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Characterization and suppression of the hydrodynamic instability in the
time domain for acoustic propagation in a lined flow duct

Yuanyuan Deng, Antoni Alomar, Didier Dragna, Marie-Annick Galland

Universite de Lyon, Ecole Centrale de Lyon, INSA Lyon, UCB Lyon 1, CNRS LMFA UMR 5509
36 Av Guy de Collongue, Ecully 69134, France

Abstract

The gradient term suppression (GTS) method for removing the hydrodynamic instability appearing
in the time-domain solutions of the linearized Euler equations (LEE) along a lined flow duct is
assessed. For this, the characterization of a convective instability in the time domain, with the
aid of a complementary modal analysis, is first presented. The effect of the mesh size and spatial
filtering on the instability is investigated. In particular, a convergence of the instability in the time
domain is achieved for a small enough grid size. The consequence of suppressing the mean flow
gradient term on the modes is then investigated. It is shown that the unstable modes are indeed
removed, but also that acoustic modes are significantly modified, especially for low Helmholtz
numbers. The GTS method is finally applied to the NASA grazing impedance tube benchmark. It
is found that tuning the weight of the mean flow gradient term within the LEE can be effective for
suppressing the instability while conserving a reasonable accuracy of the acoustic component.

Keywords: Lined flow duct, hydrodynamic instability, removing of instability, time domain

1. Introduction1

Acoustic liners are widely used in the intake or bypass of the aero-engines to attenuate the noise2

generated by airplanes. To study their interaction with acoustic waves in the presence of a mean3

flow, time-domain approaches, based on the linearized Euler equations (LEE), are well-suited, as4

broadband results can be obtained with a single simulation [1, 2, 3]. In addition, extension to5

account for nonlinear effects due to large sound pressure levels can be considered. Time-domain6

approaches are however especially sensitive to instabilities, which can contaminate the pressure7

field and complicate the extraction of the acoustic component.8

The presence of an instability over acoustic liners was first detected experimentally through the9

transmission coefficient [4, 5, 6, 7]. The transmission coefficient became larger than 1 around the10

liner resonance at sufficiently high Mach numbers, implying a source of acoustic energy. The source11

was rightfully attributed to an instability. Optical flow measurements [8, 9] led to a full spatial12

characterization of the instability, and revealed its convective nature.13

The use of the Ingard-Myers boundary condition [10, 11], which describes how acoustic per-14

turbations interact with an impedance wall for a vanishingly-thin inviscid boundary layer, was the15

Email addresses: yuanyuan.deng@ec-lyon.fr (Yuanyuan Deng), tonignasi@gmail.com (Antoni Alomar),
didier.dragna@ec-lyon.fr (Didier Dragna), marie-annick.galland@ec-lyon.fr (Marie-Annick Galland)

Preprint submitted to Journal of Sound and Vibration January 15, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0022460X21000717
Manuscript_3638d1d73f9e671be6da3234f0f11602

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0022460X21000717
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0022460X21000717


usual approach from the early numerical and theoretical works on the subject. By doing so, in-16

stabilities were observed in many studies [12, 13, 1, 14, 15, 16]. Later, Brambley [17] showed that17

the Ingard-Myers boundary condition is mathematically ill-posed in the time domain because the18

model supports unstable modes of unlimited exponential growth at arbitrarily short wavelengths.19

He [18] has shown later theoretically that accounting for a boundary layer thickness in the bound-20

ary condition (modified Ingard-Myers condition) regularizes the problem. Since many studies have21

questioned the validity of the Ingard-Myers boundary condition [19, 20], the use of a finite boundary22

layer thickness has been explored to improve the modeling of the instabilities [21, 22, 23, 24, 25, 26].23

Detailed numerical analysis with a mass-spring-damper impedance model showed that the use of a24

mean velocity profile instead of the Ingard-Myers condition transformed the unstable mode from25

absolute to convective [27]. However, even with a full velocity profile, absolute instabilities seems26

to be present in time-domain simulations for liners with a more realistic broadband impedance [28].27

The thermoviscous effects [29] or turbulent dissipation through an eddy viscosity profile [30,28

31, 32] are capable of attenuating the instability. It can even lead the nature of instability to29

change from absolute to convective [30, 29]. Including turbulent dissipation, the properties of the30

instability appear to be close to the experimental results. More recently, numerical simulations of31

a channel flow with an acoustic liner using implicit large eddy simulations [33] were performed.32

Surface waves with characteristics similar to the instability predicted by linear stability analysis33

were exhibited. However, very fine grids, and even tremendous computational resources for direct34

numerical simulations, are needed in those studies to properly capture the instability, which is a35

strong disadvantage if the goal of the simulations is the computation of the acoustic field.36

Various strategies to attenuate the instability numerically in time-domain simulations have been37

explored in the past. Since it is observed that the instability often appears in fine grids, the use of38

coarse grids and artificial damping has been recommended to attain a stable simulation by some39

authors. In particular, the studies of Gabard and Brambley [27, 34] suggest that the origin of the40

absolute instability lies in the dispersion properties of the finite-difference schemes, and they proved41

the effectiveness of numerical filtering at the boundary to avoid spurious numerical instabilities.42

Marx [25] examined the case of a convective instability in the time-domain, and assessed the impact43

of selective filtering and grid size. He considers that if the instability is physical, increasing the44

grid size or strengthening the selective filters do not necessarily attenuate the instability.45

Another approach, widely used in flows reminiscent of shear instabilities, is the substitution of46

the underlying LEE by a new set of equations which are inherently stable. Among them we can47

mention the gradient term suppression method (GTS) [35, 36, 37, 38, 39], the acoustic perturbation48

equations [40], the linearized perturbed compressible equations [41, 42], or the gradient term filtering49

method [43, 44]. These methods have been applied to deal with Kelvin-Helmholtz (KH) instabilities50

in various cases with shear flows, such as sound radiation through two-dimensional shear layers and51

sound radiation from a bypass duct[44, 36]. It has been shown that most of them are similarly52

effective for these particular flows [44].53

To the authors’ knowledge, such methods have not been employed yet for the suppression of54

instabilities generated in a lined flow duct. It is worth mentioning that the mechanism for these55

instabilities, while related to KH instabilities, is different. Specifically, the instabilities in a lined56

flow duct are related to the presence of acoustic liners and not only due to the shear flow. Among57

the methods existing in the literature for KH instabilities, we have opted to restrict ourselves to58

GTS in this study, as a first approach to the case of acoustic liners. However, other methods might59

perform similarly or even better in certain cases, so a future comparative study would certainly be60
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useful.61

The objective of the paper is to analyze the effectiveness of the GTS method in suppressing62

the hydrodynamic instability that appears in the time-domain simulations of acoustic propagation63

along a lined duct. For this, it is beforehand verified that the instability is not of numerical origin64

and is a part of the LEE solution and that its characteristics are in good agreement with the65

predictions of a reference modal analysis, following Marx [25]. In particular, the impact of the grid66

resolution and the amount of selective filtering on instabilities are analyzed.67

The paper is organized as follows. The configuration of the model, the governing equations and68

the numerical schemes are presented in Section 2. An example of an instability in the time-domain69

approach is shown and is characterized in Section 3. In Section 4, the effect of the selective filter70

and mesh size on the instability is assessed. Finally, in Section 5, the performance of the partial71

GTS method to suppress the instability is analyzed, and is applied on the NASA GIT benchmark72

problem.73

2. Numerical models74

A two-dimensional partially lined duct, of size H × L, is considered, as shown in Fig. 1. The75

acoustic liner is installed on the upper wall, while the lower wall is rigid. A point source is fixed76

in the center of the duct. The source is impulsive, unless stated otherwise. A parallel shear flow of77

velocity profile u0 goes from left to right, and vanishes on the walls. ρ0 is the mean density, and c078

is the sound speed. The physical quantities with dimensions of length, time, velocity, and pressure79

are nondimensionalized using H, H/c0, c0 and ρ0c
2
0, respectively.80

Fig. 1. Numerical configuration.

