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ABSTRACT
Despite their wide applications in many fields of environmental sciences, data assimilation methods
are still poorly adopted for the numerical simulation of pollutant dispersion at the local urban scale.
In this study, we compare three data assimilation methods to evaluate the air quality at the local
urban scale. The data assimilation methods used here are the Bias Ajustment Techniques, the Best
Linear Unbiased Estimator, and the Source Apportionment Least Square method. We assess their
performances on air pollution simulations in Lyon for the year 2008, focusing on ground-level NO2hourly concentrations. The results indicate that the three methods improve air quality estimates and
that their performances are similar. This study shows that data assimilation is a promising tool to
ameliorate air quality simulations at the urban scale.

1. Introduction
The estimate of air pollutant concentrations in urban ar-

eas is essential for different purposes, such as checking com-
pliancewith regulatory threshold levels (UNION et al., 2008),
implementing actions and informing population when these
levels are exceeded (Rouil et al., 2009), locating concentra-
tion thresholds exceedances, or even assessing pollutant hu-
man exposure in epidemiologic studies (Jacquemin et al.,
2013; Morelli et al., 2016; Coudon et al., 2018; Coudon,
2018; Coudon et al., 2019; Danjou et al., 2019). Pollutant
concentration used as reference air quality levels are usually
those collected at monitoring stations. These however pro-
vide concentrations in a limited number of locations. To ob-
tain a broader view on air quality it is therefore necessary to
exploit numerical models, whose results enable to assess im-
pact of emissions scenarii (Saikawa et al., 2011), reconstruct
air pollution level in the past (Coudon et al., 2018, 2021),
and forecast air pollution (Munoz-Alpizar et al., 2017; Zhou
et al., 2017).

As is customary in several fields, the performances of
these numerical models can be in principle improved using
the information provided by field measurements adopting
data assimilation (DA) methods. These latter are nowadays
widely used in earth sciences (Ghil and Malanotte-Rizzoli,
1991; Kalnay, 2003; Navon, 2009), signal treatment (Goosse
et al., 2012), or even in economics (Nadler et al., 2019). One
of the most known application is certainly that in the field
of atmospheric physics, notably in meteorology (Morel and
Talagrand, 1974; McPherson, 1975; Miyakoda et al., 1976;
McPherson et al., 1979). Applications of DA methods to air
quality problems arose only in the late 1990s (Elbern et al.,
1997; Elbern and Schmidt, 1999; Elbern et al., 2000; Segers
et al., 2000; van Loon et al., 2000), and are today common for
simulations at the mesoscale (Denby et al., 2008; Wu et al.,
2008; Frydendall et al., 2009; Candiani et al., 2009). Con-
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versely, they have been rarely used with urban dispersion
models. As far as we are aware, only Tilloy et al. (2013)
and Denby and Pochmann (2007) attempted to couple these
methods with an urban air quality model.

To further investigate the ability of such methods to im-
prove urban air quality estimates, we compare here the per-
formances of three data assimilation methods, namely the
Bias Ajustment Techniques (BAT), the Best Linear Unbi-
ased Estimator (BLUE), and the SourceApportionment Least
Square (SALS) method. The case study is the air quality
within the Lyon agglomeration for the year 2008, using the
hourly NO2 concentration as target variable. Numerical sim-
ulation of the NO2 concentrations were obtained with SIR-
ANE (Soulhac et al., 2011), an atmospheric dispersionmodel
for urban air quality.

In what follows, we begin by presenting the three data
assimilation methods (section 2). The SIRANE urban air
quality model is then introduced in the section 3 and the case
study is presented in the section 4. The performances of the
data assimilation methods are assessed in the section 5. The
main findings of the study are summarized in the section 6.

2. Data assimilation methods
The objective of the DA methods is to estimate the state

of a system (by definition unknown), represented by a state
vector xt (‘t’ stand for true) and generally referred to as true
state. To estimate xt , DA methods rely on data provided by
models and measurements. The former constitutes the a pri-
ori estimate of the system state. These data are represented
by a state vector xb (‘b’ stand for background) referred to
as background. The two state vectors, xt and xb, have size
n. The measurements are usually represented by a vector y
referred to as observation vector, of size m. Generally, m is
significatively smaller than n (Daget, 2007).

