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Discrete-Events Simulation for Teaching Statistics in 

Industrial Engineering 
 

By Farida Saïd
*
, Iehann Eveno

±
 & Jeanne Villaneau

 
 

This paper presents a discrete events simulation tool developed to support 

undergraduate students in their Statistics and Data Analysis course. Although the 

use of modern smart technologies in the industry contributes to a profusion of 

data, very few enterprise datasets are freely available, resulting in a serious lack 

of open real-world data for research and education. To overcome this difficulty, 

we designed a tool that simulates scheduling scenarios in a manufacturing 

environment. The generated data may be used to put statistical concepts and 

methods into practice to design cost-effective strategies for optimizing key 

performance indicators, such as reducing production time, improving quality, 

eliminating wastes, and maximizing profits. 

 
Keywords: industrial datasets, teaching statistics, discrete events simulation 

 

 

Introduction 
 

Industrial engineering (IE) is the branch of engineering that deals with 

improving processes, systems, or organizations and designing goods or services in 

the most efficient way possible, saving money, time, raw resources, labor, and 

energy while complying with safety standards and regulations. Industrial engineers 

use scientific and technical knowledge and skills to integrate and operate complex 

systems, and as such, their training programs have a significant scientific 

component. IE educators appear to agree on IE knowledge and curriculum 

structure while continually seeking innovations in content and instruction (Lang et 

al. 1999, Davies 2001, Carrera 2006, Eskandari et al. 2015, Lima et al. 2012, 

Sackey and Bester 2016). In comparative studies, there is consensus that statistics 

and data analysis are part of the core courses in IE programs, and contextualizing 

learnings by working with realistic data is highly recommended to help students 

better understand their future profession (Kuo 2001, Fraser and Teran 2006, 

Nguyen and Nguyen 2018).  

Five main features of authentic contexts have been proposed (Cobb 1999, 

Fosnot 1996, Tynjala 1999), and they provide a theoretical justification for the 

inclusion of realistic contexts in teaching and assessment processes (Libman 

2010): 1) practical significance: Lave and Wegner (1991) argue that knowledge is 

situated and contextual and, therefore, the material studied must be related to real 

situations in which students are likely to use it; 2) complexity and challenge: in 

real life, events always present a wealth of data and conditions that can be studied 
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from different angles and approached from multiple perspectives. Mirroring this, a 

learning situation that encourages personal investigation in a realistic context is 

rich and complex; it does not prescribe a single correct way of learning about 

reality or a single correct answer (Kirschner et al. 2006). Students are challenged 

and respond by formulating their own questions, developing their own models and 

explanations, and examining their own results (Garfield and Ben-Zvi 2007);  3) 

relevance and motivation: relevance refers to the fact that if the context is 

meaningful enough for the learner to appropriate it, then she or he can harness her 

or his energy to invest what is necessary to acquire a deep understanding of the 

subject matter and readiness to use it (Driver et al. 1994);  4) interconnectedness 

and transfer: this argument concerns the importance of authentic context in using 

the learned material to solve new problems and empower the learner. With real-

life data, students learn significantly more about how to figure out an appropriate 

combination of rules for each new problem and how to use it for problem-solving 

(Gergen 1995, Hmelo-Silver 2004); 5) learner empowerment: teaching and 

assessment processes that encourage personal investigation in a realistic context 

enhance the role of the learner (Eisner 1999, Graves 2002). Because students 

know the situation they are studying, they become somewhat experts and can take 

the initiative, raise questions and issues, and bring up topics for discussion with the 

teacher or their peers. In this way, they acquire knowledge that can go beyond the 

topic under investigation.  

Consistent with these considerations, a large body of research has been 

conducted to improve the educational experience of statistics students, and they 

agree on the added value of using real-world data (Willett and Singer 1992, 

Scheaffer 2001, Bryce 2005, Russell et al. 2011). There is general agreement that 

statistics are taught more effectively using real-world data (Cobb and Moore 

1997), and some research suggests that students consider the use of real-world 

datasets to be relevant to learning, interesting, motivating, promoting greater 

involvement and engagement, and lending itself to greater understanding 

(Neumann et al. 2013). In addition, the use of real-world datasets gives the 

learning experience a more personal character that increases interest in learning 

(Chottiner 1991). However, presenting applied problems in a course does not 

automatically increase motivation; what is essential is how students work with 

real-life data. According to (Biggs and Tang 2011), students are motivated if they 

perceive their task as reasonable and beneficial in some way. They should find the 

task useful for understanding the theory, for the exam, or for their future 

professional life. In addition, data collection by students themselves has an 

increased benefit to learning (Hogg 1991). 

