρ ′ q k and γ ′ q k yields:

ρ ′ q k = (-1) q k (s 2 w ′ k ) -1 + h kk σ -2 ϵ , -σ -4 ϵ F (q k ) g k t F (q k ) g k , (52) 
γ ′ q k = z k σ -2 ϵ -σ -4 ϵ F (q k ) g k t F (q k ) z. (53) 
Note that the same strategy can be used when the dictionary is sparse, even in the case where H = H t H and z = H t y are computed on-the-fly.
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 2 Fig. 2. (a) Impulse response h, (b) sample of a BL signal x, and (c) corresponding data vector y in the case where SNRy = 12 dB.

Fig. 3 .Fig. 4 .

 34 Fig. 3. Example of restored sparse signals at convergence for (a) the PCGS (in blue) and (b) Gibbs (in red), compared to the true values (black circles). (c) Evolution of the MPSRF in log scale. The horizontal dashed line corresponds to the 1.2 threshold.close results. The evolution of the MPSRF w.r.t. the number of iterations is also represented. We can see that the PCGS sampler takes about 2 × 10 3 iterations to reach convergence, while the Gibbs sampler requires 35 × 10 3 iterations. The two samplers converge in about 6 and 56 seconds, respectively.PCGS Gibbs
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 45 Fig.4summarizes the results of the whole simulation test using box plots. For each SNR y , we analyze the number of
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 6 Fig. 6. (a) Sample of a BE signal x, and (b) corresponding data vector y in the case where SNRy = 12 dB.

Fig. 7 .

 7 Fig. 7. Example of restored nonnegative sparse signals at convergence for (a) PCGS (in blue) and (b) Gibbs (in red), compared to the true values (black circles). (c) Evolution of the MPSRF in log scale. The horizontal dashed line corresponds to the 1.2 threshold.
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 89 Fig. 8. (a) Number of iterations and (b) CPU time at convergence in the BTG case.

  e., G (1) = [G ℓ s √ w k h k G r ], introduced, such that: G (1) P = [G ℓ G r s √ w k h k ] = G k andF t k F k = (P t F (1) P) t (P t F (1) P).

ρ - 1 0 = s 2 w k f 2 k

 12 , and b 0 = s √ w k l f r ] t f m , and F 11 = f ll f lr 0 f * with f * = cholupdate(f rr , f kr , +).

  √ w l v l . For the death move[START_REF] Kail | Blind deconvolution of sparse pulse sequences under a minimum distance constraint: A partially collapsed Gibbs sampler method[END_REF], ϕ 0 -ϕ takes the opposite expression of (51) with w ′ k = w k .

TABLE I EXAMPLES

 I OF LSMG DISTRIBUTIONS (γ 2 = α 2 -β 2 AND σz = 1)

	Distribution of X		Distribution of W
	Asymmetric Laplace (AL) [47, §3] AL(α, β, µ)	Exponential E γ 2 2
	Variance-Gamma (VG)	[47, §4.1]	Gamma Γ λ, γ 2 2

since some Gibbs simulations have not reached convergence.