Note that the values included in ymay refer to a physical
variable representing a proxy of the variable that constitutes
the object of the study (xt and xb). The observations can for
example be the radiances measured by a satellite, whereas
the background is relative to temperatures. Similarly, when
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including information on a same physical variable, data may
refer to different spatial or temporal resolutions. Observa-
tions can for example concern time-varying concentrations,
whereas the background is associated to concentration aver-
aged on time. To compare the observation vector and the
state vectors, it is necessary to define the so called observa-
tion operator to pass from the system space (space relative
to state vectors) to the observations space. This operator is
represented by the matrix H of size m × n (in what follows,
we assume H to be linear). So, the equivalent of the true
state and the background in the observation space are Hxt
and Hxb respectively.

By combining the observations and the background, DA
methods lead to the best estimate of the system state, repre-
sented by a state vector xa, referred to as analysis (also of
size n). Likewise, the equivalent of the analysis in the obser-
vation space is Hxa.

In what follows we provide the details of the three meth-
ods used in this study: BAT, BLUE, and SALS.
2.1. Bias Adjustment Techniques (BAT)

The Bias Adjustment Techniques are relatively simple
and aim at removing the bias of the background with respect
to the true state, in order to have an unbiased analysis, i.e.:

xt − xa = 0 (1)
Observations are supposed to be unbiased with respect to
the true state (y −Hxt = 0), so that BAT methods seek to
estimate an analysis xa verifying:

y −Hxa = 0 (2)
BAT can be classified into two approaches: i) additive

(McKeen et al., 2005;Wilczak et al., 2006; Kang et al., 2008;
Monteiro et al., 2013) and ii) multiplicative (McKeen et al.,
2005; Borrego et al., 2011; Monteiro et al., 2013). In this
study, only the multiplicative approach is used, since it has
the advantage of guaranteeing the positiveness of the esti-
mates. With the multiplicative BAT, at each time step, the
analysis is determined as:

xa = xb y

Hxb
(3)

where x represents a spatial average of the vector x.
2.2. Best Linear Unbiased Estimator (BLUE)

TheBest Linear Unbiased Estimatormethod (Blond et al.,
2003; Tilloy et al., 2013) is a statistical interpolation method
which determines the analysis with respect to the background
and observation errors. The observation errors include er-
rors due to the measurement instrument and those in the
modelling of H. With this method, the analysis xa is ex-
pressed as:

xa = xb +K
(

y −Hxb
) (4)

where K is the Kalman gain matrix, defined as:

K = BHT(HBHT + R)−1 (5)
with B and R the background errors covariance matrix and
observation errors covariance matrix, respectively.

The modelling of theses matrices, especially the matrix
B, constitutes the critical step of the BLUE method. In this
study, thesematrices are stationary (time-independent). Note
that this method does not guarantee the positiveness of the
estimates. Therefore eventual negative values are replaced
by zeros.
2.2.1. Matrix R

The matrix R represents the observation errors covari-
ance matrix. In this study, the observation errors between
two different points pi and pj≠i are considered as uncorre-
lated (Blond et al., 2003; Tombette et al., 2009; Wang et al.,
2011; Silver et al., 2013; Tilloy et al., 2013), as is the case
of observations at different points with different instruments
(Tilloy et al., 2013). With this assumption, the matrix R
is diagonal. Moreover we assume that the observation er-
rors are normally distributed and that 95 % of these errors
are smaller than a given percentage (equivalent to the un-
certainty of the measurement) of the average concentration.
The matrix R is then modelled as:

R = diag(�21 , �22 , ..., �2m)
with 1.96�i =

�i
T
∑T
t yi,t

(6)

where yi,t represents the measured concentration at the ith
monitoring station at time t, �i is the related uncertainty and
T is the number of time steps. In this case study, the un-
certainty is fixed equal to 15 %, as suggested by the 2008
regulatory directive on air quality (UNION et al., 2008).
2.2.2. Matrix B