In their search for realistic contexts, instructors generally use actual real-life 

data, simulated data, or data derived from real-life datasets by simulation (Luse 

and Burkman 2018). A major problem with real-world data is that it is not freely 

available for teaching and research. For example, in the IE field, we could take 

advantage of the large amounts of data produced by companies driven by digital 

transformation and the increasing use of connected devices and interconnected 

machines. However, as this data is at the heart of manufacturing systems, it is 

rarely shared or freely available, resulting in a serious lack of real open data for 
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research and education. Various simulation tools have been developed to 

overcome this difficulty, some of which are free
1
, to generate data that has the 

complexity and nuances of actual real-world data. 

To support IE undergraduate students at the University of South Brittany 

(France) in their one-semester course on statistics and data analysis, we developed 

a simulation tool in the agri-food domain. It simulates the operation of a pastry 

factory based on discrete-events simulations (DES) (Elizandro and Taha 2007). 

Simulation models are usually built to understand how systems behave over time 

and compare their performance under different conditions. DES models are widely 

used for design and implementation tasks, operational analysis, advanced 

planning, resource allocation, and logistics management. They are also commonly 

used for scheduling and automation, at the heart of Industry 4.0 (Ram and Davim 

2018).  

The main objective of our simulation tool is to create realistic industrial 

experiments and data to put into practice data analysis methods (sampling, 

confidence intervals, hypothesis testing, regression models). Our tool considers the 

parameters and data formats that students encounter most in their professional 

lives. The input parameters of the simulator are typical of the ERP (Enterprise 

resource planning) data, and the outputs are typical of the SCADA (Supervisory 

control and data acquisition) feedback. The simulated data can be used, among 

others, to (1) identify the most significant key performance indicators (overall 

equipment effectiveness, capacity…) through the analysis of production behavior; 

(2) determine critical phases of the production process and understand the 

involvement of the physical environment in the quality of production.   

We use this tool to practice the concepts studied in the Statistics and Data 

Analysis course, namely descriptive statistics, confidence intervals, hypothesis 

testing, and linear and logistic regression models. Following the approach studied 

by (Gratchev and Jeng 2018) and applied by (Carr M, Fhloinn 2016, Farell and 

Carr 2019), we use a “hybrid” pedagogical approach. We present the basic 

concepts in statistics and probability in the traditional approach in class, and then a 

project is introduced to consolidate the theory covered while allowing students to 

apply it in realistic situations. For the project, students work in small groups of 2 or 

3 on datasets generated by the simulation tool, one per group. Students must 

formulate practical questions that they answer using the statistical methods 

studied. Real-world statistical projects aim to improve students' understanding of 

the material and help them develop their problem-solving, teamwork, and oral and 

written communication skills. 

The paper is organized as follows: in the next section, we describe the 

simulated manufacturing system, followed by a section on how we designed the 

simulation tool and the experiments it allows. In the “Results Analysis 

Framework” section, we present an experiment, some simulated results, and their 

use in the student project. We conclude with a discussion and some perspectives. 

  

                                                           
1
https://en.wikipedia.org/wiki/List_of_discrete_event_simulation_software. 

 



Vol. X, No. Y Saïd et al.: Discrete-Events Simulation for Teaching Statistics… 

 

4 

The Manufacturing System 
 

The manufacturing system in focus includes the four main activities shown in 

Figure 1. Various raw materials (eggs, butter, sugar, flour) are mixed and kneaded 

to form a dough shaped into pastries and baked in batches in an oven. Once 

cooked, the pastries are packed and palletized. Quality control takes place after the 

bagging phase; it consists in testing a random sample of pastries from a lot and 

deciding whether to accept or reject the whole lot based on the quality of the 

random sample. 

 

Figure 1. Main Activities of the Manufacturing Process 

 
 

There are many factors involved in performing the activities, and a disruption 

in any one of them affects the rest of the process. For example, a stopping during 

baking results in under-baked or over-baked pastries and their subsequent disposal, 

which, in turn, affects the number of packaged, palletized, and sold products. 

