
HAL Id: hal-03572922
https://hal.science/hal-03572922

Submitted on 14 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heuristic for license-aware, performant and energy
efficient deployment of multiple software in Cloud

architecture
Eddy Caron, Arthur Chevalier, Noëlle Baillon-Bachoc, Anne-Lucie Vion

To cite this version:
Eddy Caron, Arthur Chevalier, Noëlle Baillon-Bachoc, Anne-Lucie Vion. Heuristic for license-aware,
performant and energy efficient deployment of multiple software in Cloud architecture. ICICS 2021
- 12th International Conference on Information and Communication Systems, May 2021, Valencia,
Spain. �10.1109/ICICS52457.2021.9464578�. �hal-03572922�

https://hal.science/hal-03572922
https://hal.archives-ouvertes.fr

Heuristic for license-aware, performant and energy efficient deployment of multiple
software in Cloud architecture

Eddy CARON∗, Arthur CHEVALIER∗†
∗ Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP

F-69342, LYON Cedex 07, France
{firstname.lastname}@ens-lyon.fr

Noëlle BAILLON-BACHOC†, Anne-Lucie VION†
† Orange S.A.

noelle.baillon@orange.com
annelucie.cosse@orange.com

Abstract—In the Cloud Era, we want to be able to quickly
deploy any software anywhere in the world to provide high
availability and fast services while maintaining acceptable levels
of performance, low energy consumption and ensuring the
compliance with every software level agreements contracted. To
answer some of these needs, different tools exist in parallel to a
big variety of Cloud architectures. Several interesting problems
arise like deployment, networking, storage, security, and many
others. In this paper, we will focus on the deployment issue
with a Software Asset Management point of view. Most Cloud
providers use proprietary software to ensure different kinds of
services, and with them comes the licensing problem. We will
tackle and propose a heuristic to solve the problem of deploying
software in a Cloud architecture while considering license
compliance, license price, and other important criteria. We will
prove the NP-completeness of this problem and compare our
heuristic with others to evaluate the enhancement we propose.

Keywords-Licensing, Cloud, Software Asset Management,
Resources Management, Deployment

I. INTRODUCTION

With the advent of Cloud technologies, many problems
arise like networking, security, storage and more specifically
in our case: deployment. Indeed, the problem of choosing the
best place to deploy a virtual machine or a product directly
is well known. The new kind of architecture and the need to
add more variables (availability, performance, energy, etc.)
to this problem makes it difficult. In our case, we describe
a heuristic to answer a rising kind of problem and generally
misleadingly understood: the software licensing issue. The
software licenses are often perceived as one product equal to
one key or license, which is wrong. The notion of software
licenses is broader than that, especially with proprietary
software. First, a license is only the representation of your
right to use an instance of a product. The need to input a
key inside a license verification process is just an editor way
of checking if you possess it but for large infrastructure, it
becomes very impractical. You can just possess the licenses
and use the software without assigning them. This brings
the notion of audit: the audit is the process of checking if
you have enough licenses and is conducted by the editor or
a third-party assigned by the editor. They will match your

use of their software and your stock of licenses and you
have to possess the exact amount or more licenses otherwise
you will suffer penalties. These penalties can result in a
huge amount of money as we saw with the AB InBev
case [1] where SAP wanted US$600 million in damages
for breaking the software license agreement. Secondly, the
one-one relation between software and a license is wrong.
Indeed, you can need a lot of licenses to possess the right
to use only one instance of a product. This number of
licenses is given by what we call a metric (in italic to not
confuse with the more general metric term). This metric
is a description of how to count the number of licenses
depending on the usage of the software. These metrics can
be in any format, generally described in the contract with
the editor. It can go from a simple mathematical expression
to full paragraphs of legal text explaining what you can or
can’t do. This method of licensing software is already time-
consuming with standalone architectures and with the rise of
virtualization, containerization, and Clouded architectures, it
becomes really hard to ensure compliance at all times.

