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Abstract: A high-fidelity computational analysis carefully validated against concurrently obtained
experimental results is employed to examine self-noise radiation of airfoils at transitional flow
regimes, with a focus on elucidating the connection between the unsteady behavior of the laminar
separation bubble (LSB) and the acoustic feedback-loop (AFL) resonant interactions observed in the
airfoil boundary layers. The employed parametric study examines AFL sensitivity to the changes in
the upstream flow conditions and the airfoil loading. Implicit Large-Eddy Simulations are performed
for a NACA-0012 airfoil in selected transitional-flow regimes for which experimental measurements
recorded characteristic multiple-tone acoustic spectra with a dual ladder-type frequency structure.
The switch between the tone-producing and no-tone-producing regimes is traced to the LSB size
and position as a function of the flow Reynolds number and the airfoil angle of attack, and further
substantiated by the linear stability analysis. The results indicate a strong multi-tonal airfoil noise
radiation associated with the AFL and attributed to the switch from the slowly-growing Tollmien–
Schlichting to the fast-growing Kelvin–Helmholtz instabilities occurring in thin LSB regions when
those are localized near the trailing-edge (TE) on either side of the airfoil. Such a process eventually
results in the nonlinearly saturated flapping vortical modes (“rollers”) that scatter into acoustic waves
at the TE.

Keywords: airfoil trailing-edge (TE) noise; Implicit Large-Eddy Simulations (ILES); acoustic feedback
loop (AFL); boundary-layer (BL); Tollmien–Schlichting (T-S); Kelvin–Helmholtz (K-H) instabilities

1. Introduction

The noise generated by airfoils under specific low Reynolds number flow regimes
have been historically documented by Paterson et al. [1], Tam [2], and Arbey and Bataille [3]
to be well over 30 dB higher relative to the optimally designed operating condition. At
such levels, the radiated sound (typically a combination of airfoil self-noise and tonal
noise) can become extremely discomforting for individuals living nearby wind turbines
or those operating small gliders. Ongoing efforts to mitigate the noise associated with
long and slender wings used in wind turbines and gliders have initiated programs by
large corporations, such as GE, to support research and development of more consumer-
friendly products. In addition to the civil applications, the military sectors have also voiced
concerns regarding the detectability of aircrafts, being a critical issue for Micro Air Vehicles
(MAV) and Unmanned Air Vehicles (UAV) deployed on intelligence, surveillance, and
reconnaissance (ISR) missions.

Throughout the years, significant research efforts (as reviewed, e.g., in Nash et al. [4],
Desquesnes et al. [5], Kingan and Pearse [6], Plogmann et al. [7], Golubev et al. [8], Tam and
Ju [9], and Yakhina et al. [10]) contributed towards elucidating the mechanisms responsible
for airfoil trailing-edge (TE) noise generation. Although much has been accomplished in
understanding the airfoil self-noise sources, the exact genesis of the tonal noise production
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and its connection to the acoustic feedback-loop process still requires further clarification.
Thus, the current work focuses on numerically investigating the underlying physical phe-
nomena and their effects on the mechanisms responsible for the generation of airfoil tonal
noise in transitional flow regimes. To achieve this, the paper is organized as follows. In
Section 2, we first reference the concurrent experimental study employed for validation of
our numerical analysis. As the current work focuses on an Implicit Large-Eddy Simulations
(ILES) approach for numerical experiments, the method and its implementation are dis-
cussed in detail. The validation of the 2D numerical analysis through comparison with 3D
results is presented in Section 3. Section 4 is split into multiple parts describing the effects
of the angle of attack (AoA) and Reynolds number (Rec) on the airfoil transition from the
tone-producing to no-tone-producing regimes, with the focus on the linear-stability analy-
sis of the behavior of the laminar separation bubble (LSB) and evolution of viscous/inviscid
instabilities during the transition process. The frequency selection process and the resulting
spectral ladder-type frequency staging are examined as well. The final discussion of the
obtained results is presented in Section 5.

2. Experimental and Numerical Approaches
2.1. Experimental Approach

The concurrent experimental measurements employed for validation in this work were
carried out in an anechoic low-speed wind tunnel facility at Ecole Centrale de Lyon (ECL),
with the details of the two conducted experimental campaigns described in Golubev et al. [8]
and Yakhina et al. [10]. The tonal signature of the low-speed NACA-0012 airfoil was ex-
amined for a range of transitional flow regimes characterized by variable flow velocity,
AoA, and unsteady inflow conditions to allow for thorough mapping of the regions of
tonal production, including the effects of upstream unsteadiness. Figure 1 illustrates the
locations of the Remote Microphone Probes (RMPs) in the experimental measurements
(Golubev et al. [8]), where the surface pressure data were collected and employed for vali-
dation in the current numerical study. For velocity measurements, a hot-wire anemometer
methodology was utilized.
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Figure 1. Locations of the Remote Microphone Probes (RMPs) on the NACA-0012 mock-up (red
symbols) and the reference points for the analysis of wall-pressure fluctuations in the experiment
(Golubev et al. [8]).

2.2. Numerical Approach
2.2.1. High-Fidelity ILES Model

The employed ILES code (Visbal and Gaitonde [11]) solves a set of the compressible
Navier–Stokes equations represented in a strong, conservative, time-dependent form in the
generalized curvilinear computational coordinates (ξ, η, ζ, τ) transformed from the physical
coordinates (x, y, z, t), where i and v denote inviscid and viscous terms, respectively.
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The solution vector
→
Q = (ρ, ρu, ρv, ρw, ρe) is defined in terms of the flow density ρ,

Cartesian flow velocity components (u, v, w), and flow specific energy,

e =
T

γ(γ− 1)M2
∞
+

1
2
(u2 + v2 + w2) (2)

with the assumed perfect gas relationship p = ρT/γM2
∞ connecting the flow pressure p,

temperature T, and the freestream Mach number M∞ (γ is the specific heat ratio). The other
variables in Equation (1) include the inviscid flux vectors defined by

→
F i =


ρû

ρuû + ξ̂x p
ρvû + ξ̂y p
ρwû + ξ̂z p

(ρe + p)û− ξ̂t p

,
→
Gi =


ρv̂

ρuv̂ + η̂x p
ρvv̂ + η̂y p
ρwv̂ + η̂z p

(ρe + p)v̂− η̂t p

,
→
Hi =


ρŵ

ρuŵ + ζ̂x p
ρvŵ + ζ̂y p
ρwŵ + ζ̂z p

(ρe + p)ŵ− ζ̂t p

 (3)

where the transformation Jacobian is J = ∂(ξ, η, ζ, τ)/∂(x, y, z, t), the metric quantities
defined, e.g., as ξ̂x = (J−1)∂ξ/∂x, etc., and the transformed flow velocity components are

û = ξ̂t + ξ̂xu + ξ̂yv + ξ̂zw
v̂ = η̂t + η̂xu + η̂yv + η̂zw
ŵ = ζ̂t + ζ̂xu + ζ̂yv + ζ̂zw

(4)

The viscous flux vectors,
→
F v,

→
Gv and

→
Hv, are defined, e.g., in Anderson et al. [12], while

→
S represents the source term that allows incompressible unsteady vortical perturbation
to be introduced into the flow field. All flow variables are normalized by their respective
reference freestream values except for pressure, which is nondimensionalized by ρ∞u2

∞.
Note that the governing equations are represented in the original unfiltered form,

used unchanged in the laminar, transitional or fully turbulent regions of the flow, with
Visbal et al. [13] providing further details on the code’s employed ILES procedure in
which a high-order, low-pass filter operator is applied to the dependent variables during
the solution process, in contrast to the standard LES addition of sub-grid stress (SGS)
and heat flux terms. The resulting filter selectively damps the evolving poorly resolved
high-frequency content of the solution.