According to Schruben and Schruben (2001), the rules or factors that govern 

the interaction of entities in a system are called parameters if they cannot be 

controlled and laws if they are controllable. Figure 2 shows some of the 

parameters and laws of our manufacturing system; one can refer to Table 1 for a 

list of the main factors. 
 

Figure 2. Manufacturing System 
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Table 1. Main Manufacturing System Factors 
Equipment shutdown by equipment (0, 1) 

Equipment failure by equipment (0, 1) 

Oven temperature (°C) 

Amount of each ingredient needed to make a lot of pastries (% of the tank size) 

Number of rejects during a run 

Level of each ingredient tank during production (%) 

Maximal level of each ingredient tank 

Maximal refill time for each ingredient tank (seconds) 

Minimal refill time for each ingredient tank (seconds) 

Refill time for each ingredient tank during production (seconds) 

Maximal number of staffers 

Minimal number of staffers 

The actual number of staffers  

Time spent in the oven (min) 

Time spent on the conveyor 3 (min) 

Quality of the sampled items 

Disposal thresholds  

Random disposal thresholds 

 

 

The Simulation Tool 
 

A manufacturing system is a combination of resources (machines, people, raw 

materials...), planning, organizational structures, information flows, and IT- 

systems that aim to achieve the manufacture of an economic product cost-

effectively. To understand how systems behave over time and to compare their 

performance under different conditions, two types of simulation models can be 

built: (1) discrete-event dynamic system models where the operation of the system 

is represented as a chronological sequence of events, and (2) continuous-event 

dynamic systems that track systems responses over time according to a set of 

equations involving usually differential equations. 
We adopted the discrete-event simulation (DES) approach which is generally 

used to model workflow as a network of queues and activities where state changes 

occur at discrete and irregular time stamps. DES models are generally stochastic, 

and randomness is generated using statistical distributions. 
The general framework of the simulation is depicted in Figure 3. It proceeds 

in the following steps for a single run: (1) the user selects a combination of input 

factors related to the manufacturing system, the environment, and the simulation. 

(2) depending on the stated inputs, a variety of failures can be generated. These 

can be random or functional (they follow statistical distributions). In case of 

failure, an intervention request is launched. It feeds a knowledge base of failures 

and repair response times according to the type of failure, the number of available 

staffers, and the failure time occurrence (hour, day, month). (3) The laws of the 

industrial process are adapted to the inputs and, (4) the production process is 

launched. (5) An assurance sampling is carried out; it consists of selecting some 



Vol. X, No. Y Saïd et al.: Discrete-Events Simulation for Teaching Statistics… 

 

6 

items in a lot and deciding whether to accept or reject the entire lot based on the 

inspection of the sample. (6) The output data are stored in a spreadsheet (CSV file) 

for subsequent statistical analysis: one line per run. (7) the simulation tool updates 

the input settings for a new run. 

 

Figure 3. Simulation Framework 

 
 

The factory’s operation can be simulated over long periods - up to one year - 

with a time increment of one minute at least. Table 2 describes the main factors 

involved in the simulation process at different stages. 

The simulation outputs are provided in Table 3. Among them is the 

production quality indicator which is calculated as a linear combination of 5 

stochastic quality indicators: 1) a baking quality indicator which corresponds to the 

time spent by a batch of pastries in the oven. It follows a Gaussian distribution 

around a theoretical baking time with a given standard deviation; 2) an error 

function that ensures that products that have been in the oven for a long time are 

not systematically rejected if the oven is at low temperature; 3) a Humidex
2
 index 

which combines temperature and humidity in one computed value. The higher the 

Humidex, the softer the cakes and the more mold can develop. Conversely, if the 

Humidex is too low, the cakes are too dry and therefore of poor quality; 4) a ppm 

quality indicator which corresponds to an error function that reflects the quantity 

of particles suspended in air; 5) a cooling quality indicator which corresponds to 

an error function that reflects the time spent by a batch of pastries between the 

oven and the bagger; this is a critical time during which bacteria can grow. 

                                                           
2
https://en.wikipedia.org/wiki/Humidex. 
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Production quality is a standardized metric with values ranging from 0 to 1. The 

closer the value is to 1, the higher is the production quality.  
The simulation tool was implemented in Python 3.6 with standard libraries.  

