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Laboratoire Jacques- 
  
ON THE CAUCHY PROBLEM FOR QUASI-LINEAR HAMILTONIAN KDV-TYPE EQUATIONS

, generalising the considered class of equations and improving the regularity assumption on the initial data.

INTRODUCTION

In this paper u(t, x) is a function of time t ∈ [0, T ), T > 0 and space x ∈ T := R/2πZ. F (x, z 0 , z 1 ) is a polynomial function such that F (x, 0, z 1 ) = F (x, z 0 , 0) = ∂ z 0 F (x, 0, z 1 ) = ∂ z 1 F (x, z 0 , 0) = 0. Throughout the paper we shall assume that there exists a constant c > 0 such that ∂ 2 z 1 z 1 F (x, z 0 , z 1 ) ≥ c, (1.1) for any x ∈ T, z 0 , z 1 ∈ R. We shall denote the partial derivatives of the function u by u t , u x , u xx and u xxx , by ∂ x , ∂ z 0 , ∂ z 1 the partial derivatives of the function F and by d dx the total derivative with respect to the variable x. For instance we have d dx F (x, u, u x ) = ∂ x F (x, u, u x )+∂ z 0 F (x, u, u x )u x + ∂ z 1 F (x, u, u x )u xx . We consider the equation

u t = d dx ∇ u H(x, u, u x ) , H(x, u, u x ) := T F (x, u, u x )dx, (1.2) 
where we denoted by ∇ u H the L 2 -gradient of the Hamiltonian function H(x, u, u x ) on the phase space H s 0 (T) := {u(x) ∈ H s (T) :

T u(x)dx = 0} (1.3)
endowed with the non-degenerate symplectic form Ω(u, v) := T (∂ -1

x u)vdx (∂ -1

x is the periodic primitive of u with zero average) and with the norm u H s := j∈Z * |u j | 2 |j| 2 (u j are the Fourier coefficients of the periodic function u). The main result is the following.
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Theorem 1.1. Let s > 4 + 1/2 and assume (1.1). Then for any u 0 ∈ H s 0 (T) there exists a time T := T ( u 0 H s ) and a unique solution of (1.2) with initial condition u(0, x) = u 0 (x) satisfying u(t, x) ∈ C 0 ([0, T ), H s 0 (T)) ∩ C 1 ([0, T ), H s-3 0 (T)). Moreover the solution map u 0 (x) → u(t, x) is continuous with respect to the H s 0 topology for any t in [0, T ). This theorem improves the previous one in [START_REF] Mietka | On the well-posedness of a quasi-linear Korteweg-de Vries equation[END_REF] by Mietka. The result in such a paper holds true if the Hamiltonian function has the form H(u), while here we allow the explicit dependence on the x variable (non autonomous equation) and the dependence on u x . We tried to optimise our result in terms of regularity of the initial condition, we do not know if the result is improvable. If we apply our method to the equation considered by Mietka, we find a local well-posedness theorem if the initial condition belongs to the space H s 0 with s > 3 + 1/2 (which is natural since the nonlinearity may contain up to three derivatives of u), while in [START_REF] Mietka | On the well-posedness of a quasi-linear Korteweg-de Vries equation[END_REF] one requires s ≥ 4. In our statement we need s > 4 + 1/2 because our equation is more general and we have the presence of one more derivative in the coefficients with respect to the equation considered in [START_REF] Mietka | On the well-posedness of a quasi-linear Korteweg-de Vries equation[END_REF]. The proof of Theorem 1.1 is an application of a method which has been developed in [START_REF] Feola | Local well-posedness for quasi-linear NLS with large Cauchy data on the circle[END_REF][START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF] and then improved, in terms of regularity of initial condition, in [START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF]. Here we follow closely the method in [START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF] and we use several results proven therein. Both the schemes, the one used in [START_REF] Mietka | On the well-posedness of a quasi-linear Korteweg-de Vries equation[END_REF] and in [START_REF] Feola | Local well-posedness for quasi-linear NLS with large Cauchy data on the circle[END_REF][START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF][START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF], rely on solely energy method, the second one is slightly more refined because of the use of para-differential calculus which allows us to work in fractional Sobolev spaces and to treat more general nonlinear terms. The main idea is to introduce a convenient energy, which is equivalent to the Sobolev norm, which commutes with the principal (quasi-linear) term in the equation (see (4.11)). In [START_REF] Feola | Local well-posedness for quasi-linear NLS with large Cauchy data on the circle[END_REF][START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF][START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF] the main difficulty comes from the fact that, after the paralinearization, one needs to prove a priori estimates on a system of coupled equations. One needs then to decouple the equations through convenient changes of coordinates which are used to define the modified energy. In the case of KdV equation (1.2), we have a scalar equation with the sub-principal symbol which is real (and so it defines a selfadjoint operator), see (3.11), therefore it is impossible to obtain energy estimates directly. This term may be completely removed (see Lemma 4.2) thanks to the Hamiltonian structure. For similar constructions of such kind of energies one can look also at [START_REF] Ionescu | Long-time existence for multi-dimensional periodic water waves[END_REF][START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF][START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF][START_REF] Feola | Long time solutions for quasi-linear Hamiltonian perturbations of Schrödinger and Klein-Gordon equations on tori[END_REF][START_REF] Feola | Long-time stability of the quantum hydrodynamic system on irrational tori[END_REF]. The general equation (1.2) contains the "classical" KdV equation u t + uu x + u xxx = 0 and the modified KdV u t + u p u x + u xxx = 0, p ≥ 2. Obviously, for the last two equations better results may be obtained, concerning KdV we quote Bona-Smith [START_REF] Bona | The initial-value problem for the Korteweg-de Vries equation[END_REF], Kato [START_REF] Kato | Spectral Theory and Differential Equations[END_REF], Bourgain [START_REF] Bourgain | Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equation II: The KdV equation[END_REF], Kenig-Ponce-Vega [START_REF] Kenig | The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices[END_REF][START_REF] Kenig | A bilinear estimate with applications to the KdV equation[END_REF], Christ-Colliander-Tao [START_REF] Christ | Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations[END_REF]. For the general equation, as the one considered in this paper here, several results have been proven by Colliander-Keel-Staffilani-Takaoka-Tao [START_REF] Colliander | Sharp global well-posedness for KdV and modified KdV on R and T[END_REF], Kenig-Ponce-Vega [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF] and the aforementioned Mietka [START_REF] Mietka | On the well-posedness of a quasi-linear Korteweg-de Vries equation[END_REF].