The code employs a finite-difference approach to discretize the governing equations,
with all the spatial derivatives obtained using the high-order compact-differencing schemes
from Lele [14]. For the airfoil computations of the current paper, a 6th-order scheme is used.
At boundary points, higher-order, one-sided formulas are utilized to retain the tridiagonal
form of the scheme. In order to ensure that the Geometric Conservation Law (GCL) is
satisfied, the time metric terms are evaluated employing the procedures described in detail
in Visbal and Gaitonde [11]. Finally, the time marching is accomplished by incorporating
a 2nd-order, iterative, implicit, approximately factored procedure, as described, e.g., in
Visbal et al. [13].

2.2.2. Numerical Implementation

The computational domains employed in this work is a 1281 × 789 O-mesh generated
about a NACA-0012 airfoil with a no-slip, adiabatic wall with 4th-order extrapolation
(Golubev et al. [15,16]). At 100 chords away from the airfoil, a freestream condition is
applied to the far-field with the grid rapidly stretching towards the boundary to ensure
effective elimination of spurious reflections achieved in conjunction with the low-pass
spatial filtering (Visbal and Gaitonde [11]). The mesh is carefully clustered near the airfoil
surface to achieve the wall-normal and wall-tangent mesh sizes of ∆y/c = 2.5 × 10−5

and ∆x/c = 0.5 × 10−3, where c is the airfoil chord length. In terms of the wall units,
yw

+/c = 3.13 × 10−5 is estimated for the characteristic flow condition, with M∞ = 0.0465
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and Rec = 1.4 × 105. Such a grid refinement corresponds to the non-dimensional values
of ∆y+ ≈ 1 and ∆x+ = 20, with 12 grid points clustered in the region 0 < y+ < 10. For
3D simulations, such grid parameters correspond to a high-resolution LES according
to estimates in Wagner et al. [17] (p. 209). Such a grid is also finer compared to the
mesh employed in the DNS study by Desquesnes et al. [5] conducted using a mesh with
∆y/c = 3.8 × 10−4 and ∆x/c = 6 × 10−3. Note that the use of 2D analysis (much less
computationally intensive, which is particularly critical for this parametric study) could be
justified based on the assumption that, though inherently unsteady, the investigated flow
regimes remain primarily laminar (with possible separation zones) and exhibit transitional
features. Nevertheless, the next section will present a thorough comparison of the two
approaches for the selected cases.

The current 3D ILES analysis utilizes a NACA-0012 with a spanwise extension of 0.1c,
and periodic conditions applied at the span tip planes. Overall, the comparative analysis
conducted in the current work employs a matrix of 2D and 3D case studies using the grid
configurations shown in Table 1. The baseline 2D setup employs a non-dimensional time
step of 9 × 10−5 corresponding to a physical time step of 0.675 × 10−6 s, whereas the
3D simulations require a time step that is 4x finer, a 0.0225 × 10−5 non-dimensionalized
time or 0.16875 × 10−6 s, to accommodate the fine grid spacing along the span. In all
simulations, the solutions were first marched forward in time for 20 characteristics cycles
to ensure transient processes have dissipated and a quasi-steady state is reached. The
pressure signals were then recorded for over 65 cycles (720,000 iterations); hence, for the
baseline setup, we collected the data sample for 0.487 s with a sampling rate of 33.6 kHz,
achieving a frequency resolution of ∆f = 2.05 Hz.

Table 1. NACA-0012 grids employed in 2D and 3D studies.

Cases Dimension ∆y/c ∆x/c ∆z/c

2D FINE 1281 × 789 × 3 2.5 × 10−5 0.5 × 10−3 -
3D FINE 1281 × 789 × 101 2.5 × 10−5 0.5 × 10−3 9.9 × 10−4

3. Flow Configuration and Comparison of 2D vs. 3D Numerical Approaches
3.1. Test Cases for NACA-0012 Airfoil

Following the experimental conditions of Golubev et al. [8] and Yakhina et al. [10],
the selected NACA-0012 was employed in a set of numerical simulations with a uniform
upstream flow velocity of 16 m/s (M∞ = 0.0465) and Rec = 140,000 to closely mimic the
experimental setup. The corresponding time-averaged U-velocity contours comparing
the 2D and 3D ILES results are shown in Figure 2. Overall, the time-averaged U-velocity
contours shown in Figure 2a,b are identical from the leading-edge (LE) to mid-chord
due to the inherently 2D, and thus laminar, flow, as well as the absence of separation.
Beyond the mid-chord, the flow similarities begin to diverge and the differences between
the 2D and 3D ILES flow-fields become more apparent. Upon closer inspection, the 3D
simulations reveal a noticeably smaller LSB and wake structures, which is a result of vortex
breakdown captured in 3D ILES. To supplement the time-averaged U-velocity contours
and characterize the thinner wake profile of the 3D simulations, near-wake U-velocity
profiles are shown in Figure 3a. The results, which are measured 1% chord away from TE,
confirms the size of the velocity deficit to be smaller in 3D simulations due to the energy
redistribution along the span-wise direction.
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Figure 3. (a) Near-wake U-velocity profile and (b) comparison of predicted vs. measured surface
pressure coefficient. Baseline case for NACA-0012 at a 0◦ AoA and U = 16 m/s.

These findings are further validated in Figure 3b, which shows the surface pressure
coefficient comparison between the numerical predictions and experimental measurements.
The surface pressure coefficient correlates well with the time-averaged U-velocity (Figure 2)
by revealing 2D and 3D results to be identical up to 70% chord. Beyond 70% chord, the
results diverge due to the larger fluctuations inherent in the 2D results. The comparison
between the numerical predictions and experimental measurements all indicate that the
3D simulations show a stronger correlation with the measurements than the 2D results;
specifically, in the aft section of the airfoil where separation driven fluctuations exist. It
should be noted, the slight parallel shift in Cp is a result of the freejet configuration of the
wind tunnel, as pointed out by Moreau et al. [18] and Nguyen et al. [19].

Based on the findings of Figures 2 and 3, boundary layer (BL) velocity profiles
(Figure 4) are generated between 70% and 95% chord, in increments of 5%, where most
discrepancies are shown to occur. In agreement with Figure 3b, immediately after the
separation point between 70% and 75% chord, numerical predictions and experimental
measurements show similar profiles, with the exception of the latter revealing a thinner BL.
At 80% and 85% chord, where the surface pressure coefficient shows the 2D and 3D results
diverging, the 3D results show much better agreement with experiment as the 2D analysis
overpredicts the height of the velocity profile. However, at 90%, the 3D simulations begin
to underpredict the height of the BL while the 2D results continue with overprediction.
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At 95% chord, discrepancies between the numerical and experimental results are more
obvious due to the non-zero near-wall velocity recorded in the experimental setup.
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3.2. Spectral Analysis of Surface and Far-Field Pressure Data Samples

In addition to the statistical parameters, spectral analysis was conducted for the
NACA-0012 airfoil. The numerical predictions consist of a Fourier analysis on 214 pressure
samples over a time signal of 0.487 s, whereas experimental measurements were sampled
over several seconds. Figure 5 compares the computed and measured spectra for various
monitor points along the NACA-0012 surface (Figure 1) as well as the far-field, which
is located 12.5 chords directly above the TE. Along the airfoil surface (near-field), the
results show a strong correlation between the numerical predictions and measurements in
predicting the main tonal signature, which occurred at 610 Hz. However, the overall results
reveal that the 3D ILES provides a stronger correlation with the experiment in capturing the
harmonics of the main tones, as shown in the experiment, as well as accurately predicting
the peak frequency near the trailing edge at 0.945c. It should be noted that the overall
broadband level is slightly reduced in the 3D ILES simulations, further improving the
comparison with the experiments.

