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I. INTRODUCTION

Shear-induced self-diffusion has been a long-standing
topic of research. This phenomenon is a subtle combination
of the microstructure evolution within the suspension and its
rheology. Self-diffusion has been a point of interest for many
works dedicated to a better understanding of fundamental
phenomena involved in industrial applications such as fluid-
ized beds, separation, and mixing processes. The self-
diffusion of similar particles results from particle/particle
and particle/fluid interactions and may occur in a suspension
macroscopically homogeneous. In this paper, we aim at in-
vestigating theorically and numerically the long-time self-
diffusion of monodisperse particles with finite inertia ac-
counting for collisions and Stokes drag. The relative motion
of the particles is forced by a simple shear flow and eventu-
ally by the overall agitation of the suspension. We assume
that the particulate Reynolds number is small and neglect the
effects of Brownian motion �macroscopic particles�. The par-
ticle inertia is characterized by the Stokes number �St
=�p /� f�. This dimensionless number compares the fluid char-
acteristic time scale � f ��� f =�−1� where � is the shear rate of
the carrying fluid flow� and the viscous relaxation time scale
of the particle ��p=2 /9��pa2 /� f�� �where �p and a stand,
respectively, for the particle density and radius; � f is the
dynamic fluid viscosity�. Matching simultaneously both con-
ditions of low Reynolds and moderate to high Stokes num-
bers corresponds to solid millisized particles �diameter of
O�0.1−1� mm� suspended in a gas flow sheared at a typical
rate �10 s−1. Due to the large contrast of density, gas-
particle suspensions are obviously influenced by buoyancy
effects. This particular aspect of the coupling between shear-
induced agitation and mean slip due to gravity has been ad-
dressed in �1�. In the present study, we chose to neglect the
mean settling of the suspension in order to highlight the ef-
fect of shear. Indeed, predicting the response of a sheared
suspension is a keystone of more complex physical configu-

rations �at small scales, turbulent flows may be regarded as
coherent structures with different shear rates�. The effect of
the mean slip due to buoyancy may complicate the analysis
as local gradients of solid concentration provoke large scale
motions in the suspension that consequently contribute to the
kinetic stress tensor. Also, momentum transfer in the hori-
zontal directions is not directly related to the mean vertical
contribution of gravity. As we seek to verify the validity of a
theoretical prediction of the long-time diffusion of moder-
ately inertial particles suspended in a gas when gravity is
neglected, experiments may not be envisageable. Therefore
we carried out numerical simulations based on a discrete
element method.

When St�1 �suspension of small solid particles in a
highly viscous fluid�, physical collisions of smooth particles
are unlikely as hydrodynamic interactions �lubrication repul-
sion� prevent actual contacts in a finite time. In the regime of
highly inertial disperse phase �St→��, particles fly along
straight lines between successive collisions. This corre-
sponds to dry granular materials. When the Stokes number is
moderate, the particles experience a significant drag forcing
them to recover the fluid pathlines in a characteristic time �p.
In this latter complex case, three characteristic time scales
control the dynamics of the suspension: �p, � f, and �c �the
typical time spent by a given particle between two consecu-
tive collisions�. Energy dissipation occurs through inelastic
collisions and drag work.

The self-diffusion of particles has been thoroughly studied
in the two asymptotic cases of low and high inertia. On one
hand, when St�1 �the hydrodynamic interactions are domi-
nant�, several authors �2–4� have investigated long-time self-
diffusion of solid particles by numerical or experimental ap-
proaches. The particle diffusivity is related to the particulate
velocity fluctuations and the random motion occurring after
multiple particle encounters. Theoretical prediction for self-
diffusion due to three-body hydrodynamic interactions was
proposed by �5� in the limit of dilute suspensions. For mod-
erately concentrated suspensions, multibody interactions pre-
vail and this leads to a dramatic complication of the math-
ematical formulation. Brady and Morris �6� have determined
the coefficients of self-diffusion induced by pure hydrody-*climent@imft.fr
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D =
3