PARADIFFERENTIAL CALCULUS

In this section we recall some results concerning the para-differential calculus, we follow [START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF]. We introduce the Japanese bracket ξ = 1 + ξ 2 . Definition 2.1. Given m, s ∈ R we denote by Γ m s the space of functions a(x, ξ) defined on T × R with values in C, which are C ∞ with respect to the variable ξ ∈ R and such that for any β ∈ N ∪ {0}, there exists a constant C β > 0 such that

∂ β ξ a(•, ξ) H s 0 ≤ C β ξ m-β , ∀ξ ∈ R. (2.1)
We endow the space Γ m s with the family of norms |a| m,s,n := max

β≤n sup ξ∈R ξ β-m a(•, ξ) H s 0 . (2.2)
Analogously for a given Banach space W we denote by Γ m W the space of functions which verify the (2.1) with the W -norm instead of H s 0 , we also denote by |a| m,W,n the W based seminorms (2.2) with H s 0 W . We say that a symbol a(x, ξ) is spectrally localised if there exists δ > 0 such that a(j, ξ) = 0 for any |j| ≥ δ ξ .

Consider a function χ ∈ C ∞ (R, [0, 1]) such that χ(ξ) = 1 if |ξ| ≤ 1.1 and χ(ξ) = 0 if |ξ| ≥ 1.9.
Let ∈ (0, 1) and define moreover χ (ξ) := χ(ξ/ ). Given a(x, ξ) in Γ m s we define the regularised symbol

a χ (x, ξ) := j∈Z * a(j, ξ)χ ( j ξ )e ijx .
For a symbol a(x, ξ) in Γ m s we define its Weyl and Bony-Weyl quantization as

Op W (a(x, ξ))h := 1 (2π) j∈Z * e ijx k∈Z * a j -k, j + k 2 h(k), (2.3 
)

Op BW (a(x, ξ))h := 1 (2π) j∈Z * e ijx k∈Z * χ |j -k| j + k a j -k, j + k 2 h(k). (2.4) 
We list below a series of theorems and lemmas that will be used in the paper. All the statements have been taken from [START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF]. The first one is a result concerning the action of a paradifferential operator on Sobolev spaces. This is Theorem 2.4 in [START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF].

Theorem 2.2. Let a ∈ Γ m s 0 , s 0 > 1/2 and m ∈ R. Then Op BW (a) extends as a bounded operator from H s-m 0 (T) to H s 0 (T) for any s ∈ R with estimate

Op BW (a)u H s-m 0 |a| m,s 0 ,4 u H s 0 , (2.5) 
for any u in H s 0 (T). Moreover for any ρ ≥ 0 we have for any u ∈ H s 0 (T)

Op BW (a)u H s-m-ρ 0 |a| m,s 0 -ρ,4 u H s 0 . (2.6) 
We now state a result regarding symbolic calculus for the composition of Bony-Weyl paradifferential operators. In the rest of the section, since there is no possibility of confusion, we shall denote the total derivative d dx as ∂ x with the aim of improving the readability of the formulae. Given two symbols a and b belonging to Γ m s 0 +ρ and Γ m s 0 +ρ respectively, we define for ρ ∈ (0, 3]

a# ρ b =      ab ρ ∈ (0, 1] ab + 1 2i {a, b} ρ ∈ (1, 2], ab + 1 2i {a, b} -1 8 s(a, b) ρ ∈ (2, 3], (2.7) 
where we denoted by {a, b}

:= ∂ ξ a∂ x b -∂ x a∂ ξ b the Poisson's bracket between symbols and s(a, b) := ∂ 2 xx a∂ 2 ξξ b -2∂ 2 xξ a∂ 2 xξ b + ∂ 2 ξξ a∂ 2 xx b.
Remark 2.3. According to the notation above we have ab ∈ Γ m+m s 0 +ρ , {a, b} ∈ Γ m+m -1 s 0 +ρ-1 and s(a, b) ∈ Γ m+m -2 s 0 +ρ-2 . Moreover {a, b} = -{b, a} and s(a, b) = s(b, a).

The following is essentially Theorem 2.5 of [START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF], we just need some more precise symbolic calculus since we shall deal with nonlinearities containing three derivatives, while in [START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF] they have nonlinearities with two derivatives.

