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a b s t r a c t

This paper presents a MultiObjective Genetic Algorithm (MOGA) optimization framework for batch

plant design. For this purpose, two approaches are implemented and compared with respect to three

criteria, i.e., investment cost, equipment number and a flexibility indicator based on work in process

(the so-called WIP) computed by use of a discrete-event simulation model. The first approach involves a

genetic algorithm in order to generate acceptable solutions, from which the best ones are chosen by

using a Pareto Sort algorithm. The second approach combines the previous Genetic Algorithm with a

multicriteria analysis methodology, i.e., the Electre method in order to find the best solutions. The

performances of the two procedures are studied for a large-size problem and a comparison between the

procedures is then made.

1. Introduction and objectives

Batch plant design is a traditional and recurrent problem in
Process Systems Engineering. It has been tackled by various
approaches, involving either deterministic or stochastic methods.
A classification is proposed in Bernal-Haro et al. (2002). Due to the
combinatorial and multiobjective nature of the problems, Genetic
Algorithms (Goldberg, 1989) appear good candidates to solve the
problem. On the one hand, the combinatorial aspect may result
from the number and size of each equipment item (most often
considered as a discrete number) involved in the process, the
number of managing rules, etc. On the other hand, the rigorous
treatment of batch plant design requires simultaneous optimiza-
tion of more than one objective function: for instance, a good
design attempts simultaneously to minimize a cost criterion
(either based on investment or net present value), maximize the
inherent flexibility of the plant and minimize the environmental
impact. In that context, MultiObjective Genetic Algorithms
(MOGAs) are particularly attractive to optimize several conflicting
objectives and to explore the trade-offs between conflicts and
constraints inherent to this process. They extend the standard
evolutionary-based optimization technique (for more detail, see
Baudet et al., 1998; Bernal-Haro et al., 2002) to allow individual
treatment of several objectives simultaneously. This is consistent
with the increasing complexity of decision-making problems

which requires the use of more flexible and open approaches, thus
providing a more realistic and effective resolution of problems
than that offered by the traditional approach in decision making
(Bhaskar et al., 2000).

In this work, two approaches are implemented to solve a batch
plant design optimization problem with respect to three criteria,
i.e., investment cost, equipment number and a flexibility indicator
based on Work In Process (the so-called WIP) computed by use of
a Discrete-Event simulation model previously developed (see
Bernal-Haro et al., 2002). The former is based on a Pareto sorting
algorithm whereas the latter uses a multicriteria decision analysis
framework, i.e., the Electre methodology.

The two procedures are based on a two-step approach (see Fig. 1),
in which the first step is common:

i. At the inner level (slave problem), the AD-HOC1 discrete-event
simulator is used to evaluate different batch plant configura-
tions, thus solving the underlying scheduling phase (see
Bernal-Haro et al., 2002).

ii. At the upper level (master problem), the search strategy for
finding the most interesting configurations from a given
criterion viewpoint is achieved by use of a classical mono-
criterion Genetic Algorithm (GA). The size of the chromosome
is defined by the maximum number of operations in the recipe
list and each gene encodes the number of parallel equipment
for each available size into a string of decimal digits. All
variables are integer values.
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The procedures then differ by the multicriteria optimization
procedure. On the one hand, multicriteria optimization is
implemented using a Pareto algorithm, which is based on the
search for good configurations found by the GA, and the solutions
are optimum in the sense of Pareto. Let us recall that this
definition says that a vector x* is Pareto optimal if there exists no
feasible vector of decision variables x which would decrease some
criterion without causing a simultaneous increase in at least one
other criterion. Unfortunately, this concept almost always gives
not a single solution, but rather a set of solutions called the Pareto
optimal set. The vectors x* corresponding to the solutions
included in the Pareto optimal set are called non-dominated.
The plot of the objective functions whose non-dominated vectors
are in the Pareto optimal set is called the Pareto front.

On the other hand, the Electre methodology is adopted (see
Roy, 1985), thus offering the decision maker the ability to take into
account quantitative and qualitative criteria. As already men-
tioned, three quantitative criteria are defined but this may be not
restrictive (for instance, environmental considerations can also be
taken into account).

This paper is organized as follows. Section 2 is devoted to the
problem presentation and model formulation. The Multicriteria
Genetic Approach combined with an optimization solving is then
presented in Section 3 whereas the Multicriteria Genetic
Approach combined with the ELECTRE methodology is described
in Section 4. The studied case is tackled in Section 5 and the
associated results are presented and analyzed. Conclusions and
perspectives constitute the core of Section 6.

