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Hierarchical Bayesian Sparse Image Reconstruction
With Application to MRFM

Nicolas Dobigeon, Member, IEEE, Alfred O. Hero, Fellow, IEEE, and Jean-Y ves Tourneret, Senior Member, IEEE

Abstract—This paper presents a hierarchical Bayesian model
to reconstruct sparse images when the observations are obtained
from linear transformations and corrupted by an additive white
Gaussian noise. OQur hierarchical Bayes model is well suited to
such naturally sparse image applications as it seamlessly accounts
for properties such as sparsity and positivity of the image via
appropriate Bayes priors. We propose a prior that is based on
a weighted mixture of a positive exponential distribution and
a mass at zero. The prior has hyperparameters that are tuned
automatically by marginalization over the hierarchical Bayesian
model. To overcome the complexity of the posterior distribution, a
Gibbs sampling strategy is proposed. The Gibbs samples can be
used to estimate the image to be recovered, e.g., by maximizing
the estimated posterior distribution. In our fully Bayesian ap-
proach, the posteriors of all the parameters are available. Thus,
our algorithm provides more information than other previously
proposed sparse reconstruction methods that only give a point
estimate. The performance of the proposed hierarchical Bayesian
sparse reconstruction method is illustrated on synthetic data and
real data collected from a tobacco virus sample using a prototype
MRFM instrument.

Index Terms—Bayesian inference, deconvolution, Markov chain
Monte Carlo (MCMC) methods, magnetic resonance force mi-
croscopy (MRFM) imaging, sparse representation.

1. INTRODUCTION

OR several decades, image deconvolution has been of
F increasing interest [2], [47]. Image deconvolution is a
method for reconstructing images from observations provided
by optical or other devices and may include denoising, deblur-
ring or restoration. The applications are numerous including
astronomy [49], medical imagery [48], remote sensing [41]
and photography [55]. More recently, a new imaging tech-
nology, called magnetic resonance force microscopy (MRFM),
has been developed (see [38] and [29] for reviews). This
nondestructive method allows one to improve the detection
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sensitivity of standard magnetic resonance imaging (MRI) [46].
Three-dimensional MRI at 4 nm spatial resolution has recently
been achieved by the IBM MRFM prototype for imaging the
proton density of a tobacco virus [8]. Because of its potential
atomic-level resolution,! the 2-D or 3-D images resulting from
this technology are naturally sparse in the standard pixel basis.
Indeed, as the observed objects are molecules, most of the
image is empty space. In this paper, a hierarchical Bayesian
model is proposed to perform reconstruction of such images.

Sparse signal and image deconvolution has motivated re-
search in many scientific applications including: spectral
analysis in astronomy [4]; seismic signal analysis in geophysics
[7], [45]; and deconvolution of ultrasonic B-scans [39]. We
propose here a hierarchical Bayesian model that is based on se-
lecting an appropriate prior distribution for the unknown image
and other unknown parameters. The image prior is composed of
a weighted mixture of a standard exponential distribution and
a mass at zero. When the nonzero part of this prior is chosen
to be a centered normal distribution, this prior reduces to a
Bernoulli-Gaussian process. This distribution has been widely
used in the literature to build Bayesian estimators for sparse
deconvolution problems (see [5], [16], [24], [28], [33], or more
recently [3] and [17]). However, choosing a distribution with
heavier tail may improve the sparsity inducement of the prior.
Combining a Laplacian distribution with an atom at zero results
in the so-called LAZE prior. This distribution has been used in
[27] to solve a general denoising problem in a non-Bayesian
quasi-maximum likelihood estimation framework. In [52] and
[54], this prior has also been used for sparse reconstruction of
noisy images, including MRFM. The principal weakness of
these previous approaches is the sensitivity to hyperparameters
that determine the prior distribution, e.g., the LAZE mixture
coefficient and the weighting of the prior versus the likelihood
function. The hierarchical Bayesian approach proposed in this
paper circumvents these difficulties. Specifically, a new prior
composed of a mass at zero and a single-sided exponential
distribution is introduced, which accounts for positivity and
sparsity of the pixels in the image. Conjugate priors on the
hyperparameters of the image prior are introduced. It is this
step that makes our approach hierarchical Bayesian. The full
Bayesian posterior can then be derived from samples generated
by Markov chain Monte Carlo (MCMC) methods [44].

The estimation of hyperparameters involved in the prior
distribution described above is the most difficult task and poor
estimation leads to instability. Empirical Bayes (EB) and Stein
unbiased risk (SURE) solutions were proposed in [52], [54] to

INote that the current state of art of the MRFM technology allows one to ac-
quire images with nanoscale resolution. However, atomic-level resolution might
be obtained in the future.



deal with this issue. However, instability was observed espe-
cially at higher signal-to-noise ratios (SNR). In the Bayesian
estimation framework, two approaches are available to esti-
mate these hyperparameters. One approach couples MCMC
methods to an expectation-maximization (EM) algorithm or to
a stochastic EM algorithm [30], [32] to maximize a penalized
likelihood function. The second approach defines noninforma-
tive prior distributions for the hyperparameters; introducing a
second level of hierarchy into the Bayesian formulation. This
latter fully Bayesian approach, adopted in this paper, has been
successfully applied to signal segmentation [11], [14], [15] and
semi-supervised unmixing of hyperspectral imagery [13].

