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The response of a 2D droplet on a wall executing small sinusoidal vibrations 

Abbreviated title: Droplet on a vibrating wall 
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Laboratoire de Mécanique des Fluides et d’Acoustique (LMFA), Université de Lyon, France 
 
Summary 

This study concerns a two-dimensional liquid drop surrounded by gas and attached to a 
sinusoidally vibrating wall. Gravity is neglected and the moving contact lines are modelled 

using a Navier-type boundary condition at the wall and a prescribed contact angle,  , which 

can take any value in the range 0    . The vibration amplitude, and hence the departure 
from equilibrium of the drop, is assumed sufficiently small that the problem can be 
linearized. Wall vibration can have components both normal and tangential to the wall. The 
solution of the linear problem can be expressed as the sum of two decoupled components 
corresponding to the response to purely normal and purely tangential vibration, which are 
respectively symmetric and antisymmetric with respect to reflection in the symmetry plane of 
the equilibrium drop. Asymptotic analysis of the drop oscillations for small Ohnesorge 
number, Oh , brings out two distinct damping mechanisms, both of which are accounted for. 
One, arising from viscous dissipation in the regions near the contact lines, is characterized by 

a parameter  . The other comes from the boundary layer at the wall and is of order 1/ 2Oh . 

The small- Oh  problem has been implemented numerically. As expected, lightly damped 
normal modes are found to have resonant response close to their inviscid oscillation 
frequencies. Damping coefficients for each of the two damping mechanisms and lightly 
damped modes are determined as a function of contact angle. The relative importance of 
boundary-layer and contact-line damping is quantified and found to depend both on the 

contact angle and on 1/ 2/ Oh . Cases can be found in which the two damping mechanisms 

have comparable effects, as well as others for which one or other of the mechanisms is 
dominant. Comparison with DNS, which allows for nonlinear effects and has the same 
contact-line model, shows agreement for a particular case having small Oh and small wall 
displacement amplitude. 

Keywords: Drop vibration, resonance, damping, moving contact lines, numerical simulation. 

1. Introduction 

Studies of the free oscillations of a spherical drop of liquid surrounded by a gas go back a 
long way (see Rayleigh (1879) for the inviscid case and Lamb (1932), section 355 for the 
damping due to small viscosity). Such drops have normal modes with certain natural 
frequencies and damping rates. If the damping is weak, when subjected to small sinusoidal 
forcing, they respond strongly at their natural frequencies, i.e. there is resonance. 

                                                
1  Peter passed away on June 28, 2020. He will be sadly missed. 



Constraints on the drop, such as the plane wall to which the drop is attached in the present 
problem, which is the case we focus on here, modify both the modal frequencies and 
damping. If the Ohnesorge number, which measures the importance of viscosity in the bulk 
of the drop, is small, the change in frequencies is an essentially inviscid effect due to the 
imposed normal velocity at the wall. Damping is increased significantly by the wall and 
arises from two regions: a boundary layer at the wall and the neighbourhood of the contact 
line. Both mechanisms appear in Hocking’s (1987) analysis of the somewhat different 
problem of the damping of capillary-gravity waves confined between solid walls. Note that 
Hocking assumed a static contact angle of / 2 , an assumption which is not made here, 
allowing us to study the effects of varying the angle. 

A number of articles have studied the response of drops attached to a wall and subject to 
harmonic forcing. For example, Noblin et al. (2004) and Vukasinovic et al. (2007) report 
results of experimental work on spherical drops forced by sinusoidal vibrations normal to the 
wall. The first of these papers focuses on the transition between a pinned and moving contact 
line which can occur as the wall amplitude and frequency are varied. The second identifies 
different regimes of drop response as the amplitude is increased. Moradi et al. (2019) 
numerically studied the ejection of a drop from a smooth, normally vibrating wall. They 
found that the wall vibration amplitude above which ejection occurs, divided by the drop size, 
depends mainly on the vibration frequency and contact angle, drop ejection being favoured 
by frequencies near resonance and higher contact angles. Given the small-amplitude 
assumption of the present work, only the simplest regime, for which the drop responds at the 
wall frequency and there is no drop ejection, is relevant here. 

Oh et al. (2012) present a DNS study in which the drop is forced, not by wall vibration, 
but by imposing an oscillatory contact angle at the wall. They find that the flow consists of a 
component which oscillates with the forcing frequency and another which is steady. The 
latter is due to finite-amplitude effects and is not covered by the small-amplitude, linearized 
model developed here. Brunet and Costalonga (2020) experimentally study the case in which 
vibration has components both normal and tangential to the wall. They quantify the 
interesting result that the drop can have both oscillations and a net motion along the wall. The 
latter is, of course, a finite-amplitude effect, which the present model does not include. 
Finally, the theoretical work by Lyubimov et al. (2006), which is the closest to our own we 
have found, concerns a spherical drop on a plane wall with sinusoidal vibrations. The static 
contact angle was assumed to be / 2  and the vibrations normal to the wall, hence a 
symmetric response. Neither assumption is made here. Despite their focus on diverse physical 
aspects of drop response, all six papers cited in this and the previous paragraph (and others 
not referenced here) illustrate the importance of resonant behaviour as the frequency is 
varied. This paper aims to develop a predictive model of the drop response to small amplitude 
wall oscillations, with particular emphasis on resonance. 

The oscillations of a drop attached to a wall generally involve moving contact lines. Such 
flows are problematic because the usual model of fluid motion, i.e. the Navier-Stokes 
equations with a no-slip condition at the wall, leads to an unacceptable singularity at the 
contact line (see e.g. Moffatt (1964), Huh and Scriven (1971)).  Although there is no agreed 



definitive model of this situation (Bonn et al. (2009)), a frequently used one allows slip at the 
wall via a Navier condition in which slip is proportional to the shear rate, the constant of 
proportionality being referred to as the slip length and denoted  . In this model the angle 
(contact angle) at which the liquid/gas interface meets the wall has a prescribed value 

0    , which is a constant for the homogeneous wall of this article. This is the model 
used here. It cannot, of course, describe the stick-slip behaviour of the contact line found by 
Noblin  et al. (2004) and other studies for some wall surfaces in certain parameter regimes. 

In such a model, the slip length is small, which leads to different matched asymptotic 
regions, the smallest of which being the slip region, for which the distance from the contact 

line is  O  . Outside this region, the usual no-slip condition applies. In addition to his 

notable later work on the lubrication approximation (see Hocking (1981)), an analysis of the 
slip region was given by Hocking (1977) (c.f. Scott (2020)), while Hocking and Rivers 
(1982) used matched asymptotic expansions to study the slow spreading of a liquid droplet on 
a plane wall. Although problems like the present one cannot be described as slow spreading, 
the idea of matching of an outer region, away from contact lines, to regions close to the 
contact lines to obtain boundary conditions for the outer problem has more general 
applicability (Cox (1986)). 

The problem considered here is the response of a two-dimensional (i.e. cylindrical, rather 
than spherical) drop attached to a wall having small sinusoidal oscillations perpendicular to 
the drop axis. Although this two-dimensional problem is less realistic than the three-
dimensional one of a spherical drop (whose theoretical formulation is discussed in appendix 
E (supplementary material)), it allows the construction of a numerically tractable model in the 
limit of small Ohnesorge number, the advantage of the model being the greatly reduced 
numerical costs compared with DNS. This allows treatment of many more different 
parameter sets in a reasonable time on a PC, compared to lengthy runs on a supercomputer 
using DNS. 

In the model, gravity is neglected. Given the small vibration amplitude, the governing 
equations (Navier-Stokes) and boundary conditions of the perturbation to equilibrium are 
linearized. The part of the drop away from the contact lines is referred to as the outer region. 
Because   is small, the no-slip condition applies at the wall in this region. Analysis of the 
flow near the contact lines and matching to the outer region yields boundary conditions for 
that region. Wall vibration can have components both normal and tangential to the wall and 

the contact angle can take any value in the range 0    . The solution of the problem can 
be expressed as the sum of two decoupled components corresponding to the response to 
purely normal and purely tangential vibration. The former is symmetric, whereas the latter is 
antisymmetric, with respect to reflection in the symmetry plane of the equilibrium drop. The 
antisymmetric problem can be rather different from the symmetric one. This is because, in the 
inviscid case, the drop has no means of sensing tangential wall motion. Thus, it remains in 
equilibrium, unaffected by vibration. Viscosity allows vibration to affect the drop. However, 
in the symmetric case, the vibrations are normal to the wall and the drop is affected, even in 
the absence of viscosity. 



The case of small Ohnesorge number is the only one for which we have developed a 
numerical implementation. In that case, the flow is essentially inviscid over the bulk of the 
drop, with viscous effects concentrated in a wall boundary layer and near the contact lines. 
Asymptotic analysis of the boundary layer and matching to the inviscid region gives wall 
boundary conditions for the outer region. Conditions on the liquid/gas interface are also 

derived and turn out to be inviscid to the order ( 1/ 2Oh ) to which the analysis is carried out. 
Thus, viscosity enters into the small- Oh  outer problem via the wall and contact-line 
boundary conditions. 

The paper is organized as follows. Section 2 describes the overall mathematical model, 
section 3 derives the linearized equations for small perturbations to equilibrium and section 4 
specializes to sinusoidal wall motion. Section 5 presents an analysis of the limit of small Oh , 
the detailed numerical implementation of which is described in the supplementary material, 
appendices C and D. Section 6 compares some results of the model with DNS, while section 
7 gives an analysis of the resonant response of lightly damped modes. Finally, section 8 gives 
results of the model. 

2. Problem formulation 

A two-dimensional liquid drop, attached to a vibrating plane wall, is surrounded by gas which 

is supposed inviscid and of constant pressure, ap . Gravity is neglected and the liquid/gas 

interfacial surface tension,  , is assumed constant, as are the liquid density and dynamic 
viscosity,   and  . We use the reference frame of the wall and nondimensionalize 

throughout using L ,  1/ 23 /L  ,  1/ 2
/ L  , / L  as length, time, velocity and pressure 

scales, where L  is the length scale which gives a nondimensional drop area equal to 1. The 
Navier-Stokes equations in the liquid are 

  2Ohp t
t


      


u

u. u u a , (2.1) 

 0 .u , (2.2) 

where  1/ 2
Oh / L   is an Ohnesorge number and  ta  is the nondimensional 

acceleration of the wall in the inertial frame of reference. Note that, in general, a  may have 
both normal and tangential components. The vibrational term in (2.1) can be absorbed into 

the pressure gradient by defining an effective pressure as ep p a.x , where  ,x yx  and 

the Cartesian coordinates, x  and y , are such that the wall lies at 0y   and the drop in 0y  . 