2. Problem presentation and model formulation

2.1. Literature review

Due to growing interest in batch operating mode, many studies
in the chemical engineering community deal with the batch plant
design issue. A critical review on the design and retrofit of batch
plants is proposed in Barbosa-Póvoa (2007). Basically, batch
plants are composed of items operating in a discontinuous way.
Each batch then visits a fixed number of equipment items, as
required by a given synthesis sequence (the so-called production
recipe). The traditional approach used in solving the batch plant

design problems has been to formulate it either as a single-
objective, mixed integer linear programming (MILP) or as a mixed
integer non-linear programming (MINLP) problem and to solve it
by employing mathematical programming techniques or optimi-
zation techniques, such as branch and bound, heuristics, genetic
algorithm, simulated annealing. A typical example concerns
minimization of investment cost for all items involved in the
plant, which optimizes the number and size of parallel equipment
units in each stage. The production requirements of each product
and data related to each item (processing times and cost
coefficients) are specified, and fixed global production time is
also specified. Although many studies deal with the multiproduct
batch plant design as reported in Rauch (2003) and Barbosa-Póvoa
(2007), the multiobjective plant in which all the products do not
necessarily follow the same operating steps has received less
attention (Voudouris. and Grossmann, 1996; Petkov Spas and
Maranas Costas, 1998; Barbosa-Póvoa et al., 2001; Lin and Floudas,
2001; Cavin et al., 2004; Mosat et al., 2007), due to the difficulty of
embedding this kind of constraints in a mathematical formula-
tion. This is why an alternative technique is chosen here to take
the multiobjective batch plant structure into account: a classical
solution in the operational research community consists in using
Discrete-Event Simulation techniques (Fishman, 2001) to model
the different paths in which the products flow inside the plant,
since the complexity renders mathematical programming ap-
proaches quite prohibitive (Bernal-Haro et al., 2002; Dietz et al.,
2005). This solution has been adopted in this work. This remark is
all the more valid as the multiobjective optimization framework is
concerned (Mosat et al., 2008).

2.2. Problem formulation

For each plant structure proposed by the upper-level optimiza-
tion loop, the technical feasibility of the plant is tested, and for
each feasible solution, the various objectives are computed, at the
inner level of the procedure. The Discrete-Event Simulator AD-
HOC previously developed for solving short-term scheduling
problems (Baudet et al., 1998), and extended to design and retrofit
purposes on a long-term horizon (Bernal-Haro et al., 2002), is
implemented at the inner level, where the problem can be
formulated as follows:
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Given

� set of N products to be manufactured,
� set of equipment items classified according to their functions

in families,
� manufacturing recipes for each product and the associated

operating times,
� set of all possible equipments for each product,
� stable or unstable state of intermediate products,
� available levels of utilities,
� transfer times between equipment units,
� storage availability,

the objective is to determine a plant configuration (i.e. number
and capacity of both equipment units and storage vessels) in order
to minimize investment cost and to maximize the flexibility of the
plant. The criteria will be presented in more detail in the
dedicated sections. But, it must be pointed out at that level that
two criteria were chosen to account for flexibility: the former is
relative to the number of campaigns necessary to reach a pseudo-
state regime from an empty plant. The lower this number, the best
flexible the plant. The latter is relative to different sizes in each
unit operation, which has also to be minimized. This criterion was
chosen in our previous works since the minimization of the
number of different unit sizes of plant equipment leads to
minimizing the number of human operation in order to avoid
cross contamination. It has been shown that the criteria exhibit
pairwise an antagonist behavior (Dedieu et al., 2003).

2.3. Discrete size of equipment

In the literature dedicated to batch plant design (see Ponsich et
al., 2007), the item sizes (volumes for batch stages and treatment
capacity for semi-continuous stages) are continuous variables.
Yet, it seems obvious that in the industrial practice, the design of
operation unit equipment does not require such a level of
accuracy, which seems not realistic. Besides, equipment manu-
facturers propose the items following the defined size ranges
(volumes or treatment capacity). This means that an item can only
adopt a discrete number of predefined values.

2.4. Simulation data

A simulation run requires the following data: (i) plant
architecture, (ii) number, amount and supply calendar of raw
materials, (iii) number and nature of shared intermediate
products, (iv) recycled products, (v) non-recycled products, (vi)
final products, (vii) recipes and (viii) production data (simulation
horizon, batch treatment priority, and batch release order).

2.5. Discrete-event simulation model

The DES AD-HOC determines the exact chronology of discrete
events occurring in the plant, where the time changes by ‘‘event
jump’’, i.e., from one event to the following one. In the simulator,
raw materials, utilities, final and intermediate products and
renewable resources (equipment and storage vessels) are modeled
using the formalism of finite state automata. In the design and
retrofit version of AD-HOC, operators are not taken into account in
the renewable resources. Each finite state automaton is repre-
sented by fixed or variable attributes, and by a finite set of states
and transitions between them; each transition may be conditional
or predetermined.