2.1. Governing equations81

Acoustic propagation in a lined flow duct is governed by the LEE. Assuming the mean flow
is homentropic and neglecting the gradient of mean pressure, the LEE in dimensionless form are
written as:

∂p

∂t
+ u0

∂p

∂x
+
∂u

∂x
+
∂v

∂z
= Q (1a)

∂u

∂t
+ u0

∂u

∂x
+ v

du0
dz

+
∂p

∂x
= 0 (1b)

∂v

∂t
+ u0

∂v

∂x
+
∂p

∂z
= 0 (1c)
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where p, u and v are the acoustic pressure and components of the acoustic velocity along the x and82

z-direction, respectively.83

The mean flow velocity profile is given by:84

u0 (z) = M
nt + 1

nt
(1− |1− 2z|nt) , (2)

where M is the Mach number corresponding to the mean velocity. The parameter nt specifies the85

flow profile and can be related to the boundary layer thickness. The displacement thickness, defined86

by:87

δ =

∫ 1/2

0

(
1− u0(z)

u0(1/2)

)
dz (3)

is equal to δ = 1/[2(nt + 1)]. Unless stated otherwise, the flow profile parameter is set to nt = 9,88

corresponding to δ = 5 %. Note the 2D velocity profile in Eq. (2) does not have an inflection point89

and should not support any KH instability. While not shown for conciseness, it has been verified90

that the time-domain simulations in a rigid duct with this sheared flow profile do not present any91

instability.92

2.2. Time-domain solver93

The LEE are solved using high order finite-difference time-domain methods. The spatial deriva-94

tives are calculated by optimized 4th-order finite-difference schemes over 11 points. Namely, the95

centered scheme of Bogey & Bailly [45] and the non-centered schemes of Berland et al. [46] are96

employed for the interior and boundary points, respectively. The optimized, 4th-order 6-stage97

Runge-Kutta algorithm of Berland et al. [47] is employed for time integration. The time step is98

∆t = 0.0014.99

Selective filters are used to remove grid-to-grid oscillations. For the interior points, the centered100

11-point 6th-order selective filter of Bogey et al. [48] is adopted. For the boundary points, the101

selective filters of Berland et al. [46] are used. A parameter, denoted by σ and referred to as the102

filtering strength, allows one to adjust the effect of the selective filters. It ranges from 0 to 1, 0103

meaning that no filtering is applied and 1 meaning that grid-to-grid oscillations are totally removed.104

As the filtering is applied at every iteration, a filtering strength of 1 is usually not necessary and105

can even deteriorate longer, well-resolved wavelengths. The default value is σ = 0.5.106

The mesh is uniform in the x-direction with a size of ∆x = 0.02. This ensures that the number107

of points per acoustic wavelength λ = 2π/ω is larger than 10 up to ω = 10π. It can be noticed108

that the duct cut-off frequency in the no-flow case corresponds to ω = π. Damping zones with a109

length of 20, are implemented upstream and downstream to prevent reflections. In these zones, the110

mesh spacing gradually increases with a stretching factor of 3% and a Laplacian filter is applied to111

add artificial dissipation [49]. Along the z-direction, the mesh size decreases gradually towards the112

walls with a shrinking factor of 1%. The number of grid points along the duct height is nz, with113

default value 175.114

For the rigid wall, the boundary condition vz(x, z = 0) = 0 is imposed. The lined wall is115

modelled through the impedance boundary condition:116

p(x, z = 1, t) = [z̃ ∗ vn](x, t), (4)

where ∗ denotes the convolution operator, vn(x, t) = v(x, z = 1, t) and z̃(t) is the impedance model117
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in the time domain. To avoid computing the convolution integral, the time-domain boundary118

condition proposed in Troian et al. [50] is employed. For this, the admittance in the frequency119

domain β (ω), related to the time-domain impedance model by120

β(ω)−1 =

∫ +∞

−∞
z̃(t)e−iωtdt, (5)

is approximated by a rational function:121

β(ω) = Y∞ +
P∑
i=1

Ai

λi + iω
+

S∑
i=1

(
Bi − iCi

αi − iβi + iω
+

Bi + iCi

αi + iβi + iω

)
, (6)

where λi and αi ± iβi are respectively the real poles and complex-conjugate pole pairs of β(ω), P122

and S denote their number and Y∞, Ai, Bi and Ci are real coefficients. For a given broadband123

impedance model, the admittance parameters in Eq. (6) are determined using the vector fitting124

algorithm [51] in the frequency band of interest. The implementation of the time-domain impedance125

boundary condition is not further described here but interested readers can refer to Troian et al. [50]126

for details.127

The source term Q in Eq. (1a) is chosen as128

Q (x, z, t) = λ(t) exp

(
−x

2 + (z − 0.5)2

B2
s

ln 2

)
, (7)

where Bs is the Gaussian half-width of the source, with a value of 0.104. Both impulsive and129

harmonic sources are used in this study. For impulsive sources, λ(t) is defined as:130

λ(t) =
t− ts
tc

exp

(
−(t− ts)2

t2c
ln 2

)
H(t) (8)

where ts = 5.42 is a time shift, tc = 0.95 specifies the frequency content of the source signal and131

H(t) is the Heaviside function. In the case of a harmonic source λ(t) is defined as:132

λ(t) = exp (iωt)H(t) (9)

with ω the angular frequency. A complex-valued harmonic source is chosen for an easier extraction133

of instability characteristics. It can be noticed that acoustic pressure and velocity fields in the time-134

domain numerical simulations are also complex-valued when this harmonic source is employed.135

2.3. Modal analysis approach136

A modal analysis is also performed to determine the stability properties of the lined section, from137

which the wavenumbers and the mode shapes of all modes can be determined, including the unstable138

modes. Monochromatic waves propagating in an infinite, homogeneous duct are considered:139

u = U (z) ei(ωt−kx),

v = V (z) ei(ωt−kx),

p = P (z) ei(ωt−kx),

(10)
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where U , V and P are the mode shapes, which depend only on z, and k is the mode wavenumber.140

