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Efficient Sampling of Bernoulli-Gaussian-Mixtures
for Sparse Signal Restoration

Mehdi Amrouche, Hervé Carfantan, Jérôme Idier, Member, IEEE

Abstract—This paper introduces a new family of prior mod-
els called Bernoulli-Gaussian-Mixtures (BGM), with a view to
efficiently address sparse inverse problems in the Bayesian
framework. The BGM family is based on continuous Location
and Scale Mixtures of Gaussians (LSMG), which includes a
wide range of symmetric and asymmetric heavy-tailed probability
distributions. The decomposition of a distribution as a Gaussian
mixture is a case of data augmentation from which we derive a
Partially Collapsed Gibbs Sampler (PCGS) for the BGM, in a
systematic way. the derived PCGS is shown to be more efficient
than the standard Gibbs sampler, both in terms of number of
iterations and CPU time. Moreover, special attention is paid
to BGM involving a density defined over a real half-line. An
asymptotically exact LSMG approximation is introduced, which
allows us to expand the applicability of PCGS to cases such as
BGM models with a non-negative support.

Index Terms—Sparsity, MCMC, partially collapsed sampling,
continuous Gaussian Mixtures, nonnegativity.

I. INTRODUCTION

SPARSE signal restoration problems arise in different fields
such as geophysics, astronomy and compressed sensing.

The objective is to find a sparse representation x of a signal
y as a linear combination of a limited number of elements
(atoms) taken from a given dictionary H. This problem is often
referred to as subset selection because it consists in selecting
a subset of columns of H, so that

y = Hx+ ϵ, (1)

where y is the N×1 observed signal, H is a N×K matrix with
K < N , x is a K×1 sparse signal with only L < K nonzero
components (corresponding to weighting coefficients), and ϵ
is a perturbation vector.

A reference method to estimate the sparse signal x consists
in minimizing the squared residual error subject to a sparsity
constraint:

min
x

∥y −Hx∥2 s.t. ∥x∥0 ≤ L (2)

where ∥·∥ and ∥·∥0 respectively stand for the Euclidean
norm and the ℓ0 pseudo-norm. However, (2) is an NP-hard
combinatorial discrete problem [1].

An alternative is the convex relaxation of problem (2)
which replaces the ℓ0 pseudo-norm by the ℓ1 norm [2], [3],
the sparsity of the solutions coming from the non-smooth
character of the ℓ1 norm at zero. Greedy algorithms, such
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as Matching Pursuit and its improved versions Orthogonal
Matching Pursuit and Orthogonal Least Squares [2], [4],
form another class of methods. Greedy algorithms iteratively
recover the set of active atoms by incremental selections. In
practice, a common difficulty shared by ℓ0, ℓ1 and greedy
methods is that L is often an unknown quantity.

In some application fields, such as spectroscopy [5], [6] and
particle image recovery [7], the signal of interest x is nonnega-
tive, in addition to being sparse. Nonnegative adaptations have
been proposed for both convex relaxation [7], [8] and greedy
algorithms [9], [10].

On the other hand, we can also rely on hierarchical Bayesian
models to explicitly account for sparsity. Such models in-
corporate an additional layer of hidden, binary components
q = (qk) to explictly encode for atom activation. Variables qk
are generally considered as independent, identically distributed
(i.i.d.) according to a Bernoulli law. Amplitudes xk are also
considered as i.i.d. random variables, with a prior law defined
conditionally to qk as:

xk|qk = 1 ∼ D(θx)

xk|qk = 0 ∼ δ0(xk)
(3)

where D(θx) stands for a distribution with parameters θx, and
δ0 is the Dirac distribution. Let us remark that the sparsity level
L = ∥x∥0 is governed by parameter ξ = P (qk = 1). In the
sequel, priors of the form (3) are referred to as Bernoulli-D
priors.

The posterior distribution of (q,x) can be derived thanks
to the Bayes rule:

p(q,x|y) ∝ p(y|q,x)p(x|q)P (q|ξ) (4)

Under the usual white Gaussian noise assumption ϵk ∼
N (0, σ2

ϵ ), the data likelihood reads:

p(y|q,x) = (2π)−
N
2 σ−N

ϵ exp

(
−∥y −Hx∥2

2σ2
ϵ

)
. (5)

The Bernoulli-Gaussian (BG) case where the distribution
D is Gaussian is by far the most usual choice [11]–[14].
Deterministic optimization algorithms [11], [15] and Markov
chain Monte Carlo techniques (MCMC) [13], [14] have been
proposed to compute the Maximum a Posteriori (MAP) and
the Posterior Mean (PM) estimators, respectively.

In the MCMC framework, other priors have also been
introduced:

• a Bernoulli-Laplace prior has been considered for pMRI
reconstruction [16] and sparse EEG source localiza-
tion [17], [18].
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• under the nonnegativity constraint, a Bernoulli-
Truncated-Gaussian and a Bernoulli-Exponential have
been proposed, respectively for blind spike train
deconvolution [6] and sparse image reconstruction [19].

MCMC methods developed in the Bayesian framework
constitute a powerful inference tool to address sparse inverse
problems. For instance, in the sparse deconvolution context,
where the dictionary entries are often strongly correlated,
the BG prior associated to a Gibbs sampler was empirically
shown to give better results than greedy algorithms and
convex relaxation [20]. Moreover, in contrast with determin-
istic approaches, Bayesian sampling allows one to consider
an unsupervised setting where the model hyper-parameters
θ = [ξ,θx, σϵ] are unknown and estimated jointly with the
parameters of interest, or integrated out. Finally, as MCMC
algorithms provide samples of the parameters distributed ac-
cording to their posterior law, we can easily obtain additional
statistical characteristics of interest. For instance, posterior
standard deviations provide measures of confidence on the
estimated quantities.

Although PM estimation of q and x obtained using MCMC
methods yields satisfactory results, the computational effort
may be high if basic Bayesian sampling schemes are im-
plemented. For instance, Gibbs sampling with a site-by-site
updating scheme for (q,x) (as in [6], [13], [19]) lacks
efficiency, because the outcome trajectory tends to get stuck
around some configurations of the Bernoulli sequence q [21],
[22], leading to poor mixing properties.

In the BG prior case, improved sampling schemes have
been proposed in [14]. In particular, a Partially Collapsed
Gibbs Sampler (PCGS) based on [23] is proposed, which
combines a step that samples q marginally with respect to x
and other sampling steps involving x. Compared to standard
Gibbs sampling, PCGS requires far less iterations to converge.
Although the computing cost of each iteration of PCGS is
higher, PCGS is significantly faster than standard Gibbs to
solve unsupervised sparse deconvolution problems considered
in [14], [24]. Recently, Boudineau et al. [25] extended PCGS
to problems involving dictionaries with entries that non lin-
early depends on additional unknown parameters. Again, the
resulting extended PCGS is shown to perform better that usual
Gibbs sampling.

One key condition to adopt the PCGS strategy is the
possibility to marginalize the amplitudes x out of the pos-
terior. When a BG prior is dealt with, this condition is met
since the Gaussian prior p(x|q) over x is conjugate to the
data likelihood (5). As a consequence, the marginal posterior
distribution:

P (q|y) ∝
∫
p(y|q,x)p(x|q) dxP (q|ξ) (6)

is still tractable. Unfortunately, such a useful property is not
valid for any Bernoulli-D prior.

