
HAL Id: hal-03572970
https://hal.science/hal-03572970

Submitted on 14 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preparation of tantalum carbide layers on carbon using
the metalliding process

Laurent Massot, Pierre Chamelot, Peter Winterton, Pierre Taxil

To cite this version:
Laurent Massot, Pierre Chamelot, Peter Winterton, Pierre Taxil. Preparation of tantalum carbide
layers on carbon using the metalliding process. Journal of Alloys and Compounds, 2009, 471 (1-2),
pp.561-566. �10.1016/j.jallcom.2008.04.014�. �hal-03572970�

https://hal.science/hal-03572970
https://hal.archives-ouvertes.fr


  

 

Open Archive Toulouse Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ 
Eprints ID :  2949 

To link to this article :  
 
URL : http://dx.doi.org/10.1016/j.jallcom.2008.04.014 

To cite this version : Massot, Laurent and Chamelot, Pierre and Winterton, Peter 
and Taxil , Pierre ( 2009) Preparation of tantalum carbide layers on carbon using 
the metalliding process. Journal of Alloys and Compounds, vol. 471 (n°1-2). pp. 
561-566. ISSN 0925-8388 
 
 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@inp-toulouse.fr 
  

http://oatao.univ-toulouse.fr/2949/
http://oatao.univ-toulouse.fr/2949/


 

 

 

 

 

 

 

 
Preparation of tantalum carbide layers on carbon 

using the metalliding process 

 

L. Massot (1)*, P. Chamelot(1), P. Winterton(2) and P. Taxil(1) 

(1) Laboratoire de Génie Chimique UMR 5503, Département Procédés Electrochimiques, 
Université Paul Sabatier, 31062 Toulouse Cedex 9, France. 

 
(2) UFR Langues vivantes, Université Paul Sabatier, 31062 Toulouse Cedex 9, France. 

 
 
 
 
 
 
 
 
 
 
 
 
 
* corresponding author: 
 
MASSOT Laurent 
Tel: +33 5 61 55 81 94 
Fax: +33 5 61 55 61 39 
massot@chimie.ups-tlse.fr

 



 

 

ABSTRACT  

This work concerns the preparation of tantalum carbide films on carbon based substrates 

using the metalliding process in LiF-NaF molten medium (60-40% mol.), containing 

tantalum heptafluorotantalate ions TaF7
2-, in the 800-900 °C temperature range. The 

process uses a metalliding cell symbolized as: (+) C, TaCx/LiF-NaF-K2TaF7/Ta  (-) 

involving the dissolution of Ta at the anode and the reduction of Ta ions in TaCx at the 

cathode. The experiments of this process were performed with different carbon substrates 

as cathodic material: graphite, glassy carbon and carbon braid. Samples analysis (SEM-

EDS and XRD) after metalliding showed the formation of tantalum carbides (TaC and 

Ta2C) at the surface of the substrate at a relatively low temperature. A kinetic study, based 

on the control of the cathodic reaction by the intermetallic diffusion, allowed the diffusion 

parameters, such as Ta-C diffusion coefficient, to be determined at several temperatures. 

Furthermore, the results are shown to be independent of the type of carbon substrate. 
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1/ Introduction 

 

This article describes an unexpectedly simple process for coating carbon matrices by 

metallic carbides such as tantalum carbides. Obtaining these compounds by conventional 

methods – mixing the fused  components – would  be extremely problematic owing to the 



 

 

very high melting points of the compounds involved (C: 3445°C, Ta: 3020°C, TaC: 

