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Despite their wide applications in many fields of environmental sciences, data assimilation methods are still poorly adopted for the numerical simulation of pollutant dispersion at the local urban scale. In this study, we compare three data assimilation methods to evaluate the air quality at the local urban scale. The data assimilation methods used here are the Bias Ajustment Techniques, the Best Linear Unbiased Estimator, and the Source Apportionment Least Square method. We assess their performances on air pollution simulations in Lyon for the year 2008, focusing on ground-level NO 2 hourly concentrations. The results indicate that the three methods improve air quality estimates and that their performances are similar. This study shows that data assimilation is a promising tool to ameliorate air quality simulations at the urban scale.

Introduction

The estimate of air pollutant concentrations in urban areas is essential for different purposes, such as checking compliance with regulatory threshold levels [START_REF] Union | Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe[END_REF], implementing actions and informing population when these levels are exceeded [START_REF] Rouil | PREV'AIR: an operational forecasting and mapping system for air quality in Europe[END_REF], locating concentration thresholds exceedances, or even assessing pollutant human exposure in epidemiologic studies [START_REF] Jacquemin | Impact of geocoding methods on associations between long-term exposure to urban air pollution and lung function[END_REF][START_REF] Morelli | Air pollution, health and social deprivation: A fine-scale risk assessment[END_REF][START_REF] Coudon | Assessment of long-term exposure to airborne dioxin and cadmium concentrations in the Lyon metropolitan area (France)[END_REF][START_REF] Coudon | Développement et application de méthodologies d'évaluation des expositions atmosphériques chroniques aux dioxines et au cadmium dans le cadre d'études épidémiologiques[END_REF][START_REF] Coudon | Development and performance evaluation of a GIS-based metric to assess exposure to airborne pollutant emissions from industrial sources[END_REF][START_REF] Danjou | Long-term airborne dioxin exposure and breast cancer risk in a case-control study nested within the French E3N prospective cohort[END_REF]. Pollutant concentration used as reference air quality levels are usually those collected at monitoring stations. These however provide concentrations in a limited number of locations. To obtain a broader view on air quality it is therefore necessary to exploit numerical models, whose results enable to assess impact of emissions scenarii [START_REF] Saikawa | The impact of China's vehicle emissions on regional air quality in 2000 and 2020: a scenario analysis[END_REF], reconstruct air pollution level in the past [START_REF] Coudon | Assessment of long-term exposure to airborne dioxin and cadmium concentrations in the Lyon metropolitan area (France)[END_REF][START_REF] Coudon | Retrospective modeling of no2 and pm10 concentrations over the lyon metropolitan area (france), 1990âĂŞ2010âĂŤperformance evaluation, exposure assessment and correlation between pollutants[END_REF], and forecast air pollution [START_REF] Munoz-Alpizar | Multi-year (2013-2016) PM2.5 wildfire pollution exposure over North America as determined from operational air quality forecasts[END_REF][START_REF] Zhou | Numerical air quality forecasting over eastern China: An operational application of WRF[END_REF].