In the far-field, a Ffowcs-Williams and Hawkings (FWH) approach discussed in
application to the current problem by Salehian et al. [20] was utilized to generate the
numerical spectra, with corrections made to the levels by accounting for the periodic
boundary condition along the span, as suggested by Oberai et al. [21]. As predicted, 3D
ILES shows better agreement with the experimental measurements by continuing the
trend of lower broadband levels and a near perfect match between 500 and 1500 Hz,
compared to the 2D results. Further evaluation of the far-field spectra elucidates the fact
that higher broadband levels shown in the numerical surface spectra result from significant
hydrodynamic effects dominating the surface pressure fluctuations that may not be fully
captured in measurements. As the pressure signal propagates to the far-field, the unsteady
hydrodynamic disturbances quickly dissipate and only the acoustic field dominated by
tonal noise components is preserved. Overall, the numerical results demonstrate both
broadband levels and peak frequencies correlate well with experimental measurements for
frequencies near the primary tone.

The results shown in this section demonstrate the validity of utilizing 2D analysis by
revealing a good agreement with 3D simulations and experimental measurements. The idea
of employing 2D simulations for this work stems from the analysis of Desquesnes et al. [5],
who argued that 2D simulations are capable of capturing the physics of the AFL due to its
inherent two-dimensional nature. In their numerical analysis, 2D simulations were used
and performed well in capturing the peak tones exhibited by the airfoil, and in certain
cases, captured the neighboring frequencies as well. Therefore, results in the subsequent
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sections are obtained mostly using a two-dimensional mesh, except for special cases where
2D analysis would actually lead to contradictory or misleading results, as discussed further
below. In Section 4, such results are complemented with the linear stability analysis
(applied in the streamwise direction) to further characterize and link the behavior and
transition of viscous instabilities with LSB dynamics.
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4. Results of the Parametric AFL Sensitivity Study
4.1. Linear Stability Analysis

The growth rates of flow disturbances within a BL or shear layer flows may be
predicted using linear stability theory (LST), solving the linearized form of the Navier–
Stokes equations (e.g., Drazin and Reed [22]). The disturbance solution vector φ includes
pressure, velocities, and temperature fluctuations,

φ =
(

p′, u′, v′, w′, T′
)T (5)

It is assumed that the gradients in the mean flow are significantly smaller in the
streamwise direction than in the wall-normal direction. Therefore, the flow at any given
location along the BL is assumed to be quasi-parallel. The disturbance modal shape is thus
assumed to have the following form,

X(x, y) = ψ(y)eiαx (6)

where ψ is an amplitude function. Substituting Equation (6) into the disturbance vector
yields Equation (7),

φ(x, y, z, t) = ψ(y)ei(αx+βz−wt) (7)

where ω is the perturbation frequency, and β and α are the spanwise and streamwise wave
number, respectively. In the analysis of the spatial evolution of the modes, ω and β are
typically specified by the user, and α is the variable of interest in the numerical solution.
Assuming a known set of mean flow profiles from numerical simulations or experiment,
the linearized Navier–Stokes equations are solved in order to obtain information about
the disturbance evolution in the flow. For the current application, a spatial analysis is
conducted in order to determine the disturbance growth rate at a given location on the
airfoil surface. Therefore, such analysis predicts the values of

α = α(ω, β) = αr + iαi (8)

for a known set of frequencies (e.g., corresponding to the prominent tones in the acoustic
and surface pressure spectra), where αr is the real spatial wavenumber and −αi determines
the instantaneous growth rate at a given streamwise location. Once the growth rates are
acquired at each location, they are integrated along the instability’s convection path to
obtain the total growth factor N for a disturbance at a given frequency defined by

N = ln
(

A
A0

)
=
∫ x

x0

−αidx (9)

where A0 is the initial disturbance amplitude, and A is the amplitude of the disturbance at
a given streamwise location. Similarly, x0 and x denote the initial disturbance location and
the final location, respectively.

The current work employs a linear stability code LASTRAC (Chang [23]) to investi-
gate the instability dynamics within the NACA-0012 airfoil transitional BL. The adopted
coordinate system is body-fitted, where x, y, and z represent the streamwise, wall-normal,
and spanwise direction, respectively. The code solves a set of linearized Navier–Stokes
equations presented in the form

Γ ∂φ
∂t +

A
h1

∂φ
∂x + B ∂φ

∂y + C
h3

∂φ
∂Z + Dφ =

1
R0

(
Vxx
h1

2
∂2φ

∂x2 +
Vxy
h1

∂2φ
∂x∂y + Vyy

∂2φ

∂y2 + Vxz
h3

∂2φ
∂x∂z +

Vyz
h3

∂2φ
∂x∂z +

Vzz
h3

2
∂2φ

∂z2

) (10)

for the solution vector defined in Equation (5). Matrices Г, A, B, C, D, and Vij are the
Jacobians of the flux vectors and R0 is the Reynolds number used to normalize the equations
(detailed in [23]). Note that, unlike the Orr–Sommerfeld equation, this formulation accounts
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for the flow-divergence effects in predicting the instability mode evolution. Substituting (9),
the following set of equations are solved for the instability modal growth rates, −αi, with
the no-slip wall boundary conditions applied at the airfoil surface and Dirichlet boundary
condition applied in the free stream,(

B +
iβVyz

h3R0
− iαVxy

h1R0

)
dψ

dy
+

(
D− iωΓ +

iαA
h1

+
a2Vxx

h1
2R0
− iβVxz

h3R0
+

iβC
h3

+
β2Vzz

h32R0

)
ψ=

Vyy

R0

d2ψ

dy2 (11)

In LASTRAC, the equations are discretized via a 1st-order scheme in the streamwise
direction and 4th-order central difference scheme in the wall-normal direction. The solution
is obtained in a two-step process. In the first step, the viscous terms are neglected to
recast the equation in the linear form that can be solved as an eigenvalue problem. The
obtained global eigenvalue spectrum generally contains all the discrete modes as well as
the continuous spectrum. Once the global eigenvalues are obtained, a local eigenvalue
search is performed using the results from the global search as a starting point for the
viscous solution using the iterative Newton’s method applied to the governing equations.

Note that N-factor in Equation (9) is essentially the normalized accumulated growth
rate of the modal amplitudes integrated over a specified streamwise distance along the BL.
The local growth rates of the instability modes thus indicate the slopes of the corresponding
N-factor curves. On the other hand, the root-mean-square (RMS) of the flow disturbance
pressure, pRMS, was determined from a high-fidelity numerical analysis based on a sample
of M selected tonal frequency modes,

pRMS(x) =

√
1

M2 ∑
m
|pm(x)|2 (12)

and the slopes of the pRMS curves may be easily related to the weighted modal growth rates,

dpRMS(x)/dx =
1
M

∑
m
(−αim)|pm(x)|√

∑
m
|pm(x)|2

(13)

The connection between the RMS and N-factor curves for the disturbance solution
thus becomes evident and has been demonstrated in our previous study on the effect of
upstream turbulence on AFL suppression (Nguyen et al. [24]). This feature is employed
below to match and elucidate the results obtained from the ILES and LST analyses in the
parametric AFL sensitivity study.