Note that ω and k can be complex-valued.141

In order to obtain this information, the next step is to introduce Eqs. (10) into Eqs. (1) to142

obtain an eigenvalue problem. The eigenvalue problem is not directly formulated using the physical143

variables; instead, the characteristic variables, i.e., U , P − V and P + V , are used. Specifically,144

P−V and P+V are the characteristic waves travelling along the −z and +z-direction, respectively.145

The motivation for using the characteristic variables is described below. The discretization of the146

LEE on a grid with N points leads to a system of 3N equations for 3N unknowns. The boundary147

conditions however bring two additional equations. In order to avoid having an overdetermined148

system, it is thus necessary to choose two equations to eliminate, which is not trivial and somewhat149

arbitrary. The characteristic variables allow for a suitable choice (see Appendix A).150

Doing so, the LEE in the frequency domain are written as:151 
1
−1

2iω

du0
dz

1

2iω

du0
dz

0 1− 1

iω

d

dz
0

0 0 1 +
1

iω

d

dz




U

P − V

P + V

 =
k

ω


u0

1

2

1

2

1 u0 0

1 0 u0




U

P − V

P + V

 . (11)

This matrix system has to be completed with appropriate boundary conditions. On the rigid152

wall, the boundary condition becomes [P + V ](z = 0) = [P − V ](z = 0). On the lined wall, the153

impedance boundary condition is written as:154

[P − V ](z = 1) =
1− β
1 + β

[P + V ](z = 1) (12)

Note that the admittance in Eq. (12) depends on the frequency. In the stability analysis performed155

in Section 3, the frequency can be complex-valued and the admittance has to be calculated accord-156

ingly. To be noticed, admittance models given by a rational function in Eq. (6) are used in the157

paper.158

The eigenvalue problem in Eq. (11) is solved numerically. The spatial derivatives are discretized159

using the Chebyshev spectral method [52], which is able to generate smaller numerical errors than160

finite-difference schemes for a given number of grid points. The gradient of the mean flow du0/dz is161

also calculated numerically using the Chebyshev spectral method. The default value of the number162

of grid points N used in the modal analysis is 150. The discretized LEE are then recast into a163

generalized eigenvalue problem, which is solved by the eig function of MATLAB. Details on the164

discretization and on the implementation of boundary conditions are provided in Appendix A.165

3. Stability analysis166

As described in the previous section, both methods will be applied to study hydrodynamic167

instabilities. The occurrence of a hydrodynamic instability depends on the characteristics of the168

liner, the mean flow profile and the source frequency. Two cases with Mach numbers of M = 0.1169

and M = 0.3 are considered. The corresponding flow profiles are shown in Fig. 2. For simplicity, a170
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mass-spring-damper (MSD) liner is used, with impedance171

Z (ω) = R+ iωm+
K

iω
, (13)

where R, m and K are respectively the damping, mass and spring stiffness. The impedance172

spectrum of the liner used in our case is shown in Fig. 3, with R = 0.2, m = 5.4× 10−3 and K = 0.173

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Fig. 2. Mean flow profile for: M = 0.1 and M = 0.3.

0 1 2 3 4

0

0.2

0.4

0 1 2 3 4

0

0.01

0.02

Fig. 3. Impedance of the MSD liner.

3.1. Example of time-domain simulation174

Time-domain simulations are first performed using an impulsive source to illustrate the acous-175

tic propagation along the lined duct. Fig. 4 shows the pressure response varying with time and176

position along the x-axis on the lined wall. For M = 0.1, two branches originating from t = ts are177

observed, corresponding to upstream and downstream propagating waves. These acoustic waves178

are attenuated along the lined wall. After t ≈ 18, they have left the computational domain and the179

remaining fluctuating pressure is almost null. For M = 0.3, these two branches are retrieved. Their180

orientation is modified due to the difference in the Mach number. Another contribution is however181

observed in the downstream direction. Its magnitude and its spatial extent increase as it propa-182

gates away from the source, indicating it is an instability. Moreover, since the pressure response is183

given as a function of the distance and time, the velocity of acoustic waves and instabilities can be184
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deduced from the slopes of the different branches. It can then be estimated that the propagation185

velocity of the instability is smaller than that of the acoustic waves.186

(a) (b)

Fig. 4. Pressure response ln |p (x, z = 1, t) | to an impulsive source on the lined wall for (a) M = 0.1 and (b) M = 0.3.
The source position is indicated by the vertical dashed line.

3.2. Characterization of the instability from modal analysis187

This section aims at correlating the instability observed in the time-domain simulations with188

the modal analysis. Therefore, a harmonic source is imposed on both approaches. For predicting189

the response to a harmonic excitation, a spatial stability analysis is performed: the frequency is190

real-valued and the mode wavenumbers can be complex. Fig. 5 displays the wavenumbers of all191

modes at ω = 0.9271 for both M = 0.1 and M = 0.3. This particular frequency is chosen because192

it corresponds to a dimensional frequency f = 1000 Hz for the benchmark data of the NASA GIT193

duct (sound speed c0 = 344.28 m s−1 and duct height H = 0.0508 m), which is considered in194

Section 5.3. It is also close to the frequency ω = 0.8344 where the maximal spatial growth rate195

is observed (not shown). For M = 0.1, there is no mode in the upper-right complex k-plane and196

therefore no possible instability. For M = 0.3, the wavenumber of one mode (k = 6.78 + 1.97i)197

has both positive real and imaginary parts. This is possibly an unstable mode, and its stability198

depends on the propagation direction. If the mode is an upstream decaying mode, the propagation199

is stable. On the other hand, if it propagates in the downstream direction, it corresponds to an200

instability. The propagation direction of this mode therefore needs to be determined.201

In Fig. 5, noticeable modes other than the acoustic modes and the instability are convected202

modes which satisfy the dispersion relation ku0 (z) = ω. For a sheared mean flow, they come203

as a continuous spectrum, located in the k-plane along the horizontal half-line starting at k =204

ω/max(u0). In solving numerically the eigenvalue problem, this continuous spectrum turns into in-205

dividual modes, which are greatly dependent on the discretization. In particular, even the wavenum-206

bers of these modes may have small positive imaginary parts and thus be weakly unstable. As shown207

in the study of Brambley et al. [53], the contributions of the continuous spectrum are negligible208

when the point source is located at the duct centerline, where the mean flow is relatively unsheared.209

Note that the use of selective filters, as employed in the time-domain simulations, tends to move the210

convected modes towards the lower right quadrant of the k-plane [25] and thus to make all these211

modes stable. As we are primarily interested in the instability, no specific method is employed to212
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(a) (b)

Fig. 5. Wavenumber obtained from modal analysis for ω = 0.9271 and for (a) M = 0.1 and (b) M = 0.3. The
encircled wavenumber indicates a possible unstable hydrodynamic mode.

