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Abstract

The prefix palindromic length PPLu(n) of an infinite word u is the minimal
number of concatenated palindromes needed to express the prefix of length
n of u. Since 2013, it is still unknown if PPLu(n) is unbounded for every
aperiodic infinite word u, even though this has been proven for almost all
aperiodic words. At the same time, the only well-known nontrivial infinite
word for which the function PPLu(n) has been precisely computed is the
Thue-Morse word t. This word is 2-automatic and, predictably, its function
PPLt(n) is 2-regular, but is this the case for all automatic words?

In this paper, we prove that this function is k-regular for every k-automatic
word containing only a finite number of palindromes. For two such words,
namely the paperfolding word and the Rudin-Shapiro word, we derive a for-
mula for this function. Our computational experiments suggest that gener-
ally this is not true: for the period-doubling word, the prefix palindromic
length does not look 2-regular, and for the Fibonacci word, it does not look
Fibonacci-regular. If proven, these results would give rare (if not first) ex-
amples of a natural function of an automatic word which is not regular.
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1. Introduction

A palindrome is a finite word p = p[1] . . . p[n] such that p[i] = p[n−i+1] for
every i, like level or abba. We consider decompositions, or factorizations, of a
finite word as a concatenation of palindromes. In particular, we are interested
in the minimal number of palindromes needed for such a decomposition,
which we call the palindromic length of a word. For example, the palindromic
length of abbaba is 3 since this word is not a concatenation of two palindromes,
but abbaba = (abba)(b)(a) = (a)(bb)(aba).

In this paper, we consider the palindromic length of prefixes of infinite
words. This function of an infinite word u = u[0] . . .u[n] . . . is denoted
by PPLu: here PPLu(n) is defined as the palindromic length of the prefix
u[0] . . .u[n− 1] of length n of u.

The following conjecture was first formulated, in slightly different terms,
in a 2013 paper by Puzynina, Zamboni, and the first author [16].

Conjecture 1. For every aperiodic word u, the function PPLu(n) is un-
bounded.

In fact, the paper [16] contains two versions of the conjecture: one with
the prefix palindromic length and the other with the palindromic length of
any factor of u. Saarela later proved the equivalence of these two statements
[22].

In the same initial paper [16], the conjecture was proven for the case
when u is p-power-free for some p, as well as for a more general case covering
almost all aperiodic infinite words. Its proof for all Sturmian words required
a special technique [14]. The full conjecture remains unsolved.

While upper bounds on the prefix palindromic length can be obtained
by usual techniques [6], any lower bounds [12, 17] or precise formulas for
PPLu(n) are astonishingly difficult to obtain, except for the following trivial
observation.

Remark 1. If an infinite word u contains palindromes of length at most K,
then PPLu(n) ≥ n/K for all n.

Up to our knowledge, the only nontrivial previously known infinite word
whose prefix palindromic length has been found precisely [13] is the Thue-
Morse word with its many beautiful properties [5]. This sequence is 2-
automatic, and so it was not surprising that its prefix palindromic length

2



is 2-regular and its first differences are 2-automatic. Although the prefix
palindromic length does not fall into the class of functions of k-automatic
words which are known to always be k-regular [8], we are not aware of any
natural functions which would not have this property.

In this paper, we explore the limits of the method used for the Thue-
Morse word by considering other automatic words. We prove that PPL(n) is
k-regular for every k-automatic word containing a finite number of distinct
palindromes and find this function for the paperfolding word and the Rudin-
Shapiro word. At the same time, we also give computational results allowing
to conjecture that for the period-doubling word, which contains infinitely
many palindromes, the prefix palindromic length is not 2-regular, and for the
Fibonacci word, it is not Fibonacci-regular. At the very least, if a regularity
exists, it must be very complicated. If in at least one of these examples the
function will be proven to be not regular, it would give a first example of a
reasonable easily defined function of an automatic word which is not regular.

2. Automatic words

Throughout this paper, we use the notation u[i..j] = u[i] . . . u[j] for a
factor of a finite or infinite word u starting at position i and ending at j.
Note that for technical reasons, we start numbering symbols of finite words
with 1 and of infinite words with 0.

Definition 1. Let u be an infinite word. Then we define the PPL-difference
sequence du of u by setting du(n) = PPLu(n+1)−PPLu(n) for n ≥ 0. Notice
that we always have PPLu(1) = 1, and setting PPLu(0) = 0 by convention,
we get du(0) = 1.

The following lemma was first proven in the 2015 conference version of
the paper [20] and then generalised by Saarela [22, Lemma 6].

Lemma 1. For every word u and for every n ≥ 0, we have

PPLu(n)− 1 ≤ PPLu(n+ 1) ≤ PPLu(n) + 1.

