On the challenge of detecting extraterrestrial life

Frédéric Foucher

Exobiology group, Centre de Biophysique Moléculaire, CNRS, Orléans, France
frederic.foucher@cnrs.fr

Credit: www.iau.org/

Life?

We can define as living system any entity capable of self-replication and Darwinian evolution (Encyclopedia of Astrobiology, 2011)

Requirements for life to appear an develop

Ingredients and conditions

We think that:

- All life is probably based on organic chemistry and on the elements C, H, N, O, P and S.

Why these elements?

1- Nucleosynthesis

In the universe, the most abundant elements capable of bonding with other elements are:
$\mathrm{H}, \mathrm{O}, \mathrm{C}$ and N

2- Carbon chemistiy

Tetravalence

Orbital hybridisation

sp3 single bond
(ex. Methane)

$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
sp² double bond (ex. Ethylene)
sp triple bond (ex. Acetylene)

Polymerisation, high affinity with H, O and N , wide range of bonding energy...

Organic molecules in deep space

More than 230 molecules have been detected in the interstellar medium and circuimstellar envelopes:

- Methane CH_{4}
- Ethanol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
- Acetic acid $\mathrm{CH}_{3} \mathrm{COOH}$

Detection in comets

RESEARCH ARTICLE

Sci. Advances (2016)

Prebiotic chemicals-amino acid and phosphorusin the coma of comet 67P/Churyumov-Gerasimenko

Complex molecules in meteorites

Murchison meteorite
Contains several thousands of different organic molecules, in particular 70 amino acids of which 8 of them are proteinogenic (/20)

+ purines and pyrimidines (nucleobases).

Amino acid
(L-alanine)

We think that:

- All life is probably based on organic chemistry and on the elements C, H, N, O, P and S.
- Life needs liquid water to appear and develop.

Why liquid water?

Liquid water has unique physicochemical properties:

Due to its molecular weight, it should be gaseous under standard terrestrial conditions (such as $\mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{~S}$...) but it remains liquid up to $100^{\circ} \mathrm{C}$ due to hydrogen bonds.

It forms hydrogen bonds with organic molecules containing $-\mathrm{OH},-\mathrm{NH},-\mathrm{SH}$ groups $\Rightarrow>$ many organic molecules (CHNOS) are soluble in water (hydrophilic).

On the other hand, hydrocarbons $\left(\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{m}}\right)$ are hydrophobic.

Organics in water

If $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{\mathrm{m}}$:
=> hydrophobic

If both in a same molecule

If $-\mathrm{OH},-\mathrm{COOH},-\mathrm{NH} 2, \ldots$:
\Rightarrow hydrophilic

Hydrophilic medium (water)

After Brack A. (1993) OLEB.

Water ice density

- Water ice density is lower than those of liquid water

We think that:

- All life is probably based on organic chemistry and on the elements C, H, N, O, P and S.
- Life needs liquid water to appear and develop.
- The chemical reactions leading to the emergence of life require mineral surfaces.

Why mineral surfaces?

- Chemical reactions at the surface of the minerals can produce energy (e.g. pyrite)
- The porosity of rocks and minerals may concentrate organic molecules and favour their interactions (e.g. feldspars, clays).
- Some minerals catalyse chemical reaction (e.g. magnetite)

We think that:

- All life is probably based on organic chemistry and on the elements C, $\mathrm{H}, \mathrm{N}, \mathrm{O}, \mathrm{P}$ and S.
- Life needs liquid water to appear and develop.
- The chemical reactions leading to the emergence of life require mineral surfaces.
-. Life needs a source of energy (UV, heat...) to appear and develop.

Starlight

Lightning

Hydrothermal systems

We think that:

- All life is probably based on organic chemistry and on the elements C, H, N, O, P and S.
- Life needs liquid water to appear and develop.
- The chemical reactions leading to the emergence of life require mineral surfaces.
-. Life needs a source of energy (UV, heat...) to appear and develop.

We think that:

We are looking for places where these

 conditions are/were met!= rocky bodies where water is or was present.
_. Life needs a source of energy (UV, heat...) to appear and develop. h
y

BEWARE!!!

Proportions, conditions and durations are key parameters and different steps (mostly still unknown for the appearance of life) are required.

Habitable does not mean inhabited!

What to search for?

From habitable places to extraterrestrial intelligence

Level of evolution

4- Extraterrestrial civilisation

3- Macroscopic multicellular life

2- Microbial life

To reach a higher level of evolution life must first have evolved to the previous stage. Obviously, the converse is wrong and evolution may stop at any level. As a consequence, more evolved life is less probable!

Likelyhood
1- Molecules

2- Microbial

As more evolved life forms are less likely, they are also less numerous in the universe and therefore statistically more distant.
life

> 3- Macroscopic multicellular life

4- Extraterrestrial civilisation

Different levels of evolution

Extraterrestrial civilisation

Macroscopic life

Microbial life

Different biosignatures

Extraterrestrial intelligence

Signature and detection

Drake equation

N = number of civilisations in our galaxy able to communicate.