As is customary in several fields, the performances of these numerical models can be in principle improved using the information provided by field measurements adopting data assimilation (DA) methods. These latter are nowadays widely used in earth sciences [START_REF] Ghil | Data assimilation in meteorology and oceanography[END_REF][START_REF] Kalnay | Atmospheric modeling, data assimilation and predictability[END_REF][START_REF] Navon | Data assimilation for numerical weather prediction: a review, in: Data assimilation for atmospheric, oceanic and hydrologic applications[END_REF], signal treatment [START_REF] Goosse | The medieval climate anomaly in Europe: Comparison of the summer and annual mean signals in two reconstructions and in simulations with data assimilation[END_REF], or even in economics [START_REF] Nadler | Data Assimilation for Parameter Estimation in Economic Modelling[END_REF]. One of the most known application is certainly that in the field of atmospheric physics, notably in meteorology [START_REF] Morel | Dynamic approach to meteorological data assimilation[END_REF][START_REF] Mcpherson | Progress, problems, and prospects in meteorological data assimilation[END_REF][START_REF] Miyakoda | The near-real-time, global, four-dimensional analysis experiment during the GATE period, Part I[END_REF][START_REF] Mcpherson | The nmc operational global data assimilation system[END_REF]. Applications of DA methods to air quality problems arose only in the late 1990s [START_REF] Elbern | Variational data assimilation for tropospheric chemistry modeling[END_REF][START_REF] Elbern | A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling[END_REF][START_REF] Elbern | 4D-variational data assimilation with an adjoint air quality model for emission analysis[END_REF][START_REF] Segers | A modified RRSQRT-filter for assimilating data in atmospheric chemistry models[END_REF][START_REF] Van Loon | Data assimilation of ozone in the atmospheric transport chemistry model LOTOS[END_REF], and are today common for simulations at the mesoscale [START_REF] Denby | Comparison of two data assimilation methods for assessing PM10 exceedances on the European scale[END_REF][START_REF] Wu | A comparison study of data assimilation algorithms for ozone forecasts[END_REF][START_REF] Frydendall | Implementation and testing of a simple data assimilation algorithm in the regional air pollution forecast model[END_REF][START_REF] Candiani | Assimilation of chemical ground measurements in air quality modeling[END_REF]. Con-versely, they have been rarely used with urban dispersion models. As far as we are aware, only [START_REF] Tilloy | Blue-based NO2 data assimilation at urban scale[END_REF] and [START_REF] Denby | Basic data assimilation methods for use in urban air quality assessment[END_REF] attempted to couple these methods with an urban air quality model.

To further investigate the ability of such methods to improve urban air quality estimates, we compare here the performances of three data assimilation methods, namely the Bias Ajustment Techniques (BAT), the Best Linear Unbiased Estimator (BLUE), and the Source Apportionment Least Square (SALS) method. The case study is the air quality within the Lyon agglomeration for the year 2008, using the hourly NO 2 concentration as target variable. Numerical simulation of the NO 2 concentrations were obtained with SIR-ANE [START_REF] Soulhac | The model SIR-ANE for atmospheric urban pollutant dispersion; part I, presentation of the model[END_REF], an atmospheric dispersion model for urban air quality.

In what follows, we begin by presenting the three data assimilation methods (section 2). The SIRANE urban air quality model is then introduced in the section 3 and the case study is presented in the section 4. The performances of the data assimilation methods are assessed in the section 5. The main findings of the study are summarized in the section 6.

Data assimilation methods

The objective of the DA methods is to estimate the state of a system (by definition unknown), represented by a state vector ('t' stand for true) and generally referred to as true state. To estimate , DA methods rely on data provided by models and measurements. The former constitutes the a priori estimate of the system state. These data are represented by a state vector ('b' stand for background) referred to as background. The two state vectors, and , have size . The measurements are usually represented by a vector referred to as observation vector, of size . Generally, is significatively smaller than [START_REF] Daget | Revue des méthodes d'assimilation[END_REF].

Note that the values included in may refer to a physical variable representing a proxy of the variable that constitutes the object of the study ( and ). The observations can for example be the radiances measured by a satellite, whereas the background is relative to temperatures. Similarly, when including information on a same physical variable, data may refer to different spatial or temporal resolutions. Observations can for example concern time-varying concentrations, whereas the background is associated to concentration averaged on time. To compare the observation vector and the state vectors, it is necessary to define the so called observation operator to pass from the system space (space relative to state vectors) to the observations space. This operator is represented by the matrix of size × (in what follows, we assume to be linear). So, the equivalent of the true state and the background in the observation space are and respectively. By combining the observations and the background, DA methods lead to the best estimate of the system state, represented by a state vector , referred to as analysis (also of size ). Likewise, the equivalent of the analysis in the observation space is

. In what follows we provide the details of the three methods used in this study: BAT, BLUE, and SALS.