Therefore a PPL-difference sequence can only take the values −1, 0, or 1.
We prefer to use the alphabet {-, 0, +} in place of {−1, 0, 1}. So, the PPL-
difference can be considered as an infinite word over a three-letter alphabet;
in particular, this word is useful for many algorithms related to palindromes
[7].
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As the name suggests, a word u = u[0] · · ·u[n] · · · is called k-automatic if
there exists a deterministic finite automaton A such that every symbol u[n]
of u can be obtained as the output of A with the base-k representation of n as
the input. For the technical details of this definition and for basic examples,
we refer the reader to [3]. In this paper, we mostly do not use this definition
but several equivalent ones. To introduce them, we need more notions.

Definition 2. A morphism ϕ : Σ∗ → Δ∗ is a map satisfying ϕ(xy) =
ϕ(x)ϕ(y) for all words x, y ∈ Σ∗. Clearly, a morphism is uniquely deter-
mined by images of symbols of Σ and can be naturally extended to the set
of infinite words over Σ. If there exists a k such that all images of symbols
are of length k, the morphism is called k-uniform; a 1-uniform morphism is
called a coding.

If for some morphism ϕ : Σ∗ → Σ∗ and for a letter a ∈ Σ the image ϕ(a)
starts with a, then there exists at least one finite or infinite word u starting
with a which is a fixed point of ϕ, that is, it satisfies the equation u = ϕ(u).
If in addition ϕ is k-uniform for k ≥ 2, the fixed point starting with a is
unique and is denoted as ϕω(a).

The following statement is a combination of two results. The case when
ψ is a coding is Cobham’s theorem [9], which can also be found in the mono-
graph of Allouche and Shallit [3] as Theorem 6.3.2. The case when ψ is a
m-uniform morphism for m > 1 is a combination of Cobham’s theorem and
Corollary 6.8.3 of the same monograph.

Theorem 1. An infinite word u is k-automatic if and only if u = ψ(ϕω(a))
for some k-uniform morphism ϕ and a uniform morphism ψ. Moreover, the
morphisms can always be chosen so that ψ is a coding.

If u = ψ(ϕω(a)), where the morphisms ϕ and ψ are not obliged to be
uniform, the word � is called morphic. As the previous theorem shows, the
class of morphic words includes all k-automatic words for all k.

Definition 3. The k-kernel kerk(u) of an infinite word u = u[0] · · ·u[n] · · ·
is the set of arithmetic subsequences of u with differences of the form ke and
starting positions inferior to the difference:

kerk(u) = {(u[ken+ b])n≥0 : e ≥ 0, 0 ≤ b < ke}.

An infinite word u is k-automatic if and only if kerk(u) is finite [3,
Thm. 6.6.2].
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In what follows, we will need and use the equivalent definitions of a k-
automatic words based on uniform morphisms and on the k-kernel.

Example 1. For the Thue-Morse word t = 0110100110010110 · · · , which is
2-automatic, the three definitions work as follows:

• The definition involving the automaton: the symbol t[n], n = 0, 1, . . .,
is 0 if the number of 1’s in the binary representation of n is even and
1 if it is odd.

• The definition involving morphisms: t = σω(0), where σ(0) = 01 and
σ(1) = 10; the coding ψ from the formula t = ψ(σω(0)) here is trivial
(ψ(0) = 0, ψ(1) = 1) and can be omitted.

• The definition involving the 2-kernel: t can be described as the word
starting with 01 and obtained by alternating the symbols of t and of
the word t = 1001 · · · obtained from t by exchanging 0’s and 1’s. It is
not difficult to see that the 2-kernel of t contains only two elements: t
and t.

The following definition is closely related to automatic words.

Definition 4. A Z-valued sequence is k-regular if the Z-module generated
by its k-kernel is finitely generated.

This definition implies in particular that k-automatic sequences are k-
regular (we may always assume that a word is over an integer alphabet). A
sequence is k-automatic if and only if it is a bounded k-regular sequence [3,
Thm. 16.1.5].

Many sequences related to k-automatic sequences are k-regular, as it
follows from an important decidability result by Charlier, Rampersad, and
Shallit [8]. In particular, this is true for the function of factor complexity
defined as the number of factors of length n of the word for each n and for
the number of distinct palindromes of length n in the word. In fact, the
latter function is even k-automatic since it is bounded [2]. Thus it is natural
to ask if the sequence PPLu is k-regular when u is k-automatic. The next
lemma shows that in order to study this question, it suffices to study the
PPL-difference sequence.

Lemma 2. Let u be an infinite word. Then the sequence PPLu is k-regular
if and only if the PPL-difference sequence du is k-automatic.
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Proof. The set of k-regular sequences over Z is closed under componentwise
shift, sum, and difference [3, Thm. 16.2.1, Thm. 16.2.5]. Therefore PPLu

is k-regular if and only if du is k-regular. By Lemma 1, the sequence du is
bounded. The conclusion follows from the above-cited fact that a bounded
k-regular sequence is k-automatic [3, Thm. 16.1.5].