4.2. Variation in Angle of Attack for Rec = 180,000: Tone-Producing Regimes

The effect of the AoA and the mean flow velocity was previously shown by Low-
son et al. [25] to have significant impacts on the tonal noise generation. To better understand
the phenomenon of the airfoil entering and exiting the tone generating regime, several
selected cases are chosen and presented in Table 2.

Table 2. Geometric AoA investigated for the NACA-0012 airfoil.

Airfoil AoA (degree) Velocity (m/s) Rec

NACA-0012 0, 2, 4, 6, 8, 10, 12 25 180,000

Figure 6 illustrates the 2D time-averaged pressure contours for the NACA-0012 airfoil
and the predicted LSB location along the airfoil surface (red line). At 0◦, symmetric LSBs
exist on both the upper and lower surfaces of the airfoil covering approximately 25% of the
aft section. As the AoA increases, the separation region on the suction surface advances
forward while the pressure-side LSB shifts rearward. Note that LSBs exist on both the
suction and pressure surfaces only for α = 0◦ and 2◦ cases. For a higher AoA, trends
reveal the LSB on the suction side shrinks in length and move towards LE. In contrast,
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the separation region on the pressure surface starts in the same position as that on the
suction surface at α = 0◦ and moves rearward in the α = 2◦ case. By 4◦, the pressure-side
LSB disappears completely while the suction-side separation region remains present for all
AoAs. Table 3 lists the exact locations of the separated regions in terms of percent chord.
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Figure 6. Time-averaged pressure contours from 2D NACA-0012 simulations (left); corresponding separation regions
(right). U = 25 m/s.

Table 3. Laminar separation bubble (LSB) locations on the suction and pressure sides.

AoA Suction Side Pressure Side

0 70%–96% 70%–96%
2 53%–73% 82%–100%
4 35%–48% No Separation
6 9%–25% No Separation

The presence of LSBs in these flow regimes, whether on the pressure or suction side,
demonstrates the impact that LSBs have on triggering the AFL mechanism. In accordance
with experimental observations of Lowson et al. [25], the tonal noise emission is clearly
observed for the cases with α = 0◦, 2◦, 4◦, and 6◦, as seen in the acoustic spectra in Figure 7.
Interestingly, all AoAs shown exhibit a single peak tone with the exception of the 2◦ case.
The explanation for the dual tone can be tied to the formation of the LSB regions of Figure 6,
which shows the 2◦ case to have an LSB on both the suction and pressure surface. To further
investigate the roles of the airfoil suction and pressure surface LSBs in the mechanism of
the airfoil tonal noise generation, LST is employed. For the α = 0◦ case, the linear stability
analysis was conducted for frequencies ranging from 0 to 4000 Hz with increments of
10 Hz, as well as for the peak tonal frequency. Based on the symmetric nature of the
configuration, only the data for the upper surface is presented in Figure 8. The primary
region of instability growth prediction corresponds well with the location of the LSB, as
indicated by the dashed blue lines revealing flow separation and reattachment locations
determined from the coefficient of friction plot shown in the bottom. The accompanying
velocity contours provides visual evidences of the existence of the LSB and correlates well
with the instability growth.

Figure 6. Time-averaged pressure contours from 2D NACA-0012 simulations (left); corresponding separation regions
(right). U = 25 m/s.

Table 3. Laminar separation bubble (LSB) locations on the suction and pressure sides.

AoA Suction Side Pressure Side

0 70%–96% 70%–96%
2 53%–73% 82%–100%
4 35%–48% No Separation
6 9%–25% No Separation

The presence of LSBs in these flow regimes, whether on the pressure or suction side,
demonstrates the impact that LSBs have on triggering the AFL mechanism. In accordance
with experimental observations of Lowson et al. [25], the tonal noise emission is clearly
observed for the cases with α = 0◦, 2◦, 4◦, and 6◦, as seen in the acoustic spectra in Figure 7.
Interestingly, all AoAs shown exhibit a single peak tone with the exception of the 2◦ case.
The explanation for the dual tone can be tied to the formation of the LSB regions of Figure 6,
which shows the 2◦ case to have an LSB on both the suction and pressure surface. To further
investigate the roles of the airfoil suction and pressure surface LSBs in the mechanism of
the airfoil tonal noise generation, LST is employed. For the α = 0◦ case, the linear stability
analysis was conducted for frequencies ranging from 0 to 4000 Hz with increments of
10 Hz, as well as for the peak tonal frequency. Based on the symmetric nature of the
configuration, only the data for the upper surface is presented in Figure 8. The primary
region of instability growth prediction corresponds well with the location of the LSB, as
indicated by the dashed blue lines revealing flow separation and reattachment locations
determined from the coefficient of friction plot shown in the bottom. The accompanying
velocity contours provides visual evidences of the existence of the LSB and correlates well
with the instability growth.
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To confirm the trends seen in Figure 8, data for α = 6◦ is obtained and presented in
Figure 9. Based on the results tabulated in Table 3, only results for the suction side are
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shown due to the lack of LSB on the pressure side and the subsequent suppression of
instability amplification. Additionally, the predicted modal amplification at the frequency
of the acoustic tone is plotted for comparison. Although the peak frequency of 6375 Hz
theoretically reaches a much higher amplification within the LSB, as predicted by the
stability analysis (compared to the observed acoustic tonal peak of 1209 Hz), its growth
quickly saturates at 20% chord with the flow reattachment, and the instability is likely to
be damped out before reaching the TE. In contrast, the acoustic frequency mode, although
significantly lower in amplitude, is sustained and grows in amplitude over the length of
the airfoil.
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Figure 9. Instability chordwise amplification at peak tonal frequency vs. statistical parameters for α = 6◦.

Overall, the results clearly illustrate that the rapid growth of disturbances is associated
with the LSB and the presence of the separation zone, which features an attached and
separated region. In the attached regions, the instability waves develop as slowly-growing
Tollmien–Schlichting (T-S) waves associated with the BL viscous effects. In the separated
regions, the instability switches to the fast-growing Kelvin–Helmholtz (K-H) waves as-
sociated with the velocity gradients in the detached shear layers. This switch from T-S
to K-H instabilities is critical and associated with the presence of the LSB and the ability
of the convected mode to sustain the required amplitude before the instability mode is
scattered into acoustic waves at the TE. For the considered range of the tone-producing
AoAs, Figure 10 compares the LST-predicted frequencies corresponding to the instability
waves with maximum amplification (dashed blue lines) against the peak frequencies of
calculated acoustic spectra (dashed black lines). In addition, the solid green line is intended
to indicate the airfoil surface location where each frequency mode reaches its maximum.
Note that for α = 0◦, the predicted frequency of the most amplified instability mode agrees
well with the observed far-field frequency of 1550 Hz, showing a discrepancy of only 3.2%.

Figure 9. Instability chordwise amplification at peak tonal frequency vs. statistical parameters for α = 6◦.