The aim of this paper is to reconcile PCGS sampling
with several useful cases of Bernoulli-D priors when D is
not Gaussian. More specifically, we will concentrate on two
important cases:

(S) D belongs to a family of heavy-tailed, symmetric densi-
ties supported on the whole real line such as the Laplace
case;

(P) D belongs to a family of asymmetrical densities sup-
ported on a real half-line such as the truncated Gaussian
case.

A key element of our contribution is to introduce latent
variables, according to a data augmentation principle. Akin to
many previous contributions, we will rely on continuous mix-
tures of Gaussians (CMG) to reach our goal. Scale Mixtures
of Gaussians (SMG), and Location Mixtures of Gaussians
(LMG) are two well-known families of CMG [26]. In this
paper, we will mainly consider Location and Scale Mixtures
of Gaussians (LSMG), which is a family of CMG for which
SMG are a particular case. The reason why we resort to a
wider family than SMG will become clear in Sect. II-D. On
the basis of LSMG decompositions, we will propose a new
family of priors called Bernoulli-Gaussian-Mixtures (BGM).

Finally, we will devise an exact stochastic sampling scheme
to deal with BGM priors, with better mixing properties than
standard Gibbs sampling.

The organization of the paper is as follows. In Sect. II,
we give a general overview of data augmentation based on
continuous mixtures of Gaussians, with a focus on Location-
Scale mixtures of Gaussians. Sect. III formally introduces the
BGM prior in the Bayesian framework. The corresponding
partially collapsed sampling strategy is presented in Sect. IV.
In Sect. V, we empirically study the efficiency of the BGM
prior and the corresponding PCGS sampler, in both (S) and
(P) cases, through two sparse, unsupervised deconvolution
problems. Finally, conclusions are drawn in Sect. VI.

II. DATA AUGMENTATION BY CONTINUOUS MIXTURES OF
GAUSSIANS

A. Introduction

Inference schemes based on latent variables pertain to
the data augmentation principle. More specifically, in the
context of signal and image restoration, continuous mixtures
of Gaussians (CMG) decompositions are commonly found.

Definition II.1 (CMG). A random variable X is said a CMG
if it can be decomposed as

X =M +
√
WZ, (7)

where (M,W ) is a couple of random variables and Z ∼
N (0, 1) is independent of (M,W ). The joint probability
measure of (M,W ) is supported by R× R+.

The measure of (M,W ) allows us to modulate the proba-
bility measure of X by tuning the mean or/and variance of the
conditionally Gaussian variable (X |M,W ). Scale mixtures of
Gaussians (SMG) and Location mixtures of Gaussians (LMG)
correspond to cases where M or W becomes deterministic,
respectively, so that only the variance or the mean of the
Gaussian is modulated. Location-Scale mixtures of Gaussians
(LSMG) correspond to a case where the mean and the variance
are jointly modulated, as defined in Sect. II-B.
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In a deterministic optimization perspective, reweighted least
square algorithms [27] and half-quadratic algorithms [28], [29]
can be interpreted as EM algorithms where the augmented
dataset involves either an SMG or an LMG model [26].

Stochastic samplers have also been proposed based on data
augmentation involving CMG models, in order to derive more
efficient Gibbs samplers:

• SMG [30], [31] are more usually considered. For in-
stance, [32] and [33] rely on an exact data augmentation
scheme that corresponds to the SMG decomposition of a
Laplace and a Student’s t distribution, respectively.

• Some recent contributions rather consider LMG models.
LMG also play a key role in the data augmentation
scheme introduced in [34]. In [35], [36], more general
families of location mixtures are introduced, with a
special attention paid to the Gaussian case, although the
connection with LMG remains implicit.

• In [37], the data augmentation scheme corresponds to the
LSMG decomposition of Generalized hyperbolic (GH)
variables. Recently, [38] proposed an approximate data
augmentation scheme of the truncated Gaussian, also re-
lying on the LSMG decomposition of the GH distribution.

Here, we generalize the contribution of [38] to the entire
LSMG family, allowing one to consider heavy-tailed, possibly
asymmetric, distributions.

B. Location-Scale Mixtures of Gaussians (LSMG)

Definition II.2 (LSMG). A random variable X is a location-
scale mixture of Gaussians if

X = µ+ βW +
√
WZ (8)

where β, µ ∈ R, Z ∼ N (0, σ2
z) and W > 0 being independent

random variables, with σz > 0. W will be called the mixing
variable of X .

LSMG have been introduced in [39] under the name of nor-
mal variance-mean mixtures (see also [40]). LSMG are CMG
since the normalized version of (8) identifies with (7) when
M = µ+ βW . LSMG have been used in financial [41], [42],
and statistical data analysis [43], [44] applications, for their
ability to model asymmetric and/or heavy-tailed distributions.
In particular, the Generalized-Hyperbolic family introduced
in [45] is a subfamily of LSMG distributions that encompasses
several cases of interest [46].

Table I gives some typical examples of LSMG distributions.
Note that both AL and VG cases are limit cases of the GH fam-
ily corresponding to GH(1, α, β, 0, µ) and GH(λ, α, β, 0, µ),
respectively. In all cases, µ is a location parameter, while β
tunes the skewness of the density.

In the next two subsections, we examine the (S) and
(P) cases more carefully, the latter being substantially more
complex.

C. S Case: Heavy-Tailed, Symmetric LSMG

For β = 0, (8) defines a symmetric random variable about
µ. Indeed, symmetric LSMG boil down to the family of
shifted SMG. In Sect. V-B, we consider the case of Laplace

TABLE I
EXAMPLES OF LSMG DISTRIBUTIONS (γ2 = α2 − β2 AND σz = 1)

Distribution of X Distribution of W
Asymmetric Laplace (AL) [47, §3]

Exponential E
(

γ2

2

)
AL(α, β, µ)

Variance-Gamma (VG) [47, §4.1]
Gamma Γ

(
λ, γ2

2

)
VG(λ, α, β, µ)

Generalized-Hyperbolic (GH) [45] Generalized-Inverse-Gaussian [48]
GH (λ, α, β, δ, µ) GIG(λ, γ, δ)

distribution in the framework of the BGM model proposed
in Section III, to illustrate that PCGS provides an improved
sampler in such a situation.

D. P Case: LSMG Approximations of Densities on R+

As stated above, CMG models cover a wide range of
probability distributions. However, an obvious restriction is
that the density of any CMG is supported on the whole real
line. In the case of densities only defined over real half-lines,
our key idea is to rely on LSMG approximations instead
of LSMG decompositions. For the sake of simplicity, we
will only deal with the case of R+, which is obtained by
considering (8) with µ = 0 and β > 0. Symmetrically,
approximations of densities on R− will be obtained with µ = 0
and β < 0, and in both cases, shifted versions can be built by
considering non-zero values of µ.

Let us consider a target density p∗ defined on R+, that we
would like to approximately decompose as an LSMG. We have
the following proposition.

