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Abstract: The global exploring feature of the surrogate model makes it a useful intermedia for design
optimization. The accuracy of the surrogate model is closely related with the efficiency of optima-
search. The cokriging approach described in present studies can significantly improve the surrogate
model accuracy and cut down the turnaround time spent on the modeling process. Compared to
the universal Kriging method, the cokriging method interpolates not only the sampling data, but
also on their associated derivatives. However, the derivatives, especially high order ones, are too
computationally costly to be easily affordable, forming a bottleneck for the application of derivative
enhanced methods. Based on the sensitivity analysis of Navier–Stokes equations, current study
introduces a low-cost method to compute the high-order derivatives, making high order derivatives
enhanced cokriging modeling practically achievable. For a methodological illustration, second-order
derivatives of regression model and correlation models are proposed. A second-order derivative
enhanced cokriging model-based optimization tool was developed and tested on the optimal design
of an automotive engine cooling fan. This approach improves the modern optimal design efficiency
and proposes a novel direction for the large scale optimization problems.

Keywords: sensitivity method; surrogate model; cokriging; optimization; CFD

1. Introduction

With its inherent benefit of uncertainty prediction, Kriging and cokriging meth-
ods have drawn much attention in recent decades. An overwhelming number of ap-
proaches emerge posteriori to the design and analysis of computer experiments (DACE)
approach [1,2], including surrogate-based optimization (SBO), surrogate-assisted evolu-
tionary algorithms [3]. Some recent approaches show impressive performance for high
dimensional problems with 30–200 design variables [4,5]. However, the improvement on
model accuracy remains to be further studied. Studies on model reliability, either from
local or global points of view [6,7], follows two main paths. First, by applying different
training strategies [8], one tries to improve the local precision of the surrogate model,
especially that of the optima neighborhoods, so-called “design space exploitation”. This is
particularly useful, and at times indispensable for large-scale optimization. Recent studies
also deal with different strategies to find the balance between exploration and exploitation
by using multi-fidelity [9] and an ensemble of different surrogate methods [10]. Second, by
introducing assistant information such as derivatives to the original dataset, the surrogate
model can be improved. The most typical development concerns the integration of the
adjoint method and the gradient-enhanced cokriging model in the aerodynamic shape
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optimization [11]. What is worth noticing here, the co-Kriging method [9], which uses the
correlations between several models of various fidelities, is not the same with the cokriging
method in this study which interpolates the samples and the associated derivatives at the
same time, generating one-single surrogate model. One remarkable advantage of adjoint
method lies in the independence of the number of design variables, making this approach
an appropriate choice for high-dimensional problems. However, the gradients obtained
from this method depend on some given objective functions because the reversal mode
differentiation is used, consequently, adding new objectives requires a new adjoint-state
evaluation. Furthermore, for the modeling of multimodal functions, the higher is the order
of derivatives used, the better is the model accuracy [12,13].

Yet the computational cost, being the main obstacle, limits the application of the
high-order approach. With a classical differentiation method such as finite differences,
depending on the discretization scheme, the number of evaluations required multiply by
a factor of n (the number of parameters) for the differentiation of every higher degree of
order. Although the higher accuracy brought by the derivatives, the total computational
effort remains quasi-identical with a classical derivative-free method. The integration of
derivatives in a surrogate-modeling process is not efficient unless the derivatives can be
obtained in a cheap way.

This paper introduces the integration of the sensitivity analysis method and the
derivative enhanced cokriging surrogate model. The former allows us to pursue the high-
order derivatives in a cost effective way. The latter can make the best of the auxiliary
information and generate a far-more accurate surrogate model.

The sensitivity analysis is to obtain the sensitivity of the output to the input by using
their differential relations [14]. In the optimal design, the sensitivity analysis is often used
for the quantitative study of the variation of the objective functions in response to some
perturbations of the parameters. It can also be used to evaluate the robustness of the
optimal design, performed at the post-processing phase. However, the implementation
of sensitivity associated methods to the modeling phase is also feasible. The sensitivity
information at the design site can be used to build the surrogate model. This is particularly
useful for the problems featuring important nonlinear characteristics.