Considering only the problem of licensing for one de-
ployment in a Cloud or not is not something to do. Indeed,
besides the fact that this is not realistic, it would lead to
terrible situations where your products could be deployed in
bad places without availability, bad networking and perfor-
mance. We also want to deploy multiple products at the same
time to avoid getting local optimums. In this paper, we will
focus on three parameters: the license cost, the performance,
and the energy consumption.

In summary, this paper proposes a new heuristic for the
deployment of several products and with a multi-parametric
approach. We will start by stating the previous works in
the different domains in Section II. We then prove that this
problem of deployment is NP-Complete in Section III before
describing the new heuristic in Section IV. Next, we evaluate
our new heuristic and show the gain of using it in Section V
before concluding in Section VI and presenting what can be
enhanced in future works in Section VII.

II. STATE OF THE ART

One of the first publications about licensing was devoted
to the study of automated metrics of software, the assessment
of CIM repository and management of software assets [2].
Real Software Asset Management considerations started in
1999 when a study about the model and identification of
software was proposed [3]. This study stated that SAM can
mitigate technical, legal, managerial, financial and ethical
risks in organizations. Later, in 2005, the need for a frame-
work for control of software assets throughout their life-
cycle to ensure long-term and efficient management has been
show [4]. In 2011, a proposition to combine IT, processes
and SAM was offered and revolved around four points:
• Being able to discover software
• Being able to make precise inventories of licenses and

the infrastructure
• Implementing contract management
• Producing reports about readiness towards compliance

and verification
Despite being a modern key to enable digitalization in

companies, IT managers fail to address SAM issues and
ignore the necessity of having a proper framework for
compliance verification and vulnerability analysis [5]. Less
than 20 percent of companies effectively use SAM [6] and
while 65% of enterprises are audited yearly (up to 23% of
them were audited three times or more on the same year),
only 29% have an automatized monitoring of their systems
and 25% of them have no monitoring at all. Such lack of
SAM could result in huge expenses for companies [7] and
can sometimes lead to severe trouble like the 2000 year
problem that led to enormous costs to firms that didn’t
have SAM inventory databases [8]. While business, for
security purposes, set up centralized security policy and
denied to their employees the right to install software on
the professional work station, the BYOD paradigm tends to
reverse this situation and let people use as they see fit their
devices leading to IT risks [9]. Academic field showed the
heavy financial risks in case of SLA breach [10] and backed
up the Flexera Study [11] by showing the lack of SAM in
companies.

On the needs to give efficient tools to SAM processes,
in 2017, a patent [12] proposed tools for discovering and
collecting information on instances of software used in mon-
itored environment. At the same time, the Cloud was added
in SAM considerations in a review of existing SAM tools
and a new SAM model for Cloud architectures [13]. Then, in
2018, a paper [14] proposed a new way of handling metrics
in Cloud environments for products like Oracle Database
and showed that an efficient deployment algorithm focused
on software licenses could save money. The same year,
Mann [15] proposed optimization of the placement of virtual
machines with multiple parameters including license costs
and showed that handling both problems of mapping virtual

machines to physical machines and mapping applications
to virtual machines leads to better results than considering
the two problems in isolation. Even so, the problem is
well formulated, it uses the fact that an application uses
one license at most, as we see in his UML model, which
is unrealistic but as we explain before this number of
licenses rely on a variety of parameters like the underlying
architecture. In summary, very few research have been made
to enhance SAM processes or even to automate them.

On the contrary, lots of research has been done on the
energy side of deployment in local and remote infrastruc-
ture [16]. Besides, the energy criteria become more and more
important in today’s world. Research has been conducted to
reduce these consumptions and heuristics for multi-criteria
deployments have been proposed such as GreenPerf [17]
which introduces a performance and power consumption
ratio to enhance energy efficiency. While there are numerous
papers on this kind of multi-parametric deployment heuris-
tic, none has been proposed taking into account Software
Asset Management perspectives or with some confusions
like shown before. Moreover, no work has been done on
deploying multiple products on the Cloud while optimizing
several parameters including SAM considerations. We will
tackle this issue.