Only a few papers have been published on reconstruction
of images from MRFM data [6], [8], [56], [58]. In [21], sev-
eral techniques based on linear filtering and maximum-likeli-
hood principles were proposed that do not exploit image spar-
sity. More recently, Ting et al. has introduced sparsity penal-
ized reconstruction methods for MRFM (see [54] or [53]). The
reconstruction problem has been formulated as a decomposi-
tion into a deconvolution step and a denoising step, yielding an
iterative thresholding framework. In [54] the hyperparameters
are estimated using penalized log-likelihood criteria including
the SURE approach [50]. Despite promising results, especially
at low SNR, penalized likelihood approaches require iterative
maximization algorithms that are often slow to converge and
can get stuck on local maxima [10]. In contrast to [54], the fully
Bayesian approach presented in this paper converges quickly
and produces estimates of the entire posterior and not just the
local maxima. Indeed, the hierarchical Bayesian formulation
proposed here generates Bayes-optimal estimates of all image
parameters, including the hyperparameters.

In this paper, the response of the MRFM imaging device is
assumed to be known. While it may be possible to extend our
methods to unknown point spread functions, e.g., along the lines
of [22] and [23], the case of sparse blind deconvolution is out-
side of the scope of this paper.

This paper is organized as follows. The deconvolution
problem is formulated in Section II. The hierarchical Bayesian
model is described in Section III. Section IV presents a Gibbs
sampler that allows one to generate samples distributed ac-
cording to the posterior of interest. Simulation results, including
extensive performance comparison, are presented in Section V.
In Section VI, we apply our hierarchical Bayesian method to
reconstruction of a tobacco virus from real MRFM data. Our
main conclusions are reported in Section VII.

II. PROBLEM FORMULATION

Let X denote a l; X --- X [,, unknown n-dimensional pixe-
lated image to be recovered (e.g., » = 2 or n = 3). Observed
are a collection of P projections y = [y1,...,yp]  which are

assumed to follow the model
y=T(kX)+n (1)
where T (-, -) stands for a bilinear function, n is a P x 1 di-

mension noise vector and & is the kernel that characterizes the
response of the imaging device. On the right-hand side of (1),

n is an additive Gaussian noise sequence distributed according
ton ~ N (07 O'ZIP), where the variance o2 is assumed to be
unknown.

Note that in standard deblurring problems, the function
T (-,-) represents the standard n-dimensional convolution op-
erator ®. In this case, the image X can be vectorized yielding
the unknown image x € RM with M = P = l1ly...1,,. With
this notation, (1) can be rewritten

y=Hx+n or Y=k®X+N )

where y (resp. n) stands for the vectorized version of Y (resp.
N) and H is an P x M matrix that describes convolution by the
point spread function (psf) k.

The problem addressed in the following sections consists of
estimating x and o under sparsity and positivity constraints on
x given the observations y, the psf & and the bilinear function?

III. HIERARCHICAL BAYESIAN MODEL

A. Likelihood Function

The observation model defined in (1) and the Gaussian prop-
erties of the noise sequence n yield

1 P/2 _T 2
f(}’|xa 02) = (27r02> exp <—w> 3)

where ||-|| denotes the standard £ norm: ||x||* = xTx.

B. Parameter Prior Distributions

The unknown parameter vector associated with the observa-
tion model defined in (1) is @ = {x, o? } In this section, we in-
troduce prior distributions for these two parameters; which are
assumed to be independent.

1) Image Prior: First consider the exponential distribution
with shape parameter a > 0

1 i
9a () = P exXp (—%) 1Rjr () “)

where 1g () is the indicator function defined on E

1, ifzreE
1e (z) = {0, otherwise.

Choosing g, (-) as prior distributions for z;(¢ = 1,..., M)
leads to a maximum a posteriori (MAP) estimator of x that cor-
responds to a maximum /1 -penalized likelihood estimate with a
positivity constraint.3 Indeed, assuming the component z; (i =
1,..., P) apriori independent allows one to write the full prior

’

distribution for x = [z1,...,z]"

9o (x) = (2)1\1 exp (— H);H1> Lix-0} (X) (6)

2In the following, for sake of conciseness, the same notation 7" (-, -) will be
adopted for the bilinear operations used on n-dimensional images X and used
on M X 1 vectorized images x.

)

3Note that a similar estimator using a Laplacian prior for z; (¢ = 1,..., M)
was proposed in [51] for regression problems, referred to as the LASSO esti-
mator, but without positivity constraint.



is the standard ¢; norm ||x||; = }_, |z;|. This estimator has in-
teresting sparseness properties for Bayesian estimation [1] and
signal representation [20].