For the aerodynamic shape optimization, there are several ways to compute the
sensitivities of design variables: finite difference method, complex step method [15,16],
automatic differentiation and sensitivity equation method. E.Colin, Etienne, Pelletier and
Borggaard brought forth the idea of continuous sensitivity equation method, illustrating
how to obtain a fast solution of a flow field and its sensitivities with the finite element
method [17]. The sensitivity equations are formed by implicitly differentiating the Navier–
Stokes equations. Mahieu et al. proposed the generalized formulation of this approach
which allows computing the first and second order derivatives of any parameters [18].
Please note that some key problems remain unsolved due to the high nonlinearity of Navier–
Stokes equations and the derivability difficulty of turbulence model used in Reynolds-
averaged Navier–Stokes equations.

A high-order extension of sensitivity equation method has been studied by Aubert,
Ferrand et al. [19,20]. Instead of differentiating the governing equations directly, derivatives
are computed via a direct mode automatic differentiation [21] applied to the discretized ref-
erence solutions [22,23]. As with the adjoint-state method, this approach applies its reverse
mode to get high-order derivatives. Some non-commercialized tools have been developed,
namely Turb’Flow, Turb’opty and Turb’post, which are flow solver, sensitivity solver and
flow extrapolation tool respectively. Based on these tools, Soulat has accomplished an
aerodynamic shape optimization for a fan system used in the automotive engine cooling
module [24]. High order derivatives were used to build a polynomial surrogate model,
which can be viewed as an aerodynamic database extrapolated from one single reference
design. Taylor expansion was employed for the extrapolation. Optimization based on
this model brought a significant reduction of aerodynamic tip loss due to secondary flow.
However, only one single reference design has been considered in his study, so the trunca-
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tion error presented by nature, and the effective region covered by the model is limited
to a certain radius. By introducing derivative-assisted cokriging method, it is possible to
enlarge the covered region.

In summary, to make the best of their respective advantages, the high order sensitivity
method and cokriging surrogate model are integrated in current studies. The high-order
sensitivity approach is firstly introduced, then its integration with Hessian-enhanced
cokriging model is presented. This methodology is employed for the aerodynamic shape
optimization of an automotive engine cooling fan.

2. Sensitivity Approach in CFD Simulation Based Aerodynamic Shape Design

At stationary equilibrium state, the Navier–Stokes equations can be expressed in the
following form:

F(q(P), P) = 0 (1)

With F the flux vectors: the mass, the momentum and the energy in terms of con-
servative variables q(ρ, ρU, ρE), and the transport of turbulent variables such as k and
ω used in Reynolds-Averaged Navier–Stokes equations (RANS) [20]. P stands for the
design parameter, which can be either geometric or physic parameter. Differentiation of
this equation with respect to P yields:

∂F
∂q
|P(q, P) · dq

dP
+

∂F
∂P
|q(q, P) = 0 (2)

It can also be written:

∂F
∂q
|P(q, P) · q(1) = − ∂F

∂P
|q(q, P) · dP (3)

in which q(1) is the first order variation of q by varying P by dP.
The Jacobian matrix G(q, P) = ∂F

∂q |P allows writing the nth order differentiation as
dn F
dPn = ∂F

∂q · q
(n) = G · q(n). The right part R = − ∂F

∂P · ∆P is the flux vector variation in
function of ∆P. Hence the equation can be represented in this form:

G · q(1) = R (4)

The nth order differentiation q(n) can be constructed by recursively differentiating
Equation (4).

G · q(2) = R(1) − G(1) · q(1)
G · q(3) = R(2) − G(2) · q(1) − 2G(1) · q(2)
. . .
G · q(n) = R(n−1) −∑n−1

i=1 Ci
n−1G(i) · q(n−i)

(5)

Please note that the linear system is based on the Jacobian matrix G, which is usually
available in a classical implicit Computational Fluid Dynamics (CFD) solver. The high-
order derivatives q(n) can then be used to reconstruct the flow fields corresponding to
parameter variations ∆P, as shown in Figure 1.