III. PROPOSED PROBLEM AND PROOF OF
NP-COMPLETENESS

In this section, we describe the problem and then prove
that this problem is NP-complete. We want to deploy
multiple products on a set of servers in the Cloud while
optimizing three criteria: Energy consumption, Performance
of products and License consumption. In other words, we
want all of our products to consume the minimum energy
and number of licenses while being given the maximum
performance. Clearly, these objectives are contradictory,
forming the basis for multi-parametric optimization. Our
optimization problem comes from the fact that each time
we deploy a product, the energy and performance of the
selected server will change and the number of licenses can
change anywhere depending on the metric so it is highly
dynamic.

With the following variables:
n Number of software to deploy.
s Number of servers.
αi Cost of license for software i.
βj Cost of using one core on server j, energetically

speaking.
mi,j Number of licenses consumed for software i on

server j. If software i is not on j then mi,j = 0.
ri Resource of software i: here the number of cores

required to install the software.
Rj Resource of server j: here the number of cores of

the server.
We define two problems:

Definition 1. The optimization problem OpTISAM is
defined with the following equations:

min

n∑
i=1

 s∑
j=1

mi,j

× αi

 (1)

min
∑

server j used

Rj × βj (2)

subject to:

∀ j
∑

all deployments i on server j

ri ≤ Rj (3)

which is a physical constraint where the cores used from
deployment on a single server cannot exceed the number of
cores of that server.

Definition 2. The decision problem SAMDec is defined as:
given two constraints, BE and BL which are energy budget
and license budget respectively, is there a deployment to
fulfill the following equations:

n∑
i=1

 s∑
j=1

mi,j

× αi

 ≤ BL (4)

∑
server j used

Rj × βj ≤ BE (5)

also subject to Equation.3.

Lemma. SAMDec is NP-complete.

Proof:

Definition 3. Let I1 be an arbitrary instance of
2PARTITION − EQUAL with:

2n integers a1, ..., a2n ≤ 1 where
∑2n

i=1 ai = 2S

∃ I subset of {1, ..., 2n} / |I| = n∑
i ∈ I

ai = S

Definition 4. Let I2 be an instance of SAMDec with:
n products to deploy with ri = 1 = mi,j and 2n servers

with Rj = 1 hence one product per server and s = 2n.
With Used declared as the set of used servers (by indices),

n = |Used| iff there is a solution:
Let βj = aj:

∑
server j used

Rj × βj =
∑

server j used

aj = S

Let αj = X − aj:

∑
server j used

 ∑
software i on j

mi,j

× αj


=

∑
server j used

(X − aj) = nX − S

Moreover, if I2 has a solution with BE and BL fixed then
we have a solution Used for the following equations:

∑
j ∈ Used

βj ≤ BE∑
j ∈ Used

αj ≤ BL

With the following:
• Size(I1) = 2n+ log

∑2n
i=1 ai

• Size(I2) = 2n+ log
∑2n

i=1 αi + log
∑2n

i=1 βi

We can conclude that I2 has a polynomial-size in I1 and
we prove that I1 has a solution ⇐⇒ I2 has a solution:
I1 has a solution I

|I| = n and
∑

i ∈ I ai = S
We take Used = I and have a solution to I2
because:∑

j ∈ I

βj ×Rj =
∑
j ∈ I

βj = S

∑
j ∈ I

 ∑
metric i on j

mi,j

× αj

 = nX − S

hence a solution to I2.

I2 has a solution Used
|Used| = n
We take I as Used and have a solution to I1
because:

∑
j ∈ Used

βj =
∑

j in Used

ai = S∑
j ∈ Used

αj = nX −
∑

j ∈ Used

βj = nX − S

altogether with |Used| = n, we have a solution to
I1.

Therefore, the problem of deploying one product per
server and only optimizing energy and license price is proved
NP-complete. As our problem add the performance criterion
and allow multiple deployments of products onto the same
server, it is a superclass of the SAMDec problem so our
problem is NP-complete too.