�1 + e�
�cT . �1�

Under the same assumption of negligible drag effects, the
shear-induced self-diffusion was investigated by �8� �as a
function of e and �� using discrete particle simulations. The
author emphasized that shear-induced self-diffusion has to be
characterized by an anisotropic tensor Dij instead of a unique
dispersion coefficient. Reference �9� determined analytically
Dij within the framework of the kinetic theory and clearly
stated the dependence of the diffusion coefficients on the
components of the particulate kinetic stress tensor Tij �in-
stead of the particle agitation T=Tii /3; see definitions in Sec.
III�. However, little attention has been paid to the influence
of the drag force �moderate St� on the self-diffusion of par-
ticles. Reference �10� considered the effect of the hydrody-
namic drag while they theoretically predicted the self-
diffusion coefficient of a dilute suspension under isotropic
agitation. Their result is similar to Eq. �1� with a prefactor
depending on both �p and �c. Following their approach, we
suggest to generalize the dispersion model from dilute to
dense suspensions accounting for the dependence of self-
diffusion on the kinetic stress tensor components. The theo-
retical prediction is validated by numerical simulations of
discrete particle trajectories in a pure shear flow.

II. SIMULATION METHOD

In the simulations, we assume that the presence of the
particles does not perturb the carrying fluid flow. The veloc-
ity profile is a linear shear u�x�=�x2i1 where i1 is the unit
vector in the flow direction. Particles are initially seeded at
random positions within the domain of computation and their
velocities are equal to the local velocity of the fluid. The
numerical scheme is based on a classic discrete particle
simulation �DPS� method. Each particle experiences the
Stokes drag force which models the interaction with the
fluid. The Lagrangian tracking of the discrete phase is carried
out by solving Newton’s law for the motion of each particle
written in dimensionless form: dv

dt = 1
St�v−u� and dx

dt =v. Only
binary collisions are considered according to the kinetic
theory assumptions. The detection of collisions is performed

at the beginning of each time step. For each collision, impact
velocities and positions are determined at the exact time of
the collision �between t and t+dt�. Then, the postcollision
quantities are calculated using the assumption of elastic re-
bound �e=1� and the new positions and velocities are up-
dated at the time t+dt corresponding to the next time step.
The simulations are performed in a triperiodic cubic domain
of width �L /a�48�. The particle size and the width of the
domain are kept constant throughout all the simulations and
various volumetric concentrations of the suspension are in-
vestigated when varying the total number of particles �the
typical number of particles is 4000 for �=15%�. Periodic
boundary conditions in the three directions of the domain
helped preserving the homogeneity of the suspension under
shear. Of course, a particular treatment is operated when a
particle crosses the boundary x2=0 �resp. x2=L� as the shear
contribution �L has to be added �resp. removed� to the par-
ticle velocity component u1. The ratio L /a is not very large
in order to prevent the formation of dense layers populated
with particles �11�, and not too small allowing each particle
to experience many collisions along its trajectory between
two boundaries. A fixed time step is selected using the con-
dition dt=min��p ,�c� /50. This condition provides an accu-
rate resolution of the two following phenomena: the trajec-
tories of weakly inertial particles have to recover the fluid
velocity on a time scale �p and for highly inertial particles
the time scale between two consecutive collisions is �c. The
collision time scale is calculated a priori using either the
theoretical prediction based on the kinetic theory assuming
that the suspension is strongly agitated �c= a�	

12�g0
�T

�7� �T cor-
responding to the solid lines of Fig. 1� or the estimate based
on the characteristic time of particle encounters due to the
shear flow �c= 	