Theorem 2.4. Let a ∈ Γ m s 0 +ρ and b ∈ Γ m s 0 +ρ with m, m ∈ R and ρ ∈ (0, 3]. We have Op BW (a) • Op BW (b) = Op BW (a# ρ b) + R -ρ (a, b)
, where the linear operator R -ρ is defined on H s 0 (T) with values in H s+ρ-m-m , for any s ∈ R and it satisfies

R -ρ (a, b) H s-(m+m )+ρ 0 (|a| m,s 0 +ρ,N |b| m ,s 0 ,N + |a| m,s 0 ,N |b| m ,s 0 +ρ,N ) u H s 0 , (2.8) 
where N ≥ 8.

Proof. We prove the statement for ρ ∈ (2, 3], for smaller ρ the reasoning is similar. Recalling formulae(2.4) and ( 2.3) we have

Op BW (a)Op BW (b)u = Op W (a χ )Op W (b χ )u = j,k, a χ (j -k, j + k 2 ) b χ (k -, k + 2 )u e ijx .
We Taylor expand a χ (j -k, j+k 2 ) with respect to the second variable in the point j+ 2 , we have

a χ (j -k, j+k 2 ) = a χ (j -k, j+ 2 ) + k- 2 ∂ ξ a χ (j -k, j+ 2 ) + (k-) 2 8 a χ (j -k, j+ 2 ) + (k-) 3 8 1 0 (1 -t) 2 ∂ 3 ξ a χ (j -k, j+ +t(k-) 2
)dt.

Analogously we obtain

b χ (k -, k+ 2 ) = + k-j 2 ∂ ξ b χ (k -, j+ 2 ) + (k-j) 2 8 ∂ 2 ξ b χ (k -, j+ 2 ) + (k-j) 3 8 1 0 (1 -t) 2 ∂ 3 ξ b χ (k -, j+ +t(k-j) 2
)dt.

An explicit computation proves that

Op BW (a)Op BW (b) -Op BW (ab + 1 2i -1 8 s(a, b))u = 4 j=1 R i (a, b)u,
where

R 1 (a, b) := Op W a χ b χ -(ab) χ + 1 2i ({a χ , b χ } -{a, b} χ ) -1 8 (s(a χ , b χ ) -s(a, b) χ ) u, R 2 (a, b) := Q b 3 a χ (j -k, j+ 2 ) + k- 2 ∂ ξ a χ (j -k, j+ 2 ) + (k-) 2 8 a χ (j -k, j+ 2 ) u e ijx , R 3 (a, b) := Q a 3 b χ (k -, k+ 2 )u e ijx , R 4 (a, b) := -1 16i Op W (∂ 2 x ∂ ξ a∂ x ∂ 2 ξ b + ∂ 2 x ∂ ξ b∂ x ∂ 2 ξ a)u + 1 64 Op W (∂ 2 x ∂ 2 ξ a∂ 2 x ∂ 2 ξ b)u,
where we have defined

Q a 3 := (k-) 3 8 1 0 (1 -t) 2 ∂ 3 ξ a χ (j -k, j+ +t(k-)
2

)dt and analogously Q b 3 . We prove that each R i fulfils the estimate (2.8). The remainders R 1 , R 2 and R 3 have to be treated as done in the proof of Theorem 2.5 in [START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF], we just underline the differences. Concerning R 1 it is enough to prove that for any α ≤ 2 the symbol

∂ α ξ a χ ∂ α x b χ -∂ α ξ b χ ∂ α x a χ is a spec- trally localised symbol belonging to Γ m+m -ρ L ∞
. Following word by word the proof in [START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF], with d = 1 and α = 2 (instead of α = 1 therein) one may bound

|∂ α ξ a χ ∂ α x b χ -∂ α ξ b χ ∂ α x a χ | m,W 1,∞ ,n |a| m,W 1,∞ ,n+2 |b| m ,L ∞ ,n+2 + |a| m,L ∞ ,n+2 |b| m ,W 1,∞ ,n+2
. The estimate (2.8) on the remainder R 1 follows from Theorem A.7 in [START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF]. In order to prove that R 3 and R 2 satisfy (2.8), one has to follow the proof of Theorem A.5 in [START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF] with d = 1, α = 3 and β ≤ 2 corresponding to the remainder R 2 (a, b) therein. Concerning the remainder R 4 we have the following: the symbol of the first summand is in the class Γ m+m -3 s 0 and the second in Γ m+m -4 s 0 , the estimates follow then by Theorem 2.2.

Lemma 2.5. (Paraproduct). Fix s 0 > 1/2 and let f, g ∈ H s 0 (T; C) for s ≥ s 0 . Then f g = Op BW (f )g + Op BW (g)f + R(f, g) , (2.9) 
where

R(f, g)(ξ) = 1 (2π) η∈Z * a(ξ -η, ξ) f (ξ -η) g(η) , |a(v, w)| (1 + min(|v|, |w|)) ρ (1 + max(|v|, |w|)) ρ , (2.10 
)

for any ρ ≥ 0. For 0 ≤ ρ ≤ s -s 0 one has R(f, g) H s+ρ 0 f H s 0 g H s 0 . (2.11) 
Proof. Notice that

(f g)(ξ) = η∈Z * f (ξ -η) g(η) .
(2.12)