Thus, 

 2Ohep
t


     


u

u. u u . (2.3) 

The wall condition is 



 x
x

u
u

y
  


,    0yu                   0y  , (2.4) 

where   is the slip length, while the angle at which the liquid/gas interface meets the wall 

has the prescribed value 0    . The boundary conditions 

 0
F

F
t


  


u. , (2.5) 

     Oh
T

e ap p       n. u u n a.x  (2.6) 

apply at the interface, which is described by  , 0F t x . Here,   is the interface curvature 

and n  a unit normal vector to the interface, which is directed from the liquid towards the gas. 
Note that we have in mind that   in (2.4) is small and that significant slip only occurs in 

regions, of size  O  , near the contact lines. 

 

 

 

 

 

 

 

Figure 1: The equilibrium liquid/gas interface and associated polar coordinates. The interface 
is a circular arc of radius r , centred at C . 

When 0a , the drop has equilibria for which the contact-line positions, x x , are 

separated by 

 
 1/ 2

2sin

sin cos
x x



  
  


. (2.7) 

The equilibrium interface is a circular arc, which intersects the wall with angle  . For a 

given  , there are infinitely many such equilibria, differing only by their displacement in x . 

In what follows, we choose the equilibrium which is symmetric about 0x  , i.e. x x   . 

The resulting interface is shown in figure 1, as are associated polar coordinates, r ,  . The 

equilibrium interface is defined by r r  and      , where   1/ 2
sin cosr   


   is 

C

 r x

y



the equilibrium drop radius. The interface of the actual drop lies at  ,r r t   . Thus,   

represents the perturbation of the interfacial location and we can choose 

   , ,F t r r t   x . 

 In the equilibrium state, 1r   and 1
e ap p r   . Thus, (2.3) and (2.6) can be rewritten 

as 

 2Ohp
t

      

u

u. u u , (2.8) 

     Oh
T

p       n. u u n a.x , (2.9) 

where 1
e ap p p r     , 1r      are the difference between the actual values of ep ,   

and their values at equilibrium. The quantities u , p  and  , which represent the perturbation 

to equilibrium, are governed by  (2.2), (2.8), the boundary conditions, (2.4) at the wall, (2.5) 
and (2.9) at the interface, as well as the requirement that the interface meet the wall with 

angle  . Note that wall vibration only appears via the term a.x  in (2.9). 

Before moving on, some remarks concerning the assumptions made in this paper are 

perhaps in order. Neglect of gravity requires a small Bond number, 2Bo /gL  , while, 

from section 5 onwards, we suppose small Oh . Small Bo  and Oh  respectively imply 

 1/ 2
/L g   and 2 /L   , conditions which are only compatible if 

  1/ 2
2 3/ 1g    . For pure water at 20 C  and 29.81msg  ,   1/ 2

2 3 6/ 5 10g      

and the applicability conditions are 33 10 mL    for neglect of gravity and 
81.4 10L m   for Oh 1 . 

3. Small vibrations 

From here on, we suppose a , u , p  and   small, thus linearizing the equations.  (2.8) gives 

 2Ohp
t

    

u

u . (3.1) 

Using    , ,F t r r t   x , (2.5) implies 
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ru u
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. (3.2) 

The term containing u  is second order in the perturbation and is therefore neglected. 

Furthermore, n  is in the r -direction for the unperturbed interface, thus, to first order, 



 
t





u.n  (3.3) 

on the interface.    is expressed to first order in   in section A.1: 
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(3.4) is used in the normal component of (2.9) to obtain 
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2 2

1
Oh

T
p
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n. u u .n a.x , (3.5) 

while the tangential component of (2.9) gives 

    0
T   n. u u .t , (3.6) 

where t  is a unit tangent vector of the interface. Note that, because the perturbation of the 
interface is small in the linearized problem, (3.3), (3.5) and (3.6) are applied on the 
equilibrium interface, r r , and n  and t  have their equilibrium values. 

Turning attention to the flow near the contact lines, the requirement that the interface meet 

the wall with angle   can be expressed as cosyn   or equivalently 

 cos sin cosrn n     (3.7) 

at the contact lines. The contact line which lies at     in the equilibrium state has the 

perturbed value  1 cotr   
   , correct to first order in the perturbation, where   is 

the contact-line value of  . Note that, here and henceforth, given a choice of signs, the upper 

one corresponds to the right-hand contact line, while the lower one corresponds to the left-
hand contact line. Using this result and (A.3), (3.7) implies 

 cot
  
 


 


 (3.8) 

at the contact lines. Appendix B gives an analysis of the flow close to a contact line, using 
(3.8) and leading to 

 
1 cot 2Oh

~ ln
sin cos

d R

r r dt

  
    




          
 , (3.9) 

where 1R    is the distance from the contact line and 


 is an effective slip length, 

which is an  1O  multiple of  , the multiplying factor being a function of  . Thus, 


  is 

constant for a given drop. (3.9) indicates a logarithmic dependency on R  outside the slip 



region and applies for small R , sufficiently small that the unsteady term in (3.1) can be 
neglected, but not so small as to be comparable with  . The factor Oh  in the logarithmic 
term expresses its viscous origin. 

(3.9) corresponds to nondimensionalisation of equation (4.7) of Hocking and Rivers 
(1982). In particular, the logarithmic term agrees (to within a choice of signs which comes 

from relating 1 /r      to the interface-slope angle, as does the remaining term on the right-

hand side of (3.9)) with the second term on the right-hand side of their equation (the 

nondimensional contact-line advancement velocity being 
1

sin

d

dt




 ).   1
sin /d dt 



 It 

should be noted that (4.7) of the above reference expresses matching of the intermediate and 
slip regions, i.e. it holds as the contact line is approached from R  . However, given the 

small perturbation to equilibrium in our problem, the slope angle is close to   for all 1R  . 
In consequence, the analysis in section 5 of the above reference, which takes into account 
variations of the slope angle near the contact line, is unnecessary and (4.7) of the above 
reference, or equivalently our equation (3.9), applies for all 1R   . 

Define the outer region as the interior of the equilibrium drop away from the contact lines, 

i.e.  1R O  for both lines. Because   is small, slip is negligible in the outer region and the 

wall boundary condition is 

 0u              0y  . (3.10) 

Matching to the region 1R   , (3.9) applies as 0R   from the outer region. The outer-
region problem consists of (2.2), (3.1) and the boundary conditions (3.3), (3.5) and (3.6) on 
r r , (3.9) as 0R   and (3.10) at the wall. Initial conditions, consisting of a specification 
of   and u , are also needed to complete the problem. Because the nondimensionalisation is 

such that both the equilibrium and perturbed drops have the same area, 

 0d



 


 . (3.11) 

(3.11) constrains the initial  . Integration of (2.2) over the drop and use of the divergence 

theorem, 0yu   at the wall and (3.3) on r r  shows that the left-hand side of (3.11) is 

independent of time, an expression of drop area conservation. Thus, because (3.11) is 
satisfied at the initial instant, it automatically holds at all subsequent times. 

When 0a , the problem has complex solutions with exponential time dependence. Such 

solutions are often referred to as modes. Taking u , p  and   as products of ste  and 

functions of x  leads to an eigenvalue problem with eigenvalue s . The general solution of the 
linearized problem consists of a sum over modes. One mode has 0s  , 0u , 0p   and 

 sinC  , (3.12) 



where C  is an arbitrary real constant. This solution corresponds to a slightly different 
equilibrium, obtained from the chosen one by a small displacement parallel to the wall. The 
general solution with 0a  consists of the sum of (3.12) and a combination of 0s   modes. 
Viscous damping means that such modes are decaying; thus, if 0a , the end result as t   
is (3.12), as might be expected. Viscosity is always present in reality, but it can be artificially 
removed by setting Oh 0 . This has the effect of making the eigenvalues purely imaginary, 
thus the 0s   inviscid modes oscillate sinusoidally without decay. Note that, with or without 
viscosity, the modes form complex conjugate pairs. 

4. Sinusoidal vibration 

Up to now the wall vibration has not been specified, whereas henceforth we consider 

sinusoidal vibration,    i tt e a a , where a  is complex and 0   is real. The outer 

problem has a particular solution of the form 

   i te u u x ,       i tp p e   x ,         i te    , (4.1) 

where u , p  and   are complex. Equations (3.1) and (2.2) give 

 2Ohi p    u u   , (4.2) 

 0 .u , (4.3) 

whereas the boundary conditions (3.10), (3.3), (3.5) and (3.6) yield 

 0u  (4.4) 

at the wall and 

 i  u.n  , (4.5) 
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n. u u .n a.x

     , (4.6) 

    0
T   n. u u .t   (4.7) 

on the equilibrium interface. Finally, (3.9) and (3.11) imply 

 
1 cot 2 Oh

~ ln
sin cos

d i R

r d r

  
    

        

   , (4.8) 

     (4.9) 

as 0R   and 



 0d



 


  . (4.10) 

The general solution of the problem consists of the sum of (3.12), (4.1) and a combination of 
decaying modes. The latter contribution vanishes at large times, so after a transient phase, 
there remains the sum of (3.12) and (4.1). The value of C  in (3.12) depends on the initial 
conditions and since, as noted earlier, (3.12) simply corresponds to a small time-independent 
displacement of the drop, it is of no great interest and we focus attention on (4.1). Note that, 
since 0  , (4.3)-(4.5) imply (4.10), which is thus automatically satisfied, but is nonetheless 
given here because it is needed later. 

Writing x ya x a y a.x   , the solution of (4.2)-(4.10) can be expressed in terms of two 

particular cases, namely 1xa  , 0ya   and 0xa  , 1ya  . Multiplying the first of these 

solutions by xa , the second by ya  and taking the sum gives the general case. When 1xa  , 

0ya  , u , p  and   are antisymmetric under reflection in the plane 0x  , while 0xa  , 

1ya   makes them symmetric. By symmetric u , we mean that xu  changes sign, whereas yu  

is unchanged by reflection. On the other hand, antisymmetric u  does the opposite. Note that 
modes are either symmetric or antisymmetric. 

As noted earlier, modes are determined by an eigenvalue problem. This problem can be 
obtained from (4.2)-(4.10) by setting 0a  and replacing i  by s . If   were extended to 
complex values, the problem (4.2)-(4.10) with 0a  would lead to u , p  and   which tend 

to infinity as is    (they have a pole as a function of complex  ), where s  is any of the 
modal eigenvalues. In reality,   is real and, thanks to viscous damping, all nonzero 

eigenvalues lie in   0s  , so infinite response is avoided. However, if  s  is small, we 

expect the oscillation amplitudes u , p  and   to have a peak as a function of   near 

 s    of width comparable to  s . This expresses the usual resonant response of a 

lightly damped mode. 