16�� . In a very dilute suspension, two addi-
tional conditions must be satisfied to enforce a relevant se-
lection of dt. First, the time step should be much smaller than
a time scale based on the velocity fluctuation a /�T, espe-
cially at high particle inertia. This constraint will prevent any
omission of collision and is a strong limitation of dt for
highly agitated regimes. Second, a particle should experience
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FIG. 1. T / ��a�2 vs �. Symbols: numerical results ��, �, �, �

correspond, respectively, to St=10, 5, 3.5, and 1�. Solid lines: pre-
diction of the ignited theory �from top to bottom: St=10, 5, 3.5 and
1�. Dashed-dotted lines: quenched theory of �20� multiplied by 2g0

�upper: St=3.5, lower: St=1�.

namic interactions with and without additional short-range 
forces. The authors found that the self-diffusion coefficient is 
proportional to �a2� in the dilute limit and to �a2�g��2;�� 
in the high concentration limit �where� is the solid volume 
fraction and g��2;�� is the pair distribution at contact�. The 
contribution of g��2;�� becomes dominant when increasing 
the particle concentration.

On the other hand, when St→�, the behavior of highly 
agitated granular materials was approximated to the behavior 
of a dense gas. In this context, self-diffusion coefficients 
were predicted using the kinetic theory for rapid granular 
flow �7�. When the suspension is isotropically agitated, the 
basic result is a single diffusion coefficient D �Eq. �1�� ex-
pressed in terms of the restitution coefficient e, the collision
time �c, and the level of the particle velocity fluctuations T 
�often called granular temperature�,



several collisions before crossing the entire domain of simu-
lation. The condition �c�

L
�T

prevents an unrealistic increase
of the suspension agitation energy due to the summation of
L� velocity increments �or decrements� when particles are
crossing the bottom �resp. upper� boundary conditions. Sta-
tistical Lagrangian quantities are formed along the trajecto-
ries after the system has reached the steady state. Typically,
each particle may experience at least 600 collisions during
the time average. The long-time self-diffusion regime re-
quires a sufficient time of simulation to observe the diffusive
temporal evolution of the mean-square displacement �3�. The
effect of long-range and lubrication hydrodynamic interac-
tions in Stokes flows between the inertial particles is ne-
glected in our simulations. Reference �12� showed that this
effect can be simply modeled by a correction factor
Rdiss�� ,
� related to the viscous energy dissipation �
 is a
threshold separation length of the particles where the lubri-
cation approximation breaks down�. Including the direct hy-
drodynamic interactions would be similar to a reduction in
the overall Stokes number of the suspension flow, replacing
St by St /Rdiss. In �12�, they determined Rdiss from simula-
tions based on the Stokesian dynamics approach. This scal-
ing factor increases with � and decreases with 
. They found
that 2.2�Rdiss�15 for 
=0.01 �0.01���0.5� and 2.2
�Rdiss�7 when 
=0.1. Our simulations without direct hy-
drodynamic interactions correspond to Rdiss=1.

III. AGITATION AND KINETIC STRESS

Self-diffusion is intimately related to the level of velocity
fluctuations of the disperse phase. Therefore, we first charac-
terized the solid phase averaged agitation T= �CiCi� /3
�where C=c−Up�x� is the local velocity fluctuation relative
to the average particulate phase velocity Up�x�=�x2i1� and
the kinetic stress tensor Tij = �CiCj�. Together with the colli-
sional stress �momentum transfer due to collisions�, they
characterize the rheology of a flowing granular material. The
rheology of dry granular flows was studied by means of both
experimental �13,14� and numerical �8,11,15� investigations.
Theoretical predictions based on the kinetic theory �7,16–18�
rely on a statistical approach for an ensemble of hard
spheres. When the particle inertia is finite, the theory used
for dry granular material can be generalized with additional
terms due to the drag force �7�. Hence, the microscopic trans-
port equation is now written as

� f

�t
+

��cif�
�xi

+
�

�ci
	 ci − ui

�p
f
 =

�cf

�t
, �2�

where the probability density function f�c ,x� depends on the
position and velocity in the phase space �x and c�. The action
of the carrying fluid is accounted for through the particle
acceleration �c−u� /�p where u is the unperturbed fluid ve-
locity. �cf /�t is the temporal rate of change of f due to the
collisions.