Consider the cut-off function χ and define a new cut-off function Θ : R → [0, 1] as

1 = χ |ξ -η| ξ + η + χ |η| 2ξ -η + Θ(ξ, η) . (2.13) 
Recalling (2.12) and (2.4) we note that

(T f g)(ξ) = η∈Z * χ |ξ -η| ξ + η f (ξ -η) g(η) , (T g f )(ξ) = η∈Z * χ |η| 2ξ -η f (ξ -η) g(η) , (2.14) 
and This implies that, setting a(ξ -η, η) := Θ(ξ, η), we get the (2.10). The (2.16) also implies that ξ max{ ξ -η , η }. Then we have

R := R(f, g) , R(ξ) := η∈Z * Θ(ξ, η) f (ξ -η) g(η) . ( 2 
Rh 2 H s+ρ 0 ξ∈Z * η∈Z * |a(ξ -η, η)|| f (ξ -η)|| g(η)||ξ| s+ρ 2
(2.10)

ξ∈Z * |ξ-η|≥|η| |ξ -η| s | f (ξ -η)||η| ρ | g(η)| 2 + ξ∈Z * |ξ-η|≤|η| |ξ -η| ρ | f (ξ -η)|| g(η)||η| s 2 ξ,η∈Z * |η| 2(s 0 +ρ) | g(η)| 2 |ξ -η| 2s | f (ξ -η)| 2 + ξ,η∈Z * |η| 2s | g(η)| 2 |ξ -η| 2(s 0 +ρ) | f (ξ -η)| 2 f 2 H s 0 g 2 H s 0 +ρ 0 + f 2 H s 0 +ρ 0 g 2 H s
0 , which implies the (2.11) for s 0 + ρ ≤ s.

PARALINEARIZATION

The equation (1.2) is equivalent to

u t + u xxx ∂ 2 z 1 z 1 F + 2u xx ∂ 3 z 1 xz 1 F + u 2 xx ∂ 3 z 1 z 1 z 1 F + 2u x u xx ∂ 3 z 1 z 1 z 0 F + u 2 x ∂ 3 z 1 z 0 z 0 F + u x (-∂ 2 z 0 z 0 F + 2∂ 3 z 1 xz 0 F ) -∂ 2 z 0 x F + ∂ 3 z 1 xx F = 0. (3.1)
We have the following.

Theorem 3.1. The equation (3.1) is equivalent to

u t + Op BW (A(u))u + R 0 = 0, (3.2) 
where

A(u) := ∂ 2 z 1 z 1 F (iξ) 3 + 1 2 d dx ∂ 2 z 1 z 1 F (iξ) 2 + a 1 (u, u x , u xx , u xxx )(iξ)
, with a 1 real function and R 0 semi-linear remainder. Moreover we have the following estimates.

Let σ ≥ s 0 > 1 + 1/2 and consider U, V ∈ H σ+3 0 R 0 (U ) H σ 0 ≤ C( U H s 0 +3 0 ) U H σ 0 , R 0 (U ) H σ 0 ≤ C( U H s 0 0 ) U H σ+3 0 , (3.3) R 0 (U ) -R 0 (V ) H σ 0 ≤ C( U H s 0 +3 0 + V H s 0 +3 0 ) U -V H σ 0 + C( U H σ 0 + V H σ 0 ) U -V H s 0 +3 0 , (3.4) 
R 0 (U ) -R 0 (V ) H s 0 0 ≤ C( U H s 0 +3 0 + V H s 0 +3 0 ) U -V H s 0 0 , (3.5) 
where C is a non decreasing and positive function. Concerning the para-differential operator we have for any σ ≥ 0

Op BW (A(u) -A(w))v H σ 0 ≤ C( u H s 0 0 + w H s 0 0 ) u -w H s 0 0 v H s 0 +3 0 . (3.6) 
Proof. In the following we use the Bony paraproduct (Lemma 2.5) and Prop. 2.4 and we obtain ( R0 is a smoothing remainder satisfying (3.3), (3.4) and it possibly changes from line to line)

u xxx ∂ 2 z 1 z 1 F = Op BW (u xxx )∂ 2 z 1 z 1 F + Op BW (∂ 2 z 1 z 1 F ) • Op BW ((iξ) 3 )u + R0 = Op BW (u xxx ) • Op BW (∂ 3 z 1 z 1 z 1 F ) • Op BW (iξ)u + Op BW (∂ 2 z 1 z 1 F ) • Op BW ((iξ) 3 )u + R0 = Op BW (∂ 2 z 1 z 1 F (iξ) 3 )u + 3 2 Op BW ( d dx (∂ 2 z 1 z 1 F )ξ 2 )u + Op BW (ã 1 (iξ)) + R0 , (3.7) 
where we have denoted by ã1 a real function depending on x, u, u x , u xx , u xxx . Analogously we obtain

2u xx ∂ 3 z 1 xz 1 F = 2Op BW (∂ 3 z 1 z 1 x F (iξ) 2 ) + Op BW (ã 1 (iξ)) + R0 , (3.8) 
u 2 xx ∂ 3 z 1 z 1 z 1 F = 2Op BW (u xx ∂ 3 z 1 z 1 z 1 F (iξ 2 ))u + Op BW (ã 1 (iξ))u + R0 , (3.9 
)

2u x u xx ∂ 3 z 1 z 1 z 0 F = 2Op BW u x ∂ 3 z 1 z 1 z 0 F (iξ) 2 )u + 2Op BW (ã 1 (iξ))u + R0 , (3.10) 
Summing up the previous equations we get

u t + Op BW (∂ 2 z 1 z 1 F (iξ) 3 )u+ + 1 2 Op BW ( d dx (∂ 2 z 1 z 1 F )(iξ) 2 )u + Op BW (a 1 (x, u, u x , u xx , u xxx )iξ)u + R0 (u) = 0, (3.11) 
where a 1 is real and R 0 is a semi-linear remainder satisfying (3.3) and (3.4).