The implementation of this methodology requires a coherence between the algorithm
used for the discretization of the Navier–Stokes equations and that of the resolution of
sensitivity equations. However, the derivability difficulty presented in the discrete RANS
equations when using SST-K-ω turbulence model with Roe discretization scheme. Negative
dissipation term has been found during the resolution of sensitivity equations, leading to a
negative turbulent viscosity, which caused the crash of the solver. Positivity preservation
study has been carried out but there is not yet any constructive conclusion.
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Figure 1. Diagram of parametrization process (Ref: [19]).

For a methodological illustration, this study adopts an alternative approach for the
derivative computation by using the finite difference method. This does not deprive the
originality of the methodology. To respect the original idea of the sensitivity method, a mesh
deformation method is applied [25]. The latter relies on a morphing technique which calcu-
lates the mesh(nodes) displacements with a Radial Basis Function (RBF) approach [26,27].
The mesh deformation is a RBF type propagation out of the displacements of some user-
defined control points which are usually positioned on the boundaries of computational
domain. A such type deformation is illustrated on a 2-D surface mesh in Figure 2, where
the dots refer to the control points. Displacements are attributed to the inner control points,
the outer ones are fixed deliberately. The displacements of mesh nodes are calculated
following a radial basis function defined a priori. This technique is employed to obtain
deformed mesh of an automotive engine cooling fan blade (Figure 3).

Figure 2. Mesh deformation driven by control points (Ref: [26]).

One single reference mesh is used for one geometrical configuration. Derivatives can
be deduced from the results of some new CFD simulations based on deformed meshes.
Compared with the finite difference discretization scheme which parametrizes the geometri-
cal configuration directly, followed by a re-meshing process for each new configuration, the
mesh deformation approach deals with one single reference mesh, which conserves the total
mesh element number and assures the similar discretization of the computational domains.

Figure 3 compares the original surface mesh (on the left) with a deformed mesh (on
the right) following a variation of sweep angle. As it is shown from the global view of the
blade and local zoomed view to the trailing edge, the refinement levels are preserved, the
total mesh element number remains unchanged after the deformation. The deformation
of the blade surface mesh is propagated into the computational domain in a RBF pattern
as presented before. The derivative calculation takes the same method presented in the
reference [28].
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Figure 3. Deformation example: sweep angle variation and the zoomed view to the trailing edge.

3. Derivative-Enhanced Cokriging Method

Surrogate models of three objectives in function of three parameters (see for details
in section of “Case study”), can be built out of the database constituted of the CFD and
sensitivity analysis results. Different approaches are available, being either parametric
or non-parametric [29]. A polynomial model, based on one single reference design, is
taken in a previous study [28]. The cokriging method which interpolates several reference
designs and their derivatives, can effectively reduce the truncation error and enlarge the
covered region.

By assuming a stochastic process of all the interpolations upon the given sample
points, the Kriging method models an unknown function through a mean function and
a covariance function. It is often the best linear unbiased prediction from some given
evaluations, i.e., the prediction error is minimized. The regression model can be con-
sidered to be the mean function of all the possible interpolation functions subject to the
existing evaluations. Constant average functions are frequently used as the regression
model [30,31]. However, once differentiated, high-order derivative-enhancing effect will be
erased. On the contrary, a too high order regression model may provoke some unrealistic
local oscillation similar to that of Runge phenomenon while equidistant samples are used
for the interpolation [32,33]. Experience shows the second order polynomial function is
good compromise and it is, thereforem chosen for current study which uses databases up
to second order. The regression matrix for a cokriging model consists of a regression part
and a differentiated part which takes the following form:

F (x) =

 F0
d(F )
d2(F )

 (6)

where d(F ) and d2(F ) are respectively the first order and second order derivatives of the
regression matrix F .