The first author studied in [12, 13] the PPL-difference sequence dt of the
Thue-Morse word t from Example 1 and characterized it as the fixed point
of the following 4-uniform morphism:

⎧
⎪⎨

⎪⎩

+ �→ ++0-,

0 �→ ++--,

- �→ +0--.

This means in particular that dt is 4-automatic and thus 2-automatic [3,
Thm. 6.6.4]. Hence PPLt is 2-regular. This result is so far the only one that
completely determines the functions PPLu and du for any nontrivial infinite
word u.

Notice that the result on the Thue-Morse word is not covered by the
main result of this paper, since the Thue-Morse word contains infinitely
many palindromes. Every prefix of length 4n of the Thue-Morse word is
a palindrome, so Theorem 2 below does not apply to it.

3. Automatic first differences

The following theorem is the main result of this paper.

Theorem 2. If a k-automatic word u contains a finite number of distinct
palindromes, then the PPL-difference sequence du is k-automatic.

Proof. Let p be the length of the longest palindrome in u. Then for every
index n, the last palindrome in an optimal decomposition of u[0..n − 1]
as a product of palindromes starts at one of the positions u[n − p], . . .,
u[n − 1]. Thus PPLu(n) is determined by PPL(n − p), . . ., PPL(n − 1)
and the word u[n− p..n− 1] (we will often omit the subscripts in proofs to
improve readability). This simple consideration is a base for the following
proposition.
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Proposition 1. For every n such that n ≥ m + p, the number PPLu(n)
is uniquely determined by the numbers PPLu(m), du(m), du(m + 1), . . .,
du(m + p − 1), and the word u[m..n − 1]. The number du(n) is uniquely
determined by du(m), du(m+ 1), . . ., du(m+ p− 1), and the word u[m..n].

Proof. Let us prove the first statement. Clearly, for every i such that i ≤ p,
we have

PPL(m+ i) = PPL(m) + d(m) + d(m+ 1) + · · ·+ d(m+ i− 1),

so that PPL(m + 1), . . ., PPL(m + p) can be reconstructed from PPL(m),
d(m), d(m + 1), . . ., d(m + p − 1). Now let us proceed by induction on
n ≥ m + p. The preceding computation establishes the base case. Since
there are no palindromes in u of length greater than p, we have

PPL(n) = min{PPL(n−k)+1 : k = 1, . . . , p,u[n− k..n− 1] is a palindrome}.
(1)

The numbers PPL(n− k) + 1 are determined by PPL(m), d(m), . . ., d(m+
p− 1), and u[n− p..n− 1] by hypothesis. The induction step is complete.

To prove the second statement, we replace PPL(m) in the previous para-
graph by a parameter P and let PPL(m+ i)−P = D(i) for all i ≥ 0, so that
D(i) = d(m) + d(m + 1) + · · · + d(m + i − 1). Then for i ≤ p, the number
D(i) can be found directly as the sum of the known values of the sequence
d. Now for n ≥ m + p, that is, for i = n −m ≥ p, suppose that the values
of D(j) are known for all j < i. The claim is true for i = p, that is, for
n = m + p, establishing the base case. For the induction step, it suffices to
rewrite (1) as

P+D(i) = min{P+D(i−k)+1 : k = 1, . . . , p,u[n− k..n+] is a palindrome}

and to subtract P to obtain D(i) as a function of the previous values of D
and the word u[n− p..n− 1]:

D(i) = min{D(i− k) + 1 : k = 1, . . . , p,u[n− k..n− 1] is a palindrome}.

Now it remains to combine this expression for i and for i+ 1 and to use the
formula d(n) = D(i+ 1)−D(i) to obtain the needed statement.

By Theorem 1, we may suppose that u = ψ(ϕω(a)), where ψ : Σ → Δ
is a coding and ϕ : Σ → Σk is a k-uniform morphism over an alphabet Σ.
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Without loss of generality, by passing from ϕ to a power of ϕ if necessary,
we may assume that p < k. Let

Λ = {ψ(ϕ(a)) : a ∈ Σ}.

The word u is a concatenation of these Λ-blocks of length k, and we consider
u as u = U [0] · · ·U [N ] · · · with U [i] ∈ Λ.

Consider an occurrence u[m..n], where n ≥ m+ p, of a factor v of u. We
define the type of this occurrence as the sequence du[m..m+ p− 1]. Clearly,
for each word v, its occurrences have at most 3p different types; we denote
the set of possible types of v by T (v). Notice that the words U [0], U [1], . . .
have types because their lengths are greater than p.