The list of scheduled events is managed by increasing the
occurrence date in the DES, so that when no more events are

possible at a time, the next one is considered in the scheduled list.
The process is repeated until the final time which fixes the end of
the simulation, is reached. The conflict management (for example,
competition of two products waiting for the same equipment) is
carried out according to a decision rule library, involving classical
heuristics like First In–First Out, Shortest Processing Time, etc.

It must be pointed out that discrete-event simulation tools
(Arena, ProModel) could be alternatively used for simulation
purposes. The main interest of using our ‘‘handmade’’ AD-HOC
model is that it has been designed to be easily embedded in an
outer optimization loop.

2.6. Simulation results

The simulator provides a wide variety of results on many
variables and the most significant ones are:

� beginning/end of treatment times for each operation,
� batch sequence,
� cycle time for every product,
� information about equipment use for detecting bottlenecks,
� number of work-in-process (WIP) products (i.e. number of

products which have not completed their production sequence
at a given time) at fixed times given by the user and at the end
of each production campaign,
� production (number and type of manufactured products).

Let us note that detailed results such as beginning/end times,
batch sequence, cycle time and equipment information are often
not necessary for design or retrofit problems.

2.7. Campaign mode operation

Since a long-term production level is considered in this study,
the planning horizon is partitioned into a number of campaigns,
each one devoted to the production of a subset of products.
According to Papageorgiou and Pantelides (1996), the manage-
ment and control of a batch plant is further reduced by operating
in a campaign mode, where the same pattern of operations is
repeated at a constant frequency, facilitating equipment poly-
valence. Campaign length and batch size are assumed to be fixed,
and each campaign is associated with a start date corresponding
to raw materials availability.

2.8. Steady-state/oscillatory regimes

For a given plant configuration, the goal is not only to satisfy
the production requirements in the studied horizon time but also
to calculate a production plan minimizing the investment cost
while maximizing the flexibility of the plant. The simulation is
carried out from an empty workshop (no WIP) and then goes on
by updating the corresponding dates at each campaign, until the
imposed production level is reached (steady state or oscillatory
behavior). The steady-state regime corresponds to identical values
for production level (i.e. the WIP), and average and maximal
residence times for a given number of consecutive campaigns (five
for example). An oscillatory regime, which means that production
levels per campaign and/or average and maximal residence times
are alternated between two consecutive campaigns, is acceptable
under the constraint that the average production level of the two
last campaigns reaches the required production level for each
product (see Bernal-Haro et al., 2002).
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2.9. Checking plant feasibility

A plant configuration is considered to be feasible when
simulation leads to a steady state or an oscillatory regime, as
defined in the previous section. In that case, the criteria are
computed, and control is transferred to the upper optimization
level. For an unfeasible plant, the fitness is forced to zero, so that
this structure does not compete for optimality in the following
generations of the MOGA.

2.10. Returning to the upper level

The DES presented in this section, implemented for long-term
scheduling of multiobjective plants, evaluates the plant perfor-
mances for a given workshop structure. This simulator is now
embedded in an optimization loop based on a MOGA for design
and retrofit purposes.

3. Presentation of the GA-Pareto approach

Multicriteria optimization involves choices and criteria accord-
ing to which different choices can be judged, thus an under-
standing of ‘‘better’’ and ‘‘worse’’. A multicriteria optimization
problem consists of choosing among a set of ‘‘alternatives’’ an
‘‘optimal one’’, where optimality refers to certain criteria measur-
ing the quality of the alternatives (Ehrgott, 2000).

As reported in Bhaskar et al. (2000) and Coello (2000),
multicriteria optimization has received considerable attention in
many domains of chemical engineering. Historically, the first
reference to deal with such situations of conflicting objectives is
attributed to Pareto in 1896. Of course, multicriteria optimization
is not restricted to Pareto optimality approach. This very popular
technique, which is well-suited to a GA procedure, where a set of
solutions is generated, has been adopted in this study. The main
features of the Pareto optimality notion are now briefly recalled.
Let us consider the multicriteria optimization problem, defined by

Min ff ðxÞ ¼ ½f 1ðxÞ; . . . ; f kðxÞg; subject to x 2 X; where X is a subset of Rn.

The Pareto optimal solutions can be defined as follows. A
solution x*AX is called Pareto optimal (minimization case here) if

8k 2 ½1;n�; f kðxÞpf kðx
nÞ and 9j 2 ½1;n�; f jðxÞpf jðx

nÞ

In most cases, the Pareto optimal set (also called the Pareto
zone) is not constituted of a single solution, but involves a set of
solutions, called non-dominated solutions. To characterize the
Pareto zone among a population of feasible solutions, a Pareto Sort
(PS) has been implemented (Dedieu et al., 2003), based on the
following algorithm:

The first individual x0 of the population is chosen as reference.
All individuals x of the population are in turn compared with

the reference according to the following function h:

hi ¼ 0 if f iðx
0Þof iðxÞ

hi ¼ 1 if f iðx
0Þf ipðxÞ

H ¼
Yk

i¼1

hi

where k is the number of criteria.
If H ¼ 1, the individual x is dominated by the reference, and so

excluded from the current Pareto zone; if H ¼ 0, x is not
dominated by x0.