Coupling a standard probability density function (pdf) with
an atom at zero is another alternative to encourage sparsity. This
strategy has for instance been used for located event detection
[28] such as spike train deconvolution [5], [7]. In order to in-
crease the sparsity of the prior, we propose to use the following
distribution derived from g, (-) as prior distribution for z;

where {x = 0} = {x e R™; 2; > 0,Vi=1,..., m} and ||-[|;

f(wilw,a) = (1 —w)é (i) + wga (2:) ©)

where 6 (-) is the Dirac function. This prior is similar to the
LAZE distribution (Laplacian pdf and an atom at zero) intro-
duced in [27] and used, for example, in [52], [54] for MRFM.
However, since g, (z;) is zero for x; < 0, the proposed prior in
(7) accounts for the positivity of the nonzero pixel values, a con-
straint that exists in many imaging modalities such as MRFM.
By assuming the components x; to be a priori independent

(i = 1,..., M), the following prior distribution for x is ob-
tained:
M
f (xlw,a) = TTI(1 = w)8 (@) + wga (@)]. (®)
i=1

_ Introducing the index subsets Zg = {i;z; =0} and Z; =
Zo = {i;x; # 0} allows one to rewrite the previous equation as
follows:

f (x|w, a)

= [(1 —w)" ] 6 ()

=

[w"l IT 9« <azi)] ©)

1€T,

with n. = card{Z.}, ¢ € {0,1}. Note that ng = M — n;
and n; = ||x[|, where ||-||, is the standard ¢y norm [|x||, =
# {i; 2 # 0}

2) Noise Variance Prior: A conjugate inverse-Gamma dis-
tribution with parameters v/2 and +/2 is chosen as prior distri-
bution for the noise variance [43, Appendix A]

2 vy

o’ v,y ~IG (2, 2) .
In the following, the shape parameter v will be fixed to v = 2
and the scale parameter v will be estimated as an hyperpa-
rameter (see [13], [14], [40]). Note that choosing the inverse-
Gamma distribution ZG (v/2,~/2) as a prior for o2 is equiva-
lent to choosing a Gamma distribution G (v/2,~/2) as a prior
for 1/02.

(10)

C. Hyperparameter Priors

The hyperparameter vector associated with the aforemen-
tioned prior distributions is ® = {a,~,w}. Obviously, the
accuracy of the proposed Bayesian model depends on the
values of these hyperparameters. Sometimes prior knowledge
may be available, e.g., the mean number of nonzero pixels in
the image. In this case these parameters can be tuned manually
to their true values. However, in many practical situations such
prior information is not available and these hyperparameters

must be estimated directly from the data. Priors for these
hyperparameters, sometimes referred to as “hyperpriors” are
given below.

1) Hyperparameter a: A conjugate inverse-Gamma distri-
bution is assumed for the scale parameter « of the distribution
ga (-) of nonzero pixel intensities

ala ~ ZG (ag, )

Y

with @ = [ag, a]" . Similarly to [19], the fixed hyperparame-
ters iy and a3 have been chosen to obtain a vague prior: ag =
o] = 10—10,

2) Hyperparameter v : A noninformative Jeffreys’ prior
[25], [26] is assumed for the scale parameter of the inverse
Gamma prior density on the noise variance o2

f) e %1& (7)- (12)
The combination of the priors (10) and (12) yields the nonin-
formative Jeffreys’ prior on o2. Note that there is no difference
between choosing a noninformative Jeffrey’s prior for o2 and
the proper hierarchical prior defined by (10) and (12). Indeed,
integrating over the hyperparameter  in the joint f (02, ) dis-
tribution yields

£ (0?) = / £ (0*h) £ () dry

1\?2 ¥
x (:) / exp (=5,7)
1

x5 (13)
However, in more complex noise models, the hierarchical priors
f (02|'y) and f () are not equivalent to such a simple prior on
o?. For example, as in [12], this pair of hierarchical priors is
easily generalizable to conditionally Gaussian noise with spatial
correlation and spatially varying signal-to-noise ratio.

3) Hyperparameter w: A uniform distribution on the simplex
[0, 1] has been chosen as prior distribution for the mean propor-
tion of nonzero pixels

w~U([0,1]). (14)

This is the least informative prior on the image sparsity factor.
Assuming that the individual hyperparameters are statistically
independent the full hyperparameter prior distribution for ® can
be expressed as

f(@la) =f(w) f(7) f(a)

1 a1
x ~yaXo+1 P (_;)

x 1401y (w) 1g+ (a) 1g+ (7). (15)

D. Posterior Distribution

The posterior distribution of {6, ®} can be computed as fol-
lows:
[0, ®@ly,a) o f(y|0) f(6]®) f (@|a) (16)

with



X o?

Fig. 1. DAG for the parameter priors and hyperpriors (the fixed nonrandom
hyperparameters appear in dashed boxes).

£ (81®) = f (x|a,w) f (o*]7)

where f (y|0) and f (®|a) have been defined in (3) and (15).
This hierarchical structure, represented on the directed acyclic
graph (DAG) in Fig. 1, allows one to integrate out the parameter
o2 and the hyperparameter vector ® in (16) to obtain the poste-
rior of the image given the measured data and the parameters x

a7)

B(1+n1,1+n0)
P
ly =T (&, x)||
I (77,1 + Oéo)
(Il + aa]™

f(xly,a) o«

(18)

1{x>0} (X) :

In (18), as defined in paragraph III-B1, n; = |[|x[|,, no =
M — ||x]||, and B (-, -) stands for the Beta function B (u,v) =
I'(u)T (v) /T (u+ v), where I'(-) denotes the Gamma func-
tion.

The next section presents an appropriate Gibbs sampling
strategy [44, Chap. 10] that allows one to generate an image
sample distributed according to the posterior distribution

[ (xly, ).