LINEAR LOCAL WELL-POSEDNESS

Proposition 4.1.

Let s 0 > 1 + 1/2, Θ ≥ r > 0, u ∈ C 0 ([0, T ]; H s 0 +3 0 ) ∩ C 1 ([0, T ]; H s 0 0 ) such that u L ∞ H s 0 +3 0 + ∂ t u H s 0 0 ≤ Θ, u L ∞ H s 0 0 ≤ r. (4.1)
Let σ ≥ 0 and t → R(t) ∈ C 0 ([0, T ], H σ 0 ). The there exists an unique solution v ∈ C 0 ([0, T ];

H σ 0 )∩ C 1 ([0, T ]; H σ-3 0 ) of the linear inhomogeneous problem v t + Op BW (∂ 2 z 1 z 1 F (u, u x )(iξ) 3 )v+ + 1 2 Op BW ( d dx (∂ 2 z 1 z 1 F (u, u x ))(iξ) 2 )v + Op BW (ã 1 (x, u, u x , u xx , u xxx )(iξ))v + R(t) = 0, v(0, x) = v 0 (x). (4.2)
Moreover the solution satisfies the estimate

v L ∞ H σ 0 ≤ e C Θ T (C r v 0 H σ 0 + C Θ T R L ∞ H σ 0 ). (4.3)
Consider the equation (4.2). We have for any N ∈ N, σ > 1/2 and s ≥ 0

ã1 (x, u, u x , u xx , u xxx ) H σ 0 ≤ C( u H σ+3 0 ) d dx (∂ 2 z 1 z 1 F (u, u x )) H σ-1 0 ≤ C( u H σ+2 0 ) ∂ 2 z 1 z 1 F (u, u x ) H σ 0 ≤ C( u H σ+1 0 ), |∂ 2 z 1 z 1 F (u, u x )|ξ| 2s | 2s,σ,N ≤ C N ( u H σ+1 0 ), | d dx (∂ 2 z 1 z 1 F (u, u x ))(iξ) 2 | 2,σ,N ≤ C N ( u H σ+2 0 ), |ã 1 (x, u x , u xx , u xxx )| 1,σ,N ≤ C N ( u H σ+2 0 ). (4.4)
For any > 0 we consider the regularised symbol S (x, u, ξ) :=

∂ 2 z 1 z 1 F (u, u x )(iξ) 3 + 1 2 d dx (∂ 2 z 1 z 1 F (u, u x ))(iξ) 2 + ã1 (u, u x , u xx , u xxx )iξ χ( ∂ 2 z 1 z 1 F (u, u x )ξ 3 ), (4.5 
) where χ is the same cut-off function defined after formula (2.2). We note that thanks to (4.4) and to the fact that the function y → ξ α ∂ α ξ χ( yξ 3 ) is bounded with its derivatives uniformly in ∈ (0, 1)

and ξ ∈ R, the cut-off χ := χ( ∂ 2 z 1 z 1 F (u, u x )ξ 3 ) satisfies for any N ∈ N |χ | 0,σ,N ≤ C( u H σ+1 0 ), (4.6) 
uniformly in ∈ (0, 1).

In the following lemma we prove that, thanks to the Hamiltonian structure, we may eliminate the symbol of order two by means of a paradifferential change of variable. This term is the only one which has positive order and that is not skew-selfadjoint.

Lemma 4.2. Define d(x, u, u x ) := 6 ∂ 2 z 1 z 1 F (x, u, u x ).
Then we have

Op BW (d)•Op BW χ ∂ 2 z 1 z 1 F (u, u x )ξ 3 ∂ 2 z 1 z 1 F (iξ) 3 + 1 2 d dx (∂ 2 z 1 z 1 F )(iξ) 2 • Op BW (d -1 )v = Op BW χ ∂ 2 z 1 z 1 F (u, u x )ξ 3 ∂ 2 z 1 z 1 F (iξ) 3 + ã1 (x, u, u x , u xx , u xxx )(iξ) v + R 0 , (4.7 
) where ã1 is a real function and R 0 is a semilinear remainder verifying (3.3), (3.4), (3.5).

Proof. First of all the function d(x, u, u x ) is well defined because of hypothesis (1.1). We recall formula (2.7) (and the definition of the Poisson's bracket after (2.7)) and we denote χ := χ( ∂ 2 z 1 z 1 F (u, u x )ξ 3 ). By using Theorem 2.4 with ρ ∈ (1, 2] we obtain that the l.h.s. of the equation (4.7) equals

-Op BW (iχ ∂ z 1 z 1 F ξ 3 )v - 1 2 Op BW (χ d dx (∂ 2 z 1 z 1 F )ξ 2 )v + 3Op BW χ • d -1 • d dx d • ∂ 2 z 1 z 1 F • ξ 2 v + Op BW (ã 1 ) + R 0 ,
where ã1 is a purely imaginary function and R 0 a semilinear remainder. One can verify the symbol of order two equals to zero by direct inspection.