Correlation Model

The correlation model reflects the spatial correlations between the points of the design
site. The prediction error of a Kriging model is assumed to follow a random process,
a careful choice of law of probability for this process is essential. Generally, the law
of probability is unknown. Assumption has to be made in order to characterize the
covariogram in the random field. The Gaussian model is the most-frequently used, which
assumes a priori the second-order stationary conditions of the design site, making Kriging
modeling a Gaussian process. The interpolation properties primarily depend on the local
behavior of the random field. Near to the origin, the Gaussian model shows a quadratic
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behavior. For the sake of derivability, it is chosen for current study, the correlation between
two samples can be expressed as:

R(θ, sj
k, sj

l) =
n

∏
j=1

exp(−θjd2
j ) (7)

where dj = sj
k − sj

l is the Euclidean distance between two samples sk and sl at jth dimension.
Where j ∈ [1, n] denotes the dimension index, k, l ∈ [1, m] are the index of the sample point.

The correlation model can be established by evaluating a hyper-parameter namely θ,
which can be obtained by the minimizing of the following function:

ϕ(σ, R) = det(R)
1
m ∗ σ(θ)2 (8)

where m is the number of sample points, σ is the standard deviation of the stochastic
process of the samples, R is the correlation matrix.

The correlation matrix can be written:

R =


cov(S, S) cov(S, dS) cov(S, d2S)

cov(dS, S) cov(dS, dS) cov(dS, d2S)

cov(d2S, S) cov(d2S, dS) cov(d2S, d2S)

 (9)

where cov stands for the covariance, S represents the normalized design site, interpreted
by the position of sampling points in a unit hyper-cube, dS and d2S are the differentiated
forms of S.

The covariance between any reference point sl and all the rest reference points is
given by:

cov(si
l , sj

k) = σ2R(si
l , sj

k) (10)

where i, j ∈ [1, n] denote the dimension indices, k ∈ [1, m], k 6= l denote the sample indices,
σ2 is the variance of the sample.

An example of the correlation between the first order derivative of ith dimension for
kth point and the first order derivative of jth dimension for lth point is given:

cov(
∂S
∂si

k
,

∂S

∂sj
l

) = σ2 ∂2R(si, sj)

∂si
k∂sj

l

(11)

Once the regression matrixF and the covariance matrix R are calculated, the cokriging
model ŷ(x) can be deduced:

ŷ(x) = f (x)T β + r(x)T R−1(Y−Fβ), (12)

where r(x) is the correlation vector between any design to be predicted and existing
reference points, Y is the response matrix, regression coefficient vector β can be calculated
by a least square estimation which gives:

β∗ = (FT R−1F )−1FT R−1Y (13)

Variance σ2 is given by:

σ2 =
1
n
(Y−Fβ)T R−1(Y−Fβ), (14)

The derivatives calculated by the sensitivity approach is integrated with the above
described derivative-assisted cokriging method. Models can be built for all the objective
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functions. Optimization can be performed based on these models. This methodology is
applied to the optimal design of an automotive engine cooling fan.

4. Case Study

An automotive engine cooling fan, as shown in Figure 4, has been optimized based
on the presented methodology. A reference fan design has been adapted for the particular
surrounding of the vehicle underhood, where the downstream flow is radially deviated
from its axis by the engine.

Figure 4. Geometrical parameter definition.

The pressure rise ∆p from upstream to downstream of the fan wheel, the torque T
acting on the fan and the aerodynamic efficiency η are considered to be objectives to be
optimized. The first study has been performed with only one database, details can be found
in the work of Zhang et al. [28] and references therein.The three parameters considered
are: variations of stagger angles at mid-span and tip as shown in Figure 4, flow rate Q.
For simplicity, the variations are illustrated with γm and γt for mid-span stagger angle
variation and tip stagger angle variation respectively. Derivatives of the three objectives
with respect to three parameters are computed based on CFD simulations performed on
the deformed mesh.

Two geometrical configurations, functioning at two operating points, generates four
reference designs. Based on the derivative-assisted reference data, surrogated models are
built and are used for optimizations.

For one single operating point with first and second order derivatives, at most it
describes an evolution of order 2. Yet, the characteristic curve in Figure 5, which describe
two objectives : ∆p and efficiency at different flow rates, shows an inflection at the operating
point (flow rate 2500 m3/h) and a linear evolution at the flow rates higher than 2500 m3/h,
a behavior which can only be approximated by a curve of order 3 or higher. With one
single flow rate, one cannot reproduce this characteristic for such an extended range. By
associating two points, however, it is possible to depict a characteristic of order 5, hence
enlarge the range of extrapolation.