IV. GIBBS SAMPLING STRATEGY FOR SPARSE
IMAGE RECONSTRUCTION

In this section, we describe the Gibbs sampling strategy
for generating samples {x(t)} ,—,  distributed according
to the posterior distribution in (18). As simulating  di-
rectly according to (18) is difficult, it is much more con-
venient to generate samples distributed according to the
joint posterior f (x,02,a, w|y,a). This Gibbs sampler pro-
duces sequences {x(V},_, " {o®0},_, . {a®},_, .

{w(t)}tzl
ributions f (x[y,a), f (o2]y.a). f (aly,a) and f (wly,a),
respectively, [44, p. 345]. Then, the MAP estimator of the
unknown image x will be computed by retaining among
X = {x(t)} ., the generated sample that maximizes the
posterior distribution in (18) [35, p. 165]

which are Markov chains with stationary dis-

XMAP = arg max f(xly)
¥

arg max f (xly)

Q

19)

The main steps of this algorithm are given in Sections I[V-A and
IV-D (see also Algorithm 1 below).

Algorithm 1: Gibbs Sampling Algorithm for Sparse Image
Reconstruction:
* Initialization:
— Sample parameter x(°) from the pdf in (9).
— Sample parameter 52(?) from the pdf in (10).
—Set t 1.
e [terations: fort = 1,2,..., do:
1. Sample hyperparameter w(?) from the pdf in (21).
2. Sample hyperparameter a*) from the pdf in (22).
3. Fori =1,..., M, sample parameter :z:gt) from the pdf
in (23).
4. Sample parameter o2(*) from the pdf in (26).
5. Sett—t+ 1.

A. Generation of Samples According 1o f (w|X)
Using (9), the following result can be obtained:

fw|x) o< (1 —w)™0w™ (20)

where 19 and 1 have been defined in paragraph Section III-B-I.
Therefore, samples from f (w|x) can be generated by simu-
lating from an image dependent Beta distribution

wl|x ~ Be(l+mny,14+mng). 1)

B. Generation of Samples According to f (a|x, )

The form of the joint posterior distribution (16) implies that
samples of a can be generated by simulating from an image
dependent inverse-Gamma distribution

alx,e ~IG (|xlly + ao, [[x[l; + ). (22)

C. Generation of Samples According to f (x |w7 a,o?, y)
The LAZE-type prior (7) chosen forz; (i = 1,. . ., M) yields

a posterior distribution of x that is not closed form. However,
one can easily derive the posterior distribution of each pixel
intensity z; (¢ = 1,..., M) conditioned on the intensities of
the rest of the image. Indeed straightforward computations (Ap-

pendix A) yield

f (xi|’w~, 0,7027)(_1‘,,}’) o8 (1 - w7)6 ($l>

+widy (zilpi,n?)  (23)

where x_; stands for the vector x whose 7th component has
been removed and p; and 7? are given in Appendix A. In (23),
¢+ (-,m, s?) stands for the pdf of the truncated Gaussian distri-
bution defined on R’ with hidden mean and variance parameters
equal to m and s2, respectively

1 Y
¢+ (x,m,s2) = WGXP [_%“ ]-IRjr ($) 24)
with
2 m
O (m,57) =" [1 +erf (@)} (25)



10 - -

20 -

-
4 30
-4 2 0 2

4 5 10 15 20 25 30

Fig. 2. Left: psf of the MRFM tip. Right: unknown sparse image to be esti-
mated.

The form in (23) specifies ;|w,a,0?,x_;,y as a Bernoulli-
truncated Gaussian variable with parameter (w;, p1;,n?). Ap-
pendix C presents an algorithm that can be used to generate
samples from this distribution. This algorithm generates sam-
ples distributed according to f (x |w7 o2, a, y) by successively
updating the coordinates of x using a sequence of M Gibbs
moves (requiring generation of Bernoulli-truncated Gaussian
variables).

D. Generation of Samples According to f (02 |x, y)

Samples are generated in the following way:

Py - T (s,%)|

o*xy ~IG| 5, 5

(26)

V. SIMULATION ON SYNTHETIC IMAGES

A. Reconstruction of 2-D Image

In this subsection, a 32 x 32 synthetic image, depicted in
Fig. 2 (right panel), is simulated using the prior in (9) with pa-
rameters ¢ = 1 and w = 0.02. In Figs. 2 and 3, white pixels
stands for zero intensity values. A general analytical derivation
of the psf of the MRFM tip has been given in [34] and with
further explanation in [54]. Following this model, we defined
a 10 x 10 2-D convolution kernel, the psf represented in Fig. 2
(left panel), that corresponds to the physical parameters shown
in Table I. The associated psf matrix H introduced in (2) is of
size 1024 x 1024. The observed measurements y, which are of
size P = 1024 and depicted in Fig. 3 (top panel), are cor-
rupted by an additive Gaussian noise with two different vari-
ances 02 = 1.2 x 10! and 0 = 1.6 x 103, corresponding to
signal-to-noise ratios SNR = 2 dB and SNR = 20 dB, respec-
tively.