IV. NEW HEURISTIC

To tackle this problem, we propose a model of the
deployment and a heuristic using that model and giving good
results as we will see in Section V. We chose to model
the deployment with a tree so it handles all our constraints.
Effectively, each layer of the tree will be a new product
deployed and each node will be a server. The root node will
be the starting point and going from one node to another
will describe the deployment of the product to the server
corresponding to this node. Each node has a set of attributes
corresponding to the different criteria: energy, performance
and license consumption. We handle the dynamicity of the
criteria with the attributes of the nodes: When a node
representing a server s have a node representing the same
server then the attributes of the son will be modified as its
energy Es, its performance Ps and its license consumption
Ls have evolved. Also, the license consumption of all servers
possibly evolves with each deployment as metrics definitions
are very sparse. You can clearly understand this behavior in
Figure 1.

While the generation of this tree is easy to do, such a
model of deployment takes a lot of space especially in Cloud
architecture where there are thousands of available servers.
We computed that we need tens of GB of memory for 4
products and 150 servers.

To keep acceptable results and as the problem is NP, we
can’t go through the entire tree to search for the optimal
result. Therefore, we have to use a heuristic in an attempt
to get as close as possible to the optimal. We will use the
GreenSAM heuristic to select nodes to explore. This heuristic
is based on a scoring function taking the three criteria:

Score =
Ps/MP

Es/ME + Ls/ML + 1
(6)

with the following variables:
Es Energy of server s
Ls License consumption of server s

ME Maximum of energy over the server subset
ML Maximum of license consumption over the server

subset
MP Maximum of performance over the servers subset
Ps Performance of server s

If one of the maximum is zero, we ignore the part used
by it so if ME is equal zero then Es/ME is reduced to zero.

We then explore all nodes, one by one, following the
resulting order. Each time we explore a node we use the
heuristic with the available sons until reaching a leaf. To
compute the overall score of the deployment when reaching
the leaf, we sum the score of each node in the path. If the
score is better than the global score found until here, we save
it as the best result. Besides, as the memory is limited, each
time we explore a node we have to generate the according
sons with their attributes. As we want to avoid putting all
the products on the same server, we put a zero performance
index to servers already full of products (a server is full
when the sum of the cores used by the products installed
on it equal the server cores). All the licenses’ consumptions
are computed as well as the energy. As the computation of
the energy consumed by a product is a difficult thing to do,
we chose to compute energy with the usage of a server or
not; i.e. if a server is used by one of our product then we
add its energy. When we deploy one product on a server
already using one of our product, then we will not consume
anymore energy.

V. EVALUATION

With the sheer number of 2,227.33 PB of memory for 50
servers and 10 metrics, it becomes obvious that we cannot
go through the entire tree. Therefore, a good heuristic is
required. To evaluate the different heuristics, we impose a
memory limit (directly related to the number of nodes to
go through) and see how they compare one to each other’s
before comparing them to the optimal solution when we can
compute it.

Starting
node

Server 1
E1 P1 L1

Server 2
E2 P2 L2

Server 3
E3 P3 L3

Server 1
E'1 P'1 L'1

Server 2
E2 P2 L'2

Server 3
E3 P3 L'3

Server 1
E1 P1 L'1

Server 2
E'2 P'2 L'2

Server 3
E3 P3 L'3

Server 1
E1 P1 L'1

Server 2
E2 P2 L'2

Server 3
E'3 P'3 L'3

Figure 1: Deployment of two products over three servers. We can see here that if we arrive at the grey node it will mean
that we deployed product 1 on server 3 and product 2 on server 2, therefore, our final scores will be ET = E3 + E2,
PT = P3 + P2, LT = L3 + L′2. Our goal is to minimize ET and LT while maximizing PT .