We introduce the smoothed version of the homogeneous part of (4.2), more precisely

∂ t v = Op BW (S (x, u, u x , u xx , u xxx ; ξ))v , (4.8) 
where S has been defined in (4.5). The operator is bounded, as a consequence for any > 0 there exists a unique solution of the equation (4.8) which is C 2 ([0, T ], H σ 0 ) for any σ ≥ 1. Such an equation verifies a priori estimates with constants independent of . We have the following. Proposition 4.3. Let u be a function as in (4.1). For any σ ≥ 0 there exist constants C Θ and C r , such that for any > 0 the unique solution of (4.2) verifies

v 2 H σ 0 ≤ C r v 0 2 H σ 0 + C Θ t 0 v (τ ) 2 H σ 0 dτ, ∀t ∈ [0, T ]. (4.9) 
As a consequence we have

v H σ 0 ≤ C r e T C θ v 0 H σ 0 , ∀t ∈ [0, T ]. (4.10) 
We define the modified energy

v 2 σ,u := Op BW (∂ 2 z 1 z 1 F (x, u, u x )) 2 3 σ |ξ| 2σ Op BW (d(x, u, u x )) v, Op BW (d(x, u, u x )) v L 2 , (4.11) 
where •, • is the standard scalar product on L 2 (R) and d is defined in Lemma 4.2, note that the function

(∂ 2 z 1 z 1 F (x, u, u x )) 2 
3 σ is well defined for any σ ∈ R thanks to (1.1). In the following we prove that • σ,u is equivalent to • H σ 0 . Lemma 4.4. Let s 0 > 1/2, σ ≥ 0, r ≥ 0. The there exists a constant (depending on r and σ) such that for any u such that u H s 0 0 ≤ r we have

C -1 r v 2 H σ 0 -v 2 H -3 0 ≤ v 2 σ,u ≤ C r v 2 H σ 0 (4.12)
for any v in H σ 0 . Proof. Concerning the second inequality in (4.12), we reason as follows. We have

v 2 σ,u ≤ Op BW ((∂ 2 z 1 z 1 F (x, u, u x )) 2 3 σ |ξ| 2σ )Op BW (d(x, u, u x ))v H -σ 0 × Op BW (d(x, u, u x ))v H σ 0 ≤C r v H σ 0
, where in the last inequality we used Theorem 2.2 and the fact that d is a symbol of order zero. We focus on the first inequality in (4.12). Let δ > 0 be such that s 0 -δ = 1/2, then applying Theorem 2.4 with s 0 = δ instead of s 0 and ρ = δ, we have

Op BW ((∂ 2 z 1 z 1 F (x, u, u x )) 1 3 σ ) • Op BW (|ξ| 2σ ) • Op BW ((∂ 2 z 1 z 1 F (x, u, u x )) 1 3 σ ) = Op BW (Op BW ((∂ 2 z 1 z 1 F (x, u, u x )) 2 3 σ |ξ| 2σ ) + R 2σ-δ (u), (4.13) 
where

R 2σ-δ (u)f H σ-2σ+δ 0 ≤ C(r, σ) f H σ 0 . Analogously we obtain Op BW ((∂ 2 z 1 z 1 F (x, u, u x )) -1 3 σ ) • Op BW (d -1 (x, u, u x , u x x))• Op BW ((∂ 2 z 1 z 1 F (x, u, u x )) 1 3 σ ) • Op BW (d(x, u, u x , u x x)) = 1 + R -δ (u), (4.14) where R -δ (u)f H σ 0 ≤ C(r, σ) f H σ-δ 0 , for any f in H σ-δ 0 . Therefore we have v 2 H σ 0 (4.14) Op BW ((∂ 2 z 1 z 1 F (x, u, u x )) -1 3 σ )Op BW (d -1 )Op BW (∂ 2 z 1 z 1 F (x, u, u x )) 1 3 σ )Op BW (d)v 2 H σ 0 + v 2 H σ-δ 0 ≤C r ( Op BW (∂ 2 z 1 z 1 F (x, u, u x )) 1 3 σ )Op BW (d)v 2 H σ 0 + v 2 H σ-δ 0 ) (4.13) = C r ( v 2 u,σ + v 2 H σ-δ/2 0 + v 2 H σ-δ 0 ).
Then by using the interpolation inequality f

H θs 1 +(1-θ)s 2 0 ≤ f θ H s 1 0 f 1-θ H s 2 0
which is valid for any s 1 < s 2 , θ ∈ [0, 1] and f ∈ H s 2 , we get (by means of the Young inequality ab ≤ p -1 a p + q -1 b q , with 1/p + 1/q = 1 and p = 2(σ + 3)/δ, q = 2(σ + 3)/[2(σ + 3) -δ])

v 2 H σ-δ/2 0 ≤ ( v 2 H -3 0 ) δ 2 1 σ+3 ( v 2 H σ 0 ) 2(σ+3)-δ 2(σ+3) ≤ δ 2(σ+3) v 2 H -3 0 τ -2(σ+3) δ + 2(σ+3)-δ 2(σ+3) τ 2(σ+3)-δ 2(σ+3) v 2
H σ 0 , for any τ > 0. Choosing τ small enough we conclude.