5. Small Oh  

Up till now no assumption has been made concerning Oh . From here on we suppose small 
Oh , which is the only case for which we have developed a numerical procedure. We also 

suppose that 1/ 2Oh   to avoid significant slip in the outer region. Regardless of whether 
Oh is small or not, (4.2) and (4.3) imply 

 2 0p  . (5.1) 

Several different asymptotic regions can be identified in the limit Oh 0 . First of all there is 
the outer region, defined, as before, as the interior of the equilibrium drop away from the 
contact lines. The main aim of this section is to derive the small- Oh governing equations of 



the outer region. These consist of (5.1) and boundary conditions which are derived in the 
following sections. 

5.1 Wall and interfacial conditions 

When Oh  is small, we expect the flow in the outer region to have thin layers, thickness 

 1/ 2OhO , at the drop boundaries, inside which viscosity may be significant. Outside the 

layers inviscid theory applies. These layers appear in the velocity field, but not in the pressure 
distribution. 

The analysis of the wall boundary layer in section A.2 leads to 

 
 

1/ 2 2

1/ 2 2

Ohp p

y xi
 


 
 

        0y   (5.2) 

as the boundary condition for (5.1) at the wall, where the complex square root,  1/ 2
i , 

should be interpreted as a principal value. (5.2) shows that / 0p y    at leading order. 

However, the right-hand side represents viscous effects and can produce small, but significant 
modal damping, hence its inclusion here. 

Using similar reasoning to section A.2, section A.3 analyses the flow near r r , with the 
result 

 2p

r
 



         r r . (5.3) 

This is one of two boundary conditions on the liquid-gas interface. The other comes from 

(4.6). (4.3) implies      T T       n. u u .n t. u u .t    . Thus, the viscous term in (4.6) is 

 OhO  smaller than the others. Neglecting this term, 
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2 2

1 d
p

r d

 


 
    

 
a.x

         r r  (5.4) 

is the second interfacial condition. Note that, according to (A.14), there is, in fact, no 
interfacial boundary layer at leading order. This is in agreement with the discussion in 
Batchelor (1967), section 5.14, which concludes that a thin boundary layer on a free surface 
does not involve significant variations of velocity across the layer, which is in contrast with 
layers on solid walls. The result is that there are no viscous terms in the interfacial conditions, 

hence no dissipation arising from the interface at the order ( 1/ 2Oh ) considered here. 

5.2 Contact-line conditions 

Consider the flow near one of the contact lines and, as before, let R  denote distance from the 
contact line. As the contact line is approached, the wall boundary layer fills the flow when 



 1/ 2OhR O , a region we refer to as the transition region because viscosity, which is not 

significant outside the wall boundary layer in the outer region, is important throughout the 
flow for this and smaller values of R . All three terms in (4.2) are important in the transition 
region, which represents additional asymptotic structure in the small Oh  limit. The unsteady 
term on the left-hand side greatly complicates the theoretical determination of u , but 
fortunately, as we shall see, completion of the outer solution by matching does not require 
such determination of the transition-region velocity field. 

Let   be a small parameter measuring the order of magnitude of u , p  and   in the outer 

region. Matching to the transition region requires the same orders of magnitude in that region. 

The unsteady and viscous terms in (4.2) are both of  O  , implying  p O   . Thus, 

  1/ 2Ohp p O    , (5.5) 

where p  are  O   constants, one for each contact line. The left-hand side of (4.6) is 

 1/ 2OhO  . Thus, (4.6) and (5.5) yield 
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1
~ x

d
a x p

r d r

 



  

    (5.6) 

in the transition region. (5.6) agrees with the 0R   limit of (5.4). Thus, to the order we are 
working, the outer solution for   continues to apply in the transition region, despite the 

velocity field being quite different. This is because the left-hand side of (4.6) is negligible. 

The region 1/ 2OhR    is described by the analysis of appendix B, leading to (4.8). 
Matching to the transition region is accomplished as follows. (4.8) contains the factor 

   Oh ln / OhR O  


 when  1/ 2OhR O , where 

 
1/ 2Oh

Oh ln


 
  

 
 . (5.7) 

Thus, matching (4.8) to the transition region gives 

 
1 cot 2

sin cos

d i

r d r

  
   

 
    

   (5.8) 

as 0R   from within the transition region. As we saw above, the outer solution for   

continues to apply in the transition region. It follows that (5.8) should also hold for the outer 

region. (4.9) and (5.8) as     provide the contact-line conditions for the small- Oh outer 

problem. Note that, when / 2  , (5.8) is equivalent to the condition used to describe the 
contact line in Hocking (1987) and Lyubimov et al. (2006) (the nondimensional wetting 
parameter being / 4  ). The term containing   in (5.8) provides a modification, as viewed 



from the outer region, of the contact-line condition (3.8). This modification comes from 

 1/ 2OhR O , the region near the contact line in which viscosity is significant throughout 

the flow. The logarithmic term in (5.7) reflects logarithmic variation of the interfacial-slope 

perturbation for 1/ 2OhR   , while the multiplicative factor of Oh expresses the viscous 
nature of the effect.   can be determined using equation (B.18) of appendix B and the 

function  iQ   of Hocking and Rivers (1982) (c.f. Scott (2020)). Note that a pinned contact 

line can be obtained by formally taking infinite  , though this is not a case we will consider 

in what follows. 

5.3 Logarithmic singularities 

Equation (5.1) with the boundary conditions (5.2) at the wall, (5.3) and (5.4) on the 

equilibrium interface and (4.9) and (5.8) as     are almost sufficient to determine the 

solution in the outer region. However, it turns out there are weak (  1/ 2OhO ) logarithmic 

singularities of p  at the contact lines. The singularities reflect the presence of line sources at 

the contact lines in the outer-region solution. These sources are needed to compensate for the 

 1/ 2OhO  volume-flux deficit/excess carried by the wall boundary layer into the contact-line 

regions. Such logarithmic behaviour in the outer region should not be confused with the 
logarithm in (4.8). The outer region being essentially inviscid, a term like lnp R  represents 

a source/sink, whereas (4.8) describes the small regions near the contact lines in which 
viscosity is significant throughout. The existence of logarithmic singularities makes the outer 
solution nonunique and additional conditions are needed, conditions which are derived in 
section A.4 and which take the form 

    1/ 22 1/ 2

0
, ~ Oh lnp R d R i i q R


          (5.9) 

to within an additive constant as 0R   from the outer region, where 

 
sin

q




  


 (5.10) 

and R ,   are the polar coordinates shown in figure A.1. (5.9) shows the weak logarithmic 

singularity referred to above. That the coefficient of the logarithmic term has the value given 
in (5.9) provides additional contact-line conditions which complete the small- Oh  outer 
problem. 

5.4 Solution procedure 

The problem is treated as follows. A leading-order relation giving p  in terms of   is 

obtained using (5.2) and (5.9) without the  1/ 2OhO  terms. Thus, there is no logarithmic 

singularity and the wall condition is 



 0
p

y







        0y  . (5.11) 

Given   , (5.1), (5.3) and (5.11) determine p , but the other equations are not employed at 

this stage. If   were known, this would determine p . However, since   is not known, the 

result is a relation giving p  in terms of   at leading order. Using this relation to express the 

right-hand side of (5.2), 

    1/ 2 1/ 2Oh
p

i i
y

  
  


             0y  , (5.12) 

correct to 1/ 2Oh , where     is a linear functional which is independent of  ,   and Oh . 

In what will henceforth be referred to as the full problem, (5.2) is replaced by (5.12) and all 
other equations (namely (5.1) with (5.3), (5.4), (4.9), (5.8) and (5.9))  are applied. Leaving 

aside xa  and ya , the full problem has the parameters  ,  ,   and Oh . Viscous effects 

arising from the contact-line regions and wall boundary layer appear in (5.8), (5.12) and the 
logarithmic term of (5.9). Because the viscous terms in (5.9) and (5.12) originate from the 

wall boundary layer and have the same factor,  1/ 2 1/ 2Ohi i  , it is convenient to adopt the 

designation boundary-layer term for both. On the other hand, the viscous term in (5.8) has the 
different factor i  and will be referred to as a contact-line term. Note that the leading-order 

problem only determines p  in terms of   up to an additive constant. However, this constant 

disappears when the derivative on the right-hand side of (5.2) is taken. 

Appendix C (supplementary material) details the mathematical analysis and numerical 
scheme used to implement the small- Oh  problem described above. As usual, the numerical 
scheme involves the discretisation and consequent approximation of the continuous problem. 

The symmetric, 0xa  , 1ya  , and antisymmetric, 1xa  , 0ya  , components decouple and 

are treated separately. In either case, the results of appendix C can be expressed in the matrix 
form 

    1/ 22 1/ 2
0 0 1 Ohi i U Z           , (5.13) 

where U  is a column vector of complex unknowns, defined at the end of appendix C, Z  is a 

real column vector representing wall vibration and 0 , 0 , 1  and   are real, square 

matrices. Z  and these matrices are independent of  ,   and Oh , i.e. they only depend on 

 . The contact-line and wall-boundary-layer contributions to the problem are apparent, 

respectively involving the coefficients   and 1/ 2Oh . (5.13) can be solved using a standard 

routine (we used LAPACK’s ZGESV). This determines the drop response to wall vibration. 

 

 



6. Comparison with DNS 

The DNS results with which the theory is compared were obtained as follows. The basis of 
the simulations is the same as that of the theory, in particular the frame of reference of the 
wall is used, as are the Navier-Stokes equations, (2.1) and (2.2), and the wall boundary 
condition (2.4). An important difference is that DNS retains nonlinearity, whereas the theory 
does not. As in the theory, the wall vibration is sinusoidal. Vibrations are perpendicular to the 

wall (i.e. 0xa  ) for the simulations whose results are presented here. This allows a 

symmetric flow and, using this assumption, DNS was restricted to 0x  . 

 

 

Figure 2: Minimum and maximum contact-line values of x  as a function of / 2   . The 
symbols are DNS results. 

The DNS code is two-dimensional and based on the Two-Phase Level-Set (TPLS) method 
(O’Naraigh et al., 2014). The advection equation of the level-set function, which is the signed 
distance to the interface, is solved in a conservative way using a third-order Total-Variation-
Diminishing Runge Kutta (TVD RK3) time discretization scheme (Osher and Shu, 1988) and 
a fifth-order Weighted-Essentially-Non-Oscillatory (WENO5) scheme (Jiang and Shu, 1996) 
for the reconstruction of the level-set function at the cell boundaries of the staggered 
computational grid. Redistancing is then carried out by solving a Hamilton-Jacobi equation in 

pseudo-time to enforce 1   (Sussman et al., 1994),   being the level-set function. This 

is done using a WENO5 scheme for first derivatives, with divided differences in the vertical 

direction set to cos  at the wall and a TVD RK2 scheme for integration in pseudo-time, 
along with the method suggested by Sussman and Fatemi (1999) to improve local volumetric 
conservation - the result is the SF-W5-RK2 method of Solomenko et al. (2017a), which was 
also used in Solomenko et al. (2017b). In the latter article, the flow was not resolved down to 
the slip length and thus a subgrid model was used near the contact lines. Here, however, the 
slip region is fully resolved so subgrid modelling is not needed. After redistancing, the 
method of Sussman and Uto (1998) is used to enforce exact volumetric conservation. The 
wall boundary condition, (2.4), is applied as in Afkhami et al. (2009). A symmetry condition 
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is used on the boundary 0x  , while outflow conditions are applied on the remaining 
boundaries, i.e. at the top and right-hand side of the computational domain. 