Assuming perfectly elastic collisions �e=1�, the equilib-
rium state occurs when the energy input from the carrying
fluid balances the drag induced dissipation. Solving the sys-
tem of equations derived from Eq. �2� for the second-order

f�c,x� = �1 +
Tij − T

2T

�2

�ci � cj
� f0�c,x� �3�

where �f0�c ,x�= n
2	T2 exp�− C2

2T �� is the Maxwellian distribu-
tion that holds under the equilibrium assumption where n is
the particle number density. The second-order term in the
deviated Maxwellian remains only in the case of an aniso-
tropic kinetic stress tensor Tij = �CiCj�. Reference �18� used
the deviated Maxwellian function for calculating the colli-
sional rate of change of dynamic quantities for St→�,
whereas �12,19� used a similar approach to predict T and Tij
for particles of moderate inertia embedded in a viscous fluid
in the particular case of a pure shear flow. When both the
suspension concentration � and the particle inertia are low, it
is much less obvious to select an adequate shape of f because
particles have very weak velocity fluctuations as they are
most likely to follow the fluid streamlines ��p��c�. Refer-
ence �20� proposed to close the equations assuming a Dirac
delta function �f�C�=��C��; this peculiar regime is called by
Tsao and Koch �20� “the quenched state” as opposed to the
“ignited theory” for agitated systems. However their formu-
lation holds only for dilute particulate flows since they con-
sidered that the two-particle distribution function in the col-
lisional terms obeys f �2��cA ,cB�= f�cA�f�cB� �cA and cB are the
colliding particle velocities�. For moderate �, the enhance-
ment of the probability to find close particle pairs could be
accounted for, similarly to the theory for dense gases �7�, by
assuming f �2��cA ,cB�=g0f�cA�f�cB�. g0 depends only on � in
a homogeneous suspension and is given by the peak value of
the radial distribution of pairs at contact �r=2a�. An exten-
sion of Tsao and Koch’s approach allowed to point out that a
factor 2 is missing in the collision terms �Eqs. 4.8 and 4.9 of
�20��.

Simulation results are compared to the theoretical predic-
tion of the particle agitation in Fig. 1 for 1�St�10 and 5
���30%. The level of the mean agitation T is very well
predicted by the ignited theory �12,19� for high St or mod-
erate to high �. At low St and �, the prediction is signifi-
cantly improved when we used the model based on the
quenched regime assumption. The transition from a low to
high agitation regime is closely related to the predominance
of collisions accordingly with the relation ��p /�c
1�. In a
shear flow, the kinetic stress tensor is not isotropic as differ-
ences of normal components arise at low St and � �i.e., Tij
�T�ij�. Figure 2 shows the difference between the stress in
the flow direction T11 and the average stress T. The normal
stress difference �for all directions� is large when the particle
relaxation time becomes of the order of the collision time.
When the particle inertia increases, the anisotropy decreases

moments of the velocity fluctuation �see �18�� leads to a the-
oretical prediction of particle fluctuation level. However, the 
critical point of the theory is the prescribed analytic form of 
f�c ,x� for determining the collisional rate of change of any 
dynamic quantity, particularly the components of the kinetic 
stress tensor. In a highly agitated regime of granular flow 
resulting from homogeneous shear, �16� proposed to approxi-
mate f by a deviated Maxwellian distribution



strongly with the Stokes number and eventually becomes
negligible for a dry granular material �Newtonian behavior�.