 

Table 2. Main Simulation Factors  
Time  Start date of the simulation: parameter 
 Simulation during weekends (yes, no) 

 No simulation on Friday afternoons for clean-up (yes, no) 
Failure generation Failure simulation (yes, no) 
 Time occurrence 

 Number of runs before failure per equipment 
 Repair response time per equipment 
 Range of the response time per equipment 

 Range of the random failures per equipment 
Sampling Sampling range per hour of operation 
Outputs Recording of the data (yes, no) 

 Recording increment (day, minute) 
Environment Indoor and outdoor temperatures (°C) 
 Outdoor humidity (%) 

 Particulate matter (ppm) 
 Range of particulate matter when the fan is on (ppm) 
 Thresholds that set the increase and decrease of the indoor temperature 

(°C) 

Production Theoretical time to produce a lot (seconds) 

 Number of pastries in a lot 
 Weight of a pastry (g) 

 Number of lots produced during a run 

 Theoretical power consumption per engine equipment  (W) 
 Thresholds for PID and engine power consumption (W) 
 Refill time for raw material tanks (min) 

 Temperature thresholds for fan operation (°C) 
 Thresholds for increase and decrease of indoor temperature and 

particulate matter 

 Thresholds for baking quality indicators, humidity index, ppm quality 

indicator, cooling quality indicator 

 

Table 3. Output Variables 
Categorical variables Continuous variables Discrete variables 
Day and Daytime Weekly production load: % Number of staffers 
Equipment Failure  
(oven, kneader, bagger, 

fan, conveyors): yes, no 

Equipment downtime (oven, kneader, 

bagger, fan, conveyors): min 
Number of lots 

produced 

 Energy consumption per equipment (oven, 

kneader, bagger, fan, conveyors): W 
Number of samples 

 Production quality indicator Number of rejects 
 Tank level per ingredient (egg, flour, 

butter, sugar): % 
 

 Outdoor temperature: °C  

 Indoor temperature: °C  

 Outdoor humidity: %  

 Oven temperature: °C  

 Particulate matter: ppm  
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Output Analysis Framework 
 

After designing a simulation model and implementing a corresponding 

program, appropriate output analyses must be performed. As shown in Figure 4, 

the main activities related to analyzing output data are experimentation, drawing 

reliable conclusions, communication, and presentation. 

 

Figure 4. Output Analysis Framework 

 
 

When setting up the simulation experiment, it is necessary to choose the type 

of simulation to perform. There are generally two types of simulations: terminating 

and non-terminating. The difference between them is whether one is interested in 

the system’s behavior over a given period (final production counts, time-changing 

behavior) or in the steady-state behavior of the system (overall average behavior). 

Experiments involving terminating simulations are typically conducted by running 

multiple simulations, or replications, of the period of interest using a different 

random seed for each run. This procedure allows for statistically independent and 

unbiased observations of the system response over the simulated period. The three 

questions that need to be answered when running a terminating experiment are: 

what the model’s initial state should be, the terminating event or time, and how 

many replications to do. 

The problems associated with producing meaningful output statistics for 

terminating simulations are different from those for non-terminating systems. In 

steady-state simulations, we face the following problems: determining the initial 

warm-up period, choosing among several alternative methods for obtaining 

sample observations, and determining the run duration. 

In the context of our course, we were interested in terminating simulations. 

 

 

Cases of Study 
 

We simulated ten months of operation of the factory, from 1 March to 31 

December. The weekly production load during the simulated period is given in 

Figure 5. For example, from 1 March to 21 March inclusive, the production load 

per week was 70%. 
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Figure 5. Weekly Production Load (%) 

 
 

Quality sampling was carried out every two hours, starting at 00:00 for 13 

minutes. In the following, we introduce the categorical variable Daytime which 

refers to the sampling periods (cf. Table 4).  
 