Because DNS incurs a huge computational cost, only a single set of the parameters  ,  
and Oh  was treated, namely / 4  , 3Oh 5 10    , as well as a limited number of  . 
Whereas the theory is linear, DNS allows for nonlinearity, so a potentially significant 
additional parameter is the displacement amplitude, A , of the wall, which gives the wall 

acceleration amplitudes 0xa  , 2
ya A  . 0.025A   for the results given here. Figures 2-4 

provide a comparison of the DNS results and those of the present theory, obtained by solving 
(5.13). The DNS results are taken following the transient phase in which the drop response is 
not yet periodic, a phase discussed earlier in the linearized context. The equilibrium contact-

line position and drop height are 1.3236x   and 0.54826  for the given / 4  . Figure 2 

shows the minimum and maximum contact-line values of x  as a function of / 2   . The 
curves give theoretical results, while the symbols follow from DNS. Figure 3 is the 
equivalent for the drop height. Figure 4 shows the phase of oscillation of the drop height and 
contact-line position. There is good agreement between DNS and theory in figures 2 and 3 at 

 

 

Figure 3: Minimum and maximum drop height as a function of / 2   . The symbols are 
DNS results. 

lower values of  , but the agreement is less good towards the right-hand sides of these 
figures. This seems to be due to increasing effects of nonlinearity. This is apparent in the 
figures because linear theory leads to the minimum and maximum of any oscillating quantity 
being symmetrically placed about its equilibrium value, which is not so towards the right-
hand sides of figures 2 and 3. On the other hand, the phases shown in figure 4 appear to be 
less affected. Of course, nonlinearity increases in importance as A  increases and accord with 
linear theory is only to be expected at small A . Note that, as 0  , the drop-height 
oscillations are in phase with those of the wall, whereas the contact-line oscillations are in 
antiphase. 
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The overall conclusion is that there is good agreement between DNS and theory, the 
differences being probably due to nonlinearity at higher frequencies. This lends confidence in 
both the DNS and the semi-analytical model developed here. 

 

 

Figure 4: Phase of oscillation of the drop height (squares and continuous curve) and contact-
line position (triangles and dashed curve) as a function of / 2   . The symbols are DNS 
results. The phase of the wall-displacement oscillation is / 2 . 

7. Lightly damped modes near resonance 

This section uses (5.13) to analyse the resonant response of lightly damped modes. In the 
inviscid case, Oh 0   , modes result from the generalised eigenvalue problem 

  0 0 0U    , (7.1) 

which we solved using LAPACK’s DGGEV (the eigenvalue   should not be confused with 

the slip length). As expected, there are purely oscillatory modes, corresponding to 2   
real and positive, where   is the modal frequency. In the antisymmetric case, there is a mode 
very close to 0  . This is a numerical approximation of the steady mode, discussed earlier, 
which represents a time-independent displacement of the drop and for which 0  , 0u , 

0p   and sinC  . As is usual for generalised eigenvalue problems, there are infinite 

eigenvalues defined by 0 0U  . We also found modes with large, finite, complex and 

negative real values of  . These are presumably spurious and due to numerical 

approximation of the eigenvalue problem. Let us denote the finite eigenvalues by   and the 

corresponding eigenvectors by U . Thus, 

  0 0 0U     . (7.2) 

The U  are often referred to as right eigenvectors, whereas for each   there is also a left 

eigenvector, ,LU , such that 
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  , 0 0 0H
LU     , (7.3) 

where H  denotes Hermitian conjugation. The left and right eigenvectors are orthogonal in 
the sense that 

 , 0 0H
LU U    (7.4) 

for    . 

Let us first consider the symmetric problem. Left-multiplying (5.13) by ,
H

LU  and using 

(7.3), 

      1/ 22 1/ 2
, 0 1 ,OhH H
L LU i i U U Z             . (7.5) 

Assuming the eigenvectors form a complete set, we write 

 U U C U 


 


  , (7.6) 

where U  is the contribution from infinite eigenvalues. Using 0 0U   and (7.4), 

     1/ 22 1/ 2
, 0 , 1 ,OhH H H
L L LU U C i U i U U Z                . (7.7) 

Consider a mode with real, positive  . Assuming the mode is lightly damped when 

viscous effects are included and that   is close to the resonance condition 2 2
  , where 

1/ 2 0    , we expect the dominant contribution to (7.6) to come from    . Neglecting 

the other terms yields the approximation 

 U C U  , (7.8) 

hence (7.7) gives 

 
  1/ 22 2 1/ 22 Ohc w
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(7.8)-(7.11) determine U  for a lightly damped mode close to resonance. Because   is real, 

the eigenvectors U  and ,LU  can be chosen real. Thus, the quantities B , cD  and wD  are 

real and only depend on   and the choice of mode. cD  and wD  represent viscous effects 

due to the contact lines and wall boundary layer. 

Let 0  . Because   is close to  , 2 2
   can be approximated by  2      

and   by   in the viscous terms of (7.9), leading to 

 
 2

B
C

iD



 
   


 

, (7.12) 

where r iD D iD    , 

 1/ 2 ˆOhr c wD D D    ,         1/ 2 ˆOhi wD D  , (7.13) 

and 1/ 21/ 2ˆ 2w wD D 


 . (7.12) has the expected form for the complex amplitude of a lightly-

damped mode near resonance. It implies that the effect of viscosity is to perturb the complex 

modal frequency from its inviscid value,  , to become iD
  . Given the modal time-

dependence, i te  , rD  is a damping factor and iD  a shift in modal frequency. The modal 

amplitude, C , has a maximum at the shifted frequency iD
    according to (7.12). 

The first of equations (7.13) expresses the damping as a sum of contact-line and wall-

boundary-layer contributions, cD  and 1/ 2 ˆOh wD , whereas the second indicates that the 

frequency shift arises from the boundary layer. Because the contact lines and boundary layer 

should both induce damping, we expect positive cD  and ˆ
wD  and this is found to be the case. 

Positive ˆ
wD  implies a modal frequency lower than its inviscid value. The condition of light 

damping used to derive the above results requires that rD  be small, which in turn implies a 

small modal frequency shift. The relative importance of boundary-layer and contact-line 
damping is measured by the ratio, 

 
1/ 2Oh

  


 , (7.14) 

of their damping factors, where ˆ /w cD D 
  . 

Turning attention to the antisymmetric case, the inviscid solution of the vibration problem 

with 1xa  , 0ya   is 1
xu i  , 0yu  , p x , 2 sin   . This represents oscillation of 

the equilibrium drop parallel to the wall with displacement amplitude 2  , oscillation which 
is simply due to use of the wall’s frame of reference. In the inviscid drop’s frame of 
reference, which is inertial, the equilibrium is unperturbed. This is because, in the absence of 
viscosity, the drop has no means of sensing tangential wall motion. Denoting the inviscid 



solution by 2U V  , V  is a constant, real column vector whose components are explicitly 
given at the end of appendix C and which satisfies 

 0 0V  ,     0V Z   . (7.15) 

Thus, (5.13) implies 

    1/ 22 1/ 2
0 0 1 Oh ai i W Z           , (7.16) 

where 2W U V    and 

   1/ 21 1/ 2
1 OhaZ i i V       . (7.17) 

Treating (7.16) as we did (5.13) for the symmetric problem, 

 W W C U 


 


  , (7.18) 

     1/ 22 1/ 2
, 0 , 1 ,OhH H H
L L L aU U C i U i W U Z                . (7.19) 

Let   be a mode, other than the one with very small  , having real, positive  . For a 

lightly damped mode near resonance, we argue, as in the symmetric case, that (7.18) is 
dominated by    , leading to 
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, (7.20) 

where (7.17) has been used, cD  and wD  are given by (7.11) and 
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As for the symmetric case, cD  and wD  are real and only depend on   and the choice of 

mode. The same is true of cB  and wB . Given 2W U V    and dominance of the     

term in (7.18), 

 2U V C U     (7.22) 

which, with (7.11), (7.20) and (7.21), gives U  in the antisymmetric case. It consists of a 

term,  C U  , which involves resonance and an inviscid one, 2V  , which does not. The 

latter disappears when the results are transferred to the inertial frame of reference of the 

inviscid drop. Note that (7.20) gives 0C   in the inviscid case, reflecting the ineffectiveness 



of tangential wall vibration on the drop in the absence of viscosity. This contrasts with the 
symmetric case. 

When 0  ,   is close to 1/ 2
    and (7.20) can be further approximated as 
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, (7.23) 

where r iD D iD     and (7.13) holds. The discussion following that equation applies as 

before. 

Finally, consider the mode   with very small  . Supposing it is lightly damped, we 

expect this mode to dominate the sum in (7.18) at small  . Thus, (7.20) holds, as for the 

modes away from 0  . In the absence of numerical approximation of the inviscid 

eigenvalue problem, 0   for the given mode. Thus, we set 0   in (7.20) to obtain 
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, (7.24) 

where (7.11) and (7.21) apply as before. The light-damping assumption of this mode requires 

small cD  and 1/ 2Oh wD . 

8. Results 

Here we give some results of the semi-analytic model. Section 8.1 concerns the variation of 
the inviscid modal frequencies as a function of contact angle. These frequencies form an 
important foundation for interpretation of the response to wall vibration because they 
determine the approximate location of the resonant peaks as a function of frequency when the 
modes are lightly damped. Section 8.2 gives an illustrative example of the response to 

vibration. Finally, section 8.3 quantifies the modal damping coefficients cD  and ˆ
wD  as 

functions of  . As discussed in section 7, these coefficients control the viscous damping and 
frequency shift for lightly damped modes. The damping in turn determines the magnitude of 
the resonant response and the width of the resonant peak. The relative importance of the 
boundary-layer and contact-line contributions to damping is quantified. 

The numerical procedure used to implement the model and described in appendix C 
involves truncation of certain infinite series. The number of retained terms was chosen 
sufficiently large that the accuracy of the sums was close to machine precision (IEEE double 

precision was used throughout). The procedure also involves the numerical parameters M  

and  , of which M  should be large and   small. Varying both and comparing results for 

different choices, we found that 10M   and 0.01   lead to convergence such that the 



differences between the numerical and exact solutions are much lower than would be visible 

in most of the plots given here (figure 5 near    being the exception). These values of M  

and   are used in what follows (and were also used when calculating the theoretical values 
for figures 2-4). 