0 20 40 60 80 100 120
MB of memory allowed

0

20

40

60

80

100

120

140

en
er

gy
 o

f e
ac

h
he

ur
ist

ic

energy for different heuristics for 5 deployments over 20 servers

Optimal
bruteforce
minlicenses
pareto
greensam

Figure 2: Energy consumption criterion

We can compare heuristics with the Score function.
Indeed, Equation.6 returns a result in the range [0; 1] for
each node. We can deduce that if the score is 1 then we
have the most performant server and that both energy and
license consumptions are 0 which is the best score. When
the result tends to 0, it means that the performance is terrible
or that the energy or license tends to the maximum, which
is not a suitable solution. The overall score is the sum of the
scores of each node in the path to the leaf. Therefore with
n products, the overall score is in [0;n]. Most of the time
the optimal solution will be inferior to n as we don’t have,
in real-world situation, servers that don’t consume anything
for each deployment. Therefore, we can’t assume that the
optimal is n for the following evaluations.

We compared the following heuristics to see how they
behave in different situations: Bruteforce Enumerate the
most possible nodes with Left-to-Right order. MinLicense
Choose the best node to go through depending on the
number of licenses it will consume. This heuristic is used to

0 20 40 60 80 100 120
MB of memory allowed

60

80

100

120

140

lic
en

se
 o

f e
ac

h
he

ur
ist

ic

license for different heuristics for 5 deployments over 20 servers

Optimal
bruteforce
minlicenses
pareto
greensam

Figure 3: License consumption criterion

0 20 40 60 80 100 120
MB of memory allowed

40

60

80

100

120

140

pe
rfo

rm
an

ce
 o

f e
ac

h
he

ur
ist

ic

performance for different heuristics for 5 deployments over 20 servers

Optimal
bruteforce
minlicenses
pareto
greensam

Figure 4: Performance criterion

see how a single criterion optimization will behave. Pareto
This heuristic uses a Pareto front on the available nodes to
go through. The nodes in the Pareto frontier will be searched
from left to right and those not on the frontier will be
ignored. GreenSAM Go through all nodes by sorting them
with the GreenSAM function.

We evaluated our deployment algorithm with four differ-
ent scenarios: two sizes of sets by two types of limit.

A. Small deployment with memory limit

We compared the four heuristics on a deployment of 5
products over 20 servers with the memory limit ranging
from 1MB to 128MB. We can see the results for energy
in Figure 2, license in Figure 3, performance in Figure 4
and score in Figure 5.

We can see that overall, the GreenSAM heuristic gets
the best results on all criteria except in licenses where
obviously the MinLicenses algorithm is better. While the
other algorithms take times to stabilize, GreenSAM find

0 20 40 60 80 100 120
MB of memory allowed

0.5

1.0

1.5

2.0

2.5

3.0

3.5

sc
or

e
of

 e
ac

h
he

ur
ist

ic

score for different heuristics for 5 deployments over 20 servers

Optimal
bruteforce
minlicenses
pareto
greensam

Figure 5: Score criterion

500 1000 1500 2000 2500 3000
ms of time allowed

0

20

40

60

80

en
er

gy
 o

f e
ac

h
he

ur
ist

ic

energy for different heuristics for 5 deployments over 50 servers

Optimal
bruteforce
minlicenses
pareto
greensam

Figure 6: Energy consumption criterion

quickly its best solution and is very close to the optimal
performance.

B. Small deployment with time limit

For this evaluation, we used the same data set as the
first evaluation but with a time limit ranging from 500ms
to 3000ms. We can see the results for energy in Figure 6,
license in Figure 7, performance in Figure 8 and score in
Figure 9.

We see that GreenSAM beats the other algorithms in this
configuration too. It stabilizes less quickly than with memory
limit but manages to get a very good score, performance, and
energy while sacrificing few licenses.

C. Huge deployment with memory limit

The third experiment generated deployments of 50 prod-
ucts over 1000 servers and compared the results of the
heuristics with memory limits ranging from 1MB to about

500 1000 1500 2000 2500 3000
ms of time allowed

80

100

120

140

160

180

lic
en

se
 o

f e
ac

h
he

ur
ist

ic

license for different heuristics for 5 deployments over 50 servers

Optimal
bruteforce
minlicenses
pareto
greensam

Figure 7: License consumption criterion

500 1000 1500 2000 2500 3000
ms of time allowed

40

60

80

100

120

140

160

pe
rfo

rm
an

ce
 o

f e
ac

h
he

ur
ist

ic

performance for different heuristics for 5 deployments over 50 servers

Optimal
bruteforce
minlicenses
pareto
greensam

Figure 8: Performance criterion

300MB. We changed the scale to a logarithmic one for
clarity. We can see the results in Figure 10.