have an accurate prediction of convective modes. Such a method has been for instance described213

in Vilenski and Rienstra [54].214

The Briggs-Bers criterion [55, 56] is used to determine the propagation direction of the modes,215

and, if an unstable mode is present, whether it is convective or absolute. This criterion has been216

introduced to study the plasma instability and has been later considered for the stability analysis217

of acoustic propagation in a lined flow duct [17]. However, before using the Briggs-Bers criterion,218

it must be checked that it is applicable. For instance, as discussed by Brambley [17], the acous-219

tic propagation in a lined duct with a plug flow and the Myers impedance boundary condition is220

mathematically ill-posed, implying that Briggs-Bers criterion can not be used. In order to apply221

the Briggs-Bers criterion, one must first check that the growth rates of all modes, and in partic-222

ular the unstable modes, are bounded. To do so, a temporal stability analysis is conducted. The223

wavenumber here remains real, and the frequency ω, possibly complex-valued, satisfying the disper-224

sion relation is sought. If for a particular value of the wavenumber, one has Im(ω) < 0, the system225

is then unstable. Fig. 6 shows the growth rate of the possible unstable mode for M = 0.3 as a226

function of Re(ω). It is observed that the growth rate is bounded at Im (ω) ≈ −0.23, meaning that227

the instability will not be amplified at an arbitrarily large growth rate for any given real frequency.228

The Briggs-Bers criterion can thus be applied in this case.229

To determinate if a possible unstable mode is an instability, the trajectory of its wavenumber230

in the complex k-plane is recorded as ω = Re (ω) + i Im (ω) is varied. More specifically, Re (ω) is231

fixed while Im (ω) is varied from −∞ to 0. Fig. 7 shows this process for Re(ω) = 0.9271, while the232

imaginary part Im (ω) goes from −1.4 to 0. The wavenumber of the possible unstable mode crosses233

the real k-axis from the lower k-plane when Im (ω) is approaching 0. The crossing of the real k-axis234

from the lower half k-plane indicates that this mode is indeed a downstream propagating mode and235

is thus an instability.236

In addition, in order to discard the existence of an absolute instability, it should be verified,237

that the trajectories of the wavenumbers in the k-plane for any Re (ω) do not show any saddle238

point, which corresponds to merging roots of k from different halves of the k-plane. This has been239

carefully checked on a large range of values of Re (ω). To sum up, for ω = 0.9271, there is only one240

hydrodynamic instability, and it is a convective instability.241

9



-1 0 1

-0.3

-0.2

-0.1

0

Fig. 6. Growth rate of the unstable mode for a real wavenumber and for M = 0.3.
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Fig. 7. Trajectories of the wavenumbers for Re (ω) = 0.9271 as Im (ω) varies from -1.4 to 0. The arrow indicates
the direction of increasing Im (ω).

3.3. Characterization of the instability from time-domain simulation242

3.3.1. Instability type243

The type of the instability observed in the time-domain simulations can also be investigated by244

considering acoustic propagation driven by a harmonic source with ω = 0.9271. The logarithm of245

|p| on the lined wall z = 1 varying with t and x is shown in Fig. 8. With a harmonic source, the246

response of pressure has a constant value at x = 0. The attenuation by the liner can be noticed along247

the upstream direction, and the hydrodynamic instability is observed in the downstream direction.248

Once a steady-state is attained, the magnitude of the instability at a given location is not increasing249

over time. It thus appears that the instability observed in the time-domain simulation is also a250

convective one.251

3.3.2. Wavenumber252

If the instability is convective and is the main contribution to the pressure field, the fluctuating253

pressure will have the form:254

p (x, z, t) = PHI (z) eiωte−iRe(kHI)xeIm(kHI)x, (14)
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Fig. 8. Pressure response ln |p (x, z = 1, t) | to a harmonic source at ω = 0.9271 obtained from the time-domain
simulation for M = 0.3. The source position is indicated by the vertical dashed line.

where PHI is the mode shape of the instability and kHI is its wavenumber.255

In this case, the phase of the complex pressure, denoted by arg is given by:256

arg[p (x, z, t)] = −Re (kHI)x+ ωt+ arg[PHI (z)]. (15)

The real part of the instability wavenumber can then be estimated from the time-domain solution257

through the axial evolution of the phase of the complex pressure. Fig. 9 shows arg(p) along the258

liner (z = 1) at t = 90, for which it has been checked that the instability is well developed. The259

phase has been unwrapped to ensure that arg(p) is continuous. The estimated slope for 2 ≤ x ≤ 6260

of the phase is −6.89, which is very close to the prediction of modal analysis Re(kHI) = 6.78.261
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Fig. 9. Comparison of the phase of the pressure on the lined wall from the time-domain solution at t = 90
and from the analytical solution in Eq. (15) (arg(p) ∝ −6.78x) .

Similarly, the growth rate of the convective instability Im (kHI) in Eq. (14) can be calculated262

from the logarithm of |p(x, z, t)|:263

ln |p (x, z, t)| = Im (kHI)x+ ln |PHI (z) |. (16)

A snapshot of ln |p| at t = 90 from the time-domain simulation is depicted in Fig. 10 (a). The264
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instability is seen growing from the source at the vicinity of the liner. Fig. 10 (b) shows the spatial265

variation of ln |p(x, z = 1, t = 90)|. A linear growth is observed downstream, where the instability is266

the dominant contribution to the pressure field. The estimated slope for 2 ≤ x ≤ 6 is 1.99, which is267

again in close agreement with the spatial growth rate predicted by modal analysis Im (kHI) = 1.97.268
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Fig. 10. (a) Snapshot of ln |p| at t = 90 and (b) comparison of the amplitude of the pressure on the lined wall from
the time-domain solution and from the analytical solution in Eq. (16) (ln |p| ∝ 1.97x) .

Another example for a different frequency ω = 0.4636 can be found in Appendix B. This shows269

the viability of the time-domain method in simulating the instability.270

3.3.3. Mode shapes271

The mode shapes P , U and V of the instability determined from modal analysis are compared272

with the vertical profiles of p, u and v calculated from the time-domain solution in Fig. 11. The273

results of the time-domain solution correspond to the section x = 4 at t = 90, for which it has been274

checked that the solution is not changing after additional time iterations. When the time-domain275

solution is in a steady-state, the vertical profiles of p, u and v should hold similar shapes regardless276

of x-position and time iteration. For comparison, the mode shapes of the instability and the vertical277

profiles of p, u and v are normalized by the maximum of the pressure modulus. The peaks of the278

amplitudes are observed near the lined wall. Then they gradually decrease to a small value on the279

rigid wall. The match between modal analysis and the time-domain solution is remarkable.280
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Fig. 11. Comparison of the mode shape of the instability for (a) U (z), (b) V (z) and (c) P (z) determined
from the time-domain solution at x = 4 and t = 90 and calculated by modal analysis.