8.1 Inviscid-mode frequencies 

For comparison with later results with the wall, the inviscid modes of a 2D drop without a 

wall have nondimensional frequencies determined by  2 3/ 2 2 1n n   , where n  is a 

positive integer. As an illustration, 8n   gives 52.976  . 

Figure 5 shows the first eight symmetric and antisymmetric inviscid, nonzero modal 

frequencies, obtained by solution of (7.1), as a function of  . The continuous curves 
represent the symmetric case, whereas the dashed ones correspond to the antisymmetric one.  

 

 

 

Figure 5: Inviscid modal frequencies as a function of  . The solid curves are the symmetric 
modes, whereas the dashed curves are the antisymmetric ones. 

A numerical problem is evident near   , a problem which arises because the bipolar 
coordinate system used in appendix C is not appropriate there. This is because the 
discretisation of the equilibrium liquid/gas interface places more and more points near 

0x y   in this limit, whereas it continues to extend to  , 1x y O . Thus, most of the 

interface is not covered. Leaving this region aside, frequencies alternate between symmetric 

and antisymmetric modes for a given  , the lowest nonzero frequency being for a symmetric 

mode. For each mode,     has a maximum. This occurs at 1.714   for the lowest 
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frequency (symmetric) mode, an angle which decreases as the modal order is increased and 
appears to approach the limit / 2  at large order. This can be understood as follows. High-
order modes consist of short wavelength capillary waves on the liquid/gas interface. Being of 
short wavelength, the equilibrium interface can be approximated as flat. For capillary waves 

on a flat interface, the dispersion relation is 
3/ 2

k  , where k  is the wavenumber. Waves 

propagate in both directions along the interface and undergo reflection at the contact lines, 
thus forming a standing wave, which is the mode. Let n  denote the modal order. At large n  

we expect ~ n  half-wavelengths along the interface, i.e. ~ /k n  , where   is the interfacial 

length. Since 2 r  and   1/ 2
sin cosr   


  , 

 
 

3/ 21/ 2
sin cos1

~
2

n
  

 


 
 
 
 

, (8.1) 

which has a maximum at / 2  . 

The inviscid modes can be determined analytically when / 2  . They have 

 2 2 31n n r   ,    2 21 cos / 2n np n r r n       and  cos / 2n    , where n  is a 

positive integer and  1/ 2
2 /r  . Even and odd n  correspond respectively to symmetric and 

antisymmetric modes. The zero frequency antisymmetric mode discussed earlier has 1n  . 

The behaviour of the inviscid, nonzero modal frequencies near    can be determined 
by asymptotic analysis. It is found that the first ten symmetric and antisymmetric frequencies 

approach the values given in table 1 as   . This indicates how figure 5 would go as 

   in the absence of the numerical problem. The antisymmetric frequencies for    

have the values  2 3/ 2 2 1n n   , where n  is a positive integer, as for a 2D drop without 

the wall. The value of n  runs from 2  to 11 in table 1. 

Symmetric Antisymmetric 
2.573148 5.780136 
7.659789 11.56027 
13.73370 18.27839 
20.73436 25.84955 
28.56548 34.19574 
37.15165 43.25457 
46.43382 52.97582 
56.36453 63.31821 
66.90468 74.24719 
78.02141 85.73327 

Table 1: Values of the    inviscid modal frequencies. 



8.2 Illustrations of the response to vibration 

The solid curves in figures 6 and 7 show the calculated response to vibration with 0xa  , 
2

ya A  , for / 3  , 3Oh 5 10     (which lead to 0.013956  ). Figure 6 shows 

the contact-line displacement amplitude divided by the wall displacement amplitude, i.e. 

/ / sinA  , as a function of  . Figure 7 shows  0 / A   , which represents the drop-

height amplitude as a multiple of the wall amplitude. The peaks in both figures are close to 
the inviscid modal frequencies, represented by the vertical dashed lines. Thus, the peaks are 
the consequence of resonances. The relative importance of contact-line and boundary-layer 

damping, as measured by   (given by (7.14)), has values which decrease with increasing 

modal frequency from 1.15  for the first mode to 0.648  for the fifth. Thus, the two damping 
mechanisms are here of comparable importance. The dashed curves indicate the results of 
using the approximation (7.8) and (7.9), which, it will be recalled, should hold for lightly 
damped modes near resonance. Both the locations and heights of the peaks are reasonably 
well represented, in particular for the first mode, which is more lightly damped than the 
others. Note that figure 6 indicates frequencies at which the contact-line oscillation amplitude 
is nearly zero. In the inviscid case, the solution of (5.13) is real, which suggests the 
possibility that there are exact zeroes of the contact-line amplitude as a function of   and 
this is found to be the case. That there are near zeroes in the slightly viscous problem is thus 
not unreasonable. Note however that, according to figure 7, the height amplitude does not 
exhibit such near zeroes. 

 

 

Figure 6: Solid curve: contact-line displacement amplitude, / / sinA  , as a function of   

( / 3  , 3Oh 5 10    ) for the symmetric problem. Dashed curves: results of (7.8), 
(7.9) for each of the first five modes. Vertical dashed lines: inviscid modal frequencies. 
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Figure 7: Solid curve: drop-height oscillation amplitude,  0 / A   , as a function of      

( / 3  , 3Oh 5 10    ) for the symmetric problem. Dashed curves: results of (7.8), 
(7.9) for each of the first five modes. Vertical dashed lines: inviscid modal frequencies. 

 

 

 

Figure 8: Solid curve: contact-line displacement amplitude in the inertial frame of reference 

of the inviscid drop, 11 / sinA  
  , as a function of   ( / 3  , 3Oh 5 10    ) for 

the antisymmetric problem. Dashed curves: results of (7.22) (without the term in V ) with 
(7.20) for each of the first five oscillatory modes and (7.24) for the zero frequency one. 
Vertical dashed lines: inviscid modal frequencies. 
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Figure 8 is the equivalent of figure 6, but for the antisymmetric case, 2
xa A  , 0ya  . 

Note that it is 11 / sinA  
   which is plotted in figure 8. This is the contact-line 

displacement amplitude in the inertial frame of reference of the inviscid drop, divided by the 
wall displacement amplitude. There are once again resonant peaks near the inviscid modal 
frequencies. The dashed curves represent the approximation (7.22) (without the term in V , 
the frame of reference being that of the inviscid drop) with (7.20), (7.24) and express the 
behaviour near 0   and the resonant peaks well. For modes other than the zero frequency 

one,   decreases with increasing modal frequency from 0.969  for the first mode to 0.668  

for the fourth. Thus, contact-line and boundary-layer damping are of comparable importance, 
as for the symmetric case. 

8.3 Measures of damping 

 

 

 

Figure 9: Contact-line damping coefficients for the first eight symmetric (solid curves) and 
antisymmetric (dashed curves) modes. The finely dashed curve is for the zero-frequency 
antisymmetric mode. 

Figures 9 and 10 show cD  and ˆ
wD  as functions of   for the first eight oscillatory symmetric 

and antisymmetric modes. For completeness sake, they also show results for the zero-
frequency antisymmetric mode. However, we focus on the other modes in what follows. To 

avoid the numerical problems noted earlier and apparent in figure 5, the maximum   for 
these plots is 3 . Numerical problems are also responsible for the absence of a small range of 

  on the left of figure 10. As indicated by the arrow in both figures, symmetric modes of 

increasing inviscid frequency give increasing values of cD  and ˆ
wD , as do antisymmetric 

modes. Recalling from the first of equations (7.13) that the damping factor for lightly-
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damped modes is the sum of contact-line and boundary-layer contributions, cD  and 
1/ 2 ˆOh wD , it can be obtained by multiplying the value from figure 9 by  , that from figure 10 

by 1/ 2Oh  and summing. Both damping contributions should be small compared with the 
separation between successive inviscid modal frequencies for damping to be light, otherwise 
sharp resonant response is not expected. From figure 9, it is apparent that light damping 

requires smaller and smaller   as   decreases, particularly for higher modes. This is 

especially true because the separation between mode frequencies is smaller at lower  , as is 
apparent from figure 5. Similarly, figure 10 indicates that it is harder to achieve light 

boundary-layer damping for higher modes and lower  , requiring smaller values of 1/ 2Oh . 

 

 

Figure 10: Boundary-layer damping coefficients for the first eight symmetric (solid curves) 

and antisymmetric (dashed curves) modes. The finely dashed curve represents wD  (not ˆ
wD , 

which would be zero) for the zero-frequency antisymmetric mode. 

Figure 11 shows ˆ /w cD D 
   as a function of   for the first eight oscillatory symmetric 

and antisymmetric modes. Apart from the first symmetric mode towards the right-hand side 

of the figure (and probably higher-order symmetric modes closer to   ),   decreases as 

the mode frequency increases for a given  . According to (7.14), when   is multiplied by 
1/ 2Oh /  ,  the result measures the relative importance of boundary-layer and contact-line 

damping for lightly damped modes. Thus, if 1/ 2/ Oh  is comparable with   the two 

damping mechanisms are of similar importance. On the other hand, when 1/ 2/ Oh  is small 

or large compared to   one of the two mechanisms dominates. It appears that contact-line 

damping is favoured at smaller values of  , while, in the antisymmetric case, boundary-layer 
damping tends to be more important at larger contact angles and higher modes. Of course, for 
a given contact angle and mode, the relative importance of the two damping mechanisms 

ˆ
wD

0 
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depends on the value of 1/ 2/ Oh . Cases can be found in which these mechanisms are 

comparable, as was the case for the parameter values used in figures 6-8, or one or the other 
dominates. 

 

 

Figure 11: Ratio of boundary-layer to contact-line damping coefficients for the first eight 
symmetric (solid curves) and antisymmetric (dashed curves) modes. 

9. Conclusions 

A linearized model of a two-dimensional liquid drop surrounded by gas on a vibrating wall 
has been developed. The moving contact lines are allowed for using a Navier-type boundary 
condition at the wall, which introduces a slip length  , and a prescribed angle of intersection 
of the liquid/gas interface with the wall. In the absence of vibration, the drop has an 
equilibrium state in which the interface is circular. Small vibration perturbs this state and the 
governing equations of the perturbation are linearized. Wall vibration can have both normal 
and tangential components. In the linear problem, these can be analysed separately and the 
results summed to produce the overall response. Normal vibration produces a symmetric drop 
motion, whereas it is antisymmetric for tangential vibration. 

When   is small, as expected in practice, the drop can be separated into an outer region, 
away from the contact lines, and regions near the contact lines whose analysis is described in 
appendix B. This leads to conditions for the outer problem as the distance, R , to one of the 
contact lines tends to zero. The result completes the outer problem. 