Overall, the results clearly illustrate that the rapid growth of disturbances is associated
with the LSB and the presence of the separation zone, which features an attached and
separated region. In the attached regions, the instability waves develop as slowly-growing
Tollmien–Schlichting (T-S) waves associated with the BL viscous effects. In the separated
regions, the instability switches to the fast-growing Kelvin–Helmholtz (K-H) waves as-
sociated with the velocity gradients in the detached shear layers. This switch from T-S
to K-H instabilities is critical and associated with the presence of the LSB and the ability
of the convected mode to sustain the required amplitude before the instability mode is
scattered into acoustic waves at the TE. For the considered range of the tone-producing
AoAs, Figure 10 compares the LST-predicted frequencies corresponding to the instability
waves with maximum amplification (dashed blue lines) against the peak frequencies of
calculated acoustic spectra (dashed black lines). In addition, the solid green line is intended
to indicate the airfoil surface location where each frequency mode reaches its maximum.
Note that for α = 0◦, the predicted frequency of the most amplified instability mode agrees
well with the observed far-field frequency of 1550 Hz, showing a discrepancy of only 3.2%.
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frequency (dashed black line) for α = 0◦, 2◦, 4◦, and 6◦.

For other cases, however, a substantial difference is seen, and is also observed between
the predicted peak amplifications on the suction and pressure surfaces. At α = 4◦, the
absence of the LSB on the pressure side of the airfoil results in weak instability growth,
and similarly for α = 6◦ due to the favorable pressure gradient; thus, only the suction
side is shown. Overall, these results are indicative of the increase in angle of incidence
driving the discrepancy between the peak LST-predicted and acoustic tonal frequencies.
Figure 11 supports this conclusion and shows the vortex shedding frequency agrees with
the observed acoustic peak tone within 2% error at a low AoA. These results correspond
to those of Jones et al. [26] and Jones and Sandberg [27] who performed their stability
analysis based on DNS simulations of NACA-0012 airfoil at Rec = 100,000 at 0◦ to 5◦ and
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found that the acoustic tone was identical to the vortex shedding frequency but was of
lower frequency than the most amplified frequency predicted by LST. It should be noted
that the tonal amplitudes are significantly higher on the suction surface, thus indicating
instabilities on this side are the dominant source of pressure fluctuation growth shown
earlier in Figures 8 and 9.
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Additionally, the fact that the LST-predicted peak instability tones may not be the
ones radiating in the far-field as acoustics may be addressed using several arguments.
On one side, LST predicts a certain frequency for maximum growth but in determining
this peak frequency assumes that the initial amplitudes of all frequency components are
identical. This peak amplitude thus could change if the initial level of the disturbance is
not uniform and is a function of frequency. One may argue that the scattered acoustic
waves, through the BL receptivity process, excite some frequency disturbances more than
the others; this was elucidated by Jones et al. [26], who suggested that the BL receptivity
process becomes increasingly more efficient at lower frequencies. Furthermore, while LST
predicts a wide spectrum of rapidly-growing convected modes scattering at the TE into
acoustic waves, the strength of the latter decreases with increasing frequency, as indicated
by Jones and Sandberg [27] based on the application of Amiet’s TE noise theory [28].
Thus, one may expect that a particular low-frequency mode may be selected for optimum
acoustic generation. Such a mode appears to be at the shedding frequency as it is naturally
selected by the vorticity dynamics at the TE and its pattern of shedding into the wake.
Another tone-selecting mechanism is the acoustic feedback determined by matching the
phases of the acoustic and vortical modes. However, such mechanism described by the
feedback-loop formula (further discussed below) produces many modes falling within
the “unstable” category as determined by LST, and the fact that only a few of them are
observed as primary peaks in the acoustic spectra appears to be solely determined by
their proximity to the shedding tone. Indeed, the observed spectra indicate that the peak
“cut-on” frequencies are the nearest to the shedding tone. This superposition also explains
the dual-ladder tonal structure of Paterson et al. [1] since the scaling of the feedback-loop
“cut-on” tone and the shedding tone is different with respect to the flow velocity.

Note that for the moderate Rec laminar flow around a symmetric NACA-0012 airfoil,
Tam and Ju [9] identified the shedding frequency with that of the most amplified near-wake
K-H instability in the free shear layer. The TE scattering of such near-wake instability
was claimed as the source of the shedding tone in the absence of AFL. Thus, such a wake
instability mechanism may superimpose on the AFL mechanism of airfoil tonal noise
production, with both related to the TE scattering of the free shear-layer K-H instabilities.
This would point to the mutual resonance phenomenon where both mechanisms overlap
and appear to enhance each other. When the flow past the airfoil is laminar with no AFL
present, the remaining shedding tone appears at significantly lower amplitude, as demon-
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strated by Tam and Ju [9]. On the other hand, when the AFL mechanism is suppressed due
to BL tripping or a low-intensity upstream turbulence, the observed acoustic spectrum still
reveals a broadband hump centered around the shedding frequency (Golubev et al. [8]). It
appears that the shedding mechanism is dominant and amplified with AFL presence due
to the mutual interference and resonant interaction of the AFL-selected frequencies with
shedding tone.

4.3. Variation in Angle of Attack for Rec = 180,000: No Tone-Producing Regimes

To investigate the effects at higher AoAs, the simulations were conducted for α = 8◦,
10◦, and 12◦. Unlike the previous results, acoustic peaks are no longer present; thus, only
spectra for 8◦ and 12◦ are shown (Figure 12). Separation regions that exists earlier at lower
AoAs are no longer present on the pressure surface; however, the compact separation zones
continue to persist near the LE on the suction surface, as shown in Figure 13 and indicated
in Table 4 based on the skin friction coefficient, Cf.
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Table 4. LSB locations on the suction and pressure sides.

Angle Suction Side Pressure Side

8 3%–12% -
10 2%–10% -
12 2%–8% -

Result of the LST analysis (shown in Figure 14 for the α = 12◦ case) indicates that the
separation regions near the LE provides the necessary condition to significantly amplify the
high-frequency modes within the LSB. Nonetheless, these modes are quickly suppressed
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while the low-frequency counterparts continue to exist and grow mildly as they convect
towards the TE. These results, however, may be influenced by 2D effects and are further
discussed in the subsequent section.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 30 
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Figure 14. Instability chordwise amplification at various frequencies vs. statistical parameters
for α = 12◦.

Figure 15 shows the instantaneous vorticity contours for all three cases, illustrating
the formation of vortical instability modes through the separation regions close to the LE.
The orderly formation of vortices convecting to the TE at the tone-producing lower AoA is
now substituted with a much less regular street of vortices, which barely graze the airfoil
surface as they convect downstream. Furthermore, the emergence of small-scale turbulence
forming near the LE points to the necessity for 3D ILES studies with higher-fidelity to
properly resolve such flow regimes. Nevertheless, it may be hypothesized that due to the
geometry of the flow at a high AoA, any remaining coherent vortical structures would
lack the opportunity to strongly interact with the TE and thus would not scatter into the
acoustic modes.

To test this hypothesis, full 3D ILES simulations (with grid dimensions shown in
Table 1) were conducted for three cases at α = 0◦, 4◦, and 8◦, with a fixed Rec = 180,000,
to elucidate the primary mechanism responsible for tonal noise suppression at an AoA
greater than 6◦. At α = 0◦, shown in Figure 16, the flow remains in the transitional regime
and its behavior is similar to that proposed by Brooks et al. [29]. Upon closer inspection
of the Z-vorticity contours, the BL dynamics clearly reveals that the unsteady oscillatory
motion of the vortex street at the TE is responsible for generating pressure pulses and
the subsequent propagation of acoustic waves into the far-field. In addition to the vortex
shedding noise, the interaction of the airfoil surface instabilities scattering into the wake
is responsible for the additional noise contributions (neighboring peaks) shown in the
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surface spectra. The accompanying dilatation field shown in Figure 16 further confirms the
acoustic wave to be emitted from the TE of the airfoil.
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Figure 16. NACA-0012 at an α = 0◦ AoA and Rec = 180,000. (Left) Instantaneous Z-vorticity contours;
(Right) the dilatation field. Red circle indicates the origin of the acoustic wave to be at the trailing-
edge (TE).