Proposition II.1. Let X be an LSMG defined according to (8)
with µ = 0, β > 0, using a mixing variable W with a pdf

qβ(w) = β p∗(βw). (9)

We have the following properties:
(i) When β → ∞, the LSMG X converges in probability

towards X∗ = βW , whose pdf is the target p∗.
(ii) If the first two moments of X∗ exist, then

E[X] = E[X∗] > 0, (10)

var(X) = var(X∗) +
σ2
z

β
E[X∗] , (11)

Corr(X,W ) = Corr(X,X∗) =

(
1 +

σ2
zE[X

∗]

β var(X∗)

)− 1
2

,

(12)

where Corr denotes the Pearson correlation coefficient.

Proof: See Appendix A.
Let us denote pβ the pdf of the LSMG X obtained along

the lines of Proposition II.1. In view of (i), we will call pβ an
asymptotically Exact Location-Scale Approximation (ELSA)
of the density p∗. Parameter β will allow us to tune the quality
of approximation, and (10)-(11) indicate that for any fixed
β, pβ can be viewed as a diffuse approximation of p∗. In
terms of approximation quality, large values of β are clearly
optimal. However, in terms of sampling efficiency, the interest
of such a data augmentation scheme is annihilated for large
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values of β since (12) implies that the larger β is, the more
X and W are correlated. In practice, we must avoid too large
values of β, and control the trade-off between the quality of
the approximation and the efficiency of data augmentation.

Fig. 1 gives examples of the ELSA density pβ when the tar-
get pdf p∗ is a truncated Gaussian density on R+ [49]. In this
case, we will denote the ELSA density pβ ∼ NTG(0, σz, β)
for Normal-Trucated-Gaussian, with parameters β and σz .

In comparison, we have also considered an LMG approx-
imation X ′ = X∗ + ρZ, whose density p′ρ is simply a
smoothed version of p∗. Note that p′ρ is an Asymptotically
exact data augmentation (AXDA) model, in the terminology
of [36]. According to Proposition II.1(i), the ELSA model is
also an AXDA model, although not considered in [36]. AXDA
approximations of the LMG type share similar properties with
Proposition II.1:

• p′ρ converges in probability towards p∗ when ρ→ 0;
• E[X ′] = E[X∗], var(X ′) = var(X∗) + ρ2σ2

z ;

• Corr(X ′, X∗) =
(
1 +

ρ2σ2
z

var(X∗)

)− 1
2

.

Nonetheless, some features of the truncated Gaussian target
are better preserved with ELSA: ∀ρ > 0, p′ρ is smooth at
zero, while ∀β > 0, pβ preserved the nonsmoothness of p∗

at zero. Moreover, pβ reaches its maximum at zero and is
monotonically decreasing on R+. For these reasons, we made
the choice to build our PCGS strategy upon LSMG rather than
LMG models. However, it would remain possible to develop
a similar PCGS strategy on the basis of LMG models. The
latter could be of interest when it happens difficult to define
and manipulate LSMG approximations, such as the case of
densities restricted to a finite interval.

p
(x

)
p
(x

)
p
(x

)

x

Fig. 1. Examples of the ELSA pdf pβ ∼ NTG(0, 1, β) (blue line) when
σ2
z = 1 and p∗ is the standard truncated Gaussian pdf N+(0, 1) (black

dashed line). From top to bottom, β is set to 1, 3 and 9, respectively. For the
sake of comparison, the red curve corresponds to the pdf of an LMG (coined
AXDA in [36]) of the same approximation quality as pβ in the sense of the
total variation.

Finally, let us examine the scale invariance property of
ELSA approximations. This is an important matter in practice
since in many realistic applications to signal restoration, the
scale of the unknown signals is also unknown and must be
sampled within the MCMC framework. In such a situation,

we need an ELSA model with a quality of approximation that
does not fluctuate with the value of the scale parameter.

Let X∗
s = sX∗ and Ws = sW be scaled versions of X∗

and W , for a given s > 0. Let us define the LSMG

Xs = βWs +
√
WsZs (13)

with
Zs =

√
sZ ∼ N (0, sσ2

z). (14)

Then, Xs = s(βW+
√
WZ) = sX , and we have the following

property.

Proposition II.2 (Scale invariance). Let p∗s and pβ,s denote
the pdf of X∗

s and Xs, respectively. The total variation of the
approximation error pβ,s − p∗s does not depend on the scale
s: ∫

R
|pβ,s(x)− p∗s(x)| dx =

∫
R
|pβ(x)− p∗(x)| dx. (15)

Moreover: ∫ 0

−∞
pβ,s(x) dx =

∫ 0

−∞
pβ(x) dx. (16)

Proof: Identities (15)-(16) straightforwardly derive from
the fact that both Xs = sX and X∗

s = sX∗ hold.
Let us remark that we need to modulate the variance of

the generating Gaussian in an appropriate way to get a scale
invariance property on the approximation error. We could not
get a similar result using a Gaussian variable with a normalized
variance.

III. BERNOULLI-GAUSSIAN-MIXTURE MODEL

A. Prior Distribution

Definition III.1. A Bernoulli-Gaussian-Mixture (BGM) is a
Bernoulli-D model when D is an LSMG:

• q is distributed according to an independent Bernoulli
law B(ξ): for any vector q ∈ {0, 1}K ,

P (q; ξ) =

K∏
k=1

ξk(1− ξ)1−k;

• w is an independent random vector of variable length,
each variable wk being defined when qk = 1 only,
according to a pdf pW (·;θw) on R+;

• x is an independent random vector of length K defined
conditionally to q and w as:

if qk = 0, xk = 0,

if qk = 1, xk|wk, s ∼ N (sβwk, s
2wk);

so that xk|(qk = 1) is distributed according to an LSMG
distribution with µ = 0. The latter is driven by the skewness
parameter β, the scale s > 0 and the shape parameters of
pW (·;θw).

Distribution D is an LSMG model that corresponds either
to an (S) (for β = 0) or a (P) (for β > 0) case according
to Sect. II-C and II-D, respectively. Note that we introduced
a scale parameter s that will be considered unknown, while
parameter β (which controls the degree of approximation
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between D and a target distribution D∗ with ELSA) will be
considered fixed. On the other hand, we will also consider
θw to be known, for the sake of simplicity. Assuming that
θw is unknown would naturally add a sampling step in the
considered MCMC algorithm. In [37], the design of such a
step when W is a GIG is examined in detail.

Finally, note that we have fixed σz = 1 in (8), so that
xk|wk ∼ N (βwk, wk) when s = 1. In other words, the
adopted LSMG model matches the usual definition (involving
a normalized Gaussian) when (and only when) the scale is
unity, which is a natural choice.

B. Posterior Distribution

The additive noise ϵ is considered Gaussian and zero-mean,
with covariance Γϵ. The posterior distribution reads:

p(q,x,w,θ|y) ∝ |Γϵ|−
1
2 exp

(
−1

2

∥∥y −Hx
∥∥2
Γ−1

ϵ

)
× p(x,w|q,θ)P (q|ξ)p(θ) (17)

where ∝ denotes the proportionality sign, x and H respec-
tively gather the entries xk and the columns hk for which
qk = 1, θ = {ξ,Γϵ, s} are the hyper-parameters to be sampled,
and ∥v∥2A = vtAv.