Table 4. Categorical Variable Daytime 

Sampling period 
00:00 
00:13 

02:00 
02:13 

04:00 
04:13 

06:00 
06:13 

08:00 
08:13 

10:00 
10:13 

Daytime 0am 2am 4am 6am 8am 10am 

Sampling period 
12:00 
12:13 

14:00 
14:13 

16:00 
16:13 

18:00 
18:13 

20:00 
20:13 

22:00 
22:13 

Daytime 12am 2pm 4pm 6pm 8pm 10pm 

 

We recorded 3762 entries, one per sample, and for each sample, the variables 

in Table 4 were filled in. 
In what follows, we answer two questions raised by the students regarding the 

simulated data using some of the methods studied in the Statistics and Data 

Analysis course. All analyses were performed in R, a free data analysis software 

(R Core Team 2021). Assumptions’ validity is always checked prior to performing 

the tests; however, we present them after the results for convenience. 

 
Question 1: What is the impact of fan failures on the factory’s indoor temperature and 

particulate matter? 
 

Temperature 
 

We used a two-sided independent t-test to determine if there is a statistical 

difference between the average indoor temperatures in case of fan failure 

(  =2148,   =21.73,   =1.93) versus no fan failure (  =1524,   =18.32, 

  =1.83). We found out that fan failures significantly increase the indoor 

temperature of the factory (       =53.95,  <0.001). Cohen’s d (1.81) suggests 

that this is a large effect. The 95% confidence interval (CI) for the difference 

between temperature means is 3.29°C - 3.54°C and it suggests that the true 

increase in temperature means is likely to be within this range 95% of the time. 

Figure 6 depicts the 95% CIs of the indoor temperature by fan failure occurrence; 

the centers of the CIs are connected by segments for better graphical readability. 

The assumptions of the independent t-test require: (1) independence of the 

two groups (with and without fan failures groups are independent); (2) the 

dependent variable should be approximately normally distributed in each group. 

The QQ-plots in Figure 7 show deviation from normality of the two distributions, 

which is confirmed by Shapiro-Wilk tests (without fan failures:   =0.93, 

 <0.001; with fan failures:   =0.92,  <0.001). However, we have very large 

sample sizes, and we can still use t-tests; (3) homogeneity of variance is tested 
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using Levene’s test of comparison of variances and it showed no difference 

between the variances of the two groups.  
 

Figure 6. 95% CIs for Indoor Temperature  

 
Note: 0 and 1 stand for “without” and “with” fan failures respectively. 

 

Figure 7. QQ-Plots of Indoor Temperature 

 
 

Particulate Matter 
 

We used a two-sided independent Welch’s t-test to compare the average 

indoor temperatures in case of fan failure (  =2148,   =611.36,   =181.99) 

versus no fan failure (  =1524,   =607.63,   =154.19). There is no evidence of 

an effect of fan failures on the amount of particulate matter in the air 

(t(3556.7)=0.67, p=0.50 ns); Figure 8 shows the large overlap of the 95% 

confidence intervals of the two groups. 
Shapiro-Wilk tests showed a normality violation of indoor temperature in 

each of the two groups (without fan failure: W_1=0.91, p<0.001; with fan failure: 

W_2=0.97, p<0.001). In addition, Levene’s test showed a significant difference 

between variances. We accounted for these violations using the adjusted Welch’s 

t-test statistic, which is robust for skewed distributions and large sample sizes. 
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Figure 8. 95% CIs for Particulate Matter 

 
Note: 0 and 1 stand for “without” and “with” fan failures respectively. 

 
Question 2: Does the production quality indicator change over time and is it affected 

by the weekly charge load? 
 

Tables 5 and 6 provide descriptive statistics of the production quality indicator 

by weekly charge load and daytime respectively. Differences in average quality 

scores can already be observed by weekly load and over time. It is yet to 

investigate whether these differences are significant and whether there is an 

interaction effect between the weekly production load and the sampling timetable.  

 

Table 5. Production Quality Indicator by Weekly Production Load 
 Weekly charge load (%) 

 50 60 70 80 90 100 

Sample size 504 252 839 1008 672 393 

Mean 0.87 0.77 0.89 0.85 0.85 0.78 

Std. Deviation 0.07 0.05 0.08 0.09 0.09 0.07 

Minimum 0.63 0.57 0.60 0.57 0.53 0.60 

Maximum 0.98 0.91 0.98 0.98 0.97 0.96 

 