1) Simulation Results: The observations are processed by the
proposed algorithm using Nyic = 2000 iterations of the Gibbs
sampler with Ny; = 300 burn-in iterations. The computation
time for completing 100 iterations of the proposed algorithm
is 80 s for an unoptimized MATLAB 2007b 32-bit implemen-
tation on a 2.2-GHz Intel Core 2, while 100 iterations of the
Landweber and empirical Bayesian algorithms require 0.15 s
and 2 s, respectively. The MAP image reconstruction computed
using (19) is depicted in Fig. 3 (bottom panel) for the two levels
of noise considered. Observe that the estimated image is very
similar to the actual image, Fig. 2 (right panel), even at low SNR.

Moreover, as the proposed algorithm generates samples dis-
tributed according to the posterior distribution in (18), these

r.l:!l!!_l- !
A i

5 10 15 20 25 30
5 5
10 - - 10 - =
15 = 15 a
20 = 20 -
= = = =
25 25
- =
30 30
5 10 15 20 25 30 5 10 15 20 25 30

Fig. 3. Top, left (resp. right): noisy observations for SNR = 2 dB
(resp. 20 dB). Bottom, left (resp. right): reconstructed image for SNR = 2 dB
(resp. 20 dB).

TABLE I
PARAMETERS USED TO COMPUTE THE MRFM psf

Parameter
Value
Description Name
Amplitude of external magnetic field | Bex 9.4 x10° G
Value of B, in the resonant slice Bhres 1.0x 10* G
Radius of tip Ro 4.0 nm
Distance from tip to sample d 6.0 nm
Cantilever tip moment m 4.6 x 10° emu
Peak cantilever oscillation Tpk 0.8 nm
Maximum magnetic field gradient Glmax 125
2 2
15 1.5
§ 1 E 1
0.5 0.5
0 0 1 2 3 . 0 1 2 3
a a

Fig. 4. Posterior distribution of hyperparameter a (left: SNR = 2 dB, right:
SNR = 20 dB).

samples can be used to compute the posterior distributions of
each parameter. For illustration, the posterior distributions of
the hyperparameters a and w, as well as the noise variance o2,
are shown in Figs. 4-6. These estimated distributions are in good
agreement with the ground truth values of these parameters, ran-
domly drawn from the prior distribution.

In many applications, a measure of confidence that a given
pixel or pixel region is nonzero is of interest. Our Bayesian ap-
proach can easily generate such measures of confidence in the
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Fig. 7. Posterior probabilities of having nonzero pixels (left: SNR = 2 dB,
right: SNR = 20 dB). The probability of having at least one nonzero pixel in
the red (resp. green) box-delimited area is 45% (resp. 5%).
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e & 3000
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Fig. 6. Posterior distribution of hyperparameter o2 (left: SNR = 2 dB, right:
SNR = 20 dB).

form of posterior probabilities of the specified event, sometimes
known as the Bayesian p-value. Following the strategy detailed
in Appendix C, the proposed Gibbs sampler generates a col-
lection of samples {x(}, Ny, distributed according the
posterior Bernoulli-truncated Gaussian distribution in (23). This
sampling requires the generation of indicator variables z; (i =

pixel values. It is the indicator variable z; that xz; > 0 that pro-

vides information about nonzero pixels in the image. Using the

equivalences {z; = 0} & {z; =0} and {z; = 1} & {x; > 0},

the posterior probability P [z; > 0|y, ] can be easily obtained

? averaging over the Gibbs samples of the binary variables
§e

i . To illustrate, these probabilities are de-

t=Npit1,.-,Nuc

picted in Fig. 7. In addition, these Gibbs samples can be used
to compute the probability of having nonzero pixels in a given
area of the image. The estimated posterior probability for the
event that a nonzero pixel is present inside the small red rec-
tangle in the figure is equal to 45% for the case of SNR = 2 dB.
Conversely, the posterior probability of having a nonzero pixel
in the green box is 5%. For SNR = 20 dB the MAP algorithm
correctly detects up the presence of a pixel in this region. On the
other hand, even though at SNR = 2 dB the MAP reconstruc-
tion has not detected this pixel, we can be 45% confident of the
presence of such a pixel in the red rectangular region on the left
panel of Fig. 7.

The posterior distributions of four different pixels are de-
picted in Fig. 8. These posteriors are consistent with the actual
values of these pixels that are represented as dotted red lines in
these figures. In particular, in all cases the actual values all lie
within the 75% central quantile of the posterior distribution.

2) Comparison of Reconstruction Performances: Here we
compare our proposed hierarchical Bayesian method to the
sparse reconstruction methods of [52], [54]. The techniques
proposed in [52], [54] are based on penalized likelihood EM
algorithms that perform empirical estimation of the unknown

50 50
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Fig. 8. Posterior distributions of the nonzero values of x for 4 different pixel
locations and for SNR = 20 dB (actual pixel intensity values are depicted with
dotted red lines).

hyperparameters. Therein, two empirical Bayesian estimators,
denoted Emp-MAP-Lap and Emp-MAP-LAZE, based on a
Laplacian or a LAZE prior respectively, were proposed. We
also compare to the standard Landweber algorithm [31] that has
been previously used to perform MRFM image reconstruction
[8], [57]. These are compared to our hierarchical Bayesian
MAP reconstruction algorithm, given in (19), and also to a
minimum mean square error (MMSE) reconstruction algorithm
extracted from the estimated full Bayes posterior (18). The
MMSE estimator of the image x is obtained by empirical aver-
aging over the last NV, = 1700 samples of the Gibbs sampler
according to

xMmuse = E [x[y]
1 &

~ (Nbi+t)