We are in position to prove Prop. 4.3. proof of Prop. 4.3. We take the derivative with respect to t of the modified energy (4.11) along the solution v of the equation (4.8). We have

d dt v σ,u = Op BW d dt (∂ 2 z 1 z 1 F ) 2 3 σ |ξ| 2σ Op BW (d) v , Op BW (d) v L 2 (4.15) + Op BW (∂ 2 z 1 z 1 F ) 2 3 σ |ξ| 2σ Op BW d dt d v , Op BW (d) v L 2 (4.16) + Op BW (∂ 2 z 1 z 1 F ) 2 3 σ |ξ| 2σ Op BW (d) d dt v , Op BW (d) v L 2 (4.17) + Op BW (∂ 2 z 1 z 1 F ) 2 3 σ |ξ| 2σ Op BW (d) v , Op BW d dt d v L 2 (4.18) + Op BW (∂ 2 z 1 z 1 F ) 2 3 σ |ξ| 2σ Op BW (d) v , Op BW (d) d dt v L 2 . (4.19) 
The most important term, where we have to see a cancellation, is the one given by (4.17)+(4.19). Using the equation (4.8) we deduce that (4.17)+(4.19) equals to

Op BW (∂ 2 z 1 z 1 F ) 2 3 σ |ξ| 2σ Op BW (d) v , Op BW (d) Op BW (S)v L 2 + Op BW (∂ 2 z 1 z 1 F ) 2 3 σ |ξ| 2σ Op BW (d) Op BW (S)v , Op BW (d) v L 2
where S := S has been defined in (4.5). We note that by using Theorem 2.4 with ρ = 3 we obtain Op BW (d -1 )Op BW (d)v = v + R -3 (u)v , where R -3 verifies (2.8) with ρ = 3. We plug this identity in the previous equation and we note that the contribution coming from R -3 is bounded by C r v 2 H σ 0 thanks to Theorems 2.4, 2.2, to the Cauchy Schwartz inequality and to the assumption (4.1).We are left with

Op BW (∂ 2 z 1 z 1 F ) 2 3 σ |ξ| 2σ Op BW (d) v , Op BW (d) Op BW (S)Op BW (d -1 )Op BW (d)v L 2 + Op BW (∂ 2 z 1 z 1 F ) 2 3 σ |ξ| 2σ Op BW (d) Op BW (S)Op BW (d -1 )Op BW (d)v , Op BW (d) v L 2 .
At this point we are ready to use Lemma 4.2 and we obtain that the previous quantity equals

Op BW (∂ 2 z 1 z 1 F ) 2 3 σ |ξ| 2σ Op BW (d) v , Op BW χ • (∂ 2 z 1 z 1 F (iξ) 3 + ã1 (iξ)) Op BW (d)v L 2 + Op BW (∂ 2 z 1 z 1 F ) 2 3 σ |ξ| 2σ Op BW χ • (∂ 2 z 1 z 1 F (iξ) 3 + ã1 (iξ)) Op BW (d)v , Op BW (d) v L 2
. By using the skew self-adjoint character of the operators, we deduce that the main term to estimate is the commutator

Op BW (∂ 2 z 1 z 1 F ) 2 3 σ |ξ| 2σ , Op BW χ • (∂ 2 z 1 z 1 F (iξ) 3 + ã1 (iξ)) Op BW (d)v . ( 4 

.20)

We start from the first summand. By using Theorem 2.4 and Remark 2.3 with ρ = 3 we obtain that

C := Op BW (∂ 2 z 1 z 1 F ) 2 3 σ |ξ| 2σ , Op BW χ • (∂ 2 z 1 z 1 F (iξ) 3 ) Op BW (d)v = 1 i Op BW (∂ 2 z 1 z 1 F ) 2 3 σ |ξ| 2σ , χ • ∂ 2 z 1 z 1 F (iξ) 3 Op BW (d)v + R 0 (u)Op BW (d)v .
We recall that the cut-off function has been chosen as χ := χ( ∂ 2 z 1 z 1 F ξ 3 ), so that we obtain, by direct inspection that the Poisson bracket above equals to 0. Recalling that d is a symbol of order 0, by using also Theorem 2.2 and the assumption (4.1), we may obtain the bound C, Op BW 

(d)v ≤ C r v 2 H σ 0 .
The second summand, i.e. the one coming from ã1 (iξ) in (4.20), may be treated in a similar way: one uses Theorem 2.4 with ρ = 1, at the first order the contribution is equal to zero, then the remainder is a bounded operator from H 2σ 0 to H 0 0 and one concludes as before, by using also the duality inequality f, g L 2 ≤ f H -σ 0 g H σ 0 , bounding everything by C r v 2 H σ 0 . We are left with (4.15), (4.16) and (4.18). These terms are simpler, one just has to use the duality inequality recalled above, then Theorem 2.2 and the fact that proof of Prop. 4.1. Let v 0 be in C ∞ (T), then the sequence v given by Prop. 4.3 converges, thanks to the theorem of Ascoli-Arzelà, to a solution v ∈ C 0 ([0, T ); H σ 0 ) of the equation (4.2) with R(t) = 0. When the initial condition is just in H σ 0 one can use classical approximation arguments. The flow Φ(t) of the equation (4.2) with R(t) = 0 is well defined as a bounded operator form H σ 0 to H σ 0 and satisfies the estimate Φ(t)v 0 H σ 0 ≤ C r e C Θ t v 0 H σ 0 . One concludes by using the Duhamel formulation of (4.2).