IV. LONG-TIME SELF-DIFFUSION

A. Theoretical modeling

Let us consider a homogeneous suspension of similar par-
ticles �size and density� and assume that a given number of
these particles are labeled in some way. For instance, a num-
ber of particles might be colored in red. In an Eulerian
framework, let nr be the spatial distribution of the mean
number density of the red particles in the suspension. If the
red particles are not homogeneously distributed, nr�x� may
have a spatial gradient although the overall mean number
density n related to all the particles is constant �i.e., there is
no net flux of particles�. Let Ur�x� be the mean velocity of
the red particles. Using a prescribed distribution function
fr�c ,x� all the averages � �r of any quantity � for the red
particles can be formed leading to a statistical approach of
the phenomenon: nr�x����r=
�fr�c ,x�dc.

We aim at predicting the particle dispersion analytically
by writing the transport equation of the number density flux
�Jr�x�=nr�Ur−Up�� where �Ur−Up� is the mean drift veloc-
ity of the red particles. nr, Ur, and Up depend on x. The
symbol x is omitted for writing convenience. The balance
equation for Ur is obtained by multiplying the Boltzmann
equation �Eq. �2�� by ci and then integrating over the red
velocity phase space. Hence, assuming steady state, we can
write

�

�xj
�nr�CiCj�r� +

�

�xj
�nrUp,iUr,j� = − nr� ci − ui

�p
�

r
+ Cr�ci� .

�4�

When both the concentration and the velocity gradients of
the red particles are perpendicular to the mean flow direction,
the second term on the left-hand side of Eq. �4� reduces to
nrUr,j�Up,i /�xj. The collisional contribution Cr�ci� is calcu-

�

fr
�2��cA,x,cB,x + 2ak� = g0fr�cA,x�� f�cB,x� + 2akm

� f�cB,x�
�xm

� ,

�5�

where k is the unit vector along the centers line of two col-
liding particles and a is the particle radius equal for the two
particles. Since all the particles have the same physical prop-
erties, we can write fr�c ,x� as a second-order expansion of
the mixture equilibrium function f0:

fr�c,x� = Ar�1 + bi
�

�ci
+ bij

�2

�ci � cj
� f0�c,x� . �6�

The coefficients Ar, bi, and bij are obtained, respectively, by
identification of the red particle number density �nr
=
fr�c ,x�dc�, the mean drift velocity �nr�Ur,i−Up,i�
=
Cifr�c ,x�dc� and the kinetic stress tensor �nrTij
=
CiCjfr�c ,x�dc� at a specified location x. The three inte-
grals are calculated for �c1 ,c2 ,c3�� �−� , +��. The coeffi-
cients of Eq. �5� are then �Ar=

nr

n �, �bi=−�Ur,i−Up,i��, and
�bij =Tij −T�ij�.

The balance equation for the flux Jr�x� is obtained by
subtracting from Eq. �4� the balance equation written for Up
multiplied by nr /n. The result after rearrangement is written
in the following form:

Jr,k�x� = − �A−1�kiTij
�nr

�xj
. �7�

Recasting Eq. �7� in the classical formulation of Fick’s law
leads to the definition of a diffusion tensor �Dkj = �A−1�kiTij�
instead of a single scalar coefficient. Aik is a frequency tensor
depending on the characteristic time scales �p, �c, and �−1. Its
full expression is

Aik = � 1

�p
+

�

�c
��ik + � �Up,i

�xk
−

24

5
�g0�ijkm

�1 + e�
2

�Up,j

�xm
�
�8�

with ��= 2
3

�1+e�
2 �. ��ijkm=1, 1

3 � when i= j=k=m or two pairs
of indices are equal respectively, and ��ijkm=0� in all other
cases.