4. Convergence of instability281

Previous studies on the same topic, i.e., instabilities appearing during sound propagation in a282

lined flow duct, have investigated the impact of spatial filters and grid resolution on the instabilities.283

It was concluded that selective filtering is effective to remove or partly remove the instability [34, 3]284

and that the use of fine grids can reinforce the instability [27, 2], in particular when using the Myers285

impedance boundary condition instead of resolving the boundary layer as done here. Therefore,286

the effects of both factors on the hydrodynamic instabilities are studied.287

4.1. Effect of the filtering strength288

In the time-domain simulations, a selective filter of strength σ is applied on the whole domain289

to remove the grid-to-grid oscillations. In the previous sections, σ was set to 0.5. Simulations are290

now performed with different values of σ in order to study how the properties of the hydrodynamic291

instability are modified.292

Fig. 12 shows the real and imaginary parts of the instability wavenumber obtained with the293

time-domain solutions as a function of σ. The results are compared with the reference wavenumber294

obtained by modal analysis. When the strength of selective filter is between 0.7 and 1, the strong295

dissipation of the selective filter results in a noticeable deviation between the reference result and296

the time-domain prediction. In particular, the growth rate of the instability is overestimated. As σ297

decreases, Re(kHI) and Im(kHI) start to approach the reference wavenumber. The value of σ does298

not make a significant difference to Re(kHI) and Im(kHI), when it is in the range between 0.2 and299

0.5. For σ below 0.2, spurious numerical waves with a short wavelength are rapidly growing near300

the duct walls and the simulations become unstable instantly. Therefore, for accurately predicting301

the hydrodynamic instability, the filtering strength should be chosen as small as possible while302

sufficiently large to stabilize the numerical calculation. A value of σ between 0.2 and 0.5 seems to303

be a good compromise considering the time step used in the time-domain simulations.304

4.2. Effect of the mesh size along the duct height305

Along the x-direction, centered high-order finite-difference schemes, with dispersion-relation306

preserving properties, are employed. It is assumed that the mesh size ∆x is small enough so that307

the dispersion properties of the instability are well-reproduced. In particular, it has been checked308
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Fig. 12. (a) Real and (b) imaginary parts of the instability wavenumber + estimated from the time-domain solution
as a function of the filtering strength σ and predicted by modal analysis. The grey region indicates unstable
simulations.

that k∗(kHI) is very close to kHI, where k∗ is the effective wavenumber of the centered finite-309

difference scheme employed here. No particular effect in reducing ∆x is thus expected. The grid310

along the z-direction is anticipated to have more impact on the instability. Indeed, non-centered311

schemes are used near the walls, which enhance dispersion. They can amplify or dissipate even312

constant-amplitude waves, contrary to centered schemes. In addition, the instability is directly313

related to the mean flow profile through u0 and du0/dz. The discretization of the mean flow314

profile, in particular within the boundary layer, is expected to play a role in the results.315

Fig. 13 shows the impact of the number of grid points along the z-direction nz on the real316

and imaginary parts of the instability wavenumber. For nz ≤ 155, the deviations of Re(kHI) and317

Im(kHI) estimated from the time-domain simulations and the modal analysis are noticeable. Note318

that the mesh is already fine enough for nz = 55 to precisely calculate the acoustic propagation.319

As shown in [57], the pressure of instabilities should decay exponentially away from the lining320

as exp[−Re(µ)(1 − z)] with µ2 = k2 − (ω − Mk)2. In the present case, Re(µ) = 6.69 so that321

the number of points per wavelength is about 2πnz/Re(µ) ≈ 52, which is very large. However,322

that is still not sufficient to precisely calculate the hydrodynamic instability. As nz increases, the323

features of hydrodynamic instability can be captured and the wavenumber gradually approaches324

the prediction of modal analysis. With nz ≥ 175 the time-domain solution is deemed converged.325
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Fig. 13. (a) Real and (b) imaginary parts of the instability wavenumber + estimated from the time-domain solution
as a function of the number of grid points along the duct height nz and predicted by modal analysis.

5. Suppression of the hydrodynamic instability326

In all cases tested with realistic Mach numbers, it was not possible to prevent the appearance327

of the instability using coarse grids and increased selective filter strength. We turned therefore to328

the methods based on the stabilization via modification of the underlying equations. Given the329

similar performance of many of these methods in turbulent jets [44], we opted for the gradient term330

suppression (GTS) method due to its simplicity and performance.331

In the case that the acoustic field is generated by an impulsive source, as in the present case,332

it may be possible to separate the acoustic and instability components in time through a temporal333

window. This would allow to account for the full LEE, but it is of use only when the instability334

is weak enough. In general, a robust suppression strategy is needed with a minimal impact on335

acoustic propagation.336

5.1. Partial GTS337

A natural generalization of the original GTS method is used here to suppress the instability,338

consisting of a partial suppression of the gradient term instead of a complete suppression. Eqs. (1)339

are modified by adding a coefficient ε in front of the term of du0/dz. Therefore, Eq. (1b) turns to340

∂u

∂t
+ u0

∂u

∂x
+ ε

du0
dz

v +
∂p

∂x
= 0 (17)

where ε adjusts the strength of the mean flow gradient term and ranges from 1 to 0.341

Combining Eqs. (1a), (17) and (1c) leads to the wave equation:342

D

Dt

(
D2p

Dt2
−∇2p

)
+ (ε+ 1)

du0
dz

∂2p

∂x∂z
=

D2Q

Dt2
(18)

where D/Dt = ∂/∂t + u0 ∂/∂x is the material derivative. In particular, the Lilley’s equation343

is recovered for ε = 1. The decrease of ε from 1 to 0 is thus equivalent to transforming the344

original Lilley’s equation, which sustains unstable modes, to a simplified form of Lilley’s equation345

which appears to be inherently stable [35]. In addition, decreasing ε from 1 to 0 diminishes the346
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refraction term proportional to du0/dz in the original Lilley’s equation by a factor of two. A gradual347

suppression of the instability is then expected when diminishing the value of ε.348

Another remarkable value is ε = −1 for which Eq. (18) corresponds to the material derivative of349

the convected wave equation. However, Eq. (18) is already stable for ε = 0. In addition, it will be350

shown that the prediction of the acoustic propagation tends to be deteriorated with the decrease351

of ε. Therefore, the study is hereafter restricted to ε ∈ [0, 1].352

The GTS method is expected to provide an accurate prediction of acoustic propagation at high
frequencies [35]. This can be explained by conducting an order of magnitude analysis. The order
of the magnitude of each term in Eq. (1b) is as follows:

Du

Dt
∼ (ω −Mk)û,

du0
dz

v ∼ M

δ
v̂,

∂p

∂x
∼ kp̂,

where for acoustic modes the wavenumber is in the order of the frequency k ∼ ω and the acoustic353

variables are in the same order of magnitude û ∼ v̂ ∼ p̂. The mean flow gradient term in Eq. (1b)354

can be neglected if355 ∣∣∣∣vdu0
dz

∣∣∣∣� ∣∣∣∣∂p∂x
∣∣∣∣ , ∣∣∣∣DuDt

∣∣∣∣ . (19)

which, considering the orders of magnitude above, shows that the mean flow gradient term is356

expected to have a negligible effect on the acoustic propagation for ωδ � M . This explains why357

the high frequency components are less impacted by the partial GTS method.358

5.2. Effect on the wavenumber and the mode shape359

The wavenumbers are studied when ε varies from 1 to 0. Fig. 14 shows the wavenumbers in360

the k-plane determined by modal analysis for different values of ε for the rigid and partially lined361

duct. It is first noticed that modifying ε tends to move all the modes in the complex k-plane. The362

instability for the lined duct, observed for ε = 1, is not seen for the smaller values of ε, which shows363

that a small decrease of ε is sufficient to suppress the instability. Also, the wavenumbers for the364

rigid duct are less sensitive to ε than for the lined duct.365
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Fig. 14. Wavenumbers in the k-plane at ω = 0.9271 for a duct (a) with two rigid walls, (b) with one rigid wall and
for different strengths of gradient term: + ε = 1, ◦ ε = 0.7, ◦ ε = 0.5, ◦ ε = 0.3 and ◦ ε = 0.
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To analyze more finely the effect of ε on the instability, the variations of the instability wavenum-366

ber are plotted as a function of ε in Fig. 15. The results are shown for three different grid sizes367

(N = 100, 200 and 300). The growth rate of the unstable mode Im(kHI) decreases gradually with368

ε which proves the stabilizing effect of decreasing ε. It is interesting to note that for ε ≤ 0.94, the369

wavenumber of the unstable mode starts depending on the grid size. There, the unstable mode370

merges into the continuous spectrum of convected modes near the real k-axis.371
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Fig. 15. Variations of the (a) real and (b) imaginary parts of the instability wavenumber kHI as a function of ε for
different numbers of grid points: N = 100, N = 200 and N = 300.

Acoustic modes are also affected by reducing the parameter ε. To quantify the impact of372

the partial GTS method on the wavenumbers of the acoustic modes, the attenuation rate of the373

propagative acoustic mode is provided in Fig. 16 (a). The attenuation rate α, defined as α =374

20 log10 e−Im(k), expresses the decrease per unit distance (H) of the signal amplitude during the375

propagation along the axial direction. For ω = 0.9271, the attenuation rate of the plane wave mode376

increases from 7.39 to 14.95 dB/H when ε decreases from 1 to 0.377
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Fig. 16. (a) Attenuation rate of acoustic modes and (b) ratio of the attenuation rate determined for the partial GTS
method to that for the original LEE for (dashed) ω = 0.9271 and (full) ω = 9.271: + plane wave mode, ◦ second
downstream propagative mode and ∗ third downstream propagative mode.
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In addition, Fig. 17 depicts the mode shapes of the acoustic velocity components and pressure for378

the plane wave mode and for the leading upstream and downstream evanescent modes for different379

values of ε. The modulus of all three variables are normalized by the maximum of |P |. Modifying380

ε has an evident impact on |U | and |V |, noticeably near the lined wall. This effect is particularly381

dramatic for |U |, whose peak on the lined wall decreases by a factor of 10 from ε = 1 to ε = 0.382

Also, a noticeable increase of |V | near the lined wall is observed as ε decreases. Concerning the383

pressure, the mode shape does not vary too much with ε. For the plane wave mode, a decrease of384

the amplitude is noticed near the rigid wall, while for the evanescent modes, the amplitude grows385

gradually near the lined wall as ε decreases.386
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Fig. 17. Mode shapes for the MSD liner at ω = 0.9271 and for several values of ε: (a) plane wave mode and
leading (b) downstream and (c) upstream evanescent modes for, from left to right, velocity components along x and
z-direction and pressure: ε = 1, ε = 0.7, ε = 0.5, ε = 0.3 and ε = 0.

The impact of the partial GTS method on the acoustic propagation at high Helmholtz numbers387
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is here studied. Fig. 18 provides the mode wavenumbers for ω = 9.271, while keeping the same388

impedance and boundary layer thickness as for ω = 0.9271. Three downstream propagative modes389

are noticed and no unstable mode is observed. The mode wavenumbers are less changed due to390

the partial GTS method compared with Fig. 14. The attenuation rates for the three downstream391

propagative modes are also plotted in Fig. 16 (a). The deviation caused by the gradient term392

suppression are respectively 0.017, 0.13 and 0.16 dB/H for the three modes. The ratio of the393

attenuation rate obtained with the partial GTS method to that determined with the original LEE394

is also shown in Fig. 16 (b). It is seen that the largest changes of attenuation rate occur for low395

Helmholtz numbers.396
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Fig. 18. Wavenumbers in the k-plane at ω = 9.271 for a lined duct and for several values of ε: + ε = 1, ◦ ε = 0.7,
◦ ε = 0.5, ◦ ε = 0.3 and ◦ ε = 0.

5.3. NASA GIT benchmark397

The GTS method is now applied to the GIT benchmark problem [58], which is widely used398

for validation of aeroacoustic solvers of lined ducts under plane wave propagation. A number of399

numerical studies have reported the existence of an instability at 1 kHz for this problem [16, 59, 28].400

The tube has a dimension of 0.8128 × 0.0508 × 0.0508 m. The upper wall is lined with a ceramic401

tubular liner (CT57) with a length of 0.406 m. The sound pressure level (SPL) and phase of acoustic402

waves have been measured at various Mach numbers and for frequencies from 500 Hz to 3 kHz.403

The source is installed ahead of the section x = 0 at a distance of 0.05 m. The mean velocity404

profile is given by Eq. (2), with a Mach number of 0.335 and a boundary layer thickness equal405

to 2 % of the duct height. A grid of 55 points is used along the z-direction, while the grid size406

along the x-direction is ∆x = 0.0011 m. The time step has been set to 2× 10−6 s. The broadband407

admittance of the liner (see. Eq. (6)) is obtained by a fit of the educed values provided by Jones et408

al. [58] for M = 0.335. In this case, two pairs of complex-conjugate poles are sufficient to have409

a good match from 500 Hz up to 3 kHz, as shown in Fig. 19. The coefficients of the obtained410

admittance model are given in Table 1.411

Fig. 20 shows a series of successive snapshots of the pressure. The left and right columns412

correspond to the results without GTS (ε = 1) and full GTS (ε = 0), respectively. We focus first413

on the case without GTS. Once the incoming pulse encounters the liner leading edge, it splits into414

two wave fronts, a first one that is transmitted downstream and is progressively attenuated by the415

liner, and a second one that is reflected upstream. At the same time, the instability is generated416
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Table 1: Coefficients of the rational function for the normalized broadband admittance model of CT57

αi βi Bi Ci Y∞
i = 1 6135 −14886 −4584 3729 1.16
i = 2 507 5577 1788 −290
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Fig. 19. (a) Impedance and (b) admittance of the CT57 liner: + NASA educed values and fit obtained with
the vector fitting algorithm.

at the leading edge of the liner. Briefly afterwards, when most of the transmitted and reflected417

acoustic pulses have left the computational domain, the instability takes over in the entire lined418

section, leading to a divergent pressure field. In the case of full GTS, the same overall behavior is419

observed for the acoustic component. However, no instability is generated and the acoustic energy420

falls to zero at increasing times.421

Even though the full GTS method shows encouraging results for suppressing instabilities, it422

should be applied carefully. Indeed, it may not be always physically valid to ignore the instability.423