Figure 6 illustrates the schema of coupling of different databases. The reference values
are 2300 m3/h and 2600 m3/h for the flow rate, 0◦ and 3◦ for the stagger angle at mid-
span, the stagger angle at the tip takes its reference relative value 0◦. The circles represent
the extrapolation from one single reference point, i.e., they are polynomial models. The
rectangulars show the coupling of two or four databases. The characteristic curves of the
two fans are shown in Figure 5.
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Figure 5. Reference fan characteristic curves: ∆p-Q and η-Q. T00M00 and T00Mp3 represent two
different geometric configurations. The stagger angle at mid-span of T00Mp3 is 3◦ more than that of
T00M00 (Reference configuration).

Figure 6. Metamodeling schema.

With a processor of type Inter(R) Core(TM) i7-2640M, 8G physical RAM, the building
of models C and G have consumed about 6 minutes of CPU time, the construction of model
D takes about 23 minutes because of the inverse operation of a larger size of covariance
matrix R. Time is considerably short comparing with a CFD run, which typically takes
more than 1000 CPU hours.

Figure 7 (left) shows the prediction on ∆p by the model C, where the stagger angle is
fixed at its reference value. The two stars shows the ∆p of two reference points. The error
bar (red) is given by the surrogate model. CFD evaluations are illustrated with crosses.
Notice that the blue line in the model does not pass by all the evaluated points because
of all the CFD results, except for the reference ones, are used to calculate the derivatives
but not to build the model directly. The error bar shows clearly the error is minimized as
approaching the reference points.
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Figure 7. Comparisons among models C, G and D: ∆p-Q. γm = 0.

Figure 7 (right) shows the comparison of three surrogate models: C, G and D. For the
flow rate, the curve of model C and D passes by two reference points Q = 2300 m3/h and
Q = 2600 m3/h. The curve of model G does not pass by those points, which is originally

from the error of second order cross derivative ∂2∆p
∂(γmQ)

. At high flow rate, model D is closer
to model G, but not model C, this fact shows the influence from the dimension of γm. In
fact, γm has a similar effect with the flow rate. By increasing the γm, the air incidence is
reduced, the blade is discharged, a phenomenon that can also be observed by increasing
the flow rate. Model D, which couples four different databases, allows us to obtain more
reliable results on a larger range of parameter variation. Hence this model is used to exploit
the optima according to different criteria.

4.1. Mono-Objective Optimization Based on Model D

Several optimizations have been done, one of them is the maximization of efficiency
by varying all the parameters at their full ranges. The goal of this optimization is firstly
to have an idea about the maximum efficiency that can be found in the current design
space, secondly to testify this approach of uniting the optimization algorithm and the
surrogate model.

The genetic algorithm [34] is used with an initial population of 5000, evaluated on
100 generations. Thanks to the surrogate model, 500,000 evaluations have been done within
a few hours, a task which is not achievable by CFD means. What is worth mentioning,
the time-cost can be further reduced by using the long term memory assistance approach
for evolutionary algorithms where the same solutions are not evaluated again [35]. This
will be highly recommended when the number of parameters is higher, which should be
considered in the future studies.

The result is shown in Table 1.

Table 1. Comparison between the reference design and the optimum on efficiency.

Case γt (◦) γm (◦) Q (m3/h) ∆p (Pa) T (Nm) η (%)

Reference CFD 0 0 2300 226.4 0.9073 54.36
OptimA model −1.30 2.25 2324.4 209.6 0.8265 55.90
OptimA CFD - - - 209.4 0.8237 55.94

To assess the validity of the prediction, the results are compared with a CFD run. The
differences are no more than 1% for all the three objectives, an error within the numerical
uncertainty of the CFD simulation. Hence this approach is validated for the maximum
efficiency design.

The optimization proposes a set of parameters which modifies the reference geometry
and eventually leads to the required performance. The analysis of physics helps us to
understand the local modification on the flow field by the optimizer.
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The pressure distributions on six different radii have been drawn to have a global
view of the fan blade charges (Figure 8).