Specialising to sinusoidal wall motion with frequency 0  , the drop response consists 
of a time-independent displacement, (3.12), a sum of exponentially decaying, oscillatory 
normal modes and a sinusoidal component, which is given by (4.1). The latter is the 
interesting part and is determined by (4.2)-(4.10). Nonetheless, the normal modes are 

important in interpreting the results. Such a mode is complex and has time dependence ste . 
Modes are governed by (4.2)-(4.10) with 0a  and i  replaced by s , leading to an 

0 
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eigenvalue problem with eigenvalue s . They represent the linear dynamics of the system in 

the absence of vibrational forcing. Viscous damping leads to decay, i.e.   0s  , but a mode 

also oscillates with frequency  s . A mode with small  s  (lightly damped) resonates 

when forced by vibration at frequencies   close to  s . Such resonant behaviour is 

responsible for much of what we observe in the drop’s response to different  . Modes are 
either symmetric or antisymmetric, the former being forced by normal wall vibration, the 
latter by tangential vibration. 

The case of small Oh  is the only one for which a numerical scheme has been developed. 
The limit Oh 0  is analysed in section 5 and the resulting numerical implementation is 
described in appendices C and D (supplementary material). The analysis of section 5 brings 
out two distinct viscous mechanisms. One, arising from the regions near the contact lines, is 
characterized by a parameter  . The other comes from the boundary layer at the wall and is 

of order 1/ 2Oh . In section 7, an analysis of lightly damped modes close to resonance is given. 
This quantifies the effects of the two damping mechanisms, in particular allowing detailed 
quantification of their relative importance, which is found to depend on the contact angle and 

1/ 2/ Oh . 

The antisymmetric problem is rather different from the symmetric one. This is because, in 
the inviscid case, the drop has no means of sensing tangential wall motion. Thus, it remains 
in equilibrium, unaffected by vibration. Small viscosity allows vibration to affect the drop. 
However, in the symmetric case, the vibrations are normal to the wall and the drop is 
affected, even in the absence of viscosity. 

Concerning the numerical results, given in section 8, figures 6-8 illustrate the importance 
of resonances for a particular choice of parameters. As expected, lightly damped modes 
resonate close to their inviscid natural frequencies, frequencies which are given in figure 5 as 

a function of the contact angle and in table 1 for the case   , near which the numerical 
method has problems. Figures 9 and 10 quantify the coefficients associated with contact-line 
and boundary-layer damping as functions of the contact angle. Comparing the two damping 
mechanisms, the results shown in figure 11 allow quantification of their relative importance. 
Cases can be found in which they are comparable, and others in which one or other 
dominates. 

Finally, comparison of the results of the theory and DNS in figures 2-4 indicates 
agreement for a particular case with small wall displacement amplitude. Although, owing to 
the high computational cost of DNS, it was only carried out for a single set of parameter 
values, this comparison suggests validity of both the theory, within its range of validity, and 
the DNS for the given contact-line model. 

It would, of course, be more realistic to consider a spherical drop on a vibrating wall. The 
theoretical formulation of that problem, using an approach which closely follows that given 
here for the 2D drop, is fairly straightforward (see appendix E (supplementary material)). 



However, the numerics appear to be considerably more difficult and, despite attempts in that 
direction, we have not yet been able to develop a numerical implementation. We continue 
nonetheless and expect the results for the spherical drop to be qualitatively similar to those 
obtained here. 
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Appendix A: Some analytical details 

A.1 Derivation of (3.4) 

The definition of the interfacial unit normal vector, n , can be extended away from the 
interface using 



 
F

F





n , (A.1) 

which can be shown to provide the interfacial curvature via 

  .n  (A.2) 

when the right-hand side is evaluated at the interface. Employing the definition, 

   , ,F t r r t   x , of F , the r  and   components of F  are 1 and 1 /r     , 

hence   1/ 2221 /F r       .  Neglecting the second-order term, 1F   correct to 

first order in the perturbation.  It follows that the components of n  are 
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n
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, (A.3) 

again correct to first order.  Using the formula for the divergence in polar coordinates, 
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whose application at the interface gives 
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The equilibrium value of   being 1r  ,  
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which becomes (3.4) when it is recalled that   is small. 

A.2 Derivation of (5.2) 

Consider the boundary layer on the wall. Since the layer is thin, 2 2 2~ / y    so the x -

component of (4.2) gives the approximation 
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Because p  has no boundary layer, variations of /p x   across the layer are negligible. Since 
1/ 2Oh   and  1/ 2/ Ohy O    , the left-hand side of the first equation in (2.4) is 

negligible and the wall boundary condition is (4.4). Treating /p x   as independent of y  and 

using 0xu   at the wall, (A.7) implies 



   1/ 21/ 2Oh1 1 i y
x

p
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 , (A.8) 

where the complex square root,  1/ 2
i , is a principal value to avoid exponential growth 

outside the layer. Using (A.8) in (4.3), 
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whose solution, given 0yu   at 0y  , is 
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Just outside the layer, (A.10) and the y -component of (4.2), without the viscous term, give 
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Since p  has no boundary layer, this result can be applied at 0y  , giving (5.2). 

A.3 Derivation of (5.3) 

Consider the region  1/ 2Ohr r O  , close to the liquid/gas interface and where a boundary 

layer similar to that near the wall might be expected, (4.2) and (4.7) give 
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at leading order. Because p  has no boundary layer, variations of /p    across the layer are 

negligible. Treating /p    as independent of r , the solution of (A.12) and (A.13) is 
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Using (A.14) in (4.3), 
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Integrating and using (4.5), 
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Just outside the layer, the r -component of (4.2) without the viscous term gives 
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Combining (A.16) and (A.17), 
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which, since p  has no boundary layer, gives (5.3). 

A.4 Derivation of (5.9) 

 

 

 

 

Figure A.1: Geometry and polar-coordinate system close to a contact line. The liquid/gas 

interface is here approximated as   . The drop occupies 0    . 

Consider the flow at distances 1/ 2Oh 1R   from one of the contact lines. Given 1R  , a 

first approximation of the equilibrium interface is   , where the polar coordinates R ,   

are as indicated in figure A.1. (5.1)-(5.3) have the leading-order approximations 
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The solution of (A.19)-(A.21) is 

 2 cosp q R   (A.22) 

to within an additive constant, where q  is given by (5.10). Thus, we have the leading-order 

approximation 
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at the wall. 

 (4.3) implies 

 0
D

ds


 u.n , (A.24) 

where D  is the region maxR R  of the equilibrium drop, D  denotes the boundary of D , n  

is its outward unit normal vector and s  is arc length along the boundary. Since 0yu   at the 

wall, its contribution to the integral in (A.24) is zero. (4.5) gives the interfacial contribution 
as 
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where iD  is the interfacial part of D . Taking 1/ 2
maxOh 1R   the contribution of the 

circular arc maxR R  can be determined as follows. Outside the wall boundary layer, 
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where we have used (4.2) without the viscous term. Inside the boundary layer, (A.8) gives 
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at leading order, where we have used (A.23) to approximate the exponential term. Thus, the 

contribution of maxR R  to the integral in (A.24) is 
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where RD  is the part of D  with maxR R . Using (A.24), (A.25) with   approximated by 

  and (A.28), 
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Employing the coordinate system R ,  , 
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Since maxR  can take any value in the range 1/ 2
maxOh 1R  , (A.30) gives 
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for R  in the same range. Integration of (A.31) implies (5.9). 

Appendix B: Flow near the contact lines 

As one of the contact lines is approached, the viscous term in (3.1) grows in importance 
compared with the one (representing unsteadiness) on the left-hand side. Thus, the unsteady 

term is neglected here. Furthermore,   can be replaced by the contact-line value  t  in 

(3.3), hence 
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on the liquid/gas interface. The interface is approximated as a flat surface of angle  , as 

indicated by figure A.1, which shows the polar coordinates, R , 0    , employed in this 

region. 

Recalling that the slip region is small, we first consider the flow outside that region, where 
the wall boundary condition is (3.10). Thus, we suppose R  small enough that unsteadiness 
can be neglected, but much larger than the slip length  . The solution of (2.2), (3.1) without 
the unsteady term, the interfacial conditions (3.6) and (B.1) and the wall condition (3.10) is 
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where  p t  are unknown functions of time, one for each contact line. 

Expressing   T  n. u u .n  in terms of the velocity components in polar coordinates, 
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n. u u .n , which is zero according to (B.2) and (B.3). Thus, the left-

hand side of (3.5) is negligible, hence, using (B.4), 



 
 

2

2 2

1 2Oh

sin cos

d
p

r dtR

 
   




 
      

a.x , (B.5) 

which can be rewritten as 
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where 
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Since 1R   , (B.6) gives 
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which is integrated to obtain 
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where  0Y t  is as yet undetermined. 

Next consider the slip region,  R O  . The problem to solve differs from the one 

considered thus far by replacement of the wall condition (3.10) by (2.4). Rescaling spatial 
coordinates using  , the problem defined by (2.2), (3.1) without the unsteady term, the 
interfacial conditions (3.6) and (B.1) and the wall condition (2.4) implies 
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where ˆ /R R   and  ˆ, ;Rv R   ,  ˆ, ;v R    and  ˆ, ;P R    are solely dependent on the 

indicated arguments (they do not depend on Oh ,   or /d dt ). Matching of the final 

equation of (B.10) and (B.4) implies 
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as R̂  . This condition makes the solution for P , which is otherwise only determined up 
to an unknown function of time, unique. 
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as the slip-region equivalent of (B.8). Integrating (B.12) and using (3.8) at ˆ 0R  , 
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Matching to (B.2) implies that  ˆ, ;Rv R    approaches a function of   as R̂  . Using this 

result and (B.11), (B.14) yields 
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as R̂  , where determination of  h   requires detailed solution of the problem in the slip 

region. Matching of (B.13) and (B.9) determines 0Y , hence, recalling the definition, (B.7), of 

Y , 
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outside the slip region, where    h
e

   


 is an effective slip length, which is an  1O  

multiple of  , dependent on  . 

Let   represent the order of magnitude of a , as well as p  and   in the outer region. 

Matching of (B.4) to the outer region requires that  p O   , while  O    follows 

from the definition of   as the contact-line values of  .  Thus, because 1R  , the final 

term in the brackets of (B.16) is negligible compared with the first one, leading to (3.9). 
Agreement of this result with equation (4.7) of Hocking and Rivers (1982) requires 

     1ih Q   , (B.17) 



where  iQ   is the function defined by equation (5.10) of that article and is the subject of 

Scott (2020). As noted in those articles, it can only be obtained numerically. A plot of  iQ   

is given by Scott, while numerical values appear as tables in both articles. The values given 
by Scott are based on a more precise numerical scheme and should therefore be more 
accurate. The parameter  , defined by (5.7), can be expressed as 
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The following appendices were published online by IJMF as supplementary material. 