C. Partially Marginalized Posterior Distribution

From (17), one can deduce that x|q,w,y,θ ∼ N (µ1,Γ1),
with

µ1 = E
[
X |y, q,w,θ

]
= Γ1

(
H

t
Γ−1
ϵ y + Γ−1

0 µ0

)
, (18)

Γ1 = cov
(
X |y, q,w,θ

)
=
(
H

t
Γ−1
ϵ H+ Γ−1

0

)−1

, (19)

where

µ0 = E
[
X | q,w,θ

]
= sβw,

Γ0 = cov
(
X | q,w,θ

)
= s2W,

with W = diag{w}. As a consequence, the marginalized
posterior of (q,w,θ) with respect to x reads

p(w,θ|q,y)P (q|θ,y) ∝ |B|− 1
2 P (q|ξ)p(θ)

∏
k

pW (wk;θw)

× exp
(
−1

2

(
ytB−1y + µt

0C
−1µ0 − 2ytDµ0

))
where

B−1 = Γ−1
ϵ − Γ−1

ϵ HΓ1H
t
Γ−1
ϵ , (20)

C−1 = Γ−1
0 − Γ−1

0 Γ1Γ
−1
0 , (21)

D = Γ−1
ϵ HΓ1Γ

−1
0 , (22)

are N ×N , L×L, and N ×L, respectively, with L =
∑

k qk.

D. Hyper-Parameter Sampling

In order to generate samples of the hyper-parameter vector
θ = (ξ,Γϵ, s), a prior distribution p(θ) needs to be defined.
Firstly, we naturally suppose that ξ, Γϵ, s are independent.

• We choose an uninformative conjugate prior Be(1, 1)
(i.e., a Beta distribution) for ξ, such that its posterior
distribution is given by ξ ∼ Be(L+ 1,K − L+ 1).

• For the sake of simplicity, we only deal with the white
noise case, i.e., Γϵ = σ2

ϵ IN , where IN is the identity ma-
trix of size N , so that we only need to sample the scalar
parameter σ2

ϵ . We then consider an uninformative con-
jugate prior IG(1, 1) (i.e., Inverse-Gamma distribution)
such that its posterior is IG

(
N
2 + 1, 12 ∥y −Hx∥2 + 1

)
.

Note that handling more complex noise covariance struc-
tures would have no impact on the other sampling steps.

• We consider an Inverse-Gamma uninformative prior s2 ∼
IG(1, 1) for the scale parameter. In the (S) case, the
chosen prior is conjugate and the posterior is s2 ∼
IG
(
L+ 1, 12 ∥x∥

2
W−1 + 1

)
. In the (P) case, the poste-

rior is not a standard law. A random walk Metropolis-
Hastings step with a truncated Gaussian proposal will
then be used within the PCGS.

Finally, let us mention that hyper-parameters ξ and σ2
ϵ are

independent of w and s given y, q,x, so their sampling does
not depend on s, β, and pW .

IV. PCGS FOR THE BGM MODEL

The proposed PCGS sampling strategy is summarized in
Algorithm 1. At each iteration, first sample qk and wk for each
k marginally with respect to x, then sample x and finally the
hyper-parameters θ from their posterior.

Algorithm 1: Proposed PCGS algorithm
At each iteration t:

1) for all k in 1, . . . ,K, draw qk, wk|q−k,w−k,θ,y
according to Algorithm 2

2) draw x|q,w,θ,y (Gaussian distribution)
3) draw θ|q,w,x,y

While Step 2 is a fairly easy task since x is a Gaussian
vector of size L, Step 1 is more complex. To begin with, each
wk is defined only if qk = 1, so that the posterior distribution
is defined in a space with a varying dimension. Reversible-
Jump (RJ) MCMC methods [50] are suited to manage jumps
between subspaces of different dimensions. For the problem
considered here, two states can be distinguished; whether qk =
1 and wk ∈ R+, or qk = 0 and wk is not defined. The RJ-
MCMC framework allows to jump between these two states
using the following moves:

• Birth: from state qk = 0, propose (q′k = 1, w′
k),

• Death: from state (qk = 1, wk), propose q′k = 0,
• Update: from state (qk = 1, wk), propose (q′k = 1, w′

k).
Let us denote puu′ the probability of proposing a move from
the state u to u′. Since we systematically propose a birth move
when qk = 0 then p01 = 1. Otherwise, when qk = 1, it is
reasonable to randomly propose either a death or an update
move with equal probabilities p10 = p11 = 1

2 .
The w′

k candidates are chosen according to the following
proposal distributions.

• Birth: w′
k is sampled according to its prior density, so

q01(w
′
k) = pW (w′

k;θw).
• Death: the proposal is deterministic and wk is no longer

defined.
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Algorithm 2: Sampling qk and wk using the RJ
framework

if qk = 0 then
• birth:

– propose q′k = 1 and w′
k ∼ q01(w

′
k)

– accept with probability α01.
else

• death (with probability p10):
– propose q′k = 0
– accept with probability α10.

• update (with probability p11 = 1− p10):
– propose q′k = 1 and w′

k ∼ q
(i)
11 (w

′
k)

where i ∈ {1, 2} with equiprobability
– accept with probability α(i)

11 .
end

• Update: a mix between two proposals is considered.
The first one is made according to the prior density
q
(1)
11 (w

′
k) = pW (w′

k;θw), allowing a better exploration
of R+. The second one performs a local exploration of
the posterior according to a random-walk Metropolis-
Hastings scheme [51], [52], with a proposal density
q
(2)
11 corresponding to a truncated Gaussian N+(wk, σ

2
w).

Parameter σw is tuned to ensure an optimal acceptance
rate, a common choice being 30%. The reader may refer
to [53] for a review on optimal scaling of Metropolis-
Hastings algorithms.

The resulting RJ-MCMC step is summarized in Algorithm 2.
To ensure the reversibility property, and thus the invariance
of the Markov chain with respect to the posterior distri-
bution [50], [54], the candidates are accepted according to
αuu′ = min{1, ruu′}, where

r01 =
p(w′|q′,θ,y)P (q′|θ,y) p10

p(w|q,θ,y)P (q|θ,y) p01 q01(w′
k)
,

r10 =
p(w′|q′,θ,y)P (q|θ,y) p01 q01(w′

k)

p(w|q,θ,y)P (q|θ,y) p10
,

r
(1)
11 =

p(w′|q′,θ,y)P (q′|θ,y)q(1)11 (wk)

p(w|q,θ,y)P (q|θ,y)q(1)11 (w
′
k)

,

r
(2)
11 =

p(w′|q′,θ,y)P (q′|θ,y)
p(w|q,θ,y)P (q|θ,y)

η(wk)

η(w′
k)

with η(w) = 1 + erf
(

w√
2σw

)
.

The latter expressions can be made more explicit according
to:

r01 = exp

(
χ01 −

1

2

(
ψ(B(1),B) + ϕ1 − ϕ

))
(23)

r10 = exp

(
χ10 −

1

2

(
ψ
(
B(0),B

)
+ ϕ0 − ϕ

))
(24)

r
(1)
11 = exp

(
−1

2

(
ψ
(
B(1),B

)
+ ϕ1 − ϕ

))
(25)

r
(2)
11 = r

(1)
11

pW (w′
k;θw)

pW (wk;θw)

η(wk)

η(w′
k)

(26)

with:

χuu′ = ln

(
P (qk = u′|ξ)
P (qk = u|ξ)

pu′u

puu′

)
(27)

ψ(B,B′) = ln |B| − ln |B′|+ yt
(
(B′)−1 −B−1

)
y (28)

ϕ = µt
0C

−1µ0 − 2ytDµ0 (29)

ϕu = µt
0(u)C

−1
(u)µ0(u) − 2ytD(u)µ0(u) (30)

where for a given matrix (or vector) A, A(0) and A(1)

respectively correspond to A with a modification implied by

• q′k = 0 in position k,
• q′k = 1 and w′

k in position k.

Note that function ψ implicitly depends on y, while matrices
B and C depend on q and w through matrix Γ1 according to
(20), (21) and (19).

A direct implementation of Algorithm 2 using (23)-(26)
would require to compute many matrix inverses and determi-
nants, which would be inefficient. We rather propose to extend
the recursive implementation technique introduced in [14].
Under the usual Bernoulli-Gaussian prior considered therein,
µ0 = 0 and the covariance matrix Γ0 is proportional to
identity (which means that matrices C and D are irrelevant).
We propose an efficient implementation that extends [14] to
any diagonal covariance matrix Γ0 and expectation vectors µ0.
A key point is to recursively handle Cholesky factors instead of
matrices B, C and D (more details are given in Appendix B).

Let us emphasize that the cost per iteration of the PCGS
is highly dependent on the efficient computation of the ratios
ruu, which crucially depend on that of function ψ. Clearly, the
direct computation of ψ according to (28) is inefficient, as the
latter requires to invert matrix B−1 and to evaluate |B|, which
scales as O(N3). Thanks to the mathematical simplifications
given in Appendix B-A, the computation of ψ boils down
to the evaluation of scalars ρ′qk and γ′qk , given by (41) and
(42), which scales in the most general case (i.e., no favorable
structure for the noise covariance Γϵ and for the dictionary
H) as O(N2). Moreover, the computational complexity can
be further reduced in some favorable situations:

• when the noise is assumed independent (i.e., Γϵ is diagonal),
(41) and (42) scale as O(NL);

• when the noise is assumed i.i.d. and HtH and Hy can be
computed and stored once for all (as is the deconvolution
case of Sect. V-B), the computational complexity of (41)
and (42) can be brought down to O(L2) as described in
Appendix B-F;

• when the noise is assumed i.i.d. and H is a sparse matrix
(as is the semi-blind deconvolution case of Sect. V-C), (41)
and (42) scale as O(L2) using the strategy of Appendix B-F,
considering that the on-the-fly computation of HtH and Hy
is inexpensive.

Furthermore, thanks to the simplifications of Appendix B-D,
computation of function ϕ does not require that of matrices
C−1 and D, and its cost is lower than that of ψ. Finally, in
the (S) case, function ϕ is irrelevant as µ0 = 0.
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V. NUMERICAL VALIDATIONS

A. Simulation framework

In order to compare the practical efficiency of the proposed
PCGS sampler to that of a standard Gibbs strategy, we propose
a couple of experiments. The first is a sparse deconvolution
problem under a Bernoulli-Laplace prior [16], [18], which
is an example of a heavy-tailed, symmetric density as dealt
in Sect. II-C. In the second one, we consider in addition a
nonnegativty constraint that is handled thanks to a Bernoulli-
Truncated-Gaussian prior [6], so that we are now in the
situation dealt in Sect. II-D.

To empirically compare the computing time of the different
samplers, we make use of Brooks and Gelman’s graphical
method to assess convergence [55]. It relies on the computation
of a multivariate potential scale reduction factor (MPSRF)
defined as

R =
T − 1

T
+
J + 1

J
λ
(
V−1

intraVinter
)
,

where λ(A) denotes the largest eigenvalue of matrix A.
Vintra and Vinter are respectively intra-chain and inter-chain
covariance matrices estimated from J independent Markov
chains {xj,t; j = 1, · · · , J ; t = 1, · · · , T} of length T :

Vintra =
1

J(T − 1)

∑
j,t

(xj,t − xj) (xj,t − xj)
t
,

Vinter =
1

J − 1

∑
j

(xj − x) (xj − x)
t
,

where xj and x denote the empirical mean of chain j and the
global mean, respectively. In the following section, we focus
on the MPSRFs measured on the amplitude chains. A lower
MPSRF value means a better mixing property. Convergence
of the chains is diagnosed when the MPSRF is close to one.
As suggested in [55], we have chosen a threshold of 1.2.

In order to compute the MPSRF, the chains are divided into
batches of ∆T samples each, and the convergence is detected
every ∆T samples only, so that a difference of ±∆T is not
significant. Moreover, the MPSRF is computed over the second
halves of the Markov chains to get rid of the burn-in time
period.

For all experiments presented in this paper, we have used
J = 10 Markov chains. We have also set ∆T = 1000, and a
maximum number of iterations Tmax = 105. The simulations
were run using MATLAB on a computer with Intel Xeon
Gold 6226R processors, with a CPUs clocked at 2.9 GHz.
Each experiment needed 6000 simulated chains, and took
four days of computations, including the computation related
to the MPSRF. We intentionally performed the computations
on a single thread, in order to measure CPU times in a
reliable way. This means that in practice, computing times
will be significantly smaller than the obtained CPU times, with
an acceleration factor depending on the number of available
threads. Moreover, since PCGS involves more complex matrix
operations than standard Gibbs, multi-threaded computations
could be more favorable to PCGS.

(a) hk

(b) xk

(c) yk

k

Fig. 2. (a) Impulse response h, (b) sample of a BL signal x, and (c)
corresponding data vector y in the case where SNRy = 12 dB.

Once the convergence is diagnosed (or when the maximum
number of iterations is reached), the location of the nonzero
amplitudes are estimated according to:

q̂k =

{
1, if

∑
t∈E q

(t)
k > 0.5|E|,

0, otherwise,

with E the set of indices t such that t ∈ (Tc, Tc + 1000],
Tc being the index at which the chains have reached the
convergence threshold, so that |E| = 1000. Then the nonzero
amplitudes are estimated by computing the empirical mean of
xk|qk = 1 as follows:

x̂k =

∑
t∈E x

(t)
k∑

t∈E q
(t)
k

.

The hyper-parameters are estimated by computing the empir-
ical mean of their respective chains over the set E.

B. Sparse Deconvolution: Bernoulli-Laplace (BL)

A dataset of 300 simulated sparse signals of length K = 300
was generated according to a Bernoulli-Laplace (BL) prior.
The Laplace density is a well-known case that admits an exact
decomposition as a scale mixture of Gaussians distribution.
The parameter of the Bernoulli sequence was tuned such that
the number of non-zero components ranges between L ≈ 12
and L ≈ 30, and the amplitude variance is 0.02. The sparse
signals are convolved by an impulse response defined as

hn(fh) = cos

(
n− 10

10
πfh

)
e−|0.225n−2|1.5 , (31)

for n = 0, . . . , 20 and fh = 3.5. The dataset is then divided in
three, each data vector y being corrupted with a centered i.i.d.
Gaussian noise achieving a signal-to-noise ratio SNRy of 15,
12 and 9 dB, respectively. An example is given in Fig. 2 for
SNRy = 9 dB.
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For each data vector, we have performed a deconvolution
with a BL prior, using either the PCGS sampler or a standard
Gibbs sampler. It is unsupervised in the sense that hyper-
parameters θ = [ξ, σϵ, s] are unknown. Fig. 3 gives an

(a) x̂n

(b) x̂n

n

(c) R

Iteration

Fig. 3. Example of restored sparse signals at convergence for (a) the PCGS
(in blue) and (b) Gibbs (in red), compared to the true values (black circles). (c)
Evolution of the MPSRF in log scale. The horizontal dashed line corresponds
to the 1.2 threshold.

example in a case where both samplers yield close results.
The evolution of the MPSRF w.r.t. the number of iterations is
also represented. We can see that the PCGS sampler takes
about 2 × 103 iterations to reach convergence, while the
Gibbs sampler requires 35× 103 iterations. The two samplers
converge in about 6 and 56 seconds, respectively.

PCGS Gibbs

(a
)

It
er

at
io

ns
(b

)
C

PU
(s

)

Fig. 4. (a) Number of iterations and (b) CPU time at convergence among 100
trials in the BL case. PCGS in blue, standard Gibbs in red. Results are spread
along the vertical lines from the min to the max value. Horizontal segments
correspond to divisions into quartiles, and dots indicate the mean value.

Fig. 4 summarizes the results of the whole simulation test
using box plots. For each SNRy , we analyze the number of

PCGS Gibbs

(a
)

Pr
ec

is
io

n
(b

)
R

ec
al

l

Fig. 5. (a) Precision and (b) recall of the Bernoulli sequences q estimates in
the BL case.

iterations and the CPU time required to reach convergence
for each sampler among the 100 simulated cases. PCGS
clearly needs fewer iterations than standard Gibbs to converge.
Moreover, its number of iterations has much smaller variations.
These results meet the conclusions of [14], that the PCGS
strategy enhances the mixing properties of the sampler, en-
abling a better exploration of the posterior distribution. PCGS
always converged in less than Tmax = 105 iterations (actually,
all the chains converged in less than 2 × 104 iterations),
whereas the Gibbs sampler failed to converge within Tmax
iterations in 59 cases, representing about 20% of the 300
datasets.

Although the cost per iteration is larger for PCGS, it needs
less CPU time thanks to our recursive implementation. In
terms of average CPU time, the two samplers required 11
and 80 seconds respectively, which represents an average
acceleration factor of at least1 7.

Fig. 5 gives a statistical analysis of precision and recall [56]
of the estimates q̂k. A precision score of one would mean
that every detected spike is a true one, even if not all true
spikes were detected. A recall score of one would mean that
all true spikes were detected, even if irrelevant spikes were
also detected. The results show that the two samplers yields
similar estimation results, although slightly in favor of PCGS.
In particular, according to Fig. 5(a), more than 90% of the
detected spikes are relevant on average, at all three SNRy

values. We attribute the lower quality of the Gibbs output to the
fact that Gibbs chains are poorly mixing, except at low SNR.
The erratic convergence of the Gibbs sampler has already been
reported in the BG case [14], [21].

Finally, the average recall values range between 0.5 to 0.7,
indicating that a significant proportion of spikes are not de-
tected. However, in the context of noisy sparse deconvolution,
spikes with small amplitudes cannot be distinguished from the
noise (this is clear on the example of Figs. 2 and 3), which
also explains why the recall value decreases with smaller SNR
values.

1since some Gibbs simulations have not reached convergence.



9

C. Nonnegative Sparse deconvolution: Bernoulli-Truncated-
Gaussian (BTG)

Let us now consider the problem of nonnegative sparse de-
convolution when the nonzero signal amplitudes are distributed
according to a truncated Gaussian. This is a case where the
target distribution does not admit an exact decomposition as
a mixture of Gaussian distributions.

A dataset of 300 sparse signals was generated according to
a Bernoulli-Truncated-Gaussian (BTG) model [6]. The rest of
the numerical procedure is identical to that of Sect. V-B.

The PCGS sampler and a standard Gibbs sampler were run
on each of the 300 data vectors. In the former case, we relied
on the results of Sect. II-D to approximate the BTG prior.
More precisely, we set s = 1 and pW ∼ N+(0, β−2), the
value of β being a priori fixed to β = 10, such that xk|qk =
1 ∼ NTG(0, 1, 10). Let us stress that parameter β controls
approximation quality, and more specifically the probability of
having negative amplitudes. Here, our choice yields P (xk ≤
0|qk = 1) ≈ 0.03 and TV = 0.1.

In the considered unsupervised framework, hyper-
parameters θ = [ξ, σϵ, s] are unknown. In addition, we
consider a semi-blind scenario where the parameter fh of the
impulse response is also unknown. It is thus sampled using a
Metropolis-Hasting step similarly to [6].

Fig. 7 gives an example of the estimated sparse signal
x, where the two samplers yield indistinguishable estimates,
despite the approximation needed by PCGS. Fig. 7(c) shows
the evolution of the MPSRF w.r.t. the number of iterations.
PCGS and Gibbs converged in 2×103 and 31×103 iterations,
respectively. Akin to Fig. 3(c), Fig. 7(c) shows that the MPSRF
decreases in a regular way for PCGS, while it is more erratic
for standard Gibbs. In this case, the two samplers converged in
about 10 and 33 seconds, respectively, which means that PCGS
was approximately three times faster than standard Gibbs.

Fig. 8 summarizes the set of results. The computational
efficiency of Gibbs sampler still suffers from the same limita-
tions as in the previous experiment. In particular, it produces
chains for which the iteration number before convergence
strongly varies, which is not the case for PCGS. The Gibbs
sampler even failed to pass the MPSRF convergence test
within Tmax = 105 iterations in 79 cases (around 26% of the
300 cases), while PCGS always converged in less than 2×104

(a) xk

(b) yk

k

Fig. 6. (a) Sample of a BE signal x, and (b) corresponding data vector y in
the case where SNRy = 12 dB.

(a) x̂n

(b) x̂n

n

(c) R

Iteration

Fig. 7. Example of restored nonnegative sparse signals at convergence for
(a) PCGS (in blue) and (b) Gibbs (in red), compared to the true values (black
circles). (c) Evolution of the MPSRF in log scale. The horizontal dashed line
corresponds to the 1.2 threshold.

iterations. In terms of CPU time, the average acceleration
factor is at least 4, as the two samplers require on average
14 and at least 55 seconds. Given the convergence issues of
the Gibbs sampler, the true acceleration factor is significantly
larger than 4.

In terms of signal restoration quality, Fig. 9 shows that
PCGS has similar overall performances than Gibbs. In partic-
ular, the recall values are comparable for both samplers. The
precision, however, is slightly lower for PCGS in this case,
which is due to the approximation required by the former.
The precision of the PCGS could be improved by choosing
a larger value of parameter β, which controls the quality of
the ELSA approximation, at the price of a lower sampling
efficiency according to Proposition II.1-(ii).

Moreover, despite the approximation required by PCGS, in
particular the fact that the support of the ELSA distribution
is not restricted to R+, none of the 300 estimated signals
contains a negative amplitude. This confirms that in the tested
examples, the adopted value of β yields a PCGS sampler with
both a favorable computational efficiency (compared to the
standard Gibbs alternative), and a good approximation of the
posterior probability.

VI. CONCLUSION

In this paper, we introduced a new class of hierarchical prior
model for sparse signal restoration, called Bernoulli-Gaussian-
Mixture (BGM). It incorporates two levels of Gaussian mix-
tures:

• The first level corresponds to a two-class mixture, leading
to a Bernoulli-D model, where the Bernoulli variables
induce an explicit detection stage in the signal restoration
process.
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PCGS Gibbs
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Fig. 8. (a) Number of iterations and (b) CPU time at convergence in the BTG
case.

PCGS Gibbs
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Fig. 9. (a) Precision and (b) recall of the Bernoulli sequences q estimates in
the BTG case.

• The second step is a continuous Gaussian mixture decom-
position belonging to the class of location-scale mixtures
of Gaussians (LSMG).

The LSMG family is rich enough to incorporate scale mixtures
of Gaussians, which are symmetric, but also asymmetric
densities. In this paper, we paid particular attention to the
limit case where D approximates a distribution restricted to
the positive half-line.

In order to efficiently produce samples from the posterior,
we proposed an extension of the partially collapsed Gibbs sam-
pling scheme proposed in [14] in the Bernoulli-Gaussian case.
Extensive simulation results have shown that the proposed
scheme enjoys significantly better mixing properties than the
standard Gibbs strategy.

A practical limit of our contribution is found when the
number of nonzero components to restore is large, since the
cost per iteration of the proposed PCGS scales as O(L2),
where L is the number of nonzero elements at the current
iteration. Indeed, PCGS has a computing cost per iteration

comparable to that of a deterministic, greedy algorithm such
as SBR [57], while it needs a larger number of iterations.
The latter point is justified, since the goal of PCGS is to
sample from the posterior law, whereas SBR only solves a
local minimization problem.

An interesting perspective will be to consider the case of
densities supported on an interval, such as the beta density.
For such densities, LSMG do not provide approximations of
an acceptable quality, and it is an open question to find a suited
family of continuous Gaussian mixture models.

APPENDIX A
PROOF OF PROPOSITION II.1

(i) Given (9) and µ = 0, it is a simple matter to check that
the pdf of X∗ = βW is p∗. Moreover, according to (8), we
have

X −X∗ =
√
WZ =

V√
β
, (32)

where V = Z
√
X∗. Finally, for any random variable V

with pdf pV , the scaled version (32) converges in probability
towards 0 when β → ∞, since for any ϵ > 0,

P

(
|V |√
β

≥ ϵ

)
= 1−

∫ ϵ
√
β

−ϵ
√
β

pV (v) dv → 0.

(ii) We have X = X∗ +
√
WZ, so it is immediate that

E[X] = E[X∗] because Z is zero-mean and independent from
W . Moreover, Markov’s inequality applied to X∗ states that

P (X∗ ≥ a) ≤ E[X∗]

a

for all a > 0. Hence, E[X∗] ≥ aP (X∗ ≥ a), and there is
at least an a > 0 for which P (X∗ ≥ a) > 0, otherwise X∗

would be almost surely zero (in contradiction with the fact
that X∗ admits a pdf).

Moreover,

E
[
X2
]
= E

[
(X∗)2

]
+ E

[
WZ2

]
+ 2E

[√
WX∗Z

]
= E

[
(X∗)2

]
+ σ2

zE[W ] ,

because Z is independent from
√
WX∗. We obtain (11) since

W = 1
βX

∗.
Finally, Corr(X,W ) = Corr(X,X∗) since there is a

linear relation between W and X∗. Additionally, E[XX∗] =

E
[
(X∗)2 +

√
WX∗Z

]
= E

[
(X∗)2

]
, so the Pearson correla-

tion coefficient between X and X∗ reads

Corr(X,X∗) =
E[XX∗]− E[X] E[X∗]√

var(X)var(X∗)
=

√
var(X∗)

var(X)
,

which leads to (12) after simplification.

APPENDIX B
EFFICIENT IMPLEMENTATION OF PCGS

In Appendix B-A, we show how we can rely on a recursive
update of matrix B to efficiently compute ψ, and thus the
ratios ruu′ .
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A. Computation of ψ

Using the matrix inversion lemma, we can deduce from (20)
that

B = Γϵ +HΓ0H
t
. (33)

Moreover,

B(0) = Γϵ +
∑

ℓ̸=k|qℓ=1

s2wℓhℓh
t
ℓ,

B(1) = B(0) + s2w′
khkh

t
k,

so that
B(1−qk) −B(qk) = (−1)qks2w′

khkh
t
k (34)

Using the matrix inversion lemma again yields

B−1
(1−qk)

=
(
B(qk) + (−1)qks2w′

khkh
t
k

)−1

= B−1
(qk)

−B−1
(qk)

hk(ρ
′
qk
)−1ht

kB
−1
(qk)

where ρ′qk = ρqk(w
′
k) = (−1)qk(s2w′

k)
−1 + ht

kB
−1
(qk)

hk.
Hence,

B−1
(1−qk)

−B−1
(qk)

= −(ρ′qk)
−1B−1

(qk)
hkh

t
kB

−1
(qk)

so

yt
(
B−1

(1−qk)
−B−1

(qk)

)
y = (ρ′qk)

−1(γ′qk)
2 (35)

with γ′qk = γqk(w
′
k) = ht

kB
−1
(qk)

y.
Taking the determinant of (34) using the matrix determinant

lemma,∣∣B(1−qk)

∣∣ = ∣∣B(qk) + (−1)qks2w′
khkh

t
k

∣∣
=
(
1 + ht

kB
−1
(qk)

(−1)qks2w′
khk

) ∣∣B(qk)

∣∣∣∣B(1−qk)

∣∣ = (−1)qks2w′
kρ

′
qk

∣∣B(qk)

∣∣ . (36)

From (35) and (36) we have

ψ(B(1−qk),B(qk)) = ln
(
(−1)qks2w′

kρ
′
qk

)
−

(γ′qk)
2

ρ′qk
(37)

According to (23) and (24), (37) is applicable to the com-
putation of r01 (with qk = 0) and of r10 (with qk = 1 and
w′

k = wk). For the update step, one can use that:

ψ(B1,B) = ψ(B1,B0)− ψ(B,B0),

= ln

(
w′

kρ
′
0

wkρ0

)
− (γ′0)

2

ρ′0
+
γ20
ρ0
. (38)

We propose to rely on (37) and (38) to evaluate function ψ,
but we still need an efficient way to compute ρqk and γqk . One
possibility is to rely on the matrix inversion lemma again. Akin
to [14], we rather make use of Cholesky factorizations.

B. Cholesky Factorization

Let G = H
√
Γ0 = sH

√
Diag{w}, so that B = Γϵ +

GGt. Using the matrix inversion lemma, we have

B−1 = (Γϵ +GGt)−1 = Γ−1
ϵ − Γ−1

ϵ GS−1GtΓ−1
ϵ

where
S = GtΓ−1

ϵ G+ IL (39)

is an L×L positive-definite matrix. The Cholesky factorization
of its inverse reads

S−1 = FtF, (40)

where F is an L × L upper triangular matrix. Akin to [14],
we will handle matrix F rather than B, which is N ×N .

Let us stress that ρ′qk and γ′qk take the form:

ρ′qk = (−1)qk(s2w′
k)

−1 + ht
kΓ

−1
ϵ hk

−
(
F(qk)G

t
(qk)

Γ−1
ϵ hk

)t (
F(qk)G

t
(qk)

Γ−1
ϵ hk

)
, (41)

γ′qk = ht
kΓ

−1
ϵ y −

(
F(qk)G

t
(qk)

Γ−1
ϵ hk

)t
F(qk)G

t
(qk)

Γ−1
ϵ y.

(42)

C. Efficient Update of matrix G and Cholesky Factor F

1) Birth moves: In the case of birth moves, the update of
matrix G is straightforward if the new column s

√
wkhk is

simply added at the end of the matrix. Let Gk denotes the
matrix G(1) for which the column s

√
wkhk is the last one,

i.e., Gk =
[
G(0) s

√
wkhk

]
.

Note that the order in which the columns are stacked in
matrix G has a direct influence on matrix F. To keep track
of the column positioning, we introduce an index vector o =
[o1, · · · , oL] such that ok is the position of column s

√
wkhk

inside matrix G. Let Sk = S(1) and Fk = F(1) when Gk =
G(0) with

Fk =

[
F11 f12

0 f22

]
, (43)

where F11, f12 and f22 are an upper triangular matrix, a
column vector and a scalar, respectively. It follows that

Ft
kFk =

[
Ft

11F11 Ft
11f12

f t
12F11 f t

12f12 + f222

]
(44)

For a birth move, given the definition of Gk, by (39), (40)
and using a block-wise matrix inversion formula, the update
from F(0) to F(1) yields

Ft
kFk = Ft

(1)F(1) =

[
Ft

(0)F(0) + ρ0b0b
t
0 s−1w

− 1
2

k b0

s−1w
− 1

2

k bt0 (s2wk)
−1ρ−1

0

]
(45)

where b0 = −Ft
(0)F

−1
(0)G

t
(0)Γ

−1
ϵ hkρ

−1
0 . It is straightforward

to see that Ft
(1)F(1) = F

t

(0)F(0) + vvt with

F(0) =

[
F(0) 0t

0 0

]
and v =

[
v1

v2

]
=

[
b0
√
ρ0

s−1w
− 1

2

k /
√
ρ0

]
.

(46)
As a consequence, F(1) can be computed using a rank-1
Cholesky update:

F(1) = cholupdate(F(0),v,+). (47)

2) Death moves: For a death move, s
√
wkhk must be

removed and vector o must be updated accordingly.
When the column to be removed is the last one, i.e., ok = L,

the updating is straightforward. From (45) we have:

Ft
(0)F(0) = Ft

11F11 − ρ0b0b
t
0

= Ft
11F11 − v1v

t
1
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thus F(0) can be computed using a rank-1 Cholesky downdate:

F(0) = cholupdate(F11,v1,−) (48)

where v1 = b0
√
ρ0. In this case, ρ0 and b0 can be directly

extracted from matrix F(1) by identifying (44) with (45):

ρ0 =
(
s2wk(f

t
12f12 + f222)

)−1
,

b0 = s
√
wk F

t
11f12.

When ok < L, i.e., G(1) = [Gℓ s
√
wkhk Gr], a

permutation matrix

P =

Iℓ 0 0
0 0 1
0 Ir 0


needs to be introduced, such that: G(1)P =
[Gℓ Gr s

√
wkhk] = Gk and

Ft
kFk = (PtF(1)P)t(PtF(1)P). (49)

However, one has to keep in mind that Ft
k ̸= PtF(1)P given

that PtF(1)P is not a triangular matrix. Nevertheless, (49)
allows to compute b0 et ρ0 directly from F(1) and F11 using
an additional rank-1 Cholesky update. Let

F(1) =
[
fl fk fr

]
=

fll flk flr
0 fkk fkr
0 0 frr

 (50)

From (44), (45), (49) and (50) we have

ρ−1
0 = s2wkf

2
k , and b0 = s

√
wk[fl fr]

tfm,

and F11 =

[
fll flr
0 f∗

]
with f∗ = cholupdate(frr, fkr,+).

Finally, F(0) can be computed via (48).
3) Update moves: In the case of an update move, matrices

G and F keep the same size. For matrix G, one has to
substitute s

√
wkhk with s

√
w′

khk. For matrix F, one has to
perform a death update of column s

√
wkhk followed by a

birth update of s
√
w′

khk.

D. Computation of ϕ

Recall that ϕu is defined by (30). Its computation can be
simplified using the results of Appendix B-C. From (40), (47)
and (48) one can show that:

ϕ1 − ϕ = β2
(
w′

k − V 2
)
− 2βV ytΓ−1

ϵ G(1)v (51)

in the birth move (23), with v =
[
b0ρ

1
2
0 , (w

′
k)

−1ρ
− 1

2
0

]t
and

V =
∑

l

√
wlvl. For the death move (24), ϕ0 − ϕ takes the

opposite expression of (51) with w′
k = wk.

E. Efficient Sampling of the Amplitudes x

From (19) and (39), we have that

Γ−1
1 = H

t
Γ−1
ϵ H+ Γ−1

0 ,

= Γ
− 1

2
0

(
Γ

1
2
0 H

t
Γ−1
ϵ HΓ

1
2
0 + IN

)
Γ
− 1

2
0 ,

= Γ
− 1

2
0 SΓ

− 1
2

0 ,

so Γ1 = Γ
1
2
0 S

−1Γ
1
2
0 = Γ

1
2
0 F

tFΓ
1
2
0 , and hence,

µ1 = Γ
1
2
0 F

t
(
FGtΓ−1

ϵ y + FΓ
− 1

2
0 µx

)
.

Finally, the amplitudes x can be sampled efficiently as x =

µ1 + Γ
1
2
0 F

tu where u ∼ N (0, IL).

F. Further simplification for problems with a fixed dictionary

The efficient implementation described above can be further
optimized when the noise is considered i.i.d. and the quantities
H̃ = HtH and z = Hty can be computed and stored
beforehand. The strategy is to iteratively update G̃ = Gthk

and z̃ = Gty instead of matrix G. Thus, for a birth move, G̃
and z̃ can be updated as follows:

G̃(1) =
[
G̃(1), s

√
wkh̃k

]t
, z̃(1) =

[
z̃(0), s

√
wkzk

]t
.

For a death move, the column s
√
wkh̃k and the scalar

s
√
wkzk must be removed from G̃(1) and z̃(1), respectively.

Finally, for an update move, one has to perform a death move
of the current atom followed by a birth move of the new atom.

Given G̃ and z̃, the expression of ρ′qk and γ′qk yields:

ρ′qk = (−1)qk(s2w′
k)

−1 + h̃kkσ
−2
ϵ ,

− σ−4
ϵ

(
F(qk)g̃k

)t (
F(qk)g̃k

)
, (52)

γ′qk = z̃kσ
−2
ϵ − σ−4

ϵ

(
F(qk)g̃k

)t
F(qk)z̃. (53)

Note that the same strategy can be used when the dictionary
is sparse, even in the case where H̃ = HtH and z = Hty
are computed on-the-fly.
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