Increasing the AoA to α = 4◦ forces the suction-side BL transition point to move
further upstream, resulting in a larger separation region, while the pressure-side BL does
not separate. However, the flow regime is still classified as transitional. Z-vorticity contours
in Figure 17 show coherent vortices and the resulting vortex shedding at the wake is still
present. Therefore, it can be concluded that the mechanism responsible for the noise
remains unchanged between the AoAs of 0◦ and 4◦. The acoustic field shown in the
instantaneous dilatation plot exhibits behavior similar to the α = 0◦ case and shows the
noise source to originate at the TE.
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Figure 17. NACA-0012 at an α = 4◦ AoA and Rec = 180,000. (Left) Instantaneous Z-vorticity contours;
(Right) the dilatation field. Red circle indicates the origin of the acoustic wave to be at the TE.

As the AoA is further increased to α = 8◦, the results illustrated in Figure 18 reveal
that the flow has transitioned to a fully turbulent regime. Unlike the previous transitional
regime, the vortical structures convecting along the surface and its subsequent vortex
shedding in the wake are no longer coherent. Instead, the turbulent BL shows many small
and random vortices to occur along the suction surface. This, along with the lack of strong
vortex shedding, results in the suppression of the AFL and transforms the surface spectra
to just a “broadband hump” near the natural shedding frequency. It should be noted, the
noise generated by this regime still occurs at the TE as indicated by the dilatation field.
This is mainly due to the interaction of the turbulent structures with the TE. In addition, the
dilatation field shows the LE to radiate sound through the unsteady pressure fluctuations
caused by the LE vortex. However, the high-frequency contributions are quickly suppressed
and do not show up in the far-field. To ensure the LE contributions are not dissipated
by an inadequate grid resolution, several checks were conducted at 0◦, 90◦, 180◦, and
270◦, and 360◦ around the LE, to confirm the wavelength of the pressure perturbations
is accurately captured. The analysis revealed the frequency of the LE contributions to
be approximately 2000 Hz, while the maximum resolvable frequency at those locations,
based on the computational mesh, is approximately 3300 Hz. It is worth mentioning that
the dilatation fields obtained from these three cases all show high amplitude contours in
the wake region (between 5c and 10c), indicating the presence of hydrodynamic effects.
However, the wake is steady in time and does not radiate any additional noise.
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Results from the full 3D ILES reveal that the original hypothesis of the tonal noise
suppression based on 2D simulations (suggesting the lack of coherent vortical structures
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interacting with the TE and scattering as acoustics) is, in fact, misleading. Instead, the
actual 3D mechanism responsible for the AFL suppression at a high AoA is the transition
to a fully turbulent flow regime with strong spanwise mixing.

4.4. Variation in Reynolds Number at α = 2◦: Tone-Producing Regimes

To advance the understanding of the effect of flow velocity on tonal noise produc-
tion, additional simulations were conducted for a range of Rec at a fixed AoA of 2◦.
Clearly, all investigated cases are within the tone-producing region, and the cases of
Rec = 144,000 (20 m/s) and Rec = 288,000 (40 m/s) selected for illustration exhibit well-
defined tonal spectra in the near-field at 2 chords directly above the TE (Figure 19). BL
statistical analysis reveals a direct correlation between increasing Rec and the decreasing
chordwise extent of the suction side LSB (Figure 20 and Table 5), while the LSB on the
pressure surface retains nearly the same size at the TE (with Cf becoming more negative
towards the TE with increasing velocity).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 20 of 30 

  
Figure 19. Near-field pressure spectra for Rec = 144,000 (a) and Rec = 288,000 (b). 

Table 5. LSB locations on the suction and pressure sides. 

Rec Suction Side Pressure Side 
144,000 52%c–80%c 84%c–100%c 
180,000 53%c–74%c 82%c–100%c 
216,000 54%c–69%c 80%c–100%c 
252,000 55%c–66%c 82%c–100%c 
288,000 57%c–64%c 85%c–100%c 

 
Figure 20. Separation regions with increasing Reynolds number. 

Correspondingly, the LST results demonstrate that an increase in Rec leads to a surge 
in amplification of the peak instability mode on the airfoil pressure side (Error! Reference 
source not found.). At the same time, as the suction-side LSB shrinks while the instability 
saturation location shifts further upstream from the TE, the contribution of the suction 
surface to the radiated sound diminishes relative to that from the pressure side. It is ex-
pected that a further increase in flow velocity will result in the eventual suppression of 
the separation region from the suction side. When this occurs, the pressure-side LSB will 
provide the sole contributor to the radiated tonal noise. These trends are in agreement 
with the experimental findings of Golubev et al. [8], Yakhina et al. [10], and Pröbsting et 
al. [30], where tripping the BL on either side of the airfoil revealed a dominant tonal noise 
contribution from the suction side at the lower flow velocities, and from the pressure side 
at the higher flow velocities. 

Figure 19. Near-field pressure spectra for Rec = 144,000 (left) and Rec = 288,000 (right).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 20 of 30 

  
Figure 19. Near-field pressure spectra for Rec = 144,000 (a) and Rec = 288,000 (b). 

Table 5. LSB locations on the suction and pressure sides. 

Rec Suction Side Pressure Side 
144,000 52%c–80%c 84%c–100%c 
180,000 53%c–74%c 82%c–100%c 
216,000 54%c–69%c 80%c–100%c 
252,000 55%c–66%c 82%c–100%c 
288,000 57%c–64%c 85%c–100%c 

 
Figure 20. Separation regions with increasing Reynolds number. 

Correspondingly, the LST results demonstrate that an increase in Rec leads to a surge 
in amplification of the peak instability mode on the airfoil pressure side (Error! Reference 
source not found.). At the same time, as the suction-side LSB shrinks while the instability 
saturation location shifts further upstream from the TE, the contribution of the suction 
surface to the radiated sound diminishes relative to that from the pressure side. It is ex-
pected that a further increase in flow velocity will result in the eventual suppression of 
the separation region from the suction side. When this occurs, the pressure-side LSB will 
provide the sole contributor to the radiated tonal noise. These trends are in agreement 
with the experimental findings of Golubev et al. [8], Yakhina et al. [10], and Pröbsting et 
al. [30], where tripping the BL on either side of the airfoil revealed a dominant tonal noise 
contribution from the suction side at the lower flow velocities, and from the pressure side 
at the higher flow velocities. 

Figure 20. Separation regions with increasing Reynolds number.