Frank Drake

Result of the calculation

$$
\begin{aligned}
& \text { Minimum } \sim 0,0000035 \\
& \text {-the most pessimistic: } 1 \text { (us) } \\
& \text {-the most optimistic : } 10000
\end{aligned}
$$

Number of galaxies in the universe ~ 350 billions

Minimum = 1000000 !!!

If the sun was the size of a tennis ball (65 mm in diameter) then:

Dia. in km
The Earth
The Moon
The Sun
Neptune
Proxima Centauri
12800
6800
1395200
50000
200000

Dia. in mm if the sun was the Distance from the Earth in Distance from the Earth if the sun size of a tennis ball :
km: was the size of a tennis ball :

0,60	0	$0,0 \mathrm{~m}$
0,32	384467	$0,02 \mathrm{~m}$
65	150000000	$7,0 \mathrm{~m}$
2,33	4347000000	$202,5 \mathrm{~m}$
$\mathbf{9 , 3 2}$	$\mathbf{4 2 4 3 0 0 0 0 0 0 0 0 0}$	$\mathbf{1 9 7 7} \mathrm{~km}$

Approximately the distance between Angra do Heroismo and Madrid!

About 60 ooo years for a spacecraft travelling at $20 \mathrm{~km} / \mathrm{s}$!

Problem

Extremely low probability.

If other civilisations exist, they are probably very far away.

The speed of light in vacuum ($300000 \mathrm{~km} / \mathrm{s}$) is the maximum communication speed. It takes 4 years 88 days 16 h 40 min for a signal to arrive on Earth from Proxima Centauri and more than 50000 years from the other side of the galaxy!!!

Probably impossible to

 communicate in a life time

Macroscopic life

Signature and detection

Exoplanets

+ than 4800 exoplanets (i.e. planets orbiting a star other than the Sun) have been detected!

Due the distance, their study is limited to astronomical methods.

Detection

Transit photometry method. Gives the size.

Doppler spectroscopy method. Gives the mass.

Give the density
=> Terrestrial of gaseous planet.

Coronography, gravitational microlensing, astrometry...

Detection of planets in the habitable zone

Over the 4847 exoplanets discovered, 72 are in the habitable zone and current estimates suggest there are at least 500 million planets in the habitable zone in the Milky Way.

BEWARE: this does not mean that they are habitable and, again, habitable does not mean inhabited!

Artist view of Kepler $186 f$
(Quintana et al., Science, 2014)

Search for biosignatures on exoplanets

= Search for biogases in the atmosphere such as methane (produced by methanogenic organisms) or oxygen (produced by photosynthetic oŕganisms).

Microbial life

Signature and detection

Habitability at microbial scale

Microbial life may have appeared in habitable niches.

An entire planet doesn't have to be habitable to be inhabited.

Microbial life is very likely in the universe.

How to detect microbial life?

Direct evidence:

- Observation of microbial colonies.

Indirect evidence:

- Biomolecules (e.g. DNA)
- Biogases (e.g. methane)
- Biominerals (e.g. vaterite)

Biostructures (e.g. stromatolithes)

Problem: most of these signatures require in situ missions to be detected!

Research is limited to the solar system!

Some interesting places

Enceladus

Mars

After the Moon and Venus, the closest body to Earth.

\square
The « easiest» to explorer in situ.

Liquid water at the surface of Mars by the past

Evolution of liquid water on Mars.

Evolution of life on Mars?

Microfossils

Signature and detection

What can we expect to find?

Fossils resembling terrestrial fossils dating from the same period.

Fossils close to the fossils of the first living organisms on Earth.

3.5 Ga old microfossils

Josefsclal, Barberton, South Africa, -3.333 Ga

Westall et al., 2011
Kitty's Gap Chert, Pilbara,
Australia, -3.446 Ga
Westall et al.,
2011

Submicrometric fossils of simple shape.

How to detect billions years old microfossils?

Direct evidence:

- Observation of fossilized microbial colonies. (not sufficient)

Indirect evidence:
-Biomolecules (e.g. DNA)

- Biogases (eg methane)
- Biominerals (e.g. vaterite)
common minerals (not sufficient)
- Biostructures (e.g. stromatolithes) (not sufficient)

Requires a body of evidence!

A multimodal and multiscale approach

in situ instrumentation

Limited payload

ANALYTICAL LABORATORY DRAWER

MicrOmega (VIS + IR Imaging Spectrometer)
MOMA (Organic Molecule Analyser) RLS (Raman Spectrometer)

ExoMars $=\sim 17 \mathrm{~kg}$ of instrumentation!

Mars Sample Return (2031)

Mars 2020 Rover

Difficulties: limited payload for sample selection and only 500 g of samples brought back to Earth

Man on Mars (2050?)

The real challenge = detectability

Number of available
detection techniques

The real challenge = detectability

Number of available
detection techniques

THANK Yロப!

Solar system

Available detection techniques

Probability of life/ level of evolution