When all elements of the population are tested, return to step
one, where the new reference is the first individual not yet ousted
and not yet chosen as reference.

The Pareto zone is obtained when all individuals of the
population are either chosen as reference, or ousted.

The previously described GA and PS are now combined to
define the multicriteria genetic algorithm. Several variants of GAs
exist and have been widely published (Schaffer, 1985; Fonseca and
Fleming, 1993; Srinivas and Deb, 1994; Deb et al., 2002). Following
the principles of the Pareto ranking approach, a multiobjective
genetic algorithm was developed by Dedieu et al. (2003) with a
particular emphasis on structure encoding involved in a batch
plant. This algorithm is taken here as a reference in order to
compare the obtained results with those of the strategy
investigated in this study.

First, a monoobjective genetic algorithm procedure is imple-
mented to optimize separately each one of the k objective
functions, then a PS is applied on a population obtained by
merging some populations generated when solving the various
monoobjective genetic algorithms.

Two procedures were initially developed (Dedieu et al., 2003):
in MOGA-Version 1 (Fig. 2), the PS is applied on a population
resulting on the union of the k final populations obtained when
solving each one of the k MOGAs; in MOGA-Version 2, the PS is
applied on a larger population, consisting of the merging of all
populations generated during the solutions of the k MOGAs.

For small-sized populations in the MOGAs, Version 1 may lead
to restricted Pareto zones. Version 2, requiring longer computa-
tion times, insofar as the PS may be performed on a very large
population, does not exhibit this drawback. In Version 1, the PS is
performed on a population of size k�popsize, whereas, in Version 2,
the population size concerned by the PS, is maxgen� k�popsize.

In these expressions, popsize represents the size of populations,
maxgen the maximum number of generations and k the number of
objective functions in the multiobjective optimization problem.

In Dedieu et al. (2003), the two versions were thoroughly
compared on the basis of bench mathematical functions (Viennet,
1997) with known solutions. On the one hand, this study shows
that Version 1 gives too restricted Pareto zones. On the other hand,
good Pareto zones are obtained with Version 2, which shows a
good repeatability in the definition of the Pareto zones. Indeed, the
repeatability is an important feature, because like every stochastic
procedure, the MOGA has to be run several times (10 times for
example), with different initial populations to solve efficiently a
given problem. The final Pareto zone is defined as the super-
position of the Pareto zones obtained for each MOGA run. For the
sake of illustration, two numerical examples are reported below.

The presentation of the various steps of the Genetic Algorithm
will not be recalled here in detail (Dedieu et al., 2003). Let us only
mention the encoding procedure used for the design problems,
since the results will be presented with this formalism.

The size of the chromosome is defined by the maximum
number of operations in the whole recipe list, and each gene
encodes the number of parallel equipment for each available size
into a string of decimal digits. Let us consider for example a plant
involving three types of operations, and three sizes for each
operation. Fig. 3 shows an example of chromosome and the
corresponding plant structure.

4. Presentation of GA-Electre approach

The second approach involves the following two steps:

1. The first step consists in the generation of good solutions for
each criterion using the same genetic algorithm.
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2. The set of solutions is ranked using the Electre methodology
(for more detail about the Electre procedures, see Roy, 1985).
The alternatives to rank are those given by the different

monocriterion Genetic Algorithms. The solutions are then scored
on each criterion in order to give the so-called performance
matrix. This matrix is usable only if the decision maker gives some
weight to each criterion. All these performances and weights are
aggregated by the Electre procedure through indifference and

preference thresholds. The main advantage of this approach is
taking into account user’s expertise throughout the solving
process. The Electre methodology was designed to solve deci-
sion-making problems with a qualitative approach based on
decision maker’s know-how.

This methodology allows decision makers to order solutions of
a decision-making problem according to several criteria. Several
versions of Electre (I, II, III, IV and Tri) are based on the same
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fundamental concepts but are different from the viewpoints of
both involved mechanisms and the decision-making process. The
main feature of this methodology is that the decision maker gives
preferences (preference and indifference thresholds) to the
system. Based on these thresholds, the system compares two
actions on one criterion. An outranking by criterion is then
obtained. The system then compares two actions on all criteria by
calculating the concordance and discordance matrices. Finally, an
outranking is obtained on all criteria.

Electre I is developed for choice problems, Electre Tri for
sorting problems, Electre II, III and IV for ranking problems. In this
study, the Electre III methodology was selected because it is well
adapted for ranking problems and, more particularly, for out-
ranking problems.

The objective of the next section is to describe briefly the
principles of Electre methodology.