Bias Adjustment Techniques (BAT)

The Bias Adjustment Techniques are relatively simple and aim at removing the bias of the background with respect to the true state, in order to have an unbiased analysis, i.e.:

-= 0 (1) 
Observations are supposed to be unbiased with respect to the true state ( -= 0), so that BAT methods seek to estimate an analysis verifying:

- = 0 (2) 
BAT can be classified into two approaches: i) additive [START_REF] Mckeen | Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004[END_REF][START_REF] Wilczak | Biascorrected ensemble and probabilistic forecasts of surface ozone over eastern North America during the summer of 2004[END_REF][START_REF] Kang | Further studies of flow and reactive pollutant dispersion in a street canyon with bottom heating[END_REF][START_REF] Monteiro | Bias correction techniques to improve air quality ensemble predictions: focus on O3 and PM over Portugal[END_REF] and ii) multiplicative [START_REF] Mckeen | Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004[END_REF][START_REF] Borrego | How bias-correction can improve air quality forecasts over Portugal[END_REF][START_REF] Monteiro | Bias correction techniques to improve air quality ensemble predictions: focus on O3 and PM over Portugal[END_REF]. In this study, only the multiplicative approach is used, since it has the advantage of guaranteeing the positiveness of the estimates. With the multiplicative BAT, at each time step, the analysis is determined as:

= (3)
where represents a spatial average of the vector .

Best Linear Unbiased Estimator (BLUE)

The Best Linear Unbiased Estimator method [START_REF] Blond | Three-dimensional ozone data analysis with an air quality model over the Paris area[END_REF][START_REF] Tilloy | Blue-based NO2 data assimilation at urban scale[END_REF]) is a statistical interpolation method which determines the analysis with respect to the background and observation errors. The observation errors include errors due to the measurement instrument and those in the modelling of . With this method, the analysis is expressed as:

= + - (4)
where is the Kalman gain matrix, defined as:

= T ( T + ) -1 (5)
with and the background errors covariance matrix and observation errors covariance matrix, respectively. The modelling of theses matrices, especially the matrix , constitutes the critical step of the BLUE method. In this study, these matrices are stationary (time-independent). Note that this method does not guarantee the positiveness of the estimates. Therefore eventual negative values are replaced by zeros.

Matrix

The matrix represents the observation errors covariance matrix. In this study, the observation errors between two different points and ≠ are considered as uncorrelated [START_REF] Blond | Three-dimensional ozone data analysis with an air quality model over the Paris area[END_REF][START_REF] Tombette | PM10 data assimilation over europe with the optimal interpolation method[END_REF][START_REF] Wang | Assimilation of OMI NO2 retrievals into a regional chemistry-transport model for improving air quality forecasts over Europe[END_REF][START_REF] Silver | Assimilation of OMI NO2 retrievals into the limited-area chemistry-transport model DEHM (v2009. 0) with a 3-D OI algorithm[END_REF][START_REF] Tilloy | Blue-based NO2 data assimilation at urban scale[END_REF], as is the case of observations at different points with different instruments [START_REF] Tilloy | Blue-based NO2 data assimilation at urban scale[END_REF]. With this assumption, the matrix is diagonal. Moreover we assume that the observation errors are normally distributed and that 95 % of these errors are smaller than a given percentage (equivalent to the uncertainty of the measurement) of the average concentration. The matrix is then modelled as:

= diag( 2 1 , 2 2 , ..., 2 ) with 1.96 = ∑ , ( 6 
)
where , represents the measured concentration at the th monitoring station at time , is the related uncertainty and is the number of time steps. In this case study, the uncertainty is fixed equal to 15 %, as suggested by the 2008 regulatory directive on air quality [START_REF] Union | Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe[END_REF].

Matrix

The matrix represents the background errors covariance matrix. We assume here that the background errors associated to points and are more correlated when these points are impacted by the same events [START_REF] Blond | Three-dimensional ozone data analysis with an air quality model over the Paris area[END_REF], i.e. when the background associated to and are more correlated. So, the background errors covariance B is modelled as a function of the background correlation coefficient b and the (background) variances 2,b and 2,b as:

B = √ 2,z 2,z z with ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 2,z = 2,b z = 0 exp b -1 (7)
where the parameters , 0 and represent an adjustment coefficient, a characteristic correlation coefficient, and a characteristic correlation length, respectively. These parameters are determined by seeking those that satisfy the 2 diagnostic [START_REF] Ménard | Assimilation of stratospheric chemical tracer observations using a Kalman filter. Part II: 2-validated results and analysis of variance and correlation dynamics[END_REF][START_REF] Tombette | PM10 data assimilation over europe with the optimal interpolation method[END_REF][START_REF] Tilloy | Blue-based NO2 data assimilation at urban scale[END_REF]. Among these, we chose here the combination leading to the lower quadratic error, following a crossvalidation.