The matrix B represents the background errors covari-
ance matrix. We assume here that the background errors as-
sociated to points pi and pj are more correlated when these
points are impacted by the same events (Blond et al., 2003),
i.e. when the background associated to pi and pj are more
correlated. So, the background errors covariance Bij is mod-
elled as a function of the background correlation coefficient
�bij and the (background) variances �2,bi and �2,bj as:

Bij =
√

�2,zi �2,zj �zij

with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�2,zi = ��2,bi

�zij = �0 exp

(

�bij − 1

L�

)

(7)

where the parameters �, �0 and L� represent an adjustment
coefficient, a characteristic correlation coefficient, and a char-
acteristic correlation length, respectively. These parameters
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are determined by seeking those that satisfy the �2 diagnos-
tic (Ménard and Chang, 2000; Tombette et al., 2009; Tilloy
et al., 2013). Among these, we chose here the combina-
tion leading to the lower quadratic error, following a cross-
validation.
2.3. Source Apportionment Least Square (SALS)

Source apportionmentmethods aim at estimating the con-
tribution to air pollution by different ‘groups’ of sources.
Typically, the groups of sources can be defined according to
their typology (e.g. traffic, industry, agriculture or residential-
tertiary emissions), their location (e.g. emissions from dif-
ferent regions of Europe), and/or their emissions period (emis-
sions in different seasons).

The SourceApportionment Least Square (SALS)method
(Nguyen et al., 2018) assumes that uncertainties associated
to predictions by air quality models are mainly due to emis-
sion estimates. Therefore, the SALS method essentially cor-
rect (indirectly) emission data in order to improve air quality
models estimates. This correction is achieved by modulat-
ing, in an optimal way, the sources contributions. The back-
ground is then expressed as:

xb =
G
∑

g
xbg (8)

where G is the number of sources groups and xbg represent
the background associated to the contribution of the group g.
Likewise, the SALS method determines (at each time step)
the analysis xa as a linear combination of sources contribu-
tions:

xa =
G
∑

g
�gxbg (9)

where �g represent the modulation coefficient associated to
the group g. The best estimate minimizes the quadratic er-
ror with respect to observations, which are supposed to be
‘perfect’ (y = Hxt), i.e. not affected by uncertainties. The
coefficients �g are evaluated (at each time step) by minimiz-
ing the cost function:

J (�1, �2, ..., �G) =

(

y −
G
∑

g
�gHxbg

)T(
y −

G
∑

g
�gHxbg

)

(10)
where m is the number of available measurements at the
analysis time. The coefficients �g are determined by solv-
ing the system:

⎛

⎜

⎜

⎝

(Hxb1 )
T(Hxb1 ) … (Hxb1 )

T(HxbG)
⋮ ⋱ ⋮

(HxbG)
T(Hxb1 ) … (HxbG)

T(HxbG)

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

�1
⋮
�G

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

yT(Hxb1 )
⋮

yT(HxbG)

⎞

⎟

⎟

⎠

(11)
When the number of observations m is larger than the num-
ber of sources groups G, the estimate of the coefficients �gis based on a least square problem. The SALS method is
applied only when m ≥ G. In this method we assume that
the sources groups contributions are positive (or null). The
solution of the system (11) is then obtained with the Law-
son and Hanson (1974) method, which guarantees that the
coefficients �g are positive.