An explicit expression for the self-diffusion tensor for a
general flow may be cumbersome. Therefore we shall derive
the final results only for a pure shear flow where ��U1 /�x2
=��. For ��a

2−�b�c�0�:
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FIG. 2. Kinetic stress difference �T11−T� /T vs �p /�c. Solid line:
theoretical prediction for the ignited state. Dotted and dotted-dashed
lines: quenched theory for St=1 and St=3.5, respectively. Symbols:
numerical results ��, �, �, � correspond, respectively, to St=10, 5,
3.5, and 1�.

lated following the method of �18�. Consequently to any col-
lision of a red particle located at x and having a velocity cA 
with another particle �red or blue� located at x+2ak and 
having a velocity cB, the expression of the two-particle ve-
locity distribution function fr

2� can be written for dense sus-
pensions:



D =
1

�a
2 − �b�c�

�a − �c 0

− �b �a 0

0 0
�a

2 − �b�c

�a

��T11 T12 0

T12 T22 0

0 0 T33
� ,

�9�

with

��a

�b

�c
� =�

1

�p
+

�1 + e�
3

1

�c

− �8

5
�g0

�1 + e�
2

��

�1 −
8

5
�g0

�1 + e�
2

��
� .

In Eq. �9� the shear, collision, and drag contributions are
accounted for. Some asymptotic cases of the behavior of par-
ticle self-diffusion in a suspension may be discussed:

�i� �=0 corresponds to a quiescent fluid flow. The coeffi-
cient matrix D becomes diagonal with an isotropic diffusion
in the reference axes. The diffusion coefficients are strictly
proportional to the normal kinetic stresses with the same
prefactor. This is the particular case obtained by �10� Diso

= � 1
�p

+ �1+e�
3

1
�c

�−1T. The constant prefactor �or equivalently
1 /�a� depends only on the particle relaxation time, the res-
titution coefficient and the characteristic time between colli-
sions. We note that in a linear shear flow, the self-diffusion
coefficient in the spanwise direction D33 is the only compo-
nent that remains simply proportional to the kinetic stress T33
with the same prefactor 1 /�a.

�ii� �→0: In a dilute suspension �b vanishes while �c
tends to �. Similarly to D33 which is proportional to T33, D22
becomes proportional to T22 �1 /�a being again the constant
prefactor�. The coefficient D11 is always larger; this includes
an additional nonzero contribution of the mean shear.

�iii� St→� or dense suspension: In the regime of highly
agitated suspension corresponding to inertial particles or
moderate to high suspension concentrations, self-diffusion of
the particles is dominated by the occurrence of consecutive
collisions ��c is the smallest time scale�. In this regime, the
difference of the normal kinetic stresses is close to zero and
the relation D���T�� becomes similar to the classic predic-
tion of the kinetic theory �9� for dry granular media.

�iv� St→0: For dilute and weakly inertial suspensions, the
contribution of the drag is dominant because of a short par-
ticulate relaxation time, which leads to D����pT��. This
relation between the self-diffusion coefficient and the veloc-
ity fluctuations is a standard view of self-diffusivity. It is
similar to Eq. �49� in the work of Brady and Morris �6� when
the short-range hydrodynamic forces are dominant and the
Brownian agitation negligible. The time scale over which the
velocity fluctuation is correlated is �p in our case instead of
the shear time scale selected by �6�. In the dilute regime,
particle encounters will produce a net displacement of the
particle across the streamline due to finite inertia. The case of
weakly inertial but concentrated suspensions is less obvious
as several contributions become significant in Eq. �9�. The

important contribution of the microstructure included in the
term g0 is similar to the multiplying factor g��2;�� empha-
sized by �6� �Eq. �50�� which becomes dominant in concen-
trated suspensions.

B. Validation on simulations

We focus on the validation of the model in the simplified
configuration of perfectly elastic particles �e=1� suspended
in a pure shear flow ��Up,1 /�x2=��. The self-diffusion coef-
ficients can be calculated from the simulations based on the
trajectories of the particles, using equivalently the long-time
temporal evolution of the particle mean-square displacement,
the integral of the Lagrangian velocity autocorrelation func-
tion, the dynamic structure factor �21�, etc. In the present
work, the theoretical predictions of diffusion coefficients are
compared to the numerical results calculated from the par-
ticle mean-square displacement as follows:

Dij = lim
t→�

1

2

d

dt
��xi�t� − xi�0���xj�t� − xj�0��� , �10�

where � � is the particle ensemble-average and x�0� is the
particle position at the initial time.