Source Apportionment Least Square (SALS)

Source apportionment methods aim at estimating the contribution to air pollution by different 'groups' of sources. Typically, the groups of sources can be defined according to their typology (e.g. traffic, industry, agriculture or residentialtertiary emissions), their location (e.g. emissions from different regions of Europe), and/or their emissions period (emissions in different seasons).

The Source Apportionment Least Square (SALS) method [START_REF] Nguyen | Source Apportionment and Data Assimilation in Urban Air Quality Modelling for NO2: The Lyon Case Study[END_REF] assumes that uncertainties associated to predictions by air quality models are mainly due to emission estimates. Therefore, the SALS method essentially correct (indirectly) emission data in order to improve air quality models estimates. This correction is achieved by modulating, in an optimal way, the sources contributions. The background is then expressed as:

= ∑ (8)
where is the number of sources groups and represent the background associated to the contribution of the group . Likewise, the SALS method determines (at each time step) the analysis as a linear combination of sources contributions:

= ∑ (9)
where represent the modulation coefficient associated to the group . The best estimate minimizes the quadratic error with respect to observations, which are supposed to be 'perfect' ( = ), i.e. not affected by uncertainties. The coefficients are evaluated (at each time step) by minimizing the cost function:

( 1 , 2 , ..., ) = - ∑ T - ∑ (10) 
where is the number of available measurements at the analysis time. The coefficients are determined by solving the system:

⎛ ⎜ ⎜ ⎝ ( 1 ) T ( 1 ) … ( 1 ) T ( ) ⋮ ⋱ ⋮ ( ) T ( 1 ) … ( ) T ( ) ⎞ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎝ 1 ⋮ ⎞ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎝ T ( 1 ) ⋮ T ( ) ⎞ ⎟ ⎟ ⎠ (11) 
When the number of observations is larger than the number of sources groups , the estimate of the coefficients is based on a least square problem. The SALS method is applied only when ≥ . In this method we assume that the sources groups contributions are positive (or null). The solution of the system ( 11) is then obtained with the Lawson and Hanson (1974) method, which guarantees that the coefficients are positive.