3985°C). The process described here takes place at about 800°C and involves using a 

metalliding cell where the electrolyte is an alkali fluoride mixture, the anode is tantalum 

metal, which dissolves in the bath, and the cathode is the carbon substrate, which reacts 

with Ta ions to give TaC and Ta2C. The system works spontaneously, owing to the 

negative Gibbs Energy of the carbides, and rapidly, due to the solid diffusion occurring 

within the carbon matrix, fast enough for the substrate surface to be composed of tantalum 

carbides rather than of the metal itself. The process takes advantage of the ability of the 

molten salt mixture to wet all the pores of the substrate, so the whole outer surface of the 

carbon matrix is covered with tantalum carbide. The article reports a kinetic study of the 

growth of the carbide layer within the substrate, based on Danckwerts' theory of solid 

diffusion and Crank’s mathematical model of mass transfer within a diffusion layer. The 

study shows that the diffusion rate is not influenced by the matrix structure and leads to the 

calculation of the intermetallic diffusion coefficient for the Ta/C system at various 

temperatures. 

 

Carbon is resistant to highly corrosive media in industrial processes, for example to cryolite 

at 900°C for the preparation of aluminium [1]; nevertheless, the porosity of carbon 

adversely affects its mechanical surface properties; coating a carbon matrix with tantalum 

carbide would greatly improve these properties. Chemical reduction by carbon (carbo-

reduction) of a gaseous (TaCl5) [2] or solid (Ta2O5) [3;4] precursor at the surface of a 

carbon-based material could be proposed but presents the disadvantage of forming non-

uniform layers of carbide and also requires temperatures of between 1500 and 2500°C. In 



 

 

this article we propose an electrochemical route, using a cell where Ta ions are released by 

the anode reaction and reduced to yield carbide at the surface of the cathodic substrate. The 

process, called metalliding, can only be achieved if the electrolyte is an alkali fluoride 

mixture and the temperature is about 700-900°C. In the present paper, we show that this 

process not only avoids the disadvantages of carbo-reduction but also protects the porous 

surface structure of the carbon material. This work follows a recent study where we 

prepared tantalum carbide layers on steel by stepwise electrodeposition of tantalum in 

molten fluorides at 800-900°C, then carbon on tantalum with further reactions of 

electrodeposited carbon and the tantalum [5]. This work revealed the high reactivity of 

carbon towards tantalum in the temperature range studied, thus suggesting that, based on 

this reactivity, the process should be a success. 

 

2/ Experimental 

 

 The cell was a vitreous carbon crucible placed in a cylindrical vessel made of 

refractory steel and closed by a stainless steel lid cooled by circulating water [6;7] The 

inside of the walls was protected against fluoride vapours by a graphite liner. The 

experiments were performed under an inert argon atmosphere (less than 5 ppm O2, Linde), 

previously dehydrated and deoxygenated using a purification cartridge (Air Liquide). The 

cell was heated using a programmable furnace and the temperatures were measured using a 

chromel-alumel thermocouple.   



 

 

 The electrolytic bath consisted of a eutectic LiF/NaF (Merck 99.9%) mixture (60/40 

molar %). It was initially dehydrated by heating under vacuum (10-2 mmHg) to its melting 

point (650°C) for 48 hours. Tantalum ions were introduced into the bath in the form of 

potassium heptafluorotantalate K2TaF7 (Merck 99.9%) pellets. The concentration of 

K2TaF7 in the bath was 5 mass% (0.127 mol/kg). 

 As working electrode, three carbon materials expected to form carbides by surface 

reaction with tantalum were used: graphite (Carbone Lorraine), glassy carbon (V25 quality, 

SGL Carbon) and carbon braid (Sepcarb). The surface area of the working electrode was 

determined after each experiment by measuring the immersion depth in the bath. 

 The auxiliary electrode was a tantalum plate (50*10*1 mm) with a large surface 

area (6 cm²) was immersed in the bath. 

 The potentials were referred to a tantalum wire (1 mm diameter) immersed in the 

molten electrolyte, acting as a comparison electrode TaF7
2-/Ta [6]. 

 All the electrochemical studies and the electrolysis were performed with an Autolab 

PGSTAT 30 potentiostat / galvanostat controlled by a computer using the research software 

Autolab 4.9.  