~ — X .
N

As in [54], we compare the various reconstruction algorithms
with respect to several performance criteria. Let e = x — X
denote the reconstruction error when X is the estimator of the
image x to be recovered. These criteria are: the ¢y, /1, and
£5-norms of e, which measures the accuracy of the reconstruc-
tion, and the £g-norm of the estimator x, which measures its
sparsity. As pointed out in [54], a human observer can usually
not visually detect the presence of nonzero intensities if they are

27)



TABLE II
RECONSTRUCTION PERFORMANCES FOR DIFFERENT SPARSE IMAGE
RECONSTRUCTION ALGORITHMS

Error criterion

Method
lello ~llells el Nelly  I%llo 11Xl
SNR = 2dB
Landweber 1024 990 339.76 1332 1024 990
Emp-MAP-Lap 18 17 14.13 4.40 0 0

Emp-MAP-LAZE 60 58 9.49 1.44 55 55

Proposed MMSE | 1001 30 3.84 0.72 1001 27
Proposed MAP 19 16 2.38 0.81 13 13
SNR = 20dB
Landweber 1024 931 16885  6.67 1024 931
Emp-MAP-Lap 33 18 127 031 28 23

Emp-MAP-LAZE 144 19 1.68 0.22 144 27

Proposed MMSE 541 5 0.36 0.11 541 16
Proposed MAP 19 7 0.39 0.13 16 16
z=1 z=2 z=3 z=4 z=5 z=6

Fig. 9. Top: Slices of the sparse image to be recovered. Bottom: Slices of the
estimated sparse image.
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Fig. 10. Left: 24 x 24 X 6 unknown image to be recovered. Right: 5 X 5 X 3
kernel modeling the psf.
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Fig. 11. Left: 24 X 24 X 6 regularly sampled convolved image. Left: 12 X8 X 6
undersampled observed image.

below a small threshold. Thus, a less strict measure# of sparsity
than the £y-norm, which is denoted ||-||, is the number of re-
constructed image pixels that are less than a given threshold 6

M
%[ls = La,<s (&)
=1

M
lells =D Te.<s () (28)
1=1

It what follows, & has been chosen as § = 1072 ||x||__. To sum-
marize, the following criteria have been computed for the image
in paragraph V-Al for two levels of SNR: |le||y, [lells. llell;s
lelly. 1]l and 1],

Table II shows the six performance measures for the five dif-
ferent algorithms studied. The proposed Bayesian methods (la-
beled “proposed MMSE” and “proposed MAP” in the table)
outperform the other reconstruction algorithms in terms of /;
or {5-norms. Note that the MMSE estimation of the unknown
image is a nonsparse estimator in the {y-norm sense. This is due
to the very small but nonzero posterior probability of nonzero
value at many pixels. The sparsity measure ||-||; indicates that
most of the pixels are in fact very close to zero. The MAP re-
construction method seems to achieve the best balance between
the sparsity of the solution and the minimization of the recon-
struction error. Of course, by its very construction, the MMSE
reconstruction will always have lower mean square error.

0°

B. Reconstruction of Undersampled 3-D Images

As discussed below in Section VI, the prototype IBM MRFM
instrument [8] collects data projections as irregularly spaced,
or undersampled, spatial samples. In this subsection, we indi-
cate how the image reconstruction algorithm can be adapted to
this undersampled scenario in 3-D. We illustrate by a concrete
example. First, a 24 x 24 x 6 image is generated such that 4
pixels have nonzero values in each z slice. The resulting data is

“4The introduced measure of sparsity is denoted ||-|| ;. This is an abuse of no-
tation since it is not a norm.



Experimental data

Reconstruction (Gibbs)

Reconstruction (Land.)

20 40 60 20 40

60

20 40 60 20 40 60

Fig. 12. Top: Experimental scan data where black (resp. white) pixel represents low (resp. high) density of spin (as in [8]). Middle: Scan data reconstructed from
the proposed hierarchical Bayesian algorithm. Bottom: Scan data reconstructed from the Landweber algorithm.

depicted in Figs. 9 (top) and 10 (left). This image to be recov-
ered is assumed to be convolved with a 5 x 5 x 3 kernel that is
represented in Fig. 10 (right). The resulting convolved image is
depicted in Fig. 11 (left). However, the actual observed image
is an undersampled version of this image. More precisely, the
sampling rates are assumed tobe d, = 2,d, = 3,d. = 1, re-
spectively, in the 3 dimensions. Consequently the observed 3-D
image, shown in Fig. 11, is of size 12 x 8 X 6. Finally, an i.i.d.
Gaussian noise with ¢ = 0.02 is added following the model in
(1). Note that under these assumptions, the application 7" (-, -)
can be split into two standard operations following the compo-
sition:

T (K., X) = Gd,,dy,d. (h‘, ® X) 29)
where g4, 4, 4. (-) stands for the undersampling function.

The proposed hierarchical Bayesian algorithm is used to per-
form the sparse reconstruction with undersampled data. The
number of Monte Carlo runs was fixed to Nyje = 2000 with
Ny = 300 burn-in iterations. Fig. 9 shows the result of ap-
plying the proposed MAP estimator to the estimated posterior.