4.1. Electre methodology

For a set of actions A and a set of criteria, gj(a) measures the
efficiency of the action a on the criterion j. A performance matrix
is then defined for each action a on each criterion j. Independently,
several relations (P and I) are defined in order to compare the
actions between them.

Nevertheless, in order to avoid the pairwise comparison on
each criteria, the ELECTRE methodologies include an indifference
threshold q and the preference relations are defined as follows:

aPb (a is strongly preferred to b)3g(a)�g(b)4p (g(b)�g(a)4p minimization)

aQb (a is weakly preferred to b)3qog(a)�g(b)pp (qog(b)�g(a)pp

minimization)

aIb (a is indifferent to b, and b to a3|g(a)�g(b)|pq

Using thresholds, the methodology Electre tries to establish an
outclassing relation S, in order to obtain a matrix called Final

Preorder Matrix.
The aggregation procedure for which the Outclassing relation

is accepted aSb uses two principles:

� Concordance principle which requires that a majority of
criteria, considering their relative importance, is in favor of
the S relation (majority principle);
� Discordance principle which requires that a minority of criteria

are not in favor of the relation, none of them being strongly
against this S relation.

The operational implementation of these two principles is then
discussed, having for assumptions that all criteria must be
maximized. We consider the outclassing relation S defined for
each criteria r, that is aSjb means that ‘‘a is at least as good as b for
the criterion j’’ j ¼ 1,y, r. The criterion j is in concordance with
the relation (aSb) if and only if (aSjb) that is if gj(a)Xgj(b)�qj. Even
if the value gj(a) is less than gj(b) except a quantity until qj that
allows to verify the affirmation (aSjb) and then the criterion is in
concordance. The criterion j is in discordance with the relation
(aSb) if and only if (bSja) that is if gj(b)Xgj(a)+pj or if b is strongly
preferred to a for the criterion j, then it is not in concordance with
the affirmation aSb.

These concepts of concordance and discordance could be
considered as respectively harmony and disharmony. For each
criterion j, the methodology examines for each pair of actions
(a, b)AA, if there is harmony or disharmony with the affirmation
(aSb); that is a is at least as good as b. Including these concepts,
the strength of the affirmation S can be measured.

The final step consists in combining the two previously defined
matrixes to obtain one unique measure, i.e. a Credibility Degrees
Matrix which evaluates the strength of the affirmation ‘‘a is at
least as good as b’’.

Two preorders are then designed, using an ascendant distilla-
tion and a descendant distillation, and these preorders are then
combined to build the final preorder matrix and the final preorder
graph.

The Electre methodology is used here with our expertise on the
studied production plan. Weights of criteria, performance matrix
and all preferences are obtained through several simulations.

5. Case study presentation

5.1. Problem formulation

The example, adapted from a problem presented in Dedieu et
al. (2003), is related to the manufacturing of 7 products by using
10 types of equipment. The chosen example exhibits the classical
features of an industrial-size batch plant (even from problem
size). Unlimited utility and storage are assumed. All data are given
in arbitrary units. The problem data are reported in Tables 1–3.

Table 3 involves the values of coefficients used for computing
the investment cost (IC) for each type of equipment, according to
the following relation:

IC ¼ aþ b� ðVolumeÞg
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The available size range for each type of equipment is {2000,
1000, 500} (in l). By lack of space (10 unit operations are involved),
the manufacturing recipes for the 10 products are not presented
(please refer to Dedieu et al. (2003) for more precision).

Three criteria are considered (see Table 4), i.e., investment cost
and two criteria related to workshop flexibility, number of
equipment items and number of campaigns to reach steady
state are considered. In this example inspired by the study treated
in Bernal-Haro et al. (2002), the number of possible configurations
is about 3.5�1024. The main parameter set presented in Table 5
results from a sensibility study, which will not be reported here.

5.2. Bicriteria results

In order to analyze the problem step by step, a bicriteria study
is first performed.

5.2.1. Results of MOGA1

The first series of results concerns the bicriteria analysis {cost;
equipment number}. The optimal solutions for 10 simulations are
given in Table 6.

They clearly exhibit three optimal solutions, with a major
interest in C#1, since the two other solutions present greater
values with order of magnitudes of 29% and 69%, respectively,
which seem unacceptable even at early design stage.

The second series of results is devoted to the bicriteria analysis
{cost; campaign number}. Similarly, the optimal solutions for 10
simulations are given in Table 7.

As previously observed, three optimal solutions are found. If
we consider the criterion cost, the following outranking can be
deduced:

C#1oC#2oC#3

If we consider the criterion campaign number, the inverse
outranking is exhibited:

C#3oC#2oC#1

5.2.2. Results of MOGA2

The same analysis is performed for the two pairs of criteria. For
both cases, the following parameters were used for the Electre
methodology (see Table 8).