 

 The layers obtained during the experiments were observed using Scanning Electron 

Microscopy (SEM, Leo 435 VP) and the composition of these layers was determined by X-

Ray Diffraction (XRD, Seifert). 

 

 



 

 

3/ Results and discussion 

 3-1/ The metalliding process 

Metalliding is the production of alloys or surface compounds by electrodeposition with no 

current source in the electric circuit. It was developed by N.C. Cook of General Electric in 

the sixties and seventies [8-11] to coat common metals with layers of alloys having 

particularly attractive properties such as beryllides, silicides or yttrides. With an electrolyte 

composed of a mixture of alkali metal fluorides fused by heating to 800 – 1000°C, the 

process generates its own electricity. The anode is an electropositive metal (R) (here 

tantalum) and the cathode a noble element (N) (here carbon). An electrical connection is 

made between the two electrodes outside the cell as shown in figure 1. 

 The high temperature of the molten salt bath activates the reaction between the metal of the 

cathode and the ions of the anode metal giving rise to an intermetallic compound and 

accounting for the permanent difference in chemical potential between the two electrodes. 

The reactions giving rise to this "battery effect" can be written as follows: 

Anode:    R  Rn+ + ne  (1) 

Cathode:  Rn+ + ne + yN  RNy  (2) 

Overall:   R + yN  RNy  (3) 

 

The system works if intermetallic diffusion is fast enough for RNy to remain at the noble 

metal surface (N) and if reaction (3) remains thermodynamically spontaneous.  



 

 

The originality of the metalliding process is the uniform production of a thermodynamically 

stable product: the electrolytic deposition does not require a current source to generate a 

voltage at the cathode.  

The process has been adapted by various researchers, including Weppner and Huggins for 

the preparation of Al-Li, Bi-Li and Sb-Li alloys [12-14] used as anodes in lithium batteries, 

Mottot and Picard for the preparation of La-Ni supermagnets [15] and Goodshall for the 

preparation of alloys on a nickel substrate [16]. 

Our laboratory has used this process to coat nickel with Ta-Ni [17] and Nb-Ni [18] alloys, 

which show remarkable resistance to corrosion by concentrated acids [19]. 

More recently, we used metalliding to produce Nd-Ni and Nd-Cu alloys for their magnetic 

properties [20], and for their ability to adsorb and store hydrogen for use in fuel cells [21]. 

In each of these applications, this relatively low-temperature process has straightforwardly 

yielded novel materials, difficult to obtain with conventional methods. 

Work we have done [17-19] shows that the process enables the preparation of alloy 

coatings of uniform thickness covering the entire cathode whatever its shape. This can be 

explained by the fact that the reaction and the process of alloy formation are controlled by 

intermetallic diffusion in the bulk of the cathode material [17]. Figure 2 presents the growth 

scheme of the alloy coating arising from the flux of diffusing species J, as defined by Fick's 

law, between the surface of the cathode where the anode metal concentration is maximum 

(Co) and the interface with the substrate where it is minimum (Cx): 

J = -D (δC/δx)X  (4) 

where D is the interdiffusion coefficient 



 

 

 

The thickening of the alloy deposit is therefore ensured by mass transfer in the alloy 

coating of the metallic species resulting from the discharge of the Rn+ ions. The current 

density of the metalliding cell can therefore be written: 

i = -nF D (δC/δx)X    (5) 

In the stationary state, as the values of Co and Cx and the mean composition of the diffusion 

layer Cm, are invariable as x increases, from equation (5), it is seen that the current must 

decrease. The mechanism of alloy layer growth follows the model reported by Danckwerts 

for the formation of a coating of compound AB, on a surface made of A, from the 

deposition of B and the interdiffusion of the two elements in the layer [22]. The model 

calculates the progression of interface X into the bulk of the substrate using the equation: 

X = Kt1/2 (6) 

where K is the rate constant of growth for the system. Equation (5) is similar to Cottrell's 

law for a reaction controlled by the flux of ions transferred from the liquid phase to the 

adjacent cathode when an overvoltage is applied to the electrode. Note that in this case, the 

influence of the hydrodynamic state of the electrolyte on the flux generates surface 

irregularities. These are avoided when deposition is driven by the metalliding process. 