Figure 3 shows the time evolution of the particle mean-
square displacement in the shear direction obtained from
simulations at St=1. The diffusive regime is reached when
the slope of the curve is equal to unity on a logarithmic scale.
This corresponds to the loss of Lagrangian velocity autocor-
relations as it is shown classically in several studies on self-
diffusion �2,3�. We calculated the corresponding self-
diffusion coefficient �using Eq. �10�� a long time after the
initiation of this linear evolution.

As a first step, we verified the accuracy of Eq. �9� with an
a priori test. For a given St and �, Dij coefficients are cal-
culated in Eq. �9�, using the components Tij obtained from
the simulations. Also, �c is evaluated from the frequency of
particle encounters occurring in our simulations. We used
g0= �1−� /�m�−2.5�m �22� which tends to infinity when �
tends to the maximum packing volume fraction ��m=0.64�.
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FIG. 3. Mean-square displacement ��x2�t�−x2�0��2� / �2a2� vs
time �t�−1� in log-log scale. The lines correspond to St=1 and �
=5,15,30%, respectively, from the bottom to the upper line. The
slope 1 shows the linear regime of temporal evolution.



An excellent agreement is observed in Fig. 4, revealing
that the theory is relevant provided that the kinetic stress
tensor and the collision time are correctly predicted. At high
St, the inertial particles diffuse more efficiently for low �
where the particle agitation is large and the interparticle dis-
tance is wide enough to allow a longer particle mean free
path. Increasing � leads to a reduction in self-diffusion.
However, the weakly inertial particles diffuse less for low �
while they often follow the fluid streamlines. In this
quenched regime, diffusion is more efficient when � in-
creases since the particles experience a larger number of col-
lisions induced by the mean flow.

A similar behavior was observed for the self-diffusion in
the spanwise direction �Fig. 5�. However, D33 is not equal to
D22, and the difference between both components becomes
negligible at high solid concentration for all Stokes numbers.
Self-diffusion coefficients related to the flow direction D11
and D12 were not investigated numerically. Diffusion in the
flow direction is coupled to transverse diffusion along the i2
direction and the mean flow.

The second step consists in comparing the self-diffusion
tensor Dij with the full theoretical prediction without any
adjustable parameter or any input from the numerical simu-
lations. The theoretical expressions for Tij and �c are based
on the appropriate �ignited or quenched� theoretical formula-

tions and are now directly used in Eq. �9�. The numerical
values obtained for the time scale ratio are compared in Fig.
6 with the different expressions based on ignited or quenched
state assumptions, respectively. The good agreement ob-
served in this figure is an indicator of a relevant prescription
of the time steps used for the different simulations. Figure 7
shows a good agreement between the model using the ignited
theory and the numerical simulations when particle inertia
prevails �collision regime�. When the suspension is weakly
agitated, the theoretical prediction fails to predict quantita-
tively the numerical results on Dij. Especially for St=3.5, the
theoretical prediction of D22 is significantly underestimated.
This is clearly related to the poor prediction of the kinetic
theory in this regime �see Fig. 1�, since we already verified
that the collision time is well predicted by the estimate based
on the shear flow �see Fig. 6�. Collisions induced by agita-
tion are neglected in the quenched theory. This particular
case probably lies in between the fully agitated flow and the
fully quenched regime.
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FIG. 4. D22 /�a2 vs �. Symbols: numerical results �see Fig. 1�.
Lines: a priori prediction of the model �Eq. �9�� with inputs �Tij and
�c� from the numerical simulations.
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FIG. 5. D33 /�a2 vs �. Symbols and lines: same as Fig. 4.
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using Tij from the ignited �solid lines� and quenched �dotted-dashed
lines� theories, respectively, �similar to Fig. 1�. Dotted lines: Diso

�from top to bottom: St=10, 5, 3.5, and 1�.