The following proposition is a direct corollary of Proposition 1.

Proposition 2. For every N > 0, the type of the occurrence U [N ] is deter-
mined by the word U [N ], the word U [N − 1], and the type of U [N − 1].

This proposition can be interpreted as follows: given a word U [0] · · ·U [N ] · · ·
and the type of U [0], we can uniquely determine the types of U [1], U [2] and
so on, and thus, due to Proposition 1, find the PPL-difference sequence d.
The process can be described by a transducer with

• set of states {(A, t) : A ∈ Λ, t ∈ T (A))} ∪ {S}, where S is a special
starting state;

• input alphabet Λ;

• output set {-, 0, +}k; and

• set of transitions defined as follows:

– The starting transition marked as U [0]|du[0..k− 1] goes from S to
the state (U [0], d[0..p− 1]);

– A state (A, t) is linked to a state (B, t′) by a transition marked as
B|w if a Λ-block A of type t is followed by a Λ-block B of type
t′ in u and the respective block of length k in d is w (meaning in
particular that t′ is a prefix of w).

The transitions are well defined due to Propositions 1 and 2, and the number
of states is finite as #Λ ≤ #Σ and each word in Λ has at most 3p types. It is
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evident that the transducer describes the construction of d from the Λ-blocks
of u.

Since the sequence of Λ-blocks of u is k-automatic by the construction,
we see that the sequence d is obtained by feeding it to a uniform transducer
(a uniform transducer outputs only words of common length). By a theorem
of Cobham [9] (see also [3, Thm. 6.9.2] and the discussion preceding it), a
uniform transduction of a k-automatic sequence is again k-automatic, so we
conclude that d is k-automatic. Notice that if we replaced k by its power,
we still obtain the same conclusion as a sequence is k�-automatic if and only
it is k-automatic [3, Thm. 6.6.4].

Example 2. Consider the 2-automatic fixed point

u = μω(a) = abbcbccabccacaab · · ·

of the morphism

μ :

⎧
⎪⎨

⎪⎩

a �→ ab,

b �→ bc,

c �→ ca.

It is not difficult to see that the longest palindromes in u are of length 3, so,
in order to construct the transducer of the proof of Theorem 2, we consider
u as a fixed point of the 4-uniform morphism

μ2 :

⎧
⎪⎨

⎪⎩

a → abbc,

b → bcca,

c → caab.

For the alphabet Λ, we now have Λ = {A,B,C} where A = abbc, B =
bcca, C = caab. The first values of PPLu(n) starting from n = 0 are
0, 1, 2, 2, 3, 3, 3, 4, 5, and thus the sequence du starts with ++0+00++. Hence
the first transition of the transducer is

S
A|++0+−−−−→ (A, ++0).

The next transition should describe the first differences in B which follows
an occurrence of A with type ++0. It can be checked that it is

(A, ++0)
B|00++−−−−→ (B, 00+).
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Continuing to consider blocks and their types in their order of appearance in
u, we can analogously find that every symbol of Λ can have four types ++0,
00+, 0+0, -+0. Thus the transducer has 13 states. The possible transitions
from A are the following:

(A, 00+)
A|++0+−−−−→ (A, ++0), (A, 0+0)

B|00++−−−−→ (B, 00+),

(A, 00+)
B|-+0+−−−−→ (B, -+0), (A, ++0)

B|00++−−−−→ (B, 00+),

(A, 00+)
C|0+0+−−−−→ (C, 0+0), (A, -+0)

B|00++−−−−→ (B, 00+).

In particular, a block A of any type except for 00+ can be followed only by
the block B of type 00+.

The remaining transitions are obtained by changing the letters in the
above transitions according to the cycle A → B → C → A since the initial
morphism μ is symmetric with respect to this cycle. For example, from the
transition

(A, 00+)
A|++0+−−−−→ (A, ++0)

we obtain in this fashion the transition

(B, 00+)
B|++0+−−−−→ (B, ++0).

This gives a total of 19 transitions. To be completely rigorous, we should
prove that no additional states and transitions exist. Suppose the opposite
and consider the first transition which is not as above. Let it be a transition
from (A, 0+0) to (A, t) for some t (any other combination can be considered
analogously). The first time this transition is taken must be preceded by a
transition from the list, that is, by the transition (B, 00+) −→ (A, 0+0). Hence
BAA should be a factor of u, but it is easy to check that this is not the case.
Similarly if there is a transition (A, 0+0) −→ (C, t), then we find that u should
contain the forbidden factor BAC, and so on.

It can be shown that the output of the transducer equals the infinite word
ψu(ϕ

ω
u(s)), where

ϕu :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s �→ su,

u �→ eu,

e �→ du,

d �→ hu,

h �→ eu
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and

ψu :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s, e �→ ++0+,

d �→ 0+0+,

u �→ 00++,

h �→ -+0+.