Alomar et al. [9] showed experimentally a feedback mechanism between the instability and the424

acoustic waves for a liner of finite length. The instabilities generated at the leading edge of the liner425

are scattered into acoustic waves at the trailing edge; these acoustic waves propagate upstream and426

trigger another instabilities once they are scattered at the leading edge. This feedback mechanism427

can not be reproduced when the full GTS method is employed.428

The time series of the pressure at three virtual microphones located on the rigid wall, at different429

axial locations, are shown in Fig. 21 for several values of ε. The successive appearance of the initial430

acoustic pulse and the instability is observed at all three locations. The impact of ε is mainly on431

the instability component: decreasing values of ε induces a delay in the emergence of the instability.432

This is the expected behavior, as decreasing ε causes a decrease of the amplification of the unstable433

mode, and thus it takes more time for the instability to leverage the acoustic pressure levels. For434

ε = 0.3 and 0, no instability appears within the simulation time.435

In order to obtain the frequency spectrum of the pressure field, a tapered cosine window is436

applied to the pressure signals to discard the instability component, as shown in Fig. 22. The437

Fourier transform of the filtered signals is then computed. Note that for the cases for which the438

partial GTS method induces a delay in the appearance of the instability, the window could have439

20
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Fig. 20. Pressure map (Pa) along the duct at different times for (a) ε = 1 and (b) ε = 0.
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Fig. 21. Time series of pressure on the rigid wall at (a) x = 0.12L, (b) x = 0.5L and (c) x = 0.86L for: ε = 1,
ε = 0.7, ε = 0.5, ε = 0.3 and ε = 0.

be chosen longer; moreover, for the cases for which the partial GTS allows a suppression of the440

instability, the window is not necessary. However, for consistency, the same window is applied on441

all the pressure signals and for all the cases considered.442

The resulting SPL and phase of the acoustic pressure along the duct wall opposite to the liner443

are shown in Fig. 23, at different frequencies and for different values of ε. For comparison with the444

NASA measurements, the curves are adjusted so that the SPL and the phase are 130 dB and 0◦,445

respectively, at x = 0. Without GTS (ε = 1), some oscillations on the SPL and on the phase are446

observed at 500, 1000 and 1500 Hz in the lined section. These are due to the difficulty in isolating the447

acoustic contribution by simple windowing. Indeed, as seen in Fig. 21 (a) and (b), there is an overlap448

near t = 0.005 s between the acoustic pulse and the instability. An obvious deviation between the449

simulations and the experimental results is noticed at 3 kHz. One of the reasons is that the window450

function applied for calculating the Fourier transform does not account for the full acoustic signal.451

It can also be partly explained by the proximity of the cut-off frequency of the rigid duct, which452
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induced a significant error in the impedance eduction of the liner in the GIT experiment. Overall,453

the trends of both the SPL and the phase are insensitive to ε. Decreasing ε tends to underestimate454

the pressure levels, especially downstream of the liner. The largest discrepancies are observed at455

f = 1 and 3 kHz. For the other frequencies, the SPL predictions are within a few dBs from the456

measured values.457
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Fig. 22. Window function used for signal processing and example of (normalized) pressure signal at x = 0.12L
before and after windowing .

To assess the effectiveness of the GTS, another quantity of interest, namely the insertion loss458

(IL), is considered. It is defined as the difference in acoustic power at the exit section x = L with459

and without liner. Details on the calculation of the acoustic power from the time-domain numerical460

solution can be found in Troian et al. [50]. Fig. 24 shows the frequency variations of IL calculated461

for different values of ε, as well as estimated from the NASA measurements. A peak is observed462

close to the liner resonance (1.1 kHz) for ε = 1 and 0.7, in good agreement with the experimental463

values. The impact of ε on the IL is weak except in the immediate vicinity of the resonance and464

also for f > 2.5 kHz. Note that even if a significant increase of IL is observed for f > 2.5 kHz when465

decreasing ε, a good match is achieved for ε = 0.5. Figs. 21 and 23 show that, for this particular466

case, ε = 0.5 seems to be the optimal value ensuring a good compromise between stable simulation467

and accurate prediction. However, this is not a general conclusion, as the optimal value of ε may468

depend on the flow profile, the Mach number and the liner, among others, and may thus be different469

from case to case.470

The NASA GIT benchmark deals with small Helmholtz numbers (ω ≤ 2.8). To examine the471

performance of the partial GTS method for high Helmholtz numbers, an additional set of time-472

domain simulations are conducted for a duct whose height H = 0.508 m is 10 times larger than473

the one of the NASA GIT duct. The lengths of the duct and of the liner are also increased, with474

respective values of 4.06 m and 2.03 m. The boundary layer thickness of the mean flow remains475

equal to 2 % of the duct height. The numerical parameters are the same as before except the476

number of grid points along the z-direction, set to nz = 175.477

The time series of the pressure at x = 0.5L on the rigid wall of the large duct are presented for478

several values of ε in Fig. 25. Compared with the waveforms for the smaller duct in Fig. 21, the479

signals are more complex because of the multimodal propagation. Instabilities are only observed480

for ε = 1 and do not appear when the partial GTS method is applied. A view on the pressure481

response for 0.004 s < t < 0.01 s is shown in Fig. 25 (b). The signals for the several values of ε are482

almost superimposed even if the amplitude of the waveform is slightly reduced as ε decreases.483
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Fig. 23. SPL and phase of the acoustic pressure along the duct for M = 0.335 and for different values of ε:
ε = 1, ε = 0.7, ε = 0.5, ε = 0.3, ε = 0, + NASA experiments.

The SPL and phase along the large duct on the wall opposite to the liner are provided for three484

frequencies and for several values of ε in Fig. 26. A window function, shown in Fig. 25 (a) is also485

applied to avoid the influence of instabilities and is wider than the one shown in Fig. 22. Compared486

with the results for the NASA GIT duct shown in Fig. 23, the differences due to the suppression487

of the gradient term are relatively small.488

Finally, the powers W at the exit plane x = L are compared for several values of ε and for both489

ducts. Fig. 27 shows the power difference ∆W , which is defined as ∆W = 10 log10[W (ε)/W (ε = 1)],490

where W (ε) is the power when the partial GTS method is applied and W (ε = 1) is the power491

calculated from the original LEE solution. For the NASA GIT case, ∆W has a large peak near492

f = 1.1 kHz due to the suppression of the instability and has largest variations near f = 3 kHz.493
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Fig. 24. Insertion loss for M = 0.335 and for: ε = 1, ε = 0.7, ε = 0.5, ε = 0.3,
ε = 0, + NASA experiments.
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Fig. 25. (a) Time series of pressure on the rigid wall of the large duct at x = 0.5L and (b) view for 0.004 s ≤ t ≤ 0.01 s
for ε = 1, ε = 0.7, ε = 0.5, ε = 0.3 and ε = 0. The dashed line shows the shape of
the window function used in signal processing.