The numerical result on D22 is also compared in Fig. 7 to
the self-diffusion coefficient Diso assuming low suspension
anisotropy. When the anisotropy is weak �moderate or large
� and St�, both theoretical predictions are close to the nu-
merical results. Unexpectedly, in some cases of the quenched
regime �low � and moderate St�, Diso is closer to the simu-
lation results than the general expression D22 although the
suspension agitation tensor Tij is strongly anisotropic. In-
deed, the prediction of D22 based on the assumption of a
deviated Maxwellian pdf �accounting for the anisotropy of
Tij� in place of f0 for Diso �assuming isotropy� overestimated
the actual anisotropy �see Fig. 2�. Therefore the prediction of
D22 is less accurate than the simple estimate Diso in this
particular intermediate regime.

Finally the self-diffusion coefficients of weakly inertial
suspensions �St=1� are compared to theories and simulations
valid in the limit St→0 where hydrodynamic interactions are
dominant. Since the net displacement following the particle
collisions is O�a� in the case St=1, we compare our results
on self-diffusivity to theoretical predictions �23� where the
particle displacement following a pair interaction is O�a� as
well. In Fig. 8, the solid line is the prediction of �23� for the
self-diffusivity using the pair trajectory calculations, for a
threshold separation length 0.04a. The linear increase is re-
lated to the assumption of pairwise interaction in the dilute
regime. Also, the thin dashed line corresponds to
D22 / ��a2���0.006 which has been proposed by �6� for a
minimum separation distance between the particles equal to
0.04a. These two predictions only differ by the value of the
prefactor which is related to the accuracy of the hydrody-
namics pair description. Figure 8 shows that the self-
diffusion in suspensions with negligible inertia, St�1, has
the same trend as the weakly inertial suspensions �St=1�.
However, there is no quantitative agreement between the the-

oretical values at St→0 and our simulation results at �St
=1�. For moderate to large concentration, the estimate of
self-diffusion coefficients in the dilute regime should be mul-
tiplied by the pair distribution function at contact g��2;��
which can be a major correction. Figure 8 shows the results
obtained by �21� who used the dynamic structure factor
method for the determination of self-diffusion characteristics
in the limit of negligible Brownian motion. The results of �2�
also included in the figure were obtained by numerical simu-
lations using the force coupling method which is based on a
low order multipole expansion of the perturbation velocity
supplemented by short-range lubrication corrections. All the
results shown in Fig. 8 are in good agreement for St�1 in
the dilute regime where the suspension dynamics is con-
trolled by pairwise interactions. In more concentrated sus-
pensions, the multibody interactions increase the resulting
particle displacement and enhance self-diffusivity. Our re-
sults on weakly inertial suspensions correspond to stronger
self-diffusion for all the range of our particulate concentra-
tion.

V. CONCLUSION

The long-time behavior of the Lagrangian dispersion of
moderately inertial particles has been investigated in the con-
figuration of a pure shear flow. The results of numerical
simulations have been compared to a fully theoretical predic-
tion based on the method proposed by �10�. In addition to the
classical kinetic theory predictions for the self-diffusion, the
effect of the drag force has been taken into account in this
work. The self-diffusion tensor was determined as a function
of the kinetic stress tensor and the different characteristic
time scales related to the shear flow, the collisions, and the
viscous relaxation of the particle trajectories. The accuracy
of the self-diffusion model was verified by a priori tests. An
excellent agreement is observed for most cases. Then, simu-
lation results were also compared to the complete theoretical
prediction of the self-diffusion coefficients calculated with-
out any adjustable parameter. Similarly to the velocity fluc-
tuations, the self-diffusion of particles depends strongly on
the flow regime �quenched or ignited regime depending on
the solid concentration and the Stokes number�. The self-
diffusion coefficients in both the shear and spanwise direc-
tions are in good agreement with the theoretical prediction.
We showed that the prediction of the self-diffusion tensor is
accurate provided that the kinetic stress components are cor-
rectly predicted.
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