Appendix C: Numerical scheme 

C.1 Preliminary analysis 

We first make the change of variables 

     0ˆ sin        (C.1) 
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where 0  is such that 

 ˆ sin 0d



  


 . (C.3) 

Thus, (4.9), (5.1)-(5.4), (5.8) and (5.9) give the outer-region problem 
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as     and 
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as 0R  , where 
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according to (5.10) and    indicates that only the logarithmic term is given. Note that (4.10) 
and (C.1) imply 

 ˆ 0d
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Note also that, when we later decompose the problem into symmetric and antisymmetric 

parts, 0 0   for the symmetric problem because the corresponding terms in (C.1) and (C.2) 

are antisymmetric. 

For any given ̂ , solution of (C.4), (C.5) without the viscous term and (C.6) yield p̂  

correct to leading order. The resulting value of 2 p̂   at the wall will be denoted  . The 

result is used in the right-hand side of (C.5) to obtain 
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correct to 1/ 2Oh , where 
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(C.13) is equivalent to (5.12) and replaces (C.5) in the full problem. To simplify the notation, 

we henceforth drop the tilde on a  and the hats on p̂ , ̂  and ̂ . 

The circular geometry of the equilibrium interface suggests the use of bipolar coordinates: 
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where sinx b r      are the locations of the equilibrium contact lines.  The coordinates   

and   are orthogonal. The coordinate 0     takes the value 0   at the wall and    



at the unperturbed interface.     , where     represent the contact lines. The lines 
of constant   are circular, as are those of constant  . Note that  , which is considered as a 

function of   in the main text, should now be regarded as a function of  . 

 (C.4) gives 
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for 0    .  At the wall, the leading-order problem, which determines  , has / 0p y   , 

while the full problem satisfies (C.13) with (C.14). Thus, 
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for 0  , where 0   at leading order and, according to (C.14), 

    1
cosh 1

d d

b d d

 
 
    
 

 (C.19) 

for the full problem. (C.6) gives 
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for   , where 
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(C.3) and (C.12) imply 

   0f d 



 , (C.22) 
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(C.7) can be split into two first-order equations as 
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(C.8) and (C.9) imply 

 X X  , (C.29) 
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as    , where 

 0

cot 2 2 sin

sin cos sin cos

i ib
X b

r

    
      

 
      

. (C.31) 

Define Fourier coefficients 
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where 0n   takes on integer values.  Thus, the Fourier series 
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expresses p  in terms of its coefficients. Multiplying equation (C.17) by cos
n


 and 

integrating over  , integration by parts gives 
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Using (C.18) and (C.20), 
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Thus, employing (C.17) and (C.32), 
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where 
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C.2 Determination of   and its derivatives 

Consider the leading-order problem for which only (C.17), (C.18) with 0   and (C.20) 
are used. Given (C.22) and (C.37) with 0  , the solution of (C.36) which is bounded as 
    is 
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where 0
cp  is an integration constant. Using (C.33) with 0  , 
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where we have summed the infinite series for 0n  . Differentiating (C.40), 
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Integrating (C.41) by parts and using (C.22), 
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where 
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Since  cosh / 2e e    , (C.42) gives 
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Differentiating (C.44) and using (C.19), 
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Given 

         
 
       

 
 (C.48) 

for any function  , (C.47) gives 

 

      

         

2
1

1 2

1

8

2

e d

e d d





      


         
 

 



 

 

        
                



 
. (C.49) 

(C.21), (C.43) and (C.49) provide the expression of    in terms of     for the full 

problem. 

C.3 The full problem 

Turning attention to the full problem, the solution of (C.36) for 0n   is 
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0p  are integration constants. The     limits of (C.50) give 
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On the other hand, (C.10), ln ~R   and (C.32) imply 
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Agreement of the terms proportional to   in (C.51) and (C.52) gives 
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hence 
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Using (C.11), (C.22) and (C.37), 
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Recalling the definition of   as the leading-order value of 2 p   at the wall, 
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at 0y  , where (C.2) has been used. Taking the limit 0R   in which a contact line is 

approached and using (5.10), (A.23) and 0 sin       (which follows from (C.1)), 
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hence 
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Integrating (C.19) over   and using (C.60), it follows that (C.57) is automatically satisfied. 
However, (C.56) provides an additional condition. 

When 0n  , the solution of (C.36) which does not grow exponentially as    is 
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Applying (C.33) with    and using (C.28), (C.37), (C.50) and (C.61), 
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where 
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Note that  1G T and  2G T  are even functions which decay exponentially as T    and 

that  1G T  has a logarithmic singularity at 0T  . 

Integrating (C.24) and (C.25), 
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C.4 Symmetric/antisymmetric decomposition and numerical discretisation 

As noted in the main text, the problem can be decoupled into symmetric ( 0xa  ) and 

antisymmetric ( 0ya  ) parts. In the symmetric case,  , p  and   are even functions of  , 

while  X   and     are odd functions. In the antisymmetric case, the converse is true. 

Numerical solution of the problem involves discretisation. The unknown functions    , 

 P  ,  X  ,     and    are represented by their values 
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where m m    and  1/ 2 1/ 2m m     . We have in mind that   is small and M M    is 

large. There are 5 8M   unknowns, namely m , mX , mP ,  m , m ,  , X  , 0 , 1
0p  and 

2
0p . Equations (C.49), (C.62) and (C.65) are applied at m  , 0M m   , whereas (C.43) 

and (C.66) are used at 1/ 2m   , 0M m   . An additional equation follows from (C.31) 

with the lower choice of signs. In the symmetric case, 0 0   and (C.22) are used, while   
1
0 0p   according to (C.56) and application of (C.66) at 0   gives 
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where  0 0X   and the fact that  2f    is an even function have been used. In the 

antisymmetric case,  0 0 0    and (C.23) are used, while    0 0 0P    and (C.62) at 

0   give 2
0 0p   and (C.56) yields 

 
   

1/ 2 1/ 2
1
0 0

2 Oh
sin

sin

i
p i


   

     . (C.70) 

Thus, in either case, there are the same number of equations as unknowns. 

The integrals in (C.22), (C.23), (C.43), (C.49), (C.62), (C.65), (C.66) and (C.69) are 
approximated as follows. They are split into contributions from inside and outside the range 

M   for (C.49), (C.62) and (C.65), whereas 1/ 2M    is used for (C.22), (C.23), (C.43), 

(C.66) and (C.69). The contribution from outside the range is approximated using large-   

asymptotics. 

C.5 Large-   contributions to the integrals 

According to (C.26) and (C.29), 
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 for (C.65). Using (C.30) and (C.71), integration of (C.24) leads to large-   expansions for  
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for (C.43). In the symmetric case, using just the first term in the expansion (C.73), 
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for (C.22), while, in the antisymmetric problem, 
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for (C.23). 

As    ,   0np    for 0n  , while 0p  is described by (C.51). Thus, using (C.11), 

(C.28), (C.30), (C.33), (C.51) and (C.53), 
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Using (C.77) in (C.27), 
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Using (C.37), (C.78) and (C.81), 
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In the symmetric case, (C.80) and the fact that  2f    is an even function give 
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for (C.69). Again for the symmetric problem, 1
0 0 0xa p    and the integral in (C.82) is 

zero, hence (C.62) and (C.82) give 
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In the antisymmetric case, 2
0 0ya p   and 1

0p  is given by (C.70), hence (C.62) yields 
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and (C.82) implies 
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The M    contributions to the integrals in (C.84) and (C.85) which involve  f    are 

approximated using only the first term in the expansion (C.73). Thus, 
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in the symmetric case, while 
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 (C.90) 

for the antisymmetric problem, where 
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Likewise, 
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for (C.86). 

In the leading-order problem,  ,p    is determined by (C.17), / 0p     for 0   and 

(C.20) for   . Using (C.73), the     asymptotics of the leading-order  ,p    can be 

obtained, those of     deduced and (C.19) employed to find 
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(C.93) shows that    is asymptotically the sum of two decaying exponentials, the second 

of which corresponds to a solution of the homogeneous problem consisting of (C.17), 



/ 0p     for 0   and / 0p     for   . The first exponential dominates as     

for / 2  , while the second is dominant when / 2  . Uniform asymptotics needs both. 

Requiring that (C.93) yield M  at M   , 
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The case / 2   leads to division by zero in (C.94) and must be excluded. However, this 

does not necessarily mean that there is a nonuniformity in the expansion (C.93) when   is 

close to / 2 . If, as might be expected, M  approaches a finite limit as / 2  , the 
factors multiplying the exponentials in (C.93) both tend to infinity, but in such a way that 
cancellation occurs. 

Using (C.93), 
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in the symmetric case and 
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 (C.99) 

for the antisymmetric problem, where 
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Likewise, in the antisymmetric problem, 
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for (C.86). 

Consider the contribution from M    to the right-hand side of (C.49) with m  . 

Using (C.22) and (C.73), (C.43) implies 
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Applying this expansion and using integration by parts, the contribution of M    to the 

right-hand side of (C.49) has the approximation 
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in the symmetric case and 
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 (C.105) 

for the antisymmetric problem, where 
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C.6 Completion of the numerical scheme 

Turning attention to the contributions from within the ranges M   and 1/ 2M   , we 

begin with the integral in (C.43). Taking 1/ 2m   , 0M m   , the range 

1/ 2 1/ 2M m       is split into intervals, the interval l  ( M l m   ) consisting of 

1/ 2 1/ 2l l     . The contribution to (C.43) from this interval is written 
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The quantity  f e    is approximated by its value,   l
lf e   , at the centre of the interval, 

leading to 
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Summing over the intervals and combining the result with (C.74), 
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is the numerical approximation of (C.43). Note that, because  f e    approaches a constant 

value at large negative   , the above approximation maintains precision at large negative m . 

The integrals in (C.22), (C.23), (C.65), (C.66), (C.69) and (C.86) are treated using the 
mid-point rule. (C.65), (C.66), (C.72) and (C.80) give 
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where the sum in (C.111) should be interpreted as zero when m M  . In the symmetric 
case, (C.22), (C.69), (C.75) and (C.83) yield 
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In the antisymmetric problem, (C.23) and (C.86) are approximated by 
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where (C.76), (C.92) and (C.102) have been used. 