With the small dataset, all heuristics tend to converge
to the optimal. We can see here that there is a big gap
in the score criterion. The final score of the GreenSAM
heuristic was 43.23 while the other algorithms got 2.6 for
Bruteforce, 0.13 for MinLicenses and 10.7 for Pareto.
With just 1MB of memory, meaning going through 57,000
nodes over 501000, GreenSAM finds an excellent solution
that has the best performance overall and very few licenses
at, unfortunately, the cost of energy.

D. Huge deployment with time limit

On this last evaluation, we reused the data set from the
third evaluation and set time limit ranging from 500ms to
3000ms like the second evaluation. We can see the results
from this experiment in Figure 11.

We can see that under 1.5 seconds the Pareto algorithm
don’t manage to reach a single leaf because of the amount

500 1000 1500 2000 2500 3000
ms of time allowed

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sc
or

e
of

 e
ac

h
he

ur
ist

ic

score for different heuristics for 5 deployments over 50 servers

Optimal
bruteforce
minlicenses
pareto
greensam

Figure 9: Score criterion

0

1

Sc
or

e
(lo

g1
0)

0

2

4

Pe
rfo

rm
an

ce
 (l

og
10

)

0

2

4

En
er

gy
 (l

og
10

)

1.1 2.3 4.6 9.2 18.3 36.6 73.2 146.5 293.0
Memory limit in MB

0

2

4

6

Lic
en

se
 (l

og
10

)

1000 servers, 50 metrics to deploy bruteforce
minlicenses
pareto
greensam

Figure 10: Criteria results for large deployment

of computation to do but once it does, it gets good results.
The GreenSAM heuristic is also the best overall in this
configuration and reaches the score of 43.17 with only 500
milliseconds.

From these four scenarios, we can conclude that with
both memory limit and time limit, the GreenSAM heuristic
is better than the 3 others. Besides, it achieves to get
good results overall with very limited resources (1MB for
memory and 500ms for time limit). Overall, the GreenSAM
manages to obtain great performance compared to other
heursitcs while sacrificing few licenses and energy. Finally,
the GreenSAM heuristic is near the optimal on small sets
and gets a very good score on the big sets.

VI. CONCLUSION

In conclusion, this paper introduces several new advances.
First, it presents a deployment problem with Software Asset
Management considerations like [15] but with revisited
license consumption computation to adjust it to real-world
usage. Then, we proposed representation and a structure
for this deployment problem in a tree-shaped manner. We
gave a proof of NP-completeness of the decision problem
representing our deployment. We then introduced the main
contribution: a heuristic that optimizes several criteria and
manages to get good results with the deployment of one
product on the Cloud compared to other heuristics. We
can see from the evaluation that the GreenSAM heuristic
needs a very little amount of memory to obtain near-optimal
results and that it does it quickly. Besides, compared to other
heuristics, GreenSAM ensures compliance at deployment

time by removing servers that will put us in a non-compliant
state.

VII. FUTURE WORKS

Several works can be done to enhance the GreenSAM
heuristics. First, we can think of a way to reduce the tree
structure size by finding some subtree replicas and store
them and their results to speed up the heuristic. Then, we
could think of using a Pareto Front in GreenSAM to pre-
select good subnodes and ignoring the ones that will surely
not give good results. The problem of this latter method
is that it is based on a single deployment and maybe an
ignored node would have got good results in its descendants.
It should also be interesting to add metric aware optimization
at single product deployment level. We could categorize
metrics and search optimization for each of them to enhance
the license score function. Finally, a better Score function
could be used to sort the nodes in a better way or even a
Score function that takes into account several layers of the
tree to get more accurate results.