 

 3-2/ Application to the Ta/C system 

  3-2-1/ Preliminary discussion 

The process can be applied to making protective layers of tantalum carbide on carbon-

containing materials. Carbon resists corrosion well but has poor mechanical resistance due 



 

 

to its crystal structure which includes spaces making it generally porous and brittle. The 

specific surface area (SSA) of most carbon materials is then very high, enabling the 

penetration of chemicals which can amplify degradation phenomena to unacceptable levels. 

The present study describes the application of the metalliding process to the preparation of 

layers of tantalum carbide on the surface of carbon materials with the purpose of enhancing 

their mechanical and corrosion resistance [23]. Preventing penetration from occurring 

requires the pores to be sealed to form a compact superficial layer made of a substance at 

least as resistant to corrosion as carbon, such as tantalum carbide.  

The phase diagram of the binary tantalum-carbon system demonstrates the occurrence of 

two compounds [24]: TaC and Ta2C which, at 800°C, have Gibbs energies of -140.9 kJ/mol 

and -209.6 kJ/mol respectively [25]. These values indicate that both TaC and Ta2C can be 

prepared by metalliding.  

The cell used to coat the carbon surfaces with tantalum carbide was composed of a glassy 

carbon crucible containing the molten salt and the two electrodes: 

- for the carbon-based cathode, we experimented with graphite, carbon braid (Sepcarb) 

and glassy carbon, all having different crystallographic structures and porosities, 

- the anode was made of tantalum rod. 

The cell was placed in a refractory steel chamber sealed with a water-cooled lid. The inner 

walls of the chamber were protected from the electrolyte vapours by a graphite lining (as 

detailed in [26]). The electrolyte was composed of a mixture of fluorides (LiF and NaF) 

containing a small quantity of potassium heptafluorotantalate (K2TaF7), a salt of the metal 

to be transferred (tantalum). The galvanic cell can be symbolised as: 

(+)C/TaCx/LiF-NaF- K2TaF7/Ta(-)  (7) 



 

 

 

The current is generated by the exchange of electrons involved in the electrode reaction 

corresponding to equations (1) and (2):  

Ta + 7 F-   TaF7
2- + 5 e-       (8) 

TaF7
2- + x C + 5 e-  TaCx + 7 F- (9) 

 

The overall reaction produces carbide: 

Ta + xC   TaCx (10) 

 

The choice of the fluorides is firstly the result of their high stability and of their ability to 

complex tantalum ions (9). This situation was reported by Union Carbide researchers 

Senderoff and Mellors [27] who were the first to grow deposits of refractory metals such as 

tantalum in molten fluorides. The use of fluorides as electrolyte implies that all traces of 

oxygen-containing compounds must be removed to avoid secondary reactions occurring 

with the oxide ions. So, as a preliminary treatment, we proceeded by melting the electrolyte 

under vacuum and purging with argon. Production of the alloy layer involved operating the 

cell at around 900°C; the current generated between the electrodes was measured, the 

cathodes were weighed before and after each run while the layers of alloy formed were 

observed under the scanning electron microscope (SEM) and analysed by X-ray diffraction 

(XRD).  

 

3-2-2 Experiments on graphite 



 

 

Tantalum carbide was prepared using the metalliding cell run at 900°C for about 20 hours 

with a graphite rod as cathode. Figure 3 reports the variation in the current produced by the 

cell decreasing logarithmically as indicated by equation (5) and demonstrated by equation 

(13) presented below. 