The SIRANE model

SIRANE is an operational model simulating pollutants dispersion at local urban scale, assuming steady meteorological conditions over hourly time steps [START_REF] Soulhac | The model SIR-ANE for atmospheric urban pollutant dispersion; part I, presentation of the model[END_REF]. It is based on the street network concept [START_REF] Soulhac | The model SIR-ANE for atmospheric urban pollutant dispersion; part I, presentation of the model[END_REF][START_REF] Soulhac | Modélisation de la dispersion atmosphérique à l'intérieur de la canopée urbaine[END_REF] and adopts parametric laws to model the main flow and dispersion processes within an urban area [START_REF] Soulhac | Parametric laws to model urban pollutant dispersion with a street network approach[END_REF]: convective transport along the street [START_REF] Soulhac | Flow in a street canyon for any external wind direction[END_REF], turbulent transfer at roof level [START_REF] Salizzoni | Street canyon ventilation and atmospheric turbulence[END_REF][START_REF] Salizzoni | Wind tunnel study of the exchange between a street canyon and the external flow[END_REF], and exchanges at the street intersections [START_REF] Soulhac | Flow and dispersion in street intersections[END_REF]. The presence of a roughness sub-layer just above the urban canopy (above roof level) is neglected and the flow is modelled as a surface boundary layer over a rough surface. There, the pollutants dispersion is modelled by a Gaussian puff model, with ground reflection, whose standard deviations are parametrised according to the Monin-Obukhov similarity theory. The only chemical reactions taken into account in SIRANE concern the NO 2 -NO-O 3 cycle, computed assuming a photo-stationary equilibrium [START_REF] Seinfeld | Atmospheric chemistry and physics of air pollution[END_REF]. The input data of the SIRANE model are the urban geometry, the meteorological data, the locations and the modulations of the emissions (represented as point, line, and surface sources) and the hourly evolution of the background concentrations, i.e. the concentrations due to pollutants coming from outside the domain. SIRANE has been validated against wind tunnel experiments [START_REF] Salem | Modelling pollutant dispersion in a street network[END_REF][START_REF] Carpentieri | Evaluation of a neighbourhood scale, street network dispersion model through comparison with wind tunnel data[END_REF][START_REF] Soulhac | Modélisation de la dispersion atmosphérique à l'intérieur de la canopée urbaine[END_REF] and onsite measurements (Bo et al., 2020b,a;[START_REF] Pognant | Design, modelling and assessment of emission scenarios resulting from a network of wood biomass boilers[END_REF][START_REF] Soulhac | The model sirane for atmospheric urban pollutant dispersion; PART III: Validation against NO2 yearly concentration measurements in a large urban agglomeration[END_REF][START_REF] Soulhac | The model SIRANE for atmospheric urban pollutant dispersion; PART II, validation of the model on a real case study[END_REF]. Futher details on the SIRANE model can be found in [START_REF] Soulhac | The model sirane for atmospheric urban pollutant dispersion; PART III: Validation against NO2 yearly concentration measurements in a large urban agglomeration[END_REF][START_REF] Soulhac | The model SIR-ANE for atmospheric urban pollutant dispersion; part I, presentation of the model[END_REF].

The case study

The performances of the three DA methods are evaluated on the case study previously used to assess the performances of the SIRANE 2.0 model [START_REF] Soulhac | The model sirane for atmospheric urban pollutant dispersion; PART III: Validation against NO2 yearly concentration measurements in a large urban agglomeration[END_REF]. We consider NO 2 hourly mean concentrations (at groundlevel) in the Lyon urban agglomeration, a 36 km × 40 km domain (represented with a spatial resolution of 10 m in the SIRANE simulation), for the year 2008. Time-series of NO 2 hourly mean concentrations used to assess the performances of the DA were collected in 16 monitoring stations (fig. 1) by Atmo Auvergne Rhône Alpes, the local authority for air quality. These stations can be classified in four distinct categories: background stations (Côtières de l'Ain, Genas, Saint-Exupéry, and Ternay), stations located on high-intensity traf- 

Bias RMSE r Definition - √ - 2 - - √ - 2 - 2 Criteria |Bias| ≤ 0.33 RMSE ≤ r ≥ 0.60
fic roads (Berthelot, Garibaldi, Grand-Clément, Lyon Périphérique, Mulatière, and Vaise), stations placed close to industrial sites (Feyzin and Saint-Fons) and stations within the urban agglomeration and away from high-intensity traffic roads (Gerland, Lyon Centre, Saint-Just, and Vaulx-en-Velin). In this dataset, missing hourly data do not exceed 3 % over the whole year 2008. For this study, the DA methods combine these measurements with the SIRANE estimates.

To evaluate the reliability of the models results, three statistical indices are used: the bias, Root Mean Square Error (RMSE), and correlation coeffficient (r). The definition of these statistical indices is given in table 1, where are also reported the criteria according to which we can consider as 'good' the model performances. Note that these criteria are more restrictive than those proposed by [START_REF] Chang | Use of Salt Lake City URBAN 2000 field data to evaluate the urban hazard prediction assessment capability (HPAC) dispersion model[END_REF] and [START_REF] Chang | Air quality model performance evaluation[END_REF] [START_REF] Nguyen | Assimilation de données et couplage d'échelles pour la simulation de la dispersion atmosphérique en milieu urbain[END_REF] that are usually adopted in the literature.

Result

Background evaluation

The quality of the background (SIRANE results) are reported on figure 2, which respresents the bias, RMSE, and correlation coefficients compared to the measured average concentrations. The bias is generally positive. This means that SIRANE globally underestimates the concentrations. Nevertheless, the bias criteria is validated for all stations. The RMSE exhibits a nearly linear relation with the measured average concentrations. The larger is the measured average concentration, the higher is the RMSE. Note however that the RMSE criteria is validated for all stations. Inversely, the lower is the measured average concentration the higher is the correlation coefficient. The only station which does not meet the correlation coefficient criteria is an industrial station (Feyzin). Globally, the background fullfills the quality criteria for these statistical indices. However, background errors are sometimes significant, especially for the traffic stations.

The figure 2 shows that the performances for traffic stations are worse than those associated to background, industrial, and urban stations. Results highlight the general tendency of SIRANE in strong underestimating pollutant concentrations (positive bias) at traffic stations. These underestimations are independent of the location of the receptors and concern evenly monitoring stations placed in 'open field' (Garibaldi, Grand-Clément, Lyon Périphérique et Mulatière) and within street canyons (Berthelot et Vaise). Therefore, the discrepancies between modelled and measured concentrations cannot be specifically associated to the parametric laws used to model pollutant transfer within the urban canopy. A potential explanation for these discrepancies is related to vehicles emissions factors. Previous authors [START_REF] Smit | Improved road traffic emission inventories by adding mean speed distributions[END_REF][START_REF] Berkowicz | Traffic pollution modelling and emission data[END_REF] by 30-200 %, depending upon different driving modes, with the standard emission models (like COPERT). [START_REF] Soulhac | The model sirane for atmospheric urban pollutant dispersion; PART III: Validation against NO2 yearly concentration measurements in a large urban agglomeration[END_REF] provide possible explanations about the lower performances related to Vaise and Mulatière stations. The location of the Vaise station can explain its low results. This station is located in a district actually bordered by two hills. This forms a small valley where the air circulation is somehow decoupled to that occurring in the rest of the city. This morphological configuration can lead to an accumulation of pollutant within the district, due to the recirculation flows occurring in this small valley. This complex air circulation is not simulated by the SIRANE meteorological preprocessing, which assumes that the flow over the whole urban area is homogeneous on the horizontal plane. Therefore, SIRANE is not able to model these effects inducing an accumulation of air pollutant within this district. Its predictions tend then to systematically underestimate real concentration values. Concerning Mulatière station, [START_REF] Soulhac | The model sirane for atmospheric urban pollutant dispersion; PART III: Validation against NO2 yearly concentration measurements in a large urban agglomeration[END_REF] highlight the influence of the stability condition. They indicate that for unstable conditions the model performances are significantly deteriorated. The figure 6 shows in particular the correspondence of negative peaks of -1 (inverse of the Monin-Obukhov length), i.e strong unstable conditions, with a systematic underestimation of the measured concentration, and that the model is unable to reproduce the peak characterising the morning rush hour. This is likely due to the parameterisation of the plume width in case of strongly unstable atmospheric conditions which over predicts the dispersion and the mixing close to the source.

DA performances

The performances of the DA methods are assessed by means of a leave-one-out cross-validation, i.e. by estimating the concentrations at one station using all measurements, except those of this same station. This procedure is repeated for all stations and the estimates are compared to the mea- surements. This approach aims at evaluating the quality of the estimates from the DA methods where no observations are available. Here, the SALS method is implemented considering three groups of sources: i) the traffic contribution, ii) the heat emissions, and iii) the industrial emissions with the background concentration. These contributions are evaluated with the SA-NOX SIRANE module [START_REF] Nguyen | Source Apportionment and Data Assimilation in Urban Air Quality Modelling for NO2: The Lyon Case Study[END_REF]. The parameters used to model the matrix are 0 = 0.75, = 0.05, and = 0.95. The figure 3 shows the bias, RMSE, and correlation coefficients compared to the measured average concentrations for the analysis from the three DA methods. Unlike background (SIRANE), there is an almost balanced ditribution of negative and positive bias with the three DA methods. The bias criteria is validated for all stations, except for one station with the BLUE and SALS method. As for background, the RMSE exhibits a nearly linear relation between the RMSE and the measured average concentrations. With the three DA methods, the RMSE criteria is validated for all stations. Likewise, the correlation coefficients validate the quality criteria for all stations, except one (Mulatière traffic station). Statistically, the performances of the three DA methods are globally good and similar to each other. Nevertheless, the errors after the application of DA can still be significant. Note that like background, figure 3 highlights that the results for traffic stations are worse than those related to background, industrial and urban stations.

To assess the influence of the number of measurements used during the assimilation ( ), the concentrations are evaluated (with the DA methods) for each station, using measurements provided by others stations (with a cross-validation approach), which are identical for each time step ( = 1, 2, ..., -1). This is done for all possible combinations of stations. Note that this assessment is done only for the time steps at which measurements are available at all ( ) stations. The figure 4.a shows the average RMSE compared for the three DA methods (here average RMSE means that, for each value, all the RMSE obtained by assimilating measurements are averaged regardless the station). Globally, the higher is the number of observations used, the smaller is the average RMSE for the three DA methods. This confirms the results by [START_REF] Denby | Basic data assimilation methods for use in urban air quality assessment[END_REF], who enlighted that DA is more efficient as the number of observations increases. The average RMSE decreases by 20.0 µg.m -3 between = 3 and = 15 with the SALS method. With the BAT and BLUE methods, the RMSE decreases by 7.1 µg.m -3 and 3.7 µg.m -3 respectively between = 1 and = 15. However, from a given value (approximately from = 9), the RMSE does not further decrease and attains a constant value for both the BAT (RMSE = 17.2 µg.m -3 ) and BLUE (RMSE = 15.5 µg.m -3 ) methods. [START_REF] Denby | Basic data assimilation methods for use in urban air quality assessment[END_REF] used a kriging approach [START_REF] Cressie | Statistics for spatial data[END_REF] and pointed out that the DA provides more reliable concentration estimates when their spatial variability occurs over a spatial scale exceeding the distances between the measurements stations. In our case, this does not hold because concentration variations occur on typical spatial scale of tens of meters, whereas the distance between the two closest stations is about 1.2 km (the average distance between the stations is about 9.7 km). This can explain why the average RMSE does not further decrease from = 9, especially with the BLUE method. The figure 4.a also indicates that the average RMSE are better with the BLUE method. Moreover, the variation of the average RMSE is less sensitive to with the BLUE method than with the SALS and BAT methods. The figure 4.b shows the RMSE compared to

, obtained with all the combinations, for Lyon Centre station. Results indicate that the RMSE associated to = -1 is higher than the RMSE obtained with some combinations involving lower measurements. The best RMSE is associated to a combination of = 9 and = 5 measurements for the BLUE and BAT methods, respectively. Likewise, for each value, the RMSE varies sometimes significantly compared to the combinations of stations used. We can then conclude that the number of observations and the characteristics of the measurements both influence the efficiency of the DA. These results suggest that there are combinations of stations that are more reliable than other.

DA versus background

In figure 5 we compare the bias, RMSE, and correlation coefficients computed before (background) and after the application of DA. DA methods mainly improves the bias which are initially higher and positive, especially those associated to traffic stations. In the other hand, bias are generally worse after DA for background, industrial and urban stations. We note that only the BLUE method improves the bias which are initially negative and positive (BAT and SALS methods improve only bias which are initially positive). This shows that this method is able to correct the background in cases with spatially non-uniform bias. Once applied DA, the RMSE and the correlation coefficients improve of approximately 20 %, regardless of the DA method. Note however that the improvement of these two statistical indices is globally slightly lower for traffic stations. Measured concentrations at these stations are strongly influenced by local nearby effects (e.g. traffic emssions). Therefore, it is more difficult to correct discrepancies for these stations using only measured concentrations from remote stations (DA is here carried out with a leave-one-out cross-validation approach). This is in line with the comments of [START_REF] Denby | Basic data assimilation methods for use in urban air quality assessment[END_REF] who indicate that the reliability of the DA depends on the spatial variability of the concentrations and the distance between the stations. Globally, the DA methods improve statistically the estimated concentrations. Note nevertheless that the improvements and the degradations are not uniform in space. [START_REF] Soulhac | The model sirane for atmospheric urban pollutant dispersion; PART III: Validation against NO2 yearly concentration measurements in a large urban agglomeration[END_REF] highlight the relation between the stability condition and the discrepancies between measured and modelled concentrations, especially for Mulatière traffic station. The figure 6 presents two weeks time series of measured and modelled NO 2 concentrations at Mulatière station where the evolution of -1 is also superposed. The results show that the DA methods sometimes manage to improve the estimates when negative peaks of -1 (unstable conditions) occur, at which time the background (SIRANE) tends to underestimate the measured concentrations. The figure 7 shows ground-level NO 2 concentration field (averaged over 2008) over the Lyon urban agglomeration, before and after DA (estimated without cross-validation). The concentration field obtained with the BAT and SALS methods are comparable. With these two DA methods the concentrations are slightly higher than with the background (SIR-ANE). Within the city centre, the concentrations are slightly lower with the BLUE method than with the two others DA methods. Although the three DA methods lead to similar statistical indices (after cross-validation), the NO 2 mean concentration field resulting from these DA methods are nevertheless slightly different.

Conclusion

In this study, we have assessed the performances of three data assimilation methods, namely BAT, BLUE, and SALS, in the evaluation of urban air quality. These methods have been applied with the SIRANE air quality model focusing on NO 2 hourly mean concentrations in the Lyon agglomeration for the year 2008.

The statistical performances associated to DA methods are globally satisfactory and show that these methods can improve results of urban air quality models. Nonetheless, once applied DA, the errors can be worse than those obtained without applying it. Also, the improvement of the results is not spatially uniform and the best results is not always obtained with the same DA method.

Globally, the performances are similar for the three DA methods. Nevertheless, only the BLUE method improves bias that are spatially non-uniform. Generally, the predictions provided by these DA methods are improved increasing the number of observations. Compared to other methods, the BLUE method is however less sensitive to the number of measurements used. The estimates can sometimes be better using only few particular observations, suggesting that there are more relevant combinations of stations to use for DA. This feature can be the object of an optimisation network problem.
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 1 Figure 1: Study domain and localisation of the monitoring stations (A7: Mulatière, BER: Berthelot, COT: Côtière de l'Ain, FEY: Feyzin, GAR: Garibaldi, GC: Grand-Clément, GEN: Genas, GER: Gerland, LC: Lyon Centre, LP: Lyon Périphérique, STE: Saint-Exupéry, STF: Saint-Fons, STJ: Saint-Just, TER: Ternay, VAI: Vaise, VeV: Vaulx-en-Velin)

Figure 2 :

 2 Figure 2: Bias (a), RMSE (b) and correlation coefficient (c) compared to the measured average concentrations for the background (SIRANE results). Green (red) areas indicate that the results respect (do not respect) the quality criteria.

Figure 3 :Figure 4 :

 34 Figure 3: Bias (a), RMSE (b) and correlation coefficient (c) compared to the measured average concentrations for the analysis from the DA methods. Green (red) areas indicate that the results respect (do not respect) the quality criteria.

Figure 5 :

 5 Figure 5: Bias (a), RMSE (b) and correlation coefficient (c) before (background) and after DA. Green (red) areas indicate that the results are better (worse) after DA. The dashed lines delineate 20 % improvement -decline of the statistical indices.

Figure 6 :

 6 Figure 6: Measured and modelled concentrations at Mulatière station superposed with the evolution of the inverse of the Monin-Obukhov length

Figure 7 :

 7 Figure 7: NO 2 mean concentration field within the Lyon urban agglomeration for the year 2008 estimated with SIRANE (a) and the three DA methods (b, c, and d)

Table 1

 1 Statistical indices and quality criteria used to assess estimates ( is the measured concentration and is the predicted concentration)

  suggest that these factors are underestimated. Lately, O'Driscoll et al. (2016) indicate that COPERT modelling results for Euro 6 diesel cars noticeably under predict NO 2 and NOx emissions. Likewise, Jaikumar et al. (2017) show that the real emissions are underestimated
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