VI. APPLICATION ON REAL MRFM IMAGES

Here, we illustrate the hierarchical Bayesian MAP recon-
struction algorithm for real 3-D MRFM data. The data is a set
of MRFM projections of a sample of tobacco virus. Compre-
hensive details of both the experiment and the MRFM data
acquisition protocol are given in [8] and the supplementary
materials [9]. The observed sample consists of a collection of
Tobacco mosaic virus particles that constitute a whole viral
segment in addition to viral fragments. The projections are
computed from the measured proton distribution and the 3-D

Fig. 13. Three horizontal slices of the estimated image.

psf following the protocol described in [8] and [9]. The re-
sulting scan data are depicted in Fig. 12 (top) for four different
distances between the MRFM tip and the sample: d = 24 nm,
d = 37 nm, d = 50 nm and d = 62 nm. Each of these x-y
slices is of size 60 x 32 pixels.

These experimental data are undersampled, i.e., the spatial
resolution of the MRFM tip, and, therefore, the psf function, is
finer than the resolution of the observed slices. Consequently,
these data have been deconvolved taking into account the over-
sampling rates defined by d, = 3,d, = 2and d. = 3 in
the three directions. The MAP estimate of the unknown image
is computed from Ny = 1000 Gibbs samples of the pro-
posed Bayesian algorithm initialized with the output of a single
Landweber iteration. Several more iterations of the Landweber
algorithm would produce the reconstructions reported in [8].
Three horizontal slices of the estimated image> are depicted in
Fig. 13. A 3-D view of the estimated profile of the virus frag-
ments is shown in Fig. 14. The MMSE estimates of the param-
eters introduced in Section III are a'l%/[MSE = 0.10, anMsE =

SNote that most part of the estimated 3-D image is empty space due to the
very localized proton spin centers in the image.



Fig. 14. Three-dimensional view of the estimated profile of the Tobacco virus
fragments.
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Reconsruction error
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Fig. 15. Error of the reconstructions as functions of the iteration number for the
proposed algorithm (continuous blue line) and Landweber algorithm (dotted red
line).

1.9 x 10712 and wyyvse = 1.4 x 1072, The image recon-
structions produced by the Landweber and Bayesian MAP al-
gorithms are shown in Fig. 12.

By forward projecting the estimated virus image through the
point spread function one can visually evaluate the goodness of
fit of the reconstruction to the raw measured data. This is de-
picted in Fig. 12. These figures are clearly in good agreement
with the observed data (top). To evaluate the convergence speed,
the reconstruction error is represented in Fig. 15 as a function of
the iterations for the proposed Bayesian and the Landweber al-
gorithms. This shows that the convergence rate of our algorithm
is significantly better than the Landweber algorithm.

VII. CONCLUSION

This paper presented a hierarchical Bayesian algorithm for
deconvolving sparse positive images corrupted by additive
Gaussian noise. A Bernoulli-truncated exponential distribution
was proposed as a prior for the sparse image to be recovered.
The unknown hyperparameters of the model were integrated
out of the posterior distribution of the image, producing a full
posterior distribution that can be used for estimation of the
pixel values by extracting the mode (MAP) or the first moment

(MMSE). An efficient Gibbs sampler was used to generate
approximations to these estimates. The derived Bayesian esti-
mators significantly outperformed several previously proposed
sparse reconstruction algorithms. Our approach was imple-
mented on real MRFM data to reconstruct a 3-D image of a
tobacco virus. Future work will include extension of the pro-
posed method to other sparse bases, inclusion of uncertain point
spread functions, and investigation of molecular priors. Future
investigations might also include a comparison between the
proposed MCMC approach and variational Bayes approaches.

APPENDIX A
DERIVATION OF THE CONDITIONAL POSTERIOR DISTRIBUTION
f (xl |w7 a, Uva—ivy)

The posterior distribution of each component z; (i =
1,..., M) conditionally upon the others is linked to the likeli-
hood function (3) and the prior distribution (7) via the Bayes’
formula

f (:17,;|w,a,02,x_1;,y) o8 f (y|X,U2) f($1|w>a) (30)

This distribution can be easily derived by decomposing x on the
standard orthonormal basis

B:{ulw";u]ﬂ} (31)

where u; is the ¢th column of the M x M identity matrix. In-
deed, let decompose x as follows:

(32)

X =X; +x;u;

where X; is the vector x whose ith element has been replaced
by 0. Then the linear property of the operator 7" (, -) allows one
to state

T(K,,X) = T(K.)MCZ) + ;T (n,ui) . 33)

Consequently, (30) can be rewritten

2 llei—ih |”
f ($i|w7a7a 7X—i7y) XeXp | —— 5

202
w ZT;
X [(1 —w)é (z;) + — exp (_E> Ir; (1171)} (34
where6

(35)

An efficient way to compute e; within the Gibbs sampler
scheme is reported in Appendix B. Then, straightforward
computations similar to those in [7] and [37, Annex B], yield
to the following distribution:

f ($i|w7 a, O'Z,X_Z'7y) X (1 - w2)6 (xl)
+wipy (wilpi,n)  (36)

61t can be noticed that, for deblurring applications, h; is also the ith column
of the matrix H introduced in (2).



with

[h; 2
‘2 ('h?e 1) 7
and
2
{ui = 2C (i, n?) exp (457 %)

The distribution in (36) is a Bernoulli-truncated Gaussian dis-
tribution with hidden mean /; and hidden variance 7?.