Table 6. Production Quality Indicator over Time 
 Daytime  

   0am 2am 4am 6am 8am 10am 12am 2pm 4pm 6pm 8pm 10pm 

Sample size 305 306 306 306 306 306 306 306 305 305 305 306 

Mean 0.86 0.86 0.84 0.85 0.87 0.86 0.84 0.84 0.87 0.86 0.83 0.84 

Std. Deviation 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 

Minimum 0.63 0.63 0.60 0.64 0.60 0.61 0.61 0.57 0.60 0.57 0.63 0.53 

Maximum 0.98 0.97 0.96 0.97 0.98 0.97 0.96 0.97 0.98 0.98 0.96 0.96 

 

A two-way independent Anova (Analysis of variance) was conducted to 

examine the effect of the weekly production load and daytime on the production 

quality indicator. There were significant main effects for both weekly production 

load (         =147.62,  <0.001) and daytime (         =6.51,  <0.001). 

There was no evidence of an interaction effect (          =0.26,   ). Omega 

squared measure suggests a large main effect of the weekly production load 

(  =0.17) and a small effect of daytime (  =0.014). After checking Anova’s 

assumptions, we carry out post hoc testing to go further. 
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Effect of the Weekly Production Load 
 

Figure 9 depicts the behavior of the production quality according to the 

weekly production load; p-values and confidence intervals are adjusted for 

comparing a family of 6 estimates using Tukey’s correction method. The centers 

of the confidence intervals are connected by segments for better graphical 

readability. 

 

Figure 9. Production Quality Indicator by Weekly Production Load 

 
 

We observe that the best quality scores are achieved for a weekly production 

load of 70% and the lowest for 60% and 100% loads. These findings are 

confirmed by Tukey’s pairwise comparisons which are summed up in Table 7. 
 

Table 7. Tukey’s Post Hoc Comparisons - Weekly Production Load (%) 

Weekly 

 

  95% CI for Mean  

erence  
  

 

ptukey 

Production Mean Difference  

Load (%) Difference Lower Upper t 

60   50   -0.10  -0.12 -0.08  -15.20  < 0.001 *** 

  70   -0.12  -0.14 -0.10  -20.49  < 0.001 *** 

    80   -0.08  -0.10 -0.07  -14.47  < 0.001 *** 

    90   -0.08  -0.10 -0.07  -13.70  < 0.001 *** 

70   50   0.02  0.01 0.04  5.32  < 0.001 *** 

    80   0.04  0.03 0.05  9.69  < 0.001 *** 

    90   0.04  0.03 0.05  8.89  < 0.001 *** 

  100   0.11  0.10 0.12  21.66  < 0.001 *** 

100   50   -0.08  -0.10 -0.07  -15.22  < 0.001 *** 

  80   -0.07  -0.09 -0.06  -14.65  < 0.001 *** 

  90   -0.07  -0.09 -0.06  -13.60  < 0.001 *** 
* p < 0.05, ** p < 0.01, *** p < 0.001. 

Note: Results are averaged over the levels of Daytime. 

Note: The pairwise comparisons that are not presented are non-significant. 
 

A low-quality score for a 100% production load can be understood by the fact 

that higher workloads lead to higher equipment utilization and therefore higher 

risk of breakdowns and sub-quality. On the other hand, such a low score for a 60% 

workload should raise questions and call for investigations to find potential 

sources of problem and correct them. 
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Effect of Daytime 
 

Figure 10 depicts the evolution of the production quality over time; p-values 

and confidence intervals are adjusted for comparing a family of 12 estimates using 

Tukey’s correction method. 
 

Figure 10. Production Quality Indicator over Time 

 
 

One can observe that the best quality scores are achieved for 0am, 8am, 10am, 

4pm, and 6pm, and the lowest for 4am, 12am, 8pm, and 10pm. These findings are 

confirmed by Tukey’s pairwise comparisons which are given in Table 8. 

 

Table 8. Tukey’s Post Hoc Comparisons – Daytime 
      95% CI for mean difference        

Daytime 
Mean 

difference 
Lower  Upper   t  ptukey 

 