NONLINEAR LOCAL WELL POSEDNESS

To build the solutions of the nonlinear problem (4.2), we shall consider a classical quasi-linear iterative scheme, we follow the approach in [START_REF] Feola | Local well-posedness for quasi-linear NLS with large Cauchy data on the circle[END_REF][START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF][START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF][START_REF] Mietka | On the well-posedness of a quasi-linear Korteweg-de Vries equation[END_REF]. Set The proof of the main Theorem 1.1 is a consequence of the next lemma. Owing to such a lemma one can follow closely the proof of Lemma 4.8 and Proposition 4.1 in [START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF] or the proof of Theorem

. 15 )

 15 To obtain the second in(2.14) one has to use the (2.4) and perform the change of variable ξ-η η. By the definition of the cut-off function Θ(ξ, η) we deduce that, if Θ(ξ, η) = 0 we must have |ξ -η| ≥ 5 4 ξ + η and |η| ≥ 5 4 2ξ -η ⇒ η ∼ ξ -η . (2.16)

3 0≤

 3 | d dt d(x, u, u x )| 0,σ,4 , | d dt (∂ 2 z 1 z 1 F ) 2 3 σ | 0,0,4 ≤ C Θ u H σ 0 ,where we have used the first one of the assumptions (4.1). We eventually obtainedd dt v 2 σ,u ≤ C Θ v 2 H σ 0 , integrating ove the time interval [0, t) we obtain v 2 σ,u(t) ≤ v (0) 2 σ,u(0)+ C Θ We now use (4.12) and the fact that∂ t v H -C Θ v H 0 0 ≤ C Θ v H σ 0 since σ ≥ 0.We may now prove Prop. 4.1.

Az 1 z 1 F 2 ddx (∂ 2 z 1 z 1 F

 121 (u) := Op BW ∂ 2 (u, u x )(iξ) 3 + 1 (u, u x ))(iξ) 2 + ã1 (x, u, u x , u xx , u xxx )(iξ)and defineP 1 : ∂ t u 1 = A(u 0 )u 1 ; P n : ∂ t u n = A(u n-1 )u n + R(u n-1 ), n ≥ 2.

1.2 in [START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF](this is the classical Bona-Smith technique [START_REF] Bona | The initial-value problem for the Korteweg-de Vries equation[END_REF], but we followed the notation of [START_REF] Berti | Local well posedness of the Euler-Korteweg equations on T d[END_REF][START_REF] Feola | Local well-posedness for the Hamiltonian quasi-linear Schrödinger equation on tori[END_REF]). We do not reproduce here such a proof. Lemma 5.1. Let s > 1 2 + 4. Set r := u 0 s 0 and s 0 > 1 + 1/2. There exists a time T := T ( u 0 H s 0 +3 ) such that for any n ∈ N the following statements are true. (S0) n : There exists a unique solution u n of the problem P n belonging to the space C 0 ([0, T );

(5.4)

Proof. We proceed by induction over n. We prove (S0) 1 , by using Proposition 4.1 with R(t) = 0, u u 0 and v u 1 ; we obtain a solution u 1 which is defined on every interval [0, T ) and verifies the estimate

1 is a consequence of the previous estimate applied with σ = s 0 for (5.1) and (5.2), with σ = s for (5.3). In order to obtain the seconds in (5.2) and ( 5.3), one has to fix T ≤ 1/ u 0 s 0 and use the equation for u 1 together with Theorem 2.2 and one finds M which depends on u 0 H s 0 and Θ which depends on u 0 H s 0 0 and on a constant C r depending only on u 0 s 0 . (S2) 1 is trivial. We assume that (SJ) n-1 holds true for any J = 0, 1, 2 and we prove that (SJ) n . Owing to (S0) n-1 and (S1) n-1 , the (S0) n is a direct consequence of Proposition 4.1. Let us prove (5.1) with m = n. By using (4.3) applied to the problem solved by u n , the estimate (3.3) with σ = s 0 , (5.1) with m = n -1 and (S0) n-1 , we obtain u n L ∞ H s 0 0 ≤ e C Θ T (C r u 0 H s 0 0 + C r C Θ T ), the thesis follows by choosing e C Θ T C Θ T < 1/4 and C r ≥ u 0 H s 0 0 /4C r . We prove the first in (5.2). Applying (4.3) with σ = s 0 + 3 and v u n , u u n-1 , the estimate on the remainder (3.3) and using (S1) n-1 we obtain u n s 0 +3 ≤ e C Θ T C r u 0 s 0 +3 + ΘC Θ T e C Θ T , fixing T small enough such that T C Θ ≤ 1 and T C Θ e C Θ T ≤ 1/4, the thesis follows from the definition Θ := 4C r u 0 H s 0 0 . The second in (5.2) may be proven by using the equation for u n and the second in (3.3)

The (5.3) is similar. We prove (S2) n , we write the equation solved by

By using (3.4), (3.6) and the (S2) n-1 we may prove that f n H s 0 0 ≤ C Θ v n-1 H s 0 0 . We apply again Proposition 4.1 with σ = s 0 and we find v n H s 0 0 ≤ C Θ T e C Θ T v n-1 H s 0 0 , as T has been chosen small enough we conclude the proof.