Table 5. LSB locations on the suction and pressure sides.
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144,000 52%c–80%c 84%c–100%c
180,000 53%c–74%c 82%c–100%c
216,000 54%c–69%c 80%c–100%c
252,000 55%c–66%c 82%c–100%c
288,000 57%c–64%c 85%c–100%c
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Correspondingly, the LST results demonstrate that an increase in Rec leads to a surge
in amplification of the peak instability mode on the airfoil pressure side (Figure 21). At the
same time, as the suction-side LSB shrinks while the instability saturation location shifts
further upstream from the TE, the contribution of the suction surface to the radiated sound
diminishes relative to that from the pressure side. It is expected that a further increase
in flow velocity will result in the eventual suppression of the separation region from the
suction side. When this occurs, the pressure-side LSB will provide the sole contributor to
the radiated tonal noise. These trends are in agreement with the experimental findings of
Golubev et al. [8], Yakhina et al. [10], and Pröbsting et al. [30], where tripping the BL on
either side of the airfoil revealed a dominant tonal noise contribution from the suction side
at the lower flow velocities, and from the pressure side at the higher flow velocities.
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Further extension of the flow regime towards a lower Rec (<144,000) would lead to the
formation of a fully laminar BL and result in the absence of the LSB. Consequently, without
the LSB, the switch from T-S to K-H waves would not be possible and thus the rapidly
amplifying instability modes needed for the self-sustained acoustic feedback can never be
established. While it is possible for the shedding tone to still exist, it would likely be much
lower in amplitude due to the lack of reinforcement from the feedback loop [9]. On the
other hand, increasing the Rec (>288,000) would suggest transitioning to the fully turbulent
BL flow, with both the acoustic feedback and the shedding tone fully suppressed.

4.5. Acoustic Radiation Frequency Structure

Arbey and Bataille [3] suggests that a transitional airfoil emitting tonal noise is the
result of two mechanisms: the first is the scattering of vortices along the airfoil surface
into the wake at the airfoil TE, and the second is the natural vortex shedding. The current
section focuses on investigating the BL dynamics of the airfoil surface to examine the
instability point of inception and the subsequent behavior of the flow. To achieve this task,
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the effect of mean flow velocity (Table 6) is further analyzed from the previous section
to establish a connection between the LSB and its effect on the AFL. The selected cases
correspond to an airfoil with the chord c = 0.12 m installed at the geometric AoA of 0◦,
closely representing the experimental conditions of Yakhina et al. [10,31].

Table 6. Mean flow condition.

U∞ (m/s), Rec

16 (128,000), 19 (152,000), 21 (168,000), 25 (200,000)

Figure 22a illustrates the Z-vorticity contours of an airfoil subjected to a 16 m/s
(Rec = 128,000) uniform upstream flow, revealing the expected vortex roll up and shedding
pattern. As described by Arbey and Bataille [3], the onset of instabilities occur at 0.86c
due to the T-S waves that grow and transition to discrete vortices, which convect along
the airfoil surface towards the TE. Once the vortices reach the TE, their interaction with
the natural shedding of the wake coalesce to amplify the noise generated by the airfoil.
As the mean flow velocity is increased to 19 m/s (Rec = 152,000) (Figure 22b), the overall
behavior of the flow remains unchanged with the exception of the triggering of T-S to K-H
instabilities. Unlike the 16 m/s (Rec = 128,000) case, at 19 m/s (Rec = 152,000), the transition
from T-S to K-H instabilities appears further upstream as the increase in the flow velocity
shifts the location of the separation region towards the LE. A similar pattern is exhibited
as the mean flow velocity is increased to 21 m/s (Rec = 168,000) (Figure 22c) and 25 m/s
(Rec = 200,000) (Figure 22d). It is worth mentioning that for all the flow regimes shown in
Figure 22, the LSB is present and is the primary source to trigger instability amplification
and the sustainment of the AFL.

To further demonstrate the effect of Rec on the tonal noise mechanism, spectral analysis
is employed for various experimental probe locations along the airfoil surface (shown
in Figure 1) to obtain the peak and neighboring tones. Details of the Fourier analysis
performed to obtain the spectra are similar to those employed in the previous sections.
However, for all subsequent near-field (2c above TE) spectra in this chapter, the results
were obtained by sampling a signal that was 5 times longer, thus allowing for averaging
of the FFT (using 5 segments) to smooth out the noise and accentuate the peaks of the
signal. Figure 23 reveals the peak tonal noise (corresponding to Strouhal number St ~0.2)
predicted by the numerical simulations for the mean flow velocity of 16 m/s (Rec = 128,000)
to occur at a frequency of 636 Hz for every selected point along the airfoil, which correlates
well with Paterson’s [1] empirical formula (14) for vortex shedding frequency,

fs =
0.011U1.5

∞

(Cv)1/2 (14)

where c is the airfoil chord and ν is the flow kinematic viscosity. Although the neighboring
tones are more difficult to distinguish due to the low amplitudes, the equally distant spaced
peaks, ∆ f , are indicative of their existence. Furthermore, the peak amplitude of 120 db is
revealed to occur at point A (0.945c) close to the TE, with the amplitude decreasing for
upstream probes. This behavior confirms that the main noise source is, in fact, located at
the TE where the scattering takes place.
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As the mean flow velocity is increased to 19 m/s (Rec = 152,000) (Figure 24), the
peak tone shifts rightward in the spectrum and occurs at a higher frequency of 746 Hz
(while maintaining St ~0.2). Again, correlating this value with Paterson’s formula (14)
provides a good match and reveals that the increase from 16 m/s (Rec = 128,000) to 19 m/s
(Rec = 152,000) would result in a shift from 574 Hz to 729 Hz. This confirms that the peak
tones do in fact scale with ~U1.5, thus corresponding to the airfoil’s natural shedding
frequency. Additionally, the increase in the flow velocity leads to neighboring tones with
higher amplitudes that are more prominent and easily distinguished in the spectrum.
Further increase in mean flow velocity to 21 m/s (Rec = 168,000) and 25 m/s (Rec = 200,000)
shows a similar trend. Figures 25 and 26 demonstrate the shift of the primary tones to
higher frequencies, in agreement with Paterson’s formula (14).
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Overall, all the considered cases exhibit a similar trend, with the spectral pressure
levels peaking at the TE. On the other hand, the case of 25 m/s (Rec = 200,000) (Figure 26)
reveals that while the highest amplitude tone is observed at point A at 1199 Hz, correlating
well with shedding frequency (14), and the probes at points B, C, and D show a peak tone at
1281 Hz. As suggested based on the LST analysis, this could be linked to the amplification
of various instability modes occurring along the airfoil surface. Perhaps the peak shedding
tone of 1199 Hz observed at the TE reduces in amplitude as it propagates upstream and
interacts with probes B, C, and D. At the same time, it could be that the secondary peak of
1281 Hz results from a mode that is more amplified in the regions close to points B, C, and
D but appears weaker at the TE, where the interaction of the saturated instability modes
with the primary shedding mechanism dominates.

It is also worth noting that increasing the flow velocity from 16 m/s (Rec = 128,000) to
25 m/s (Rec = 200,000) directly affects the amplitudes of the neighboring tones surrounding
the peak, and as a result, leads to a very pronounced peak. This comparison is clearly
illustrated in Figures 24 and 26 in which the former shows a very low amplitude with
nearly suppressed neighboring tones, while the latter shows clearly defined tones. This
observation correlates well with the Z-vorticity contours in Figure 22 by visually inspecting
the vortices scattering in the wake and correlating the amplification of the neighboring
tones with the amplitudes of the vortical structures developing along the airfoil surface.
It is evident that at 16 m/s (Rec = 128,000) the vorticity contours are not as saturated
compared to 25 m/s (Rec = 200,000), which is indicative of stronger vortex cores. These
stronger vortex cores will, in turn, produce stronger acoustic waves and thus show higher
amplitudes of the predicted spectral peaks.