For the analysis based on the criteria cost and equipment
number, the optimal solutions for 10 simulations are given in
Table 9.

Four optimal solutions are obtained, including the solutions
already found with MOGA1 and an additional one that seems
unacceptable from the cost criterion viewpoint for the above-
mentioned reasons.

For the bicriteria {cost; campaign number} approach, the
optimal solutions for 10 simulations are given in Table 10.

The three optimal solutions are found again in that case, with
the same trends already observed with MOGA1.

As a conclusion of this bicriteria approach, it can clearly be said
that results of the two methodologies, i.e., Pareto and Electre
outranking, lead to the same results, thus validating their
reliability for the decision maker.

5.3. Tricriteria results

The same case study is then studied and analyzed following
the three criteria previously described.

5.3.1. Results of MOGA1

With the tricriteria approach, three different batch plant
structures are obtained (see Table 11), and these three
structures however present a similar scheme (this is not shown
in the table since the generated results may be prohibitive to
analyze), as they exhibit that step 2 is the most limiting one, since
it requires more equipment. This can be predicted from the
observation of the recipes (not presented here). Without going
into their detailed presentation, let us say that equipment items of
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Table 1
Data set for simulation.

Time horizon 30 000 (arbitrary unit)

Campaign duration 2880 (idem)

Number of campaigns 100

Equipment type 10

Number of final products 7 (A, B, C, D, E, F, G)

Number of raw materials 10

Table 2
Requirement of final product volumes per campaign.

A 2 batches of 1000/campaign

B 1 batch of 1000/campaign

C 1 batch of 1000/campaign

D 2 batches of 1000/campaign

E 1 batch of 1000/campaign

F 2 batches of 1000/campaign

G 1 batch of 1000/campaign

Table 3
Equipment cost factors.

Equipment type a b g

1 250 000 600 0.6

2 100 000 550 0.6

3 120 000 450 0.6

4 300 000 650 0.6

5 260 000 500 0.6

6 150 000 500 0.6

7 180 000 500 0.6

8 350 000 700 0.6

9 90 000 500 0.6

10 300 000 600 0.8

Table 4
Considered criteria.

Criterion

1

Investment cost

Criterion

2

(Number of equipment)� (Sum of equipment volumes)

Criterion

3

(Number of campaigns to reach the steady state or oscillatory

regime)� (Number of equipment)

Table 5
Parameters for GA.

Population size 30

Generation number 20

Mutation probability 0.4

Crossover probability 0.8

Maximal number of individual copies 5

.
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Table 6
Results of the bicriteria analysis by MOGA1 {cost; equipment number}.

Run # Chromosome Chromosome identification Cost Equipment number

1 120-311-020-010-100-210-200-210-200-100 C#1 5 643 025 23

2 120-311-020-010-100-210-200-210-200-100 C#1 5 643 025 23

3 200-700-110-200-110-120-010-210-200-300 C#2 7 281451 27

4 200-700-110-200-110-120-010-210-200-300 C#2 7 281451 27

5 120-311-020-010-100-210-200-210-200-100 C#1 5 643 025 23

6 312-313-202-010-110-800-131-300-100-200 C#3 9 545 884 40

7 120-311-020-010-100-210-200-210-200-100 C#1 5 643 025 23

8 120-311-020-010-100-210-200-210-200-100 C#1 5 643 025 23

9 120-311-020-010-100-210-200-210-200-100 C#1 5 643 025 23

10 200-700-110-200-110-120-010-210-200-300 C#2 7 281451 27

Table 7
Results of the bicriteria analysis by MOGA1 {cost; campaign number}.

Run # Chromosome Chromosome identification Cost Campaign number

1 312-313-202-010-110-800-131-300-100-200 C#3 9 545 884 5

2 120-311-020-010-100-210-200-210-200-100 C#1 5 643 025 7

3 312-313-202-010-110-800-131-300-100-200 C#3 9 545 884 5

4 200-700-110-200-110-120-010-210-200-300 C#2 7 281451 6

5 312-313-202-010-110-800-131-300-100-200 C#3 9 545 884 5

6 312-313-202-010-110-800-131-300-100-200 C#3 9 545 884 5

7 120-311-020-010-100-210-200-210-200-100 C#1 5643 025 7

8 120-311-020-010-100-210-200-210-200-100 C#2 5 643 025 7

9 312-313-202-010-110-800-131-300-100-200 C#3 9 545 884 5

10 200-700-110-200-110-120-010-210-200-300 C#2 7 281451 6

Table 8
Parameters used with the Electre methodology for the bicriteria analysis {cost; equipment number}.

Criteria Criteria weights (Pc) Indifference thresholds Preference thresholds

a b a b

Cost 0.6 0.2 1 0.2 1

Equipment number 0.4 0.2 1 0.2 1

Table 9
Results of the bicriteria analysis by MOGA2 {cost; equipment number}.