Here the symbols s, d, e, u, h mean respectively the starting block s of u,
the situation when the next block of u is down (d), equal (e) or up (u) to
the previous block according to the cyclic order A < B < C < A. And h
(for “high”) stands for the situation when the block is exactly the third in
an ascending sequence of blocks.

In this example, we managed to construct the morphisms for du because
we understand the underlying structure. Unfortunately, Cobham’s theorem
used in the proof of Theorem 2 only gives a hyperexponential bound on the
number of the states of an automaton generating du. Hence the theorem
itself does not give a practical way to find du and the associated morphisms.
In what follows, we consider two well-known examples and find their prefix
palindromic length “by hand”.

4. Classic examples

The examples considered in this section, namely, the paperfolding word
and the Rudin-Shapiro word, are closely related to each other, and are known
to contain a finite number of distinct palindromes [1].

4.1. Paperfolding word

Recall that the paperfolding word upf is the 2-automatic word

upf = ψ(ϕω
pf (a)) = 0010011000110110 · · · ,

where

ϕpf :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a �→ ab,

b �→ cb,

c �→ ad,

d �→ cd,

and the coding ψ is defined as ψ(a) = ψ(b) = 0, ψ(c) = ψ(d) = 1.
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The longest palindromes in the paperfolding word are of length 13, so The-
orem 2 can be applied to it: its first difference sequence dpf is 2-automatic.
The blocks considered in the proof of Theorem 2 could be of length 16, since
it is the smallest integer power of 2 which exceeds the length of the longest
palindrome. However, to simplify the transcducer, it is more convenient to
consider blocks of length 64.

Theorem 3. The sequence dpf over the alphabet {-, 0, +} is equal to dpf =
γpf (μ

ω
pf (a0)), where

μpf :

⎧
⎪⎨

⎪⎩

a0 �→ a0ba,

ab �→ abba, ba �→ cbbc, cb �→ abda, da �→ cbdc,

ad �→ adba, bc �→ cdbc, cd �→ adda, dc �→ cddc

and

γpf :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 �→ +0+0-+0+000-++0-+-P 00+00+0-+000+000+00000-0++0-+0-,

ab �→ 0++-0+00+00-0+0000P 00+00+0-+000+000+00000-0++0-+0-,

ad �→ 0+00000+00000+000-P 00+00+0-+000+000+00000-0++0-+0-,

ba �→ 0++-0+00+00-0+0000P +-+0-0+000+000+0+-+0-000+000+0-,

bc �→ +00+-00+0000+0000-P +-+0-0+000+000+0+-+0-000+000+0-,

cb �→ 0++-0+00+00-0+0000P 00+00+0-+000+000+00000-0++0-+00,

cd �→ 0+00000+00000+000-P 00+00+0-+000+000+00000-0++0-+00,

da �→ 0++-0+00+00-0+0000P +-+0-0+000+000+0+-+0-000+000+00,

dc �→ +00+-00+0000+0000-P +-+0-0+000+000+0+-+0-000+000+00

with P = 0+00+00-0++-0+0.

Proof. Let v be the fixed point ϕω
pf (a) of ϕpf and w be the fixed point μω

pf

of μpf starting with a0. The word v is obtained from w by the identification
a0, ab, ad �→ a, ba, bc �→ b, cb, cd �→ c, da, dc �→ d. The subscript of a letter
occurring in w indicates that the letter (after identification) in v is preceded
by the letter indicated by the subscript, that is, ab is corresponds to a pre-
ceded by b in v etc. The letter a0 simply corresponds to the first occurrence
of a in v.

We know by Theorem 2 that a transducer T mapping upf to dpf exists.
Here we set the parameter k of the proof of Theorem 2 to equal 26. This
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means that T outputs blocks of length 64. Write upf = U [0]U [1] · · · as a
concatenation of Λ-blocks U [i]. For the claim, it suffices to prove that the
output of T on U [0]U [1] · · ·U [n] equals γpf (w[0..n]) for all n.

The factors of v of length 2 appear in its prefix of length 13. This means
that the prefix of upf of length 13 × 26, which is a concatenation of Λ-
blocks, contains all possible adjacent Λ-blocks at least once. We can directly
check that γpf (w[0..12]) coincides with the prefix of dpf of length 13 × 26

meaning that γpf (w[0..12]) equals the output of T on U [0] · · ·U [12]. Let us
now make the following observation. The prefix of length 18 of each γpf -
image is followed by the word P = 0+00+00-0++-0+0 of length 15. Since
the longest palindrome in upf has length 13, Proposition 1 implies that for
n = 1, . . . , 12, the type of U [n] depends on P and U [n− 1], not on the type
of U [n− 1]. Since P occurs in the same position in every γpf -image, we see
that the type of U [n] depends only on U [n− 1].