3. The SIRANE model
SIRANE is an operational model simulating pollutants

dispersion at local urban scale, assuming steadymeteorolog-
ical conditions over hourly time steps (Soulhac et al., 2011).
It is based on the street network concept (Soulhac et al.,
2011; Soulhac, 2000) and adopts parametric laws to model
the main flow and dispersion processes within an urban area
(Soulhac et al., 2013): convective transport along the street
(Soulhac et al., 2008), turbulent transfer at roof level (Sal-
izzoni et al., 2009, 2007), and exchanges at the street inter-
sections (Soulhac et al., 2009). The presence of a roughness
sub-layer just above the urban canopy (above roof level) is
neglected and the flow is modelled as a surface boundary
layer over a rough surface. There, the pollutants dispersion
is modelled by a Gaussian puff model, with ground reflec-
tion, whose standard deviations are parametrised according
to the Monin-Obukhov similarity theory. The only chem-
ical reactions taken into account in SIRANE concern the
NO2-NO-O3 cycle, computed assuming a photo-stationary
equilibrium (Seinfeld, 1986). The input data of the SIRANE
model are the urban geometry, the meteorological data, the
locations and the modulations of the emissions (represented
as point, line, and surface sources) and the hourly evolution
of the background concentrations, i.e. the concentrations
due to pollutants coming from outside the domain. SIRANE
has been validated against wind tunnel experiments (Salem
et al., 2015; Carpentieri et al., 2012; Soulhac, 2000) and on-
site measurements (Bo et al., 2020b,a; Pognant et al., 2018;
Soulhac et al., 2017, 2012). Futher details on the SIRANE
model can be found in Soulhac et al. (2017, 2011).

4. The case study
The performances of the three DA methods are evalu-

ated on the case study previously used to assess the perfor-
mances of the SIRANE 2.0 model (Soulhac et al., 2017).
We consider NO2 hourly mean concentrations (at ground-
level) in the Lyon urban agglomeration, a 36 km × 40 km
domain (represented with a spatial resolution of 10m in the
SIRANE simulation), for the year 2008. Time-series ofNO2hourly mean concentrations used to assess the performances
of the DA were collected in 16 monitoring stations (fig. 1)
by Atmo Auvergne Rhône Alpes, the local authority for air
quality. These stations can be classified in four distinct cate-
gories: background stations (Côtières de l’Ain, Genas, Saint-
Exupéry, and Ternay), stations located on high-intensity traf-
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Table 1
Statistical indices and quality criteria used to assess estimates (cm is the measured concentration and cp is the
predicted concentration)

Bias RMSE r

Definition cm − cp

√

(

cm − cp
)2

(

cm − cm
) (

cp − cp
)

√

(

cm − cm
)2 (cp − cp

)2

Criteria |Bias| ≤ 0.33 cm RMSE ≤ cm r ≥ 0.60

fic roads (Berthelot, Garibaldi, Grand-Clément, Lyon Pé-
riphérique, Mulatière, and Vaise), stations placed close to
industrial sites (Feyzin and Saint-Fons) and stations within
the urban agglomeration and away from high-intensity traf-
fic roads (Gerland, Lyon Centre, Saint-Just, and Vaulx-en-
Velin). In this dataset, missing hourly data do not exceed 3 %
over the whole year 2008. For this study, the DA methods
combine these measurements with the SIRANE estimates.

To evaluate the reliability of the models results, three
statistical indices are used: the bias, Root Mean Square Er-
ror (RMSE), and correlation coeffficient (r). The definition
of these statistical indices is given in table 1, where are also
reported the criteria according to which we can consider as

Figure 1: Study domain and localisation of the monitoring
stations (A7: Mulatière, BER: Berthelot, COT: Côtière de
l’Ain, FEY: Feyzin, GAR: Garibaldi, GC: Grand-Clément, GEN:
Genas, GER: Gerland, LC: Lyon Centre, LP: Lyon Périphérique,
STE: Saint-Exupéry, STF: Saint-Fons, STJ: Saint-Just, TER:
Ternay, VAI: Vaise, VeV: Vaulx-en-Velin)

‘good’ the model performances. Note that these criteria are
more restrictive than those proposed by Chang et al. (2005)
and Chang and Hanna (2004) (Nguyen, 2017) that are usu-
ally adopted in the literature.