REFERENCES

[1] P. Sayer, “SAP settles licensing dispute with AB
InBev.” [Online]. Available: https://www.itworld.com/article/
3264435/sap-settles-licensing-dispute-with-ab-inbev.html

[2] R. D. Banker and R. J. Kauffman, “Automated software
metrics, repository evaluation and software asset manage-
ment: New tools and perspectives for managing integrated
computer aided software engineering (i-case),” Information
Systems Working Papers Series, Vol, 1991.

0

1

Sc
or

e
(lo

g1
0)

0

2

4
Pe

rfo
rm

an
ce

 (l
og

10
)

0

2

4

En
er

gy
 (l

og
10

)

500 1000 1500 2000 2500 3000
Time limit in ms

0

2

4

6

Lic
en

se
 (l

og
10

)

1000 servers, 50 metrics to deploy bruteforce
minlicenses
pareto
greensam

Figure 11: Criteria results for large deployment

[3] N. F. Holsing and D. Yen, “Software asset management,”
Information Resources Management Journal, vol. 12, no. 3,
pp. 14–26, Jul. 1999.

[4] M. Ben-Menachem and G. Marliss, “IT assets—control by
importance and exception: Supporting the ”paradigm of
change”,” IEEE Software, vol. 22, no. 4, pp. 94–102, Jul.
2005.

[5] K. Dempsey, N. Goren, P. Eavy, and G. Moore, “Automation
support for security control assessments: Software asset man-
agement,” National Institute of Standards and Technology,
Tech. Rep., 2018.

[6] J. E. Mbowe, I. Zlotnikova, S. S. Msanjila, and G. S. Oreku,
“A conceptual framework for threat assessment based on orga-
nization’s information security policy,” Journal of Information
Security, vol. 05, no. 04, pp. 166–177, 2014.

[7] A. M. Q. Varela, M. P. Méxas, and G. M. Drumond, “The
scenario of software asset management (SAM) in large and
midsize companies,” Independent Journal of Management &
Production, vol. 9, no. 2, p. 301, Jun. 2018.

[8] M. Ben-Menachem, “Towards management of software as as-
sets: A literature review with additional sources,” Information
and Software Technology, vol. 50, no. 4, pp. 241–258, Mar.
2008.

[9] J. Swartz and P. Vysniauskas, “Software asset management
in large scale organizations- exploring the challenges and
benefits,” Master’s thesis, University of Gothenburg, 3 2015.

[10] F. Dzerzhinskiy, “About lawyers, programmers, and software
assets,” Mar. 2012.

[11] Flexera, “How security risks & the shift to
the cloud are transforming sam,” Tech. Rep.
[Online]. Available: https://resources.flexera.com/web/pdf/
WhitePaper-SLO-Security-Risks-Cloud-Transforming-SAM.
pdf

[12] P. Gocek, P. Kania, B. Malecki, M. Paluch, and T. Stopa,
“Obtaining software asset insight by analyzing collected
metrics using analytic services,” uS Patent 9,652,812.

[13] N. Baillon, A.-L. Vion, N. D. Palma, and F. Boyer, “Software
license optimization and Cloud computing,” CLOUD COM-
PUTING 2017, p. 125, 2017.

[14] N. Baillon, E. Caron, A. Chevalier, and A.-L. Vion, “Towards
economic and compliant deployment of licenses in a Cloud
architecture,” San Francisco, USA, Jul. 2018, hal-01808751.
[Online]. Available: https://hal.inria.fr/hal-01808751

[15] Z. A. Mann, “Resource optimization across the cloud stack,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 1, pp. 169–182, Jan. 2018.

[16] I. Foster and C. Kesselman, “Computational grids,” in Vector
and Parallel Processing — VECPAR 2000, J. M. L. M. Palma,
J. Dongarra, and V. Hernández, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 3–37.

[17] D. Balouek-Thomert, E. Caron, and L. Lefevre, “Energy-
aware server provisioning by introducing middleware-level
dynamic green scheduling,” in 2015 IEEE International
Parallel and Distributed Processing Symposium Workshop.
IEEE, May 2015.