For the large duct, ∆W takes much smaller values. Over the entire frequency band of interest, it494

is smaller than 3 dB for the full GTS method and than 1 dB for the partial GTS method and for495

ε = 0.7. The results shown in this section confirm that the partial GTS method noticeably impacts496

the acoustic propagation for low Helmholtz numbers but should be acceptable for large Helmholtz497

numbers.498
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Fig. 26. SPL and phase of the acoustic pressure along the large cross-section duct for M = 0.335 and for different
values of ε: ε = 1, ε = 0.7, ε = 0.5, ε = 0.3, ε = 0.
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Fig. 27. Power difference W (ε)/W (ε = 1) as a function of the frequency (a) for the NASA GIT duct and (b) for the
large duct and for different values of ε: ε = 0.7, ε = 0.5, ε = 0.3, ε = 0.

6. Conclusion499

An analysis of the partial GTS method for suppressing hydrodynamic instabilities in a lined500

flow duct has been performed. The case of a convective instability generated in a lined flow duct501

was first illustrated. The instability was calculated by solving the linearized Euler equations with a502

finite-difference time-domain approach. The characteristics of the instability were compared with503

the predictions of modal analysis. It was shown that both methods indicate that the instability is504

convective. Perfect matches of wavenumber and mode shapes were also obtained. The effect of the505

grid resolution and selective filter, which have been reported in the literature to have a significant506

impact on the instabilities, was investigated. It turns out that very fine grids, compared with what507

is required for acoustic waves, are needed for precisely calculating the instability.508
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The partial GTS method for suppressing the instability was then assessed. The impact of509

diminishing the mean flow gradient term on the modes has been investigated. The unstable mode510

turns to be highly sensitive to the mean flow gradient term. The acoustic modes are also greatly511

altered for small Helmholtz numbers, but are less affected for high Helmholtz numbers. The partial512

GTS method was finally applied on the NASA GIT benchmark. The effectiveness of this method513

has been shown for removing the instabilities in time-domain simulations. The SPL was however514

underestimated by several dBs for certain frequencies. In particular, a total suppression of the515

mean flow gradient term seems too severe to accurately predict sound propagation in a lined flow516

duct, while a partial suppression of this term seems to provide an acceptable prediction, especially517

in the high frequency range.518

In addition, even if removing instabilities allows for a stable numerical calculation, it may be,519

in particular cases, not physically valid: as an example, the feedback mechanism between the520

instability and acoustic waves for a liner of finite length discussed in Alomar and Aurégan [9] could521

not be reproduced when the instability is suppressed.522

Future works can be conducted to study an absolute instability in the time-domain approach.523

Since the effectiveness of the partial GTS method has been proved, other techniques proposed for524

dealing with shear instabilities [40, 41, 42, 44, 43] can also be considered.525
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Appendix A. Matrices of the discretized eigenvalue problem532

This appendix details the discretization of the eigenvalue problem to obtain the mode wavenum-533

ber and mode shapes. The number of grid points is denoted by N . Eq. (11) could be rewritten as:534

AX =
k

ω
BX with X being the column vector of unknowns at the grid points:535

X = [U(z1) · · ·U(zN ) (P − V )(z1) · · · (P − V )(zN ) (P + V )(z1) · · · (P + V )(zN )]T (A.1)

where (zi)1≤i≤N , with z1 = 0 and zN = 1, are the grid points. At the boundary points, the536

variables should satisfy both the LEE equations and the boundary conditions. To avoid having an537

over-constrained system, some information must be discarded. The use of characteristic variables538

allows one to make a suitable choice. Thus, at z = 0, the incident wave on the boundary is P − V539

and the reflected wave is P + V . Therefore, P + V is determined with the boundary condition540

and not from the LEE. Similarly, at z = 1, the incident and reflected wave are P + V and P − V ,541

respectively and, hence, P − V is determined with the boundary condition.542
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Bringing the LEE equations and the boundary conditions together lead to the 3N×3N matrices:543

A =



I(1:N),(1:N) − ε

2iω
(DU0)(1:N),(1:N)

ε

2iω
(DU0)(1:N),(1:N)

0N,N

(
I− 1

iω
D

)
(1:N−1),(1:N)

0N−1,N

0 . . . 0 −1− β 0 . . . 0 1− β

0N,N

1 0 . . . 0 −1 0 . . . 0

0N−1,N

(
I +

1

iω
D

)
(2:N),(1:N)


(A.2)

B =



U0(1:N),(1:N)
1

2
I(1:N),(1:N)

1

2
I(1:N),(1:N)

I(1:N−1,N) U0(1:N−1),(1:N)
0N,N

01,N 01,N

01,N
0N,N

01,N

I(2:N,N) U0(2:N),(1:N)


(A.3)

where 0I,J is the zero matrix with I rows and J columns and D and I are the differentiation and544

identity matrix, respectively, both square matrices of size N . The matrix U0 is a diagonal matrix545

of size N with diagonal elements U0 i,i = u0(zi). In addition, the notation M(I:J),(K:L) indicates546

the submatrix of M formed by rows I to J and columns K to L. Finally, the parameter ε in matrix547

A controls the mean flow gradient term and is equal to ε = 1 for the LEE equations and to ε = 0548

for the full GTS method.549

Appendix B. Comparison of the instability characteristics for another frequency550

In this appendix, the comparison of the instability characteristics determined from the time-551

domain numerical solution with those predicted by the modal analysis approach, done in Section 3552

for ω = 0.9271, is performed for another frequency, namely ω = 0.4636. The objective is to confirm553

the viability of the time-domain method in simulating the instability.554

Fig. B.28 displays the wavenumbers of the modes determined by modal analysis for ω = 0.4636.555

The reference result ω = 0.9271 is also indicated. Note that the MSD liner model is still used556

and the liner impedance at these two frequencies is different. The wavenumbers of the acoustic557

propagating mode (k = 0.79 − 0.33i) and the unstable mode (kHI = 2.57 + 1.31i) show the most558

evident change. Compared with ω = 0.9271, the spatial growth rate of the unstable mode decreases559

only slightly. On the other hand, the wavelength becomes three times longer. Fig. B.29 shows the560

evolution of arg(p) and ln |p| along the lined wall for ω = 0.4636 obtained from the time-domain561

solution at t = 90 and predicted with the analytical solution in Eq. (14), where the value of kHI562

obtained from modal analysis has been used. Here again, an excellent match is observed.563
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Fig. B.28. Wavenumber obtained by modal analysis for ◦ ω = 0.4636 and + ω = 0.9271.
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Fig. B.29. Comparison of (a) the phase and (b) amplitude of the pressure on the lined wall for ω = 0.4636 from the
time-domain solution at t = 90 and from the analytical solution .
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[8] D. Marx, Y. Aurégan, H. Bailliet, J.-C. Valière, PIV and LDV evidence of hydrodynamic579

instability over a liner in a duct with flow, J. Sound Vib. 329 (18) (2010) 3798–3812.580
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