5. Result
5.1. Background evaluation

The quality of the background (SIRANE results) are re-
ported on figure 2, which respresents the bias, RMSE, and
correlation coefficients compared to the measured average
concentrations. The bias is generally positive. This means
that SIRANEglobally underestimates the concentrations. Nev-
ertheless, the bias criteria is validated for all stations. The
RMSE exhibits a nearly linear relation with the measured
average concentrations. The larger is the measured average
concentration, the higher is the RMSE. Note however that
the RMSE criteria is validated for all stations. Inversely, the
lower is the measured average concentration the higher is
the correlation coefficient. The only station which does not
meet the correlation coefficient criteria is an industrial sta-
tion (Feyzin). Globally, the background fullfills the quality
criteria for these statistical indices. However, background
errors are sometimes significant, especially for the traffic sta-
tions.

The figure 2 shows that the performances for traffic sta-
tions are worse than those associated to background, indus-
trial, and urban stations. Results highlight the general ten-
dency of SIRANE in strong underestimating pollutant con-
centrations (positive bias) at traffic stations. These underes-
timations are independent of the location of the receptors and
concern evenly monitoring stations placed in ‘open field’
(Garibaldi, Grand-Clément, Lyon Périphérique etMulatière)
and within street canyons (Berthelot et Vaise). Therefore,
the discrepancies between modelled and measured concen-
trations cannot be specifically associated to the parametric
laws used tomodel pollutant transfer within the urban canopy.
A potential explanation for these discrepancies is related to
vehicles emissions factors. Previous authors (Smit et al.,
2008; Berkowicz et al., 2006) suggest that these factors are
underestimated. Lately, O’Driscoll et al. (2016) indicate that
COPERT modelling results for Euro 6 diesel cars noticeably
under predict NO2 and NOx emissions. Likewise, Jaikumar
et al. (2017) show that the real emissions are underestimated
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a) Bias b) RMSE

c) Correlation coefficient

Figure 2: Bias (a), RMSE (b) and correlation coefficient (c) compared to the measured average concentrations for the background
(SIRANE results). Green (red) areas indicate that the results respect (do not respect) the quality criteria.

by 30-200 %, depending upon different driving modes, with
the standard emission models (like COPERT).

Soulhac et al. (2017) provide possible explanations about
the lower performances related to Vaise and Mulatière sta-
tions. The location of the Vaise station can explain its low re-
sults. This station is located in a district actually bordered by
two hills. This forms a small valley where the air circulation
is somehow decoupled to that occurring in the rest of the city.
This morphological configuration can lead to an accumula-
tion of pollutant within the district, due to the recirculation
flows occurring in this small valley. This complex air circu-
lation is not simulated by the SIRANE meteorological pre-
processing, which assumes that the flow over the whole ur-
ban area is homogeneous on the horizontal plane. Therefore,
SIRANE is not able to model these effects inducing an accu-
mulation of air pollutant within this district. Its predictions
tend then to systematically underestimate real concentration
values. Concerning Mulatière station, Soulhac et al. (2017)

highlight the influence of the stability condition. They in-
dicate that for unstable conditions the model performances
are significantly deteriorated. The figure 6 shows in particu-
lar the correspondence of negative peaks ofL−1

MO (inverse of
the Monin-Obukhov length), i.e strong unstable conditions,
with a systematic underestimation of the measured concen-
tration, and that the model is unable to reproduce the peak
characterising the morning rush hour. This is likely due to
the parameterisation of the plume width in case of strongly
unstable atmospheric conditions which over predicts the dis-
persion and the mixing close to the source.
5.2. DA performances

The performances of the DA methods are assessed by
means of a leave-one-out cross-validation, i.e. by estimating
the concentrations at one station using all measurements, ex-
cept those of this same station. This procedure is repeated
for all stations and the estimates are compared to the mea-
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a) Bias b) RMSE

c) Correlation coefficient

Figure 3: Bias (a), RMSE (b) and correlation coefficient (c) compared to the measured average concentrations for the analysis
from the DA methods. Green (red) areas indicate that the results respect (do not respect) the quality criteria.

a) Global b) Lyon Centre station

Figure 4: Variation of the average RMSE for all stations (a) and for Lyon Centre station (b) compared to the number of
observations used (Na)