Figure 8. The pressure distribution at six constant radii.

This graph highlights the strong acceleration at the leading edge of the blade, which
gradually amplifies at larger radius. The most important outcome of the optimizer is a
discharged blade particularly at the region near the tip.

To better understand the flow structure modification, the radial profile of the axial
velocity at about 4 mm downstream of the trailing edge, circumferentially averaged, is
mapped out (Figure 9), where the reference fan “Reference” is compared with the efficiency-
optimized fan “optimA”.

Figure 9. Axial velocity at the downstream of the fan wheel.

Globally the radial evolution of the axial velocity of the optimum design is similar
with that of the reference design. Both of them show a forced vortex characteristic, because
only two stagger angles at mid-span and tip are modified. This also explains the similarity
between two profiles near the hub. The axial velocity is small near the hub and linearly
increases until a radius of 190 mm, beyond which the secondary flow and the wall effect of
the shroud predominate. The optimum configuration maintains a null axial velocity at the
tip, which allows the blade to work more efficiently at higher radius. This analysis shows
the complexity of the flow near the shroud: tip vortex, secondary flow, brutal deviation of
inlet velocity from axial to radial, high charges at higher radius. This study is carried out on
only two geometrical parameters. According to this analysis, it will be useful to add more
parameters such as the stagger angle at the hub section of the blade for the future study.

4.2. Multi-Objective Optimization Based on Model D

Based on model D, a multi-objective optimization has been performed to pursue an op-
timal design in term of performance at two different operating conditions: Qn = 2300 m3/h
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and Qi = 2800 m3/h. At nominal operating point 2300 m3/h, a higher efficiency is wanted,
for 2800 m3/h, a higher pressure rise ∆p is preferred in order to have an extended range of
flow rate. The flow rate corresponding to ∆p = 0 is called the “transparent” point, beyond
which the fan module generates negative pressure rise, bringing extra drag for the vehicle.
A transparent point with higher Q value allows vehicle running at higher speed without
generating extra drag. According to the fan characteristic curve shown in Figure 5, it is
more likely to have a higher flow rate at transparent point if the ∆p at 2800 m3/h is higher.

Two objectives: efficiency at Qn = 2300 m3/h, namely ηn and pressure rise at
Qi = 2800 m3/h, namely ∆pi, have been considered. The algorithm NSGA-II [36] has
been employed with 5000 individuals and 100 generations due to the inexpensive model-
based evaluations. For each point, two performance evaluations have been done thanks
to the surrogate model, one evaluation at 2300 m3/h and the other at 2800 m3/h, hence
10,000 evaluations have been done for each generation. The bi-objective Pareto front is
illustrated (Figure 10).

Figure 10. Pareto front of optimization: maximization of ηn (2300 m3/h) and ∆pi (2800 m3/h).

In Figure 10, the initial individuals, marked as red points, form a 2-dimensional
projection on the objective surface ηn − ∆pi. The frontiers are clearly depicted, where
the Pareto front can be seen on the top-right part, marked with black dots, formed of
502 survived individuals.

In order to illustrate the possible exploitation with the surrogate model, two optima
have been adopted on the Pareto front, one favors the transparent point (optimB) and
the other valorize the efficiency of nominal condition (optimC). Optimization results are
compared with the reference configuration “Ref” in Table 2.
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Table 2. Result of multi-objective optimization at two operating conditions.

Geometry γt (◦) γm (◦) Q (m3/h) ∆p (Pa) T (Nm) η (%)

Ref 0 0 2300 226.4 0.9073 54.36
Ref 0 0 2800 184.8 0.9019 54.23

OptimB −2.88 0.04 2300 242.0 0.9689 54.36
OptimB −2.88 0.04 2800 199.8 0.9716 54.39

OptimC −2.65 0.99 2300 232.1 0.9163 55.20
OptimC CFD - - 2300 235.1 0.9268 55.28

OptimC −2.65 0.99 2800 184.8 0.9074 53.87
OptimC CFD - - 2800 183.0 0.9091 53.38

The numbers in italics are those values of objectives concerned in this optimization.
By keeping the same efficiency with the reference geometry, OptimB manage to raise the
pressure rise at 2800 m3/h by 15 Pa, or 8.1%. In addition, if the pressure rise at 2800 m3/h
is kept unchanged, the efficiency at 2300 m3/h can be improved by 0.84, or 1.5% higher
than the reference configuration. These improvements are analyzed according to the flow
structure modifications.