Let k ≥ 12 be such that the type of U [n] depends only on U [n−1] and that
the output of T on U [0] · · ·U [n] matches γpf (w[0..n]) for all n = 1, . . . , k. By
Proposition 1, the type of U [n+1] is determined by U [n] and its type. Since T
outputs γpf (w[n]) when reading U [n] and γpf (w[n]) contains P at position 18
independently of the letter w[n], it follows from Proposition 1 that the type
of U [n+1] depends only on U [n]. Since k ≥ 12 and all factors of v of length
2 appear in its prefix of length 13, there exists t ≤ 11 such that U [t] = U [n]
and U [t+ 1] = U [n+ 1]. The output of T on the transition U [n] −→ U [n+ 1]
must match that of U [t] −→ U [t+ 1] because T is deterministic and the type
of the Λ-block is irrelevant in both cases. Therefore T outputs γdf (w[t+ 1])
when reading U [n + 1]. It now suffices to show that w[n + 1] = w[t + 1] in
order to conclude by induction that dpf = γpf (w).

We have U [i] = ψ(ϕ6
pf (v[i])) for all i. It is straightforward to verify that

ψ is injective on the set of Λ-blocks and that ϕ6
pf is injective, so we deduce

from the equalities U [n] = U [t] and U [n + 1] = U [t + 1] that v[n] = v[t]
and v[n+ 1] = v[t+ 1]. From the first paragraph of the proof, we infer that
w[n+ 1] = w[t+ 1]. The claim follows.

4.2. Rudin-Shapiro word

The Rudin-Shapiro word urs is the 2-automatic word

urs = ψ(ϕω
rs(a)) = 00010010000111010 · · · ,
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where

ϕrs :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a → ab,

b → ac,

c → db,

d → dc,

and the coding ψ is defined by ψ(a) = ψ(b) = 0, ψ(c) = ψ(d) = 1.
The longest palindromes in the Rudin-Shapiro word are of length 14, so

Theorem 2 can be applied to it: its first difference sequence drs is 2-automatic.
The following theorem describes it.

Theorem 4. The sequence drs over the alphabet {-, 0, +} is equal to

drs = γrs(μ
ω
rs(A)),

where

μrs :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A → AB,

B → CD,

C → EB,

D → ED,

E → CB

and

γrs :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A �→ +00+00000-++00-++00-+0+00+00+00+-0+00-+00+-0+0+0-0+0P,

B �→ 0+0-0++-00+0+0-++00-+0+00+00+00+0+0-0++-00+0+0-+000+P,

C �→ -0+00-+00+-0+0+00+00-++-+00+000+0-+000+-+0-0+0+0-0+0P,

D �→ -0+00-+00+-0+0+00+00-++-+00+000+0+0-0++-00+0+0-+000+P,

E �→ 0+0-0++-00+0+0-++00-+0+00+00+00+-0+00-+00+-0+0+0-0+0P.

with P = 0-+00+00+00+.

Proof. As previously for the paperfolding word, we define a new morphism
νrs obtained from ϕrs by adding to each letter information on the preceding
one:

νrs :

⎧
⎪⎨

⎪⎩

a0 → a0ba;

ab → acba; ba → abca; ca → dbbd; db → dccd;

ac → abba; bd → acca; cd → dcbd; dc → dbcd.
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The morphism ϕrs and its fixed point v are obtained from νrs and its fixed
point w by the identification a0, ab, ac �→ a, ba, bd �→ b, ca, cd �→ c, db, dc �→ d.

We proceed as in the proof of Theorem 3. We set the parameter k of the
proof of Theorem 2 to equal 26. Write urs = U [0]U [1] · · · as a concatenation
of Λ-blocks U [i]. All factors of v of length 2 appear in its prefix of length 14,
so all adjacent Λ-block appear in the prefix of urs of length 14× 26. Taking
the prefix of length 14× 26 of drs, we observe that it coincides with the word
δrs(w[0..13]) where

δrs :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a0 �→ +00+00000-++00-++00-+0+00+00+00+-0+00-+00+-0+0+0-0+00-+00+00+00+,

ba, cd �→ 0+0-0++-00+0+0-++00-+0+00+00+00+0+0-0++-00+0+0-+000+0-+00+00+00+,

ab, dc �→ -0+00-+00+-0+0+00+00-++-+00+000+0-+000+-+0-0+0+0-0+00-+00+00+00+,

ca, bd �→ -0+00-+00+-0+0+00+00-++-+00+000+0+0-0++-00+0+0-+000+0-+00+00+00+,

ac, db �→ 0+0-0++-00+0+0-++00-+0+00+00+00+-0+00-+00+-0+0+0-0+00-+00+00+00+.