 

A micrograph of the resulting rod (fig 4a) shows a thick (about 300 µm) uniform layer of 

a light coloured material. On analysis by XRD (fig 5) it was found to contain both TaC and 

Ta2C. The analysis suggests that the compound with the larger proportion of tantalum, 

Ta2C, is the majority product - it is more stable - but that the large excess of carbon caused 

by contact with the carbon matrix pushes the reaction equilibrium towards TaC. The 

presence of Ta2C, which is harder and more corrosion resistant than TaC [28], enhances the 

protection afforded by the layer. Figure 4a and the enlargement in 4b illustrate the presence 

of tantalum carbide in the grain boundaries of the carbon matrix. Metalliding will therefore 

protect the carbon against inter-grain corrosion. Similar experiments using other forms of 

carbon confirmed that metalliding led to the production of a thick layer of tantalum carbide 

penetrating the porous structure of the material.  

 

Figure 6 shows for instance, a section of metallided carbon braid where each of the fibres 

in the braid has a protective carbide sheath.  

 

  3-2-3/ Kinetic study and Ta/C intermetallic diffusion coefficient 

A kinetic study verified the reaction mechanism proposed above and determined the 

growth kinetics of the carbide layer during the carbon surface treatment. 



 

 

We then calculated the rate constant for the growth of the alloy layer. For a given 

temperature, the thickness of the compact layer at the surface of the carbon rod is given 

versus time by equation (6). Owing to intermetallic diffusion, the thickness, X, is taken as 

proportional to the weight gain of the cathode and is calculated by: 

 (11) 

 

 

where Δm is the weight gain of the cathode, W  is the mass fraction of Ta in Ta2C (the 

tantalum carbide actually formed) i.e. 0.968, and ρ is the density of Ta2C. The specific 

surface area of the cathode in contact with the electrolyte was calculated by multiplying the 

simple geometric surface area of the submerged part of the cathode by the porosity factor of 

the carbon material used. 

 

The weight gain per unit cathode surface area is plotted versus the square root of the 

treatment time in figure 7 for the three forms of carbon studied; the temperature was the 

same (850°C) throughout. In figure 8 the temperature is varied for a single carbon form, 

graphite.  

 

The graphs are linear, confirming the validity of equation (6), using equation (11). The 

slopes of the lines then give the rate constant for a given material. The weight gain per unit 

surface area was calculated with respect to the specific surface area. Table 1 reports the 

S.W.ρ
ΔmX =  



 

 

values of the kinetic constant K, and the figures used to obtain them, for the three materials 

at 850°C.  

 

The slopes of the plots of Δm/SSA versus t1/2 are identical, indicating that the diffusion 

kinetics in the solid phase are independent of the crystallographic structure of the carbon 

material.  

 

The coefficient of diffusion of tantalum into the carbon matrix can be determined from the 

rate constant defined above and the equation giving the current produced by the metalliding 

cell. The calculation was originally developed by our laboratory [18] using the values of the 

current produced by the metalliding cell at 850°C: figure 3 gives an example of the currents 

obtained. 

The mathematical treatment of mass transfer by diffusion was done using Crank's model 

[29]. The following relationship was obtained for the concentration of the tantalum 

diffusing species: 

 
Dt2

XerfcCC o=                       (12) 

Where Co is the concentration at the surface of the electrode, i.e. the tantalum 

concentration in compound Ta2C which forms at the surface, X is the position in the 

diffusion layer, D the coefficient of intermetallic diffusion and erfc is a function often used 

in transfer calculations. 

Combining equations (5) and (12), the expression for i is the following: 
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Taking into account eq (6) where X is proportional to t ½  and eq (13) where i is 

proportional to t -½ the slope (p) of the plots of i versus the reciprocal of root t can be 

expressed as: 

)exp(
π

D5FC
p 2o α−=  (14) 

where:  

 
D
K

2
1
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Combining (14) and (15) we obtain: 

 
K5FC
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α
)αexp(

o

2

=
−  (16) 

 

Resolving equation (16) we obtain α, and hence D using equation (15) with the values of 

K determined with the method outlined above. The values of K, α and D obtained for 

graphite are reported in Table 2 for the three temperatures studied: 850, 900 and 950°C. 