In the symmetric case, the contribution to the right-hand side of (C.49) from M    is 
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The range 0M      is split into intervals 1l l     , where 1M l    . Let us 

consider the first integral in (C.117) with m  . In each interval, the quantity  e    is 

approximated by its value, 1/ 2lle  , at the centre of the interval. Thus, the contribution of the 
interval to (C.117) is 
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where  2
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1

4nd n    . Similar reasoning applied to the second and third integrals in 

(C.117) gives 
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and 
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The sum of (C.118)-(C.120), followed by summation over the intervals, yields 
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 (C.121) 

as the numerical approximation of (C.117). The sum of (C.104) and (C.121) gives the 

numerical expression of m  for the symmetric problem. Similar treatment of the 
antisymmetric problem gives 
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 (C.122) 

as the equivalent of (C.121). Thus, the sum of (C.105) and (C.122) yields m  in the 
antisymmetric case. 

With the exception of the ones involving 1G , the contributions from M    to the 

integrals in (C.84) and (C.85) are approximated using the trapezoidal rule. Thus, in the 
symmetric case, 
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and 
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where (C.87), (C.96) and (C.97) have been used. For the antisymmetric problem, 
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where (C.89), (C.98) and (C.99) have been employed. Recalling that the quantities 1
  and 

2
  are given by (C.94) and (C.95), (C.123)-(C.128) express all integrals in (C.84) and 

(C.85), apart from the one containing 1G , in terms of the unknowns of the problem. 

The logarithmic singularity of  1G T  at 0T   means that more care is needed when 

approximating the corresponding integrals in (C.84) and (C.85). We temporarily suspend 
symmetry considerations, then specialize later to the symmetric and antisymmetric cases. The 

range M   is split into intervals indexed by M l M   , where the interval with index l  

is defined by 1l l     .  In each such interval,  f    is approximated by 

   m

l lf a b e       , (C.129) 

where 
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in order to match the values of  f   at l   and 1l   . (C.129) leads to 
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where 1ns   when 0n  , 1ns    when 0n   and 
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Using (C.130) and (C.131), (C.132) gives 
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where 
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and we have used 1m l l ms s     and the fact that    J T J T   , which follows from 

   1 1G T G T   and (C.133). (C.134) can be rewritten as 
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In the symmetric case, (C.136) gives 
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while 
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 (C.138) 

in the antisymmetric case. Note that (C.88) and (C.90) have been used to express the large-   

contributions in (C.137) and (C.138). 

The full numerical problem uses (C.31), with the lower choice of signs, and (C.110)-

(C.112). In the symmetric case, 0 0  , (C.113) and (C.114) are applied and m  is given by 

the sum of (C.104) and (C.121). (C.84) is used, the integrals being expressed by (C.123)-

(C.125) and (C.137) with 1
  and 2

  given by (C.94) and (C.95). For the antisymmetric 

problem, 0 0  , (C.115) and (C.116) are used with 1
 , 2

  given by (C.94) and (C.95), 

while m  is given by the sum of (C.105) and (C.122). (C.85) is applied with the integrals 

expressed using (C.126)-(C.128) and (C.138) and 1
 , 2

  given by (C.94) and (C.95). Thus, 

in either case, there are 5 7M   equations for the same number of unknowns, namely m , 
mX , mP ,  m , m ,  , X  ,   and 0 . The number of equations and unknowns are reduced 

by elimination as follows. m  can be eliminated using the numerical approximation of 
(C.49) ((C.104) and (C.121) in the symmetric case, (C.105) and (C.122) for the 

antisymmetric problem), m  using (C.110), m  using (C.111) and mX  using (C.112). This 

leaves 5M   equations in the same number of unknowns. In the symmetric problem, 0 0   

is used to eliminate 0 , hence reducing the number to 4M  . For the antisymmetric case, 



0 0P   follows from (C.85) with 0m  . Thus, that equation and the unknown 0P  can be 
eliminated, reducing the number of unknowns to 4M  , as for the symmetric case. The 
resulting symmetric and antisymmetric problems can be expressed in the matrix form (5.13), 

where the vector U  consists of 1 0, , ,M MP P P   ,  , X  ,   for the symmetric problem 

and 1 1, , ,M MP P P   ,  , X  ,  , 0  for the antisymmetric one. In the antisymmetric case, 

the inviscid solution is 0mP X      , 2
0 xa   . This vector is denoted 

2
xU a V   in the main text. Thus, V  is a constant vector all of whose components are zero, 

apart from the one corresponding to 0 , which is 1. 

The determination of the functions  1H T ,  2H T ,  3H T ,  1I T ,  2I T  and  J T  is 

described in appendix D. 

Appendix D: Calculation of  1H T ,  2H T ,  3H T ,  1I T ,  2I T  and  J T  

 1H T ,  2H T ,  3H T ,  1I T  and  2I T  are required for 0, , , 2T M   . First 

consider the calculation of  1H T . Let 

        1 11 TF T H T e G T       0T  , (D.1) 

then (C.63) and (C.91) imply 
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has the virtue of having no singularity as 0T  . However, as we shall see, its value at 0T   
is required. Evaluated directly, (D.3) gives a zero-by-zero division, so this value is 
determined by taking the limit 0T  . 

Using (C.91) and the first equality in (C.63), we find 
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Taking 2T M  , presumed large, the series in (D.4) is rapidly convergent and can be 

calculated numerically by truncation. This allows the determination of  2F M  using (D.1).  

Employing Simpson’s integration rule, the integral of (D.2) implies 
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, (D.5) 

which can be used to determine the remaining  F T . As noted above,  1 0h  is needed, the 

0T   limit of (D.3) giving 
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1
0h


 . (D.6) 

The required  1H T  follow from (D.1) for 0T  . As 0T  , (D.1) implies    1 0 0H F . 

Using the first equality of (C.64) in (C.100) and (C.101), 
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for 0T  . Taking 2T M  , the series in (D.7) and (D.8) are rapidly convergent and can be 
calculated by truncation. (C.100), (C.101) and Simpson’s rule imply 
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where 
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Using (D.7) and (D.8) for 2T M  , the remaining  2H T  and  3H T  follow from (D.9) 

and (D.10). 

Turning attention to (C.106) and (C.107), integration by parts gives 
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are determined at 2T M   by truncation. Applying Simpson’s rule, 
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where 
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Using (D.15) and (D.16) for 2T M  , the remaining  1I T  and  2I T  follow from (D.17) 

and (D.18). 

Finally,  J T  is defined by (C.133) and has the limiting value  0 0J  . The values of 

 J n  are required for 2 2M n M   . Since    1 1G T G T  ,    J T J T    and we 

restrict attention to 0T  . We have 
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Changing integration variable to /1 Tz e     , 
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where 

  
0

ln

1

z z
g z dz

z




 . (D.22) 

Integrating by parts, 
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Changing integration variable to 1w z  , 
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hence 
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We have 
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It follows that   21 / 6g    so (D.25) gives 
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The series  2
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n

n z






  converges quite rapidly when 1/ 2 1z   and can be numerically 

calculated by truncation, leading to  g z  via (D.26).  When 0 1/ 2z  , (D.26) with series 

truncation is used to calculate  1g z  and  g z  determined from (D.27). 

 

 



Appendix E: Theoretical formulation for a spherical drop 

This appendix gives a brief description of the formulation of the linearized, small- Oh , outer-
region problem for a spherical drop. No numerical implementation of this analysis has so far 
been developed. 

Define Cartesian coordinates x , y , z  with the wall at 0z   and the drop in 0z  , as well 

as spherical polar coordinates r ,  ,   with origin at the equilibrium drop centre, for which 

sin cosx r   , sin siny r   , cos cosz r r   , where r  is the equilibrium drop 

radius and   the contact angle. The liquid/gas interface of the equilibrium drop lies at r r , 

while the perturbed interface is  , ,r r t    . 

The linearized, small- Oh equations and boundary conditions of the outer problem with 
sinusoidal wall vibration are 
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on the equilibrium interface, r r , 
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as    and 
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as 0R  , where R  is distance from the contact line and 
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. (E.8) 



That the equilibrium and perturbed drops have the same nondimensional volume is expressed 
by 

 
2

0 0
sin 0d d

 
       . (E.9) 

Equations (E.1)-(E.9) are respectively the spherical-drop equivalents of (5.1)-(5.4), (5.8), 
(4.9), (5.9), (5.10) and (4.10). 

The solution of (E.1)-(E.9) can be expressed as a linear combination of three components: 

a) 0x ya a   , 1za  , b) 0y za a   , 1xa  , c) 0x za a   , 1ya  . Component a is 

axisymmetric, i.e. p  and   are independent of  . For components b and c, 

     2
0ˆ , sinp p r r f      , (E.10) 

     0ˆ sin f       , (E.11) 

    0ˆ sinc c f      , (E.12) 

  ˆq qf  , (E.13) 

where   cosf    for component b,   sinf    for component c, and the constant 0  is 

chosen such that 
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It should be noted that p̂ , ̂ , ˆc , 0  and q̂  are the same for components b and c. In what 

follows, p p  ,    , c c    and 0 0   for component a, while ˆp p , ˆ  , ˆc c   and 

ˆq q  for components b and c. 

Equation (E.1) yields 
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inside the equilibrium drop, where 0k   for component a and 1k   for components b and c. 
(E.2) gives 
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on 0z  , where p  is here regarded as a function of the cylindrical coordinates, z  and 

 1/ 22 2 sinx y r    , the distance to the drop axis. (E.3) and (E.4) imply 
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when r r , where  0 cos cos      and  1 sin   . (E.5) and (E.6) yield 
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as   . (E.7) and (E.8) give 
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as 0R  . (E.9) is automatically satisfied for components b and c. (E.9) when 0k   and 
(E.14) when 1k   imply 
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sin 0d
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As in the 2D problem, a leading-order relation for p  can be obtained using (E.15), (E.16) 

with Oh 0  (i.e. / 0p z    when 0z  ) and (E.17). Furthermore, (E.21) with Oh 0  

implies that there is no logarithmic singularity in the leading-order problem. None of the 

other equations are applied in that problem. The resulting value of 2 p   at the wall is 

denoted    . The result is used in (E.16) to obtain 
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 (E.23) 

for 0z  . In the full problem, (E.16) is replaced by (E.23) and (E.15), (E.17)-(E.22) apply. 

For component a, (E.21) is automatically satisfied given the other equations of the 
problem. To show this, (E.1) is integrated over the equilibrium drop volume, excluding a 

small region 0R R , and the divergence theorem is used to turn the volume integral into a 

surface integral. (E.17) and (E.22) imply that the interfacial contribution is zero in the limit 

0 0R  . (E.23) provides the wall contribution when multiplied by 2  and integrated over 

  from 0   to the contact-line location, sinr  . Integration by parts brings in the 

limiting value of /d d    at the contact line. Analysis of the leading-order problem as 

0R   shows that / sind d qr     , with q  given by (E.8). This allows evaluation of 



the contribution from the wall. The remaining contribution comes from  0R R  and involves 

the integral on the left-hand side of (E.21). The result is (E.21), which is thus automatically 
satisfied and is therefore dropped when 0k  . It is however needed when 1k  . 

 

 

 

 