Each δrs-image of a letter ends with the word 0-+00+00+00+ of length 12.
This word P is shorter than the longest palindrome in urs, so we cannot
directly deduce that the type of the block U [n] depends only on U [n − 1].
By Proposition 1, the number drs((n − 1)26) depends on the previous 14
values of drs that correspond to a palindrome ending at position (n− 1)26 of
urs. We claim that such a palindrome has length at most 12. This implies
that drs((n− 1)26) is determined by the previous 12 values of drs. If such a
palindrome has length greater than 12, it must be of length 14 as urs contains
no palindromes of length 13. Two of the Λ-blocks end with 110100011101
and the remaining two end with 001011100010. It is straightforward to see
that neither suffix can be covered by a palindrome of length 14 in the required
way. Thus the palindrome has length at most 12. A similar argument can be
repeated for the number drs((n − 1)26 + 1). Since each δrs-image ends with
P of length 12, we deduce by Proposition 1 that the type of U [n] depends
only on U [n− 1] not on its type. We may now repeat the arguments of the
proof of Theorem 3 and conclude that drs = δrs(w) (indeed ϕrs is injective
and ψ is injective on the set of Λ-blocks).

To prove the theorem, it remains to notice the symmetry in δrs and
identify ba, cd as B, ab, dc as C, ca, bd as D, ac, db as E. After renaming
a0 as A, we see that νω

rs(a0) equals μω
rs(A) after this identification. Thus

δrs(ν
ω
rs(a0)) = γrs(μ

ω
rs(A) and the claim follows.
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5. Computational results and conjectures

This section contains results of computational experiments which thus
do not give any theorems but only conjectures. For a fast computation of
the prefix palindromic length, we used an implementation [24] of the Eertree
data structure [20]; see also [21] for related algorithms.

5.1. Period-doubling word

Theorem 2 and the result for the Thue-Morse word allow to conjecture
that the PPL-difference sequence du of a k-automatic word is always k-
automatic. The following example, however, suggests that this is not the
case.

The period-doubling word upd is the 2-automatic word

upd = ϕω
pd(a) = abaaabababaaabaa · · · ,

where

ϕpd :

{
a → ab,

b → aa.

Clearly, it contains infinitely many palindromes, including all prefixes of
length 2n − 1. Thus Theorem 2 does not apply to it.

In our computational experiment, we estimate the cardinality of the 2-
kernel of the PPL-difference sequence dpd of upd. If dpd is 2-automatic, its
2-kernel must be finite. We estimate the number of its elements as follows.

Let m ≥ 1. Consider a sequence (dpd[2
en + b])n from the 2-kernel of

dpd and compute its prefix de,b such that 2en + b ≤ 4m. Only finitely many
different words de,b are nonempty: in particular, all such words of length
at least 2 correspond to e < 2m, so there are finitely many parameters to
consider. Then we exclude from the set of words de,b those which are proper
prefixes of another word of this set. Let km be the number of nonempty
words de,b that remain. Then, clearly, the 2-kernel of dpd contains at least km
elements.

The following table collects the values of km for m = 1, . . . , 11.

4m 4 42 43 44 45 46 47 48 49 410 411 = 4194304

km 2 9 22 66 145 297 584 1046 1816 3047 5051

km/km−1 4.5 2.444 3.0 2.197 2.048 1.966 1.791 1.736 1.678 1.658
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Our data thus indicates that the 2-kernel of upd contains at least 5051
distinct sequences. Moreover, a four times longer prefix gives at least 1.65
times larger 2-kernel, and the ratio decreases too slowly to conjecture that
it would tend to 1. This makes an impressive contrast with all the previous
examples where the size of the kernel rapidly stabilizes. Based on this, we
formulate the following conjecture.

Conjecture 2. The sequence dpd of the period-doubling word upd is not 2-
automatic, and so the prefix palindromic length PPLpd(n) of upd is not 2-
regular.

Another way to show that a sequence is not automatic would be to prove
that it has superlinear factor complexity function [3, Thm. 10.3.1]. However,
it does not look to be the case : we computed the factor complexity of dpd for
lengths up to 500 and found that, except for initial values, the values closely
follow a straight line with slope about 200. So, we could suggest that even if
the PPL-difference function of the period-doubling word is not 2-automatic,
it can still be morphic.

5.2. Fibonacci word

The Fibonacci word uf = abaababaabaab · · · is the fixed point ϕω
f (a) of

the morphism

ϕf :

{
a → ab,

b → a.

The Fibonacci word is a classic example of an infinite word; it is not k-
automatic for any k but is Fibonacci-automatic in the sense which we explain
below.