APPENDIX B
FAST RECURSIVE COMPUTATIONS FOR SIMULATING
ACCORDING TO f (x |w, a,02,y)

In the Gibbs sampling strategy presented in Section IV, the
main computationally expensive task is the generation of sam-
ples distributed according to f (z; |w,a,0%,x_;,y). Indeed,
the evaluation of the hidden mean and hidden variance in (37) of
the Bernoulli-truncated Gaussian distribution may be costly, es-
pecially when the bilinear application T (-, -) is not easily com-
putable. In this appendix, an appropriate recursive strategy is
proposed to accelerate the Gibbs sampling by efficiently up-
dating the coordinate ¢ of the vector x at iteration ¢ of the Gibbs
sampler.

Let x**=1) denote the current Monte Carlo state of the un-

known vectorized image x (z = 1,..., M)
I P OV ) ROE™
with, by definition, x#0) = x(*=LM) Updating x*?—1)

®

consists of drawing z,” according to the Bernoulli-truncated

Gaussian distribution f (z; |w, a, 02, x(t - 1) ) in (23) with

(tz 1)

—7,

[m SO =1 a:(;[—l)]T

1 1 1+1 A A (40)

The proposed strategy to simulate efficiently according to (23)

is based on the following property.

Property:  Given the quantity T (K,, x(o)) and
vectors  {h;},_, ,,, simulating according to

(¢.9) y) can be performed without evaluating

the

f(azq‘waa yx

the bilinear function 7' (-, -).
Proof: Simulating according to (23) mainly requires to
compute the vector e; introduced by (35)

=y- T( (i 1)) 41)

with

(f 1)

K = [, a0 42)

ey )"

Moreover, by using the decomposition in (32) and by exploiting

the linear property of T (k, -), the vector T’ (K, x(t - 1)) on the
right-hand side of (41) can be rewritten as
T (m 5;5“‘1)) - (m,x(t’i_l)) —Yh;  @43)

where h; has been introduced in (35). Consequently, to prove
the property, we have to demonstrate that the vector series
{T (k,x*:P)) }kzl _z can be computed recursively without

using 7' (-, ). Assume that T (k,x®=1) is available at this

stage of the Gibbs sampling and that xgt) has been drawn. The
new Monte Carlo state is then

09 = [af) 0, 20 a0

zl7z7z

T
xg;%,—n] (44)

Similarly to (43), the vector T (&, x(t?)) can be decomposed as
follows:

T (K,,x(t’i)) =T (n, igt’i‘l)) +20h;. (45)
Therefore, combining (43) and (45) allow one to state
T (Kl7x(t,i)) — ('i; X(t,i—l)) n (wgt) _ wl(t—l)) h
]

The bilinear function 7' (-,-) only needs to be used at the
very beginning of the Gibbs sampling algorithm to evaluate
T (k,x©) and the vectors {h;},_, . The resulting simu-
lation scheme corresponding to step 3of Algorithm 1 is shown
in Algorithm 2.

Algorithm  2:  Efficient
x|w,a,0%y): For i =
coordinate of the vector

Simulation  According  to
., M, update the ith

, T
x®i=1) = [ (t) ..... Et_) 1 Et 1) E 1 ),...7:555[_1)}
via the following steps
1. Compute ||h]|*.
setT (m,x("7V) = 7 (k,x47D) — 2"V,

Sete; =x—T (k,x ~(“ b

Compute 1;, 7 and w; as defined in (37) and (38).
Draw x;, ' according to (23).
(t—1>] r
Vi

Set x(t) = [.r(t) cee Et)l x<t) x,gj__ll), ce Ty

(K,, il(»t’z 1)) +z

APPENDIX C
SIMULATION ACCORDING TO A BERNOULLI-TRUNCATED
GAUSSIAN DISTRIBUTION

NS nhE»D

Set T (k,x(") = ;.

This appendix describes how we generate random variables
distributed according to a Bernoulli-truncated Gaussian distri-
bution with parameters (w;, y1;, n?) whose pdf is



f (@ilwi, pin?) = (1 — wy) 6(x:)

IR/ (i — i)’
C (i, n?) 22

where C' (i, n7) has been defined in (25). Monte Carlo draws
from this density can be obtained by using an auxiliary binary
variable z; following the strategy shown in Algorithm 3. This
indicator variable takes the value O (resp. 1) if the pixel z; is
zero (resp. nonzero).
Algorithm 3: Simulation According to a Bernoulli-Trun-

cated Gaussian Distribution:

1. Generate z; according to z; ~ Ber (w;).

Tr; = 0, if Z; = 0;

2. Set {:1:7 ~NT (piyn?), ifz =17

In Algorithm 3, Ber (-) and N (-, -) denote the Bernoulli
and the positive truncated Gaussian distributions respectively.
In step 2, samples distributed according to the truncated
Gaussian distribution can be generated by using an appropriate
accept-reject procedure with instrumental distributions [18],
[36], [42].

1rY (74)
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