Results obtained from the spectral analysis are now analyzed in order to reconstruct
the ladder-type tonal frequency structure originally obtained by Paterson et al. [1].

Figure 27 shows such a reconstruction using the numerical data presented in
Figures 23–26, in comparison with the shedding-tone formula (14) and experimental results
of Yakhina et al. [31]. Note that fs is graphically determined by selecting a single highest
amplitude peak tone recorded at the four monitor points along the airfoil (typically at the
TE). The remaining neighboring tones, fn, are obtained by selecting the equally spaced
tones surrounding the peak tone. The reconstructed ladder structure demonstrates that
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the solid line, fs, follows Paterson’s proposed U1.5 and fn, dashed lines, follows the U0.8

scaling. The agreement between Paterson’s formula (14) and the ILES results correlate very
well and verifies the accuracy of the current numerical results as well as the existence of
the AFL.
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To further validate the existence of the AFL at these flow regimes, a dispersion curve
analysis (Smith et al. [32], 2012) was employed to predict the convective flow velocity
(Uc) along the airfoil surface, which can be used in the feedback-loop formula of Arbey
and Bataille [3],

fnL
Uc

(
1 +

Uc

a0 −U

)
= n +

1
2

(15)

where L is the distance from the point of maximum surface velocity to the TE and a0 is the
speed of sound. With these terms defined, Equation (15) can be rearranged to provide the
AFL-selected modes (n) and match with the predicted ones.

The results presented in Figure 28 are obtained using 214 pressure slices extracted from
the airfoil surface near the TE (0.85c–0.95c) over a period of 0.487 s to show a 2D spectrum
representing the normalized frequency fδ/U∞ vs. the normalized wavenumber, kxδ/2π,
where δ is the BL thickness. The selected flow region, measuring 0.1c × 0.03c, was chosen
to be near the TE based on the dilatation field revealing the TE to be the primary source of
the airfoil acoustic radiation. Table 7 compares the computed (from numerical analysis) vs.
predicted (Equation (15)) tonal frequencies for the four cases from 16 m/s to 25 m/s, to
show a good agreement for the selected modal numbers. The remaining discrepancies are
attributed to the change in the convective velocity along the airfoil surface not accounted
in the employed Equation (15).
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Table 7. Computed (CFD) vs. predicted (Equation (15)) tonal frequencies.

16 m/s (128,000) 19 m/s (152,000)

f, Hz computed
(CFD) 562 640 720 f, Hz computed

(CFD) 633 746 835

n = 10 n = 12 n = 13 n = 10 n = 11 n = 12

f, Hz
predicted,

Equation (15)
557 663 716

f, Hz
predicted,

Equation (15)
700 766 833

21 m/s (168,000) 25 m/s (200,000)

f, Hz computed
(CFD) 699 820 939 f, Hz computed

(CFD) 963 1099 1218

n = 8 n = 10 n = 11 n = 9 n = 10 n = 11

f, Hz
predicted,

Equation (15)
696 860 942

f, Hz
predicted,

Equation (15)
992 1097 1202

5. Discussion of Results

High-accuracy 2D and high-fidelity 3D (ILES) numerical experiments were conducted
to investigate the phenomena related to flow-acoustic resonant interactions at moderate
Reynolds numbers characteristic of transitional airfoils. Numerical analyses were employed
to examine the airfoil BL dynamics, including the statistical moments and surface pressure
spectra, as well as the airfoil acoustic radiation in the far-field.
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The first part of the study focused on thorough validation of the numerical model
by comparing the unsteady responses of the NACA-0012 airfoil for selected flow regimes
against the experimental data of Yakhina et al. [10]. The results indicate that 2D and 3D ILES
predictions compare well with experimental data. In particular, the conducted far-field
spectral analysis showed a near perfect match of computational and experimental results at
frequencies surrounding the peak tones. The predicted near field showed a good match of
the tonal content but elevated broadband levels resulting from the unsteady hydrodynamic
fluctuations that do not propagate into the far field. In addition, the similarities observed
between the 2D and 3D ILES predictions vs. experimental data allowed the majority of the
numerical experiments to be conducted using the 2D approach.

The transition between the tone-producing and no-tone-producing flow regimes was
thoroughly investigated for the NACA-0012 airfoil at a different AoA and Rec and correlated
with position and size of the LSB. At low AoAs (α ≤ 6◦), distinct tones were shown to
be present that dominated the acoustics of the airfoil. However, the tones disappeared at
higher AoAs (α > 6◦) due to the LSB migration towards the LE, which allowed sufficient
time for the flow to transition to fully turbulent regime with subdued AFL interactions.
On the other hand, for a fixed AoA, the increase in flow Rec was associated with LSB
shrinking on the suction side and an increasingly dominant contribution of the AFL on
the pressure side to the tonal noise production. Additionally, a parametric investigation
of the effect of Rec allowed recreating Paterson’s dual ladder-type frequency structure.
Overall, the results of the parametric studies involving high-fidelity numerical studies
and linear stability analysis clearly demonstrate that the rapid growth of the BL instability
modes is associated with the presence of separation regions (i.e., LSB) on either side of the
airfoil. The switch from the slowly growing T-S modes (associated with the BL viscous
effects) to the fast-growing K-H modes (associated with the velocity gradients in the LSB
detached shear layer) thus appears as a necessary condition for the strong multiple-tone-
producing flow-acoustic interactions. This allows for an important modification to the
AFL scenario originally proposed by Longhouse [33], as illustrated in Figure 29. The
additionally required condition is the ability of the vorticity modes to sustain their presence
and sufficient amplitude to the TE for the effective acoustic scattering process to take place.
Hence, the LSB must be located close enough to the airfoil TE to prevent the subsequent
destruction of the saturated coherent modes (rollers) through turbulent BL transition and
spanwise mixing process.
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Finally, the AFL frequency selection mechanism was addressed. It was noted that, for
a low Rec laminar flow around a symmetric NACA-0012 airfoil, Tam and Ju [9] identified
the shedding frequency with that of the most amplified near-wake K-H instability in the
free shear layer. The TE scattering of such near-wake instability was claimed as the source
of the shedding tone in the absence of AFL. It is plausible that such a wake instability
mechanism may superimpose on the AFL mechanism of airfoil tonal noise production,



Appl. Sci. 2021, 11, 2257 28 of 29

with both related to the TE scattering of the nonlinearly saturated K-H modes. This
points to the mutual resonant interaction wherein both mechanisms overlap and appear
to enhance each other. To this end, when the airfoil flow is laminar with no AFL present,
the remaining shedding tone appears at a significantly lower amplitude, as demonstrated
by Tam and Ju [9]. On the other hand, when the AFL mechanism is suppressed due
to BL tripping or a low-intensity upstream turbulence, the observed acoustic spectrum
still reveals a broadband hump centered around the shedding frequency. It thus appears
that the naturally primary shedding mechanism is dominant and amplified by the AFL
presence due to the mutual interference and resonant interaction of the AFL-selected
frequencies with the shedding tone. The latter essentially elevates that part of the spectrum
of the amplified BL instability modes that appears the closest to the shedding tone. This
may explain the divergence between the frequencies of the most amplified instability
modes and the acoustically radiated peak tone coinciding with the shedding frequency.
It is the interaction of the two mechanisms that produce the dual ladder-type acoustic
tonal structure of Paterson et al. [1], with multiple AFL-selected tones staged around the
shedding tone.
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