As usual, we define the Fibonacci numbers by the recurrence relation
F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. Every positive integer
n can be uniquely expressed as n =

∑
0≤i≤r aiFi+2 with ai ∈ {0, 1}, ar = 1,

and aiai+1 = 0 for 0 ≤ i < r. In this case, we call the word arar−1 · · · a0 the
Fibonacci representation of n and use the notation (n)F = arar−1 · · · a0. For
example, we have (3)F = 100 and (12)F = 10101. We also fix (0)F = 0.

As is well-known, uf [n] = b if and only if (n)F ends with 1; in the opposite
case, we have uf [n] = a. Thus every symbol of the Fibonacci word can be
computed from the Fibonacci representation of its index by a simple automa-
ton. This means that the Fibonacci word is Fibonacci-automatic. In general,
an infinite word x is Fibonacci-automatic if there exists a deterministic finite
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automaton A such that every symbol x[n] is the output of A with input (n)F .
Many functions of the Fibonacci word are known to be Fibonacci-automatic
or Fibonacci-regular; for the definition and discussions of Fibonacci-regular
sequences, see [19, 10].

Analogously to a k-kernel for k-automatic sequences, we define the Fibonacci-
kernel of a sequencew as follows. For every finite word s ∈ {0, 1}∗, define (is)
as the increasing sequence of all numbers n such that (n)F ends with the suffix
s. For example, (iε) = 0, 1, 2, . . ., (i0) = 0, 2, 3, 5, 7, . . ., (i1) = 1, 4, 6, 9, 12 . . .,
and (i11) is empty since the Fibonacci representation cannot contain two
consecutive 1’s.

Now we define a sequence w(s) as the subsequence of w with indices
from (is), namely, w(s) = w[is[0]]w[is[1]]w[is[2]] · · · . At last we define the
Fibonacci-kernel of w as the set of nonempty sequences w(s) for all s ∈
{0, 1}∗.

For example, the Fibonacci-kernel of the Fibonacci word uf consists of
three elements: the Fibonacci word uf = uf (ε) itself and the sequences
aa · · · a · · · = uf (0) and bb · · · b · · · = uf (1). Indeed, we have uf (p0) =
aa · · · a · · · = uf (0) and uf (p1) = bb · · · b · · · = uf (1) for every finite word
p (or the sequences uf (p0) and uf (p1) are empty).

Notice that the Fibonacci-kernel of an infinite word always contains the
empty sequence because 11 does not occur in Fibonacci representations. We
largely ignore this fact.

Analogously to the proof for k-automatic words, it can be shown that a
sequence is Fibonacci-automatic if and only if its Fibonacci-kernel is finite.

The existing family of decidability results on Fibonacci-automatic words
[19, 10] is mostly analogous to the k-automatic case. It would be interesting
to find an example of a reasonable function of the Fibonacci word which takes
a finite number of values and is not Fibonacci-automatic. It seems that the
PPL-difference sequence df of the Fibonacci word is a good candidate for
that.

Similar to the period-doubling word from the previous subsection, we
consider words determined by the (nonempty) sequences of the Fibonacci-
kernel of df and the prefix of df of length |ϕ3m

f (a)| for m = 1, 2, . . .. Let
again km be the number of the corresponding nonempty words that are not
prefixes of each other. Our computations give the following values for km for
m = 1, . . . , 8.
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|ϕ3m
f (a)| 5 21 89 377 1597 6765 28657 121393

km 3 11 31 88 207 504 1139 2377
km/km−1 3.67 2.82 2.85 2.35 2.43 2.26 2.09

While this evidence is not as strong as in the case of the period-doubling
word, we conclude that the Fibonacci-kernel of df has at least 2377 elements
and the kernel does not seem to stabilize. We make the following conjecture.

Conjecture 3. The sequence df of the Fibonacci word uf is not Fibonacci-
automatic, and so the prefix palindromic length PPLf (n) of uf is not Fibonacci-
regular.

All Fibonacci-automatic words have linear factor complexity [18, Thm. 3.4],
so, as for the period-doubling word, a superlinear factor complexity func-
tion would give another evidence supporting the conjecture. However, the
sequence df seems to have linear factor complexity based on the first 500
values, and so, can still be morphic even if not Fibonacci-automatic.

6. Conclusion

In this paper, we have proven a general theorem on the prefix palindromic
length of automatic words containing finitely many distinct palindromes and
considered in detail two particular cases when this theorem is applicable.
These results were somehow predictable since they state that a reasonable
function of a k-automatic word is k-regular. What is more surprising is the
computational evidence that in some other situations this is not the case: it
seems that there exist simple k-automatic words, such as the period-doubling
word, such that their prefix palindromic length is not k-regular. If proven,
this result would enrich the whole theory of k-regularity.
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