Run # Chromosome Chromosome identification Cost Unit number

1 120-311-020-010-100-210-200-210-200-100 C#1 5 643 025 23

2 120-311-020-010-100-210-200-210-200-100 C#1 5 643 025 23

3 200-700-110-200-110-120-010-210-200-300 C#2 7 281451 27

4 200-700-110-200-110-120-010-210-200-300 C#2 7 281451 27

002-800-103-104-004-003-102-403-101-103 C#4 10 827407 42

5 120-311-020-010-100-210-200-210-200-100 C#1 5 643 025 23

6 312-313-202-010-110-800-131-300-110-200 C#3 9 545 884 40

7 120-311-020-010-100-210-200-210-200-100 C#1 5 643 025 23

1 120-311-020-010-100-210-200-210-200-100 C#1 5 643 025 23

2 120-311-020-010-100-210-200-210-200-100 C#1 5 643 025 23

3 200-700-110-200-110-120-010-210-200-300 C#2 7 281451 27

Table 10
Results of the bicriteria analysis by MOGA2 {cost; campaign number}.

Run # Chromosome Chromosome identification Cost Campaign number

1 312-313-202-010-110-800-131-300-110-200 C#3 9 545 884 5

2 120-311-020-010-100-210-200-210-200-100 C#1 5 643 025 7

3 312-313-202-010-110-800-131-300-110-200 C#3 9 545 884 5

4 200-700-110-200-110-120-010-210-200-300 C#2 7 281451 6

5 200-700-110-200-110-120-010-210-200-300 C#3 7 281451 6

6 312-313-202-010-110-800-131-300-110-200 C#3 9 545 884 5

7 120-311-020-010-100-210-200-210-200-100 C#1 5 643 025 7

8 120-311-020-010-100-210-200-210-200-100 C#2 5 643 025 7

9 312-313-202-010-110-800-131-300-110-200 C#3 9 545 884 5

10 200-700-110-200-110-120-010-210-200-300 C#2 7 281451 6



type 2 are common to all recipes (except that of product D) and
require long operating times as compared with other steps.

Besides, the decrease in the number of campaigns necessary to
reach the steady-state regime leads to a slight equipment
oversizing of step 2, which in turn traduces more flexibility for
achieving production.

The results seem thus encouraging since the combined use of
simulation and optimization can predict the behavior of the plant
and detect bottleneck.

The results show that the approach allows obtaining satisfac-
tory solutions (with relatively short computational time), that are
very important in a multicriteria environment. Table 11 (respec-
tively 12) presents the obtained results before (respectively after)
the application of the Pareto sort procedure (Table 12).

5.3.2. Results of MOGA2

Several parameters are to be defined before using the Electre
methodology. As proposed with MOGA1, the used criteria are the
cost of the obtained solution, number of equipment items and
number of campaigns. The relative weight for each criterion and
value scale must be defined. Two preference thresholds are also
introduced, giving an interval of values, meaning that the decision
maker prefers one action rather than the other one. Two
indifference thresholds give an interval of values, between which
the decision maker is indifferent between two actions. The Electre
methodology is used with the results obtained before the Pareto
sort procedure application. The parameter set is summarized in
Table 13.

The performance matrix required for Electre III is presented in
Table 14. The best compromises obtained with Electre III with
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Table 11
Results of GA (before Pareto sort).