The values of D follow the Arrhenius equation and can be written as follows: 

 
T

52.27-exp10.45.3D 15 ⎟
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4/ Conclusions 

The major finding of our work is that carbon, an extremely useful material in diverse 

applications, can be given a coating of highly resistant tantalum/carbon alloy in surprisingly 

mild conditions considering the very high melting points of tantalum/carbon alloys. It 

enables the major drawbacks of carbon, its brittleness and porosity, to be overcome. The 

process, which is based on the solid diffusion of an electrochemically deposited metal 

(tantalum) into the bulk of another quasi-metal (carbon) occurs spontaneously to yield a 

thermodynamically stable product which transforms the porous surface of the carbon 

material into a tightly sealed, highly resistant layer of tantalum carbide. The most obvious 

applications will be the protection of carbon electrodes and of carbon linings of nuclear 

reactors which are prone to surface crumbling and erosion. The concept will certainly lend 

itself to the formation of other attractive refractory metal carbides (e.g. Nb, Mo and W) but 

also to other metallides such as silicides. The process we report could avoid some rather 

unfortunate consequences of erosion in key applications. 
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Figure Legends 

 

Figure 1: 

Scheme of a galvanic cell for metalliding with a carbon cathode and a tantalum anode. 

Temperature range: 700-950°C. 

 

Figure 2: 

Scheme of Ta solid-state mass transfer within the intermatallic diffusion layer.  

 

Figure 3: 

Current-time transients of the Ta/C system at 900°C, showing the decrease of the galvanic 

current versus the time.  

 

Figure 4a: 

Micrograph of the graphite electrode after 22h of contact at 900°C. Magnification: 20x, 

showing the regular thickness of the Ta/C interdiffusion layer obtained. 

 

Figure 4b: 

Enlargement of micrograph 4a. Magnification: 500x. 

 

Figure 5: 

XRD spectrum of a graphite  electrode after 22h of contact at 900°C.  



 

 

 

 
 
 
 
Figure 6: 

SEM micrographs of carbon braid after 22h of treatment at 900°C. Magnification: 10 000x. 

In the outer portion of the braid the Ta/C layer covers the whole surface of the fibers  

 

Figure 7: 

Mass of tantalum diffusing into the substrate versus the square root of the contact time at 

850°C for three carbon substrates. 

 

Figure 8: 

Mass of tantalum diffusing in the substrate versus the square root of the contact time on the 

graphite electrode for various temperatures. 

 

Table 1: 

Determination of the kinetic constant of tantalum - carbon interdiffusion for three carbon 

substrates. (SSA = Specific Surface Area)  

 

Table 2: 

Determination of the tantalum - graphite interdiffusion coefficient for three temperatures. 
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Figure 4b 

Graphite Diffusion layer Ta/C Resin and bubbles 
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Figure 6: 

Carbon fibers Tantalum carbide



 

 

 

Figure 7: 



 

 

 

Figure 8: 



 

 

 

Carbon material 
Density 

ρ in g.cm-3 

Porosity factor: 

SSA/geometric area 

Slope 

Δm/SSA 

in g.cm-2 

Kinetic 

constant K 

in cm2/s 

Graphite 2.25 10.8 

1.99 10-5 1.8 10-12 Vitreous carbon 1.4 2.25 

Sepcarb braid 1.3-1.8 16.1 

 

Table 1: 



 

 

 
Temperature 

T in °C 
Slope 

p in A.cm-2.s1/2 α 
Diffusion 

D in cm².s-1 
850 3.275 10-4 1.75 1.47 10-13 

900 4.370 10-4 1.98 1.63 10-12 

950 6.565 10-4 2.04 6.13 10-12 

 

Table 2: 
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