C.V. Nguyen et al.: Preprint submitted to Elsevier Page 6 of 11



Data assimilation methods for urban air quality at the local scale

a) Bias b) RMSE

c) Correlation coefficient

Figure 5: Bias (a), RMSE (b) and correlation coefficient (c) before (background) and after DA. Green (red) areas indicate that
the results are better (worse) after DA. The dashed lines delineate 20 % improvement - decline of the statistical indices.

surements. This approach aims at evaluating the quality of
the estimates from the DA methods where no observations
are available. Here, the SALS method is implemented con-
sidering three groups of sources: i) the traffic contribution,
ii) the heat emissions, and iii) the industrial emissions with
the background concentration. These contributions are eval-
uated with the SA-NOX SIRANE module (Nguyen et al.,
2018). The parameters used to model the matrix B are �0 =
0.75, L� = 0.05, and � = 0.95.

The figure 3 shows the bias, RMSE, and correlation co-
efficients compared to the measured average concentrations
for the analysis from the three DA methods. Unlike back-
ground (SIRANE), there is an almost balanced ditribution of
negative and positive bias with the three DA methods. The
bias criteria is validated for all stations, except for one station
with the BLUE and SALS method. As for background, the
RMSE exhibits a nearly linear relation between the RMSE
and the measured average concentrations. With the three

DA methods, the RMSE criteria is validated for all stations.
Likewise, the correlation coefficients validate the quality cri-
teria for all stations, except one (Mulatière traffic station).
Statistically, the performances of the three DA methods are
globally good and similar to each other. Nevertheless, the er-
rors after the application of DA can still be significant. Note
that like background, figure 3 highlights that the results for
traffic stations are worse than those related to background,
industrial and urban stations.

To assess the influence of the number of measurements
used during the assimilation (Na), the concentrations are
evaluated (with theDAmethods) for each station, usingmea-
surements provided byNa others stations (with a cross-validationapproach), which are identical for each time step (Na =
1, 2, ..., m − 1). This is done for all possible combinations
of Na stations. Note that this assessment is done only for
the time steps at which measurements are available at all (m)
stations. The figure 4.a shows the average RMSE compared
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Figure 6: Measured and modelled concentrations at Mulatière station superposed with the evolution of the inverse of the
Monin-Obukhov length

toNa for the three DA methods (here average RMSE means
that, for eachNa value, all the RMSE obtained by assimilat-
ing Na measurements are averaged regardless the station).
Globally, the higher is the number of observations used, the
smaller is the average RMSE for the three DAmethods. This
confirms the results by Denby and Pochmann (2007), who
enlighted that DA is more efficient as the number of observa-
tions increases. The averageRMSEdecreases by 20.0 µg.m−3

between Na = 3 and Na = 15 with the SALS method.
With the BAT and BLUE methods, the RMSE decreases
by 7.1 µg.m−3 and 3.7 µg.m−3 respectively between Na =
1 and Na = 15. However, from a given Na value (ap-
proximately from Na = 9), the RMSE does not further de-
crease and attains a constant value for both the BAT (RMSE
= 17.2 µg.m−3) and BLUE (RMSE = 15.5 µg.m−3) meth-
ods. Denby and Pochmann (2007) used a kriging approach
(Cressie, 1993) and pointed out that the DA provides more
reliable concentration estimates when their spatial variabil-
ity occurs over a spatial scale exceeding the distances be-
tween the measurements stations. In our case, this does not
hold because concentration variations occur on typical spa-
tial scale of tens of meters, whereas the distance between the
two closest stations is about 1.2 km (the average distance be-
tween the stations is about 9.7 km). This can explain why the
average RMSE does not further decrease fromNa = 9, espe-
cially with the BLUE method. The figure 4.a also indicates
that the average RMSE are better with the BLUE method.
Moreover, the variation of the average RMSE is less sen-
sitive to Na with the BLUE method than with the SALS
and BAT methods. The figure 4.b shows the RMSE com-
pared to Na, obtained with all the combinations, for Lyon
Centre station. Results indicate that the RMSE associated to
Na = m − 1 is higher than the RMSE obtained with some
combinations involving lower Na measurements. The best
RMSE is associated to a combination ofNa = 9 andNa = 5
measurements for the BLUE andBATmethods, respectively.
Likewise, for each Na value, the RMSE varies sometimes
significantly compared to the combinations of stations used.
We can then conclude that the number of observations and

the characteristics of the measurements both influence the
efficiency of the DA. These results suggest that there are
combinations of stations that are more reliable than other.
5.3. DA versus background