#C Cost # Unit # Camp

RUN # 1

1-1 9 545 884 40 5

1-2 10 390 540 40 9

1-3 10 827407 42 10

1-4 10 956 312 44 11

1-5 11522 842 42 9

1-6 12 351483 45 5

1-7 12 732121 44 5

RUN # 2

2-1 72 814 514 27 6

2-2 9 545 884 40 11

2-3 9 636 421 41 10

2-4 10 732 413 42 9

2-5 11142 309 40 12

2-6 11522 842 42 7

2-7 11843192 44 5

RUN # 3

3-1 5 643 025 23 7

3-2 7 281451 27 6

3-3 9 545 884 40 5

3-4 9 973141 41 7

3-5 10 956 312 44 11

3-6 11432 713 40 10

3-7 11740 273 44 5

3-8 12 411371 45 5

RUN # 4

4-1 5 643 025 23 7

4-2 7 281451 27 6

4-3 9 545 884 40 5

4-4 10 470 337 40 9

4-5 11 251 226 41 9

4-5 11633 935 43 9

4-6 11952 074 44 5

4-7 13 232126 45 5

4-8 13 321 235 45 5

RUN # 5

5-1 5 643 025 23 7

5-2 10 480 631 41 10

5-3 10 964 221 43 10

5-4 12 351483 45 5

5-5 12 732121 44 5

5-6 13 232126 45 5

RUN # 6

6-1 5 643 025 23 7

6-2 7 281451 27 6

6-3 9 545 884 40 5

6-4 9 973141 41 7

6-5 10 827407 42 10

6-6 11843192 44 5

6-7 12 351483 45 5

RUN # 7

7-1 9 636 421 41 10

7-2 10 732 413 42 9

7-3 11142 309 40 9

7-4 11633 935 43 9

7-5 12 732121 44 5

7-6 13 321 235 45 5

RUN # 8

8-1 5 643 025 23 7

8-2 7 281451 27 6

8-3 9 545 884 40 5

8-4 10 390 540 40 9

8-5 10 827407 42 10

8-6 11522 842 42 9

8-7 12 351483 45 5

RUN # 9

9-1 10 390 540 40 9

9-2 10 964 221 43 10

9-3 11142 309 40 9

9-4 11432 713 40 10

9-5 11952 074 44 5

Table 11 (continued )

#C Cost # Unit # Camp

9-6 13 232126 45 5

RUN # 10

10-1 5 643 025 23 7

10-2 7 281451 27 6

10-3 9 545 884 40 5

10-4 9 973 141 41 7

10-5 10 732 413 42 9

10-6 11142 309 40 9

10-7 11432 713 40 10

10-8 11952 074 44 5

Table 12
Best solutions obtained for MOGA1 (after Pareto sort).

Solutions C Cost # Unit # Camp

3-1; 4-1; 5-1; 6-1; 8-1; 10-1 5 643 025 23 7

2-1; 3-2; 4-2; 6-2; 8-2; 10-2 7 281451 27 6

1-1; 3-3; 4-3; 6-3; 10-3 9 545 884 40 5

Table 13
Parameter set used for Electre methodology.

Criteria Weight

criteria Pc

Indifference

thresholds a, b
Preference

thresholds a, b

Cost 0.25 0.1-1638 0.1-1639

Number of equipment items 0.25 0.1-7 0.1-8

Number of campaigns 0.5 0.1-8 0.1-2



respect to the three criteria considered simultaneously are given
below:

A1, A2 are preferred to A3 and A13
A3 and A13 are preferred to A18, A19, A20, A21, A22
A18, A19, A20, A21, A22 are preferred to A23, A24, A25
A23, A24, A25 are preferred to A5
A5 is preferred to A4
A4 is preferred to A6, A7, A9, A14, A16, A17
A6, A7, A9, A14, A16, A17 are preferred to A8, A10, A11, A12,
A15.

It can be concluded that the three best solutions obtained are
the same using MOGA1 and MOGA2, but the hierarchical order
presents some differences for the other ones. Based on these
differences, it is interesting to point out that the three first actions
are the same in both approaches. Some differences yet exist in the
last outranked actions, mainly due to the introduced preference
thresholds. This similarity could be explained by the fact that the
Electre results are obtained by our expertise on the given
production plan. Weights of criteria and performance matrix
could differ between decision makers. In order to study the
robustness of each methodology, the influence of the criterion
weight could be studied.

The main advantage of MOGA1 is that the results are computed
automatically from steps 1 to 2. One perspective of this work
could be to generate automatically data transfer between steps 1
and 2 in MOGA2.

Another one could consist in analyzing these preference
thresholds by giving minimum and maximum thresholds for
which the outrankings are comparable for the two approaches.
Globally speaking, the good agreement between the results
validates both methodologies. This is all the more interesting as
the hybrid strategy could be used in application to examples that
lead to a Pareto set involving a greater number of solutions, from
which a fraction could be evaluated by an Electre methodology.

6. Conclusions and perspectives

This work presents a comparative analysis of two decision-
making analysis methodologies, i.e., a Pareto rank and an Electre
approach, used separately after a genetic algorithm procedure,
involved in a batch plant design strategy. These approaches are
compared firstly on two criteria and, then, on three criteria. Both
give similar results. A limitation stems from the data parameters
used in the Electre methodology. These parameters (thresholds
and criteria weights) depend on engineers’ expertise on workshop
design. These parameters are yet in agreement with those used in
the Pareto approach and during the step of solution generation.
The Pareto ranking approach, which can be qualified as an a

posteriori method, is interesting since the results are automatically
generated. The Electre strategy is interactive and needs the
definition of threshold parameters.

The didactic example, which presents the typical features of an
industrial batch plant, serves as a test bench of methodologies.
Due to the discrete nature of the problems, only a small number of
solutions were generated by the genetic algorithms. Since other
applications are now under investigation, involving mixed vari-
ables with environmental criteria to minimize, the number of
solutions to be evaluated is likely to increase so that other
strategies need to be evaluated and combined and for that the
present study the first step. A further study is to use a genetic
algorithm procedure with an embedded Pareto sort after which an
Electre method could be applied to some attractive ranges of
solutions in order to give some guidelines to the decision maker.
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