4am   0am  -0.03   -0.05   -4.13e-3    -3.82   < 0.01 **   

  8am  -0.03   -0.06   -7.79e -3    -4.32   < 0.001  ***   

    10am  -0.03   -0.05   -3.53e -3    -3.74   0.01  *   

    4pm  -0.03   -0.05   -5.85e -3    -4.05   < 0.01 **   

    6pm  -0.03   -0.05   -2.46e -3    -3.60   0.02  *   

12am   0am  -0.03   -0.05   -2.10e -3   -3.55   0.02  *   

    8am  -0.03   -0.05   -5.77e -3   -4.04   < 0.01 **   

  10am  -0.03   -0.05  -1.51e -3   -3.47   0.03  *   

  4pm  -0.03   -0.05   -3.83e -3    -3.78   < 0.01 **   

  6pm  -0.02   -0.05   -4.37e -4    -3.33   0.04  *   

8pm   0am  -0.03   -0.05   -5.72e -3   -4.04   < 0.01 **   

    8am  -0.03   -0.06   -9.38e -3   -4.53   < 0.001  ***   

  10am  -0.03   -0.05   -5.13e -3   -3.96   < 0.01 **   

  4pm  -0.03   -0.06   -7.44e -3   -4.27   < 0.01 **   

  6pm  -0.03   -0.05   -4.05e -3   -3.81   < 0.01 **   

10pm  0am  -0.02   -0.05   -2.90e -4   -3.31   0.04  *   

  8am  -0.03   -0.05   -3.95e -3   -3.80   < 0.01 **   

  4pm  -0.03   -0.05   -2.01e -3   -3.54   0.02  *   

2pm   8am  -0.03   -0.05   -2.74e -3   -3.64   0.01  *   

    4pm  -0.03   -0.05   -7.97e -4    -3.38   0.04  *   

 * p < 0.05, ** p < 0.01, *** p < 0.001 
Note: Results are averaged over the levels of Weekly production load. 
Note: The pairwise comparisons that are not presented are non-significant. 
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To conclude, the two case studies presented here illustrate some practical uses 

of the simulation tool in a statistics and data analysis course. We have covered 

some descriptive and inferential statistics topics: confidence intervals, normality 

tests, t-tests, homogeneity tests, Anovas. However, the diversity of the output 

variables (continuous, discrete, categorical) allows for more analyses (linear 

regression, logistic regression, multiple component analysis, and more). Another 

advantage of this tool is generating custom datasets to focus on a particular 

technique and explore its many facets. 

 

 

Discussion 

 

The simulation tool has not yet been evaluated in the Statistics and Data 

Analysis course. However, it was evaluated in the Advanced Management course, 

where it was used in hands-on work for building production indicators and 

improving production. Student feedback was positive regarding the industrial 

context of the project and the manipulation of real-world data. A qualitative 

analysis of the added value of the simulation tool and a rigorous quantitative 

analysis of the knowledge and learning gains still need to be done in both courses. 

Eventually, the simulation tool will be used in several courses and at different 

levels of student training: in the first year for statistical analysis of data, in the 

second year for the optimization of manufacturing processes, and the third year for 

the drafting of specifications, technical and commercial communication materials, 

Etc. 

As for future developments of the simulation tool, randomness is currently 

generated by uniform and Gaussian distributions, and we plan to introduce other 

statistical distributions for specific events (Exponential and Erlang for inter-arrival 

times, triangular, beta, normal, and LogNormale for service times, Weibull for 

inter-arrival times, Etc.) We also need to develop a user interface that will allow 

students to design their own data sets and quality indicators. 

 

 

Conclusion 

 

We believe that when students are actively involved in an experiment, they 

internalize better the material being taught and mobilize more inner resources for 

learning. The industrial context could help to get more commitment of the students 

by projecting them in their future profession and following that, to adopt a 

professional posture in the analysis of the problem, the choice of the data analyses 

to carry out, their rigorous application, and the restitution of the results in a form 

that is clear, concise, and adapted to the recipient.  

In this vein, we proposed a simulation tool to generate realistic industrial 

datasets and we presented two case studies to illustrate its use in a Statistics and 

Data Analysis course for IE undergraduate students. The case examples focused 

on some common concepts in descriptive and inferential statistics. However, the 
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diverse nature of the output variables allows for a wider range of analysis 

techniques.  

The simulated data can serve the analysis of the production behavior of 

manufacturing systems and the identification of the most significant key 

performance indicators (overall equipment effectiveness, capacity...). They can 

also be used to identify the critical phases of the production process and to 

understand the involvement of the physical environment in production quality.  

The tool has yet to be rigorously evaluated by students, but initial positive 

feedback from teachers and students, allows us to consider its deployment in other 

courses and other levels of training. 
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