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Abstract

Artifacts due to imperfect determination of the scanner geometry, beam hardening and diffuse
Compton scattering, limit the quantitative exploitation of radiographs or tomographies for non-
destructive evaluation. Exploiting the CAD model of an industrial part, a methodology is proposed
to refine the estimation of the CT-scanner geometry up to a scale factor, to correct or account for
artifacts, and to assess the metrology of the part. A projective model describing the formation of
X-ray images in CT-scanners is first introduced. The optimal parameters of the projective model are
identified using a novel CAD-based calibration method that relies on the registration of simulated
projections onto experimental ones. A metrological analysis based on the comparison between ac-
quired and simulated X-ray images is proposed. A turbine blade, for which an automatic inspection
procedure from few views is under development, is used as an example to illustrate the proposed
methodology. The parametrization accounts for the refinement of the projection geometry, the cal-
ibration of beam hardening and the estimation of scattering. It is shown that, using the proposed
procedure, the differences between acquired and simulated radiographic images are significantly re-
duced, indicating that the optimal parameters are properly identified. These differences are then
exploited to detect flaws of the part.

Keywords – X-ray artifacts, Sensitivity fields, NDE

1 Introduction

After outstanding developments in medical applications [1, 2], X-ray Computed Tomography (CT) is
rapidly being adopted for Non Destructive Evaluation (NDE) in industry [3, 4]. X-ray CT enables the
verification of the integrity of industrial parts by, for instance, detecting porosities and cracks [5], verifying
weaving patterns in 3D woven composites [6], and by performing dimensional metrology [3]. In particular,
the detection of geometrical imperfections of turbine blades is of great importance in aeronautics to
ensure the safety of passengers. Trained operators perform metrological analyses of turbine blades using
radiographic imaging, usually either by examining a CT volume computed by a reconstruction algorithm
[7, 8], or through the meticulous inspection of the images when insufficient projections are available.
In this paper, an alternative approach is proposed: the comparison of projections acquired with a CT-
scanner to projections simulated from the reference volume representing the ideal part, i.e. one without
defects, allows the detection of geometrical imperfections of the inspected part.

Estimating accurate geometrical measurements is essential for an exhaustive detection of dimensional
flaws. In these metrological applications, artifacts and time are limiting factors, especially in production
where few projections are available.

Artifacts result from the deviation between the physical phenomena responsible for the formation of
the image and the model used to describe it during the metrological analysis [9]. Indeed, the model is usu-
ally simplified as a geometrical projective model and with recourse to the Beer-Lambert’s law to account
for X-ray attenuation. Tomographic reconstruction methods or the raw analysis of X-ray images require
an accurate determination of the projection geometry (e.g. source-to-object distance, projection angles).
An inaccurate geometry definition undermines the quality of the reconstruction, e.g. generating blur
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artifacts, and of the metrological analysis, e.g. from magnification effects. Tomographic reconstructions
often rely on the strict application of Beer-Lambert’s law, which is not perfectly obeyed in CT-scanners
used for NDE. In this work, two main sources of errors are considered: beam hardening (BH) [10, 11]
and Compton scattering [12, 13], both of which deteriorate X-ray image quality or fidelity.

The other limiting factor is time, which can be reduced but at the cost of increased noise. When using
very noisy images, distinguishing noise from artifact-induced systematic deviations between measured and
computed radiographs becomes increasingly difficult. Thus, a proper usage of fast scans calls for a very
accurate determination of all artifacts.

Various techniques have been developed to mitigate X-ray CT artifacts.

• Projection geometry is usually determined via the study of the projections representing a calibration
object whose geometry is known with a great accuracy [14, 15]. It can be further refined in software
products when applying reconstruction algorithms to account for rotation axis offset. However,
these steps may be insufficient to provide an accurate description of the tomograph set-up.

• The calibration of BH consists in acquiring radiographs of a known reference part and fitting a
parametric function to the point cloud of pixelwise detector attenuation vs. traversed thickness
by the least-squares method [10, 16]. This method produces satisfactory results but only a few
parameters can be safely determined for the attenuation function.

• Signal processing techniques have been used to estimate scattered X-ray beams, e.g. by modeling
the effect of scattered rays in pixel intensities as the convolution of the primary signal with a kernel
to be identified [17, 18]. Deconvolution algorithms have also been proposed to obtain scatter-free
projections, but their numerical stability is poor, leading to unreliable results [19, 20].

This paper proposes a CAD-based calibration method to estimate and correct projection geometry
parameters, up to a scale factor, and artifacts in a unique formalism. It uses only the projection images of
the inspected object and its numerical model (e.g. CAD model), i.e. does not require additional projection
data, phantom object, or landmarks. The use of prior knowledge of the object shape and material yields
an improvement in the quality of the estimation and the correction. Section 2 details the challenges
addressed in this paper, namely the correction of the projection geometry, the calibration of BH and
the estimation of scattering. Projection geometry parameters include the source-to-detector distance,
the source rotation axis and the orientation of the imaged object. For BH, a parametric representation
of the absorption length curve is used, which resumes the absorption calibration to the estimation of
few parameters. Likewise, scattering is approximated by a convolution of the geometrical projection by a
scattering kernel which is itself parametrized. In these three cases, it is proposed to formulate the problem
as a parametric model, and fine tune those parameters so as to match observations. A description of
the proposed methodology used to identify the optimal parameters for the model is given in section 3.
Section 4 is devoted to the presentation of an example on which the CAD-based calibration procedure
has been applied. It consists in the identification of the optimal parameters based on a reduced number
of radiographic images of a turbine blade. The results are presented and discussed in Section 5.

2 Addressed problems

The intensity I(x) measured at detector position x ∈ Ω ⊆ R2 is defined as the intensity of the incident
X-ray beam attenuated along its path through the sample. The image I0(x) obtained when no sample
lies between the source and the detector is called the flat-field image.

The attenuation image P , also called the projection, is derived from the intensity image I and the
flat-field image I0: P = − ln (I/I0). Beer-Lambert law states that P (x) is equal to the line integral of the
material absorption coefficient along the line joining the source to the detector position x. This relation
is the main assumption used in all tomographic applications as it relates the measured data to the object
geometry and composition. It is an excellent approximation for monochromatic and incoherent X-ray
sources. However, scanner sources typically have a broad spectrum of energy, and hence Beer-Lambert’s