The variation of stagger angles changes the radial distribution of fan load. Comparing
to the reference geometry, the optimB shows an important variation of tip stagger angle,
which charges the tip with a high incidence, so that a higher flow rate can be accepted. By
keeping almost the same stagger angle at the mid-span, the efficiency stays unchanged
comparing with the reference geometry. For the optimC, the tip stagger angle has little
variation comparing with optimB, but a more important variation at mid-span. This
reduces the incidence and eventually augments the ηn (2300 m3/h) by keeping the same
level of ∆pi (2800 m3/h).

To better understand the optimization result shown on the Pareto front, a Self-
Organizing Map (SOM) [37] visualization was created with all the individuals on the
Pareto front. SOM can be used to make the connection between design-space and objective-
space effectively. It is a type of neural network designed to understand high-dimensional
data with help of its low-dimensional representations. Each variable (parameter or objec-
tive) is depicted as a two-dimensional map which preserves topological properties of the
Pareto optimal solutions. One individual is always found at the same 2-D position from
one map to another, distinguished with the other individuals according to their colors,
which represent the magnitude of the variable.

In Figure 11, there are four maps which represent the values of two parameters and
two objectives on the Pareto fronts. Only negative values are observed on the tip stagger
angle plot. All the solutions are kept away from their reference value. By contrast, large
variation (5.36◦) is shown for the mid-span stagger angle, the positive values correspond
to the individuals which give better efficiency but less pressure rise ∆pi, the negative
values correspond to the individuals which give a less efficiency but a better ∆pi. A clear
correlation can be drawn among three variables: mid-span stagger angle, efficiency ηn
and pressure rise ∆pi. CFD simulations have been performed to validate the optimA and
optimC, the maximum relative error is 1.3%, found for the ∆p of optimC at 2300 m3/h,
an error within the numerical uncertainty. The approach is again validated for this multi-
objective optimization.
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Figure 11. SOM visualization of Pareto front, optimA (green diamond point) and optimC (blue
square point).

5. Conclusions

The integration of the second-order sensitivity method and the cokriging surrogate
model was studied in this paper. The derivative-assisted information significantly improve
the model accuracy. Optimizations are performed based on established surrogate model.
One of the optimization results shows obvious improvements on both the aerodynamic
efficiency and the torque for an engine cooling fan. One multi-objective optimum succeeds
in enlarging the operating range of the fan, the other manages to keep the same range and
improve the efficiency at nominal condition.

The contributions of this paper are twofold:

1. The cokriging method can make the best use of the derivatives and significantly
improves the surrogate model accuracy;

2. The implementation of parameterization tool (Turb’Opty) has been pre-illustrated.
The cycle of optimal design can be effectively shortened through low-cost derivatives.
This study proves the validity and efficiency of this methodology.
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Abbreviations
The following abbreviations and symbols are used in this manuscript:

CFD = Computational Fluid Dynamics
RANS = Reynolds-Averaged Navier–Stokes equations
RBF = Radial Basis Function
F = Flux over any arbitrary grid cell
q = Flow variables
P = Design parameter
G = Jacobian matrix
m = Number of sample points
n = Number of dimensions
R = Kriging correlation matrix
F = Kriging regression matrix
θ = Kriging correlation parameter
dj = Distance between two samples
S = Set of a sampling
si

k = ith dimension of kth sample
ŷ = cokriging predictor
f x = Regression function for prediction
β = Coefficient vector of regression function
β∗ = Generalized least squares solution of regression problem
r = Correlation vector of a design to be predicted
Y = Kriging objective matrix
σ = Standard deviation
Q = Volumic flow rate
∆p = Pressure variation through fan system
η = Static efficiency
T = Torque of electric motor
γm = Stagger angle at mid-span
γt = Stagger angle at tip
Cp = Pressure coefficient
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