In figure 5 we compare the bias, RMSE, and correla-
tion coefficients computed before (background) and after the
application of DA. DA methods mainly improves the bias
which are initially higher and positive, especially those as-
sociated to traffic stations. In the other hand, bias are gener-
ally worse after DA for background, industrial and urban sta-
tions. We note that only the BLUEmethod improves the bias
which are initially negative and positive (BAT and SALS
methods improve only bias which are initially positive). This
shows that this method is able to correct the background in
cases with spatially non-uniform bias. Once applied DA,
the RMSE and the correlation coefficients improve of ap-
proximately 20 %, regardless of the DA method. Note how-
ever that the improvement of these two statistical indices is
globally slightly lower for traffic stations. Measured con-
centrations at these stations are strongly influenced by lo-
cal nearby effects (e.g. traffic emssions). Therefore, it is
more difficult to correct discrepancies for these stations us-
ing only measured concentrations from remote stations (DA
is here carried out with a leave-one-out cross-validation ap-
proach). This is in line with the comments of Denby and
Pochmann (2007) who indicate that the reliability of the DA
depends on the spatial variability of the concentrations and
the distance between the stations. Globally, the DA meth-
ods improve statistically the estimated concentrations. Note
nevertheless that the improvements and the degradations are
not uniform in space.

Soulhac et al. (2017) highlight the relation between the
stability condition and the discrepancies between measured
and modelled concentrations, especially for Mulatière traffic
station. The figure 6 presents two weeks time series of mea-
sured and modelled NO2 concentrations at Mulatière station
where the evolution of L−1

MO is also superposed. The results
show that the DA methods sometimes manage to improve
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a) SIRANE (background) b) BAT

c) SALS d) BLUE

Figure 7: NO2 mean concentration field within the Lyon urban agglomeration for the year 2008 estimated with SIRANE (a) and
the three DA methods (b, c, and d)

the estimates when negative peaks of L−1
MO (unstable condi-

tions) occur, at which time the background (SIRANE) tends
to underestimate the measured concentrations.

The figure 7 shows ground-levelNO2 concentration field(averaged over 2008) over the Lyon urban agglomeration,
before and after DA (estimatedwithout cross-validation). The
concentration field obtained with the BAT and SALS meth-
ods are comparable. With these two DA methods the con-
centrations are slightly higher thanwith the background (SIR-
ANE). Within the city centre, the concentrations are slightly
lower with the BLUE method than with the two others DA

methods. Although the three DAmethods lead to similar sta-
tistical indices (after cross-validation), the NO2 mean con-
centration field resulting from these DA methods are never-
theless slightly different.

6. Conclusion
In this study, we have assessed the performances of three

data assimilation methods, namely BAT, BLUE, and SALS,
in the evaluation of urban air quality. These methods have
been applied with the SIRANE air quality model focusing on
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NO2 hourly mean concentrations in the Lyon agglomeration
for the year 2008.

The statistical performances associated to DA methods
are globally satisfactory and show that these methods can
improve results of urban air quality models. Nonetheless,
once applied DA, the errors can beworse than those obtained
without applying it. Also, the improvement of the results is
not spatially uniform and the best results is not always ob-
tained with the same DA method.

Globally, the performances are similar for the three DA
methods. Nevertheless, only the BLUE method improves
bias that are spatially non-uniform. Generally, the predic-
tions provided by these DA methods are improved increas-
ing the number of observations. Compared to othermethods,
the BLUEmethod is however less sensitive to the number of
measurements used. The estimates can sometimes be better
using only few particular observations, suggesting that there
are more relevant combinations of stations to use for DA.
This feature can be the object of an optimisation network
problem.
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