

The quest for extraterrestrial life: why does it matter? 18/10/2021

On the challenge of detecting extraterrestrial life

Frédéric Foucher

Exobiology group, Centre de Biophysique Moléculaire, CNRS, Orléans, France

frederic.foucher@cnrs.fr

Credit: www.iau.org/

Life?

We can define as living system any entity capable of self-replication and Darwinian evolution (Encyclopedia of Astrobiology, 2011)

Credit: Shutterstock

Requirements for life to appear an develop

Ingredients and conditions

We think that:

All life is probably based on organic chemistry and on the elements C, H, N, O, P and S.

Why these elements? 1- Nucleosynthesis

In the universe, the most abundant elements capable of bonding with other elements are: H, O, C and N To be a set of the se

Logarithmic SAD Abundances: Log(H) = 12.0

2- Carbon chemistry

Tetravalence

Orbital hybridisation H = H = H = H H = HH =

Polymerisation, high affinity with H, O and N, wide range of bonding energy... Organic molecules in deep space More than 230 molecules have been detected in the interstellar medium and circumstellar envelopes:

- Methane CH4

- Ethanol C₂H₅OH

- Acetic acid CH₃COOH

Credit: NASA

Detection in comets

RESEARCH ARTICLE

SPACE SCIENCES

Prebiotic chemicals—amino acid and phosphorus in the coma of comet 67P/Churyumov-Gerasimenko

2016 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 10.1126/sciadv.1600285

Sci. Advances (2016)

Kathrin Altwegg,^{1,2}* Hans Balsiger,¹ Akiva Bar-Nun,³ Jean-Jacques Berthelier,⁴ Andre Bieler,^{1,5} Peter Bochsler,¹ Christelle Briois,⁶ Ursina Calmonte,¹ Michael R. Combi,⁵ Hervé Cottin,⁷ Johan De Keyser,⁸ Frederik Dhooghe,⁸ Bjorn Fiethe,⁹ Stephen A. Fuselier,¹⁰ Sébastien Gasc,¹ Tamas I. Gombosi,⁵ Kenneth C. Hansen,⁵ Myrtha Haessig,^{1,10} Annette Jäckel,¹ Ernest Kopp,¹ Axel Korth,¹¹ Lena Le Roy,² Urs Mall,¹¹ Bernard Marty,¹² Olivier Mousis,¹³ Tobias Owen,¹⁴ Henri Rème,^{15,16} Martin Rubin,¹ Thierry Sémon,¹ Chia-Yu Tzou,¹ James Hunter Waite,¹⁰ Peter Wurz¹

Complex molecules in meteorites

Murchison meteorite

Contains several thousands of different organic molecules, in particular 70 amino acids of which 8 of them are proteinogenic (/20)
 + purines and pyrimidines (nucleobases).

Amino acid (L-alanine)

We think that:

All life is probably based on organic chemistry and on the elements C, H, N, O, P and S.

Life needs liquid water to appear and develop.

Why liquid water?

Liquid water has unique physicochemical properties:

Due to its molecular weight, it should be gaseous under standard terrestrial conditions (such as CO₂, SO₂, H₂S...) but it remains liquid up to 100°C due to hydrogen bonds.

It forms hydrogen bonds with organic molecules containing –OH, -NH, -SH groups => many organic molecules (CHNOS) are soluble in water (hydrophilic).

On the other hand, hydrocarbons (C_nH_m) are hydrophobic.

Organics in water

After Brack A. (1993) OLEB.

Water ice density

Water ice density is lower than those of liquid water

=> water ice floats => organisms can survive during winter!

 $< 0^{\circ}C$ Warmer in the deeper areas 4°C

Credit: https://www.nsta.org/

We think that:

All life is probably based on organic chemistry and on the elements C, H, N, O, P and S.

Life needs liquid water to appear and develop.

The chemical reactions leading to the emergence of life require mineral surfaces.

Why mineral surfaces ?

- Chemical reactions at the surface of the minerals can produce energy (e.g. pyrite)

The porosity of rocks and minerals may concentrate organic molecules and favour their interactions (e.g. feldspars, clays).
Some minerals catalyse chemical reaction (e.g. magnetite)

We think that:

All life is probably based on organic chemistry and on the elements C, H, N, O, P and S.

Life needs liquid water to appear and develop.

The chemical reactions leading to the emergence of life require mineral surfaces.

Life needs a source of energy (UV, heat...) to appear and develop.

Starlight

Credit: wallpapercave.com

Lightning

Credit: goodfon

-

Hydrothermal systems

Credit: EVNautilus

We think that:

All life is probably based on organic chemistry and on the elements C, H, N, O, P and S.

Life needs liquid water to appear and develop.

The chemical reactions leading to the emergence of life require mineral surfaces.

Life needs a source of energy (UV, heat...) to appear and develop.

We think that:

All life is probably based on organic chemistry and on the elements

We are looking for places where these conditions are/were met! = rocky bodies where water is or was present.

Life needs a source of energy (UV, heat...) to appear and develop.

Credit: Yuri Beletsky, ESO

Proportions, conditions and durations are key parameters and different steps (mostly still unknown for the appearance of life) are required.

Habitable does not mean inhabited!

What to search for ?

From habitable places to extraterrestrial intelligence

Credit: space.com

Level of evolution

4- Extraterrestrial civilisation

3- Macroscopic multicellular life

2- Microbial life

1- Molecules

To reach a higher level of evolution life must first have evolved to the previous stage. Obviously, the converse is wrong and evolution may stop at any level. As a consequence, more evolved life is less probable!

Likelyhood

1- Molecules

2- Microbial life

0000

3- Macroscopic multicellular life

As more evolved life forms are less

likely, they are also less numerous in the universe and therefore statistically more distant.

4- Extraterrestrial civilisation

Distance from the Earth

Different levels of evolution

Extraterrestrial civilisation

Macroscopic life

00 00 00

Microbial life

Different biosignatures

Extraterrestrial intelligence

Signature and detection

Drake equation

N = number of civilisations in our galaxy able to communicate.

Frank Drake

Credit: SPL / sciencephoto.fr/SPL / sciencephoto.fr

Result of the calculation

Minimum ~0,000035

-the most pessimistic: 1 (us)

-the most optimistic : 10000

Number of galaxies in the universe ~350 billions

Minimum = 1 000 000 !!!

Credit: Yuri Beletsky, ESO

Pioneer 10 and 11

Pioneer 10, 1972

Credits: NASA

AN

Voyager 2, 1977

The « Golden Record »

0

Credits: NASA

If the sun was the size of a tennis ball (65 mm in diameter) then:

	Dia. in km	Dia. in mm if the sun was the size of a tennis ball :	Distance from the Earth in km:	Distance from the Earth if the sun was the size of a tennis ball :
The Earth	12800	0,60	0	o,o m
The Moon	6800	0,32	384467	0,02 M
The Sun	1395200	65	15000000	7,0 m
Neptune	50000	2,33	4347000000	202,5 m
Proxima Centauri	200000	9,32	4243000000000	1977 <u>k</u> m

Approximately the distance between Angra do Heroismo and Madrid! —

About 60 000 years for a spacecraft travelling at 20 km/s!

Detection limited to radio signals.

SETI Search for Extra-Terrestrial Intelligence, created in 1960

Arecibo radio telescope in Puerto Rico (unfortunately destroyed in November 2020)

http://setiathome.ssl.berkeley.edu/

Problem

Extremely low probability.

If other civilisations exist, they are probably very far away.

The speed of light in vacuum (300 000 km/s) is the maximum communication speed. It takes 4 years 88 days 16 h 40 min for a signal to arrive on Earth from Proxima Centauri and more than 50 000 years from the other side of the galaxy!!!

Probably impossible to communicate in a life time

Credits: https://wallpaperaccess.com

Exoplanets

+ than 4800 exoplanets (*i.e.* planets orbiting a star other than the Sun) have been detected!

Due the distance, their study is limited to astronomical methods.

Detection

Transit photometry method. *Gives the size.*

Doppler spectroscopy method. *Gives the mass.*

Give the density => Terrestrial of gaseous planet.

Coronography, gravitational microlensing, astrometry...

Calculations show that 22% of stars similar to the sun (yellow dwarfs) have a potentially habitable planet! (Petigura et al., 2013)

Radius of orbit relative to Earth's

Mars

Earth

Venus

10

Mass of star relative to Sun

0,1

Habitable Zone

Credit: astronoo.com

Detection of planets in the habitable zone

Over the 4847 exoplanets discovered, 72 are in the habitable zone and current estimates suggest there are at least 500 million planets in the habitable zone in the Milky Way.

BEWARE: this does not mean that they are habitable and, again, habitable does not mean inhabited!

> Artist view of Kepler 186f (Quintana et al., Science, 2014)

Search for biosignatures on exoplanets

= Search for biogases in the atmosphere such as methane (produced by methanogenic organisms) or oxygen (produced by photosynthetic organisms).

James Webb Space Telescope (JWST), to be launched on December 2021.

Credits: NASA/JPL-Caltech.

Microbial life

Signature and detection

Habitability at microbial scale

Microbial life may have appeared in habitable niches.

An entire planet doesn't have to be habitable to be inhabited.

Microbial life is very likely in the universe.

How to detect microbial life?

Direct evidence:

- Observation of microbial colonies.

Indirect evidence:

- Biomolecules (e.g. DNA)
- Biogases (e.g. methane)
- Biominerals (e.g. vaterite)
- Biostructures (e.g. stromatolithes)

Crédits: Vivian Mallette

Problem: most of these signatures require *in situ* missions to be detected!

Research is limited to the solar system!

Some interesting places

Mars

After the Moon and Venus, the closest body to Earth.

The « easiest » to explorer *in situ*.

Liquid water at the surface of Mars by the past

Dried rivers

eee

Mars Express, ESA, since 2003

Evolution of liquid water on Mars.

➤ Nowdays

Evolution of life on Mars?

Microfossils at surface?

Microbial life in the sub-surface?

➤ Nowdays

Microbial life at

surface?

60

eesa

ROSCOSMOS

Will search for putative biological organic molecules and microfossils.

and a state of

2022 Crédits: ESA

Microfossils

Signature and detection

What can we expect to find?

Fossils resembling terrestrial fossils dating from the same period.

Fossils close to the fossils of the first living organisms on Earth.

3.5 Ga old microfossils

Josefsdal, Barberton, South Africa, -3.333 Ga

Westall et al., 2011

Kitty's Gap Chert, Pilbara, Australia, -3.446 Ga *Westall et al.*, ²⁰¹¹

Submicrometric fossils of simple shape.

How to detect billions years old microfossils?

Direct evidence:

- Observation of fossilized microbial colonies. (not sufficient)

Indirect evidence:

- Biomolecules (e.g. DNA)
- Biogases (e.g. methane)
- Biominerals (e.g. vaterite)

carbonaceous matter (not sufficient)

- common minerals (not sufficient)
- Biostructures (e.g. stromatolithes) (not sufficient)

Requires a body of evidence!

Crédits: James St. John

A multimodal and multiscale approach

Cameras

Microscopes

Spectrometers

Electron Microscopes

Synchrotron

in situ instrumentation

ANALYTICAL LABORATORY DRAWER

MicrOmega (VIS + IR Imaging Spectrometer) MOMA (Organic Molecule Analyser) RLS (Raman Spectrometer) GPRI ADRON (NEUTRONS)

Ma_MISS (IR SPECTRONEER

UPI MICRO IMAGER)

Limited payload

ExoMars = ~17 kg of instrumentation!

Mars Sample Return (2031)

Started in 2020!

Cesa NASA

Credit: vistapointe.net

Mars 2020 Rover

Difficulties: limited payload for sample selection and only 500g of samples brought back to Earth

Man on Mars (2050?)

ASA

Cesa

The real challenge = detectability

Distance from the Earth

Foucher et al., Life, 2017

The real challenge = detectability

Distance from the Earth

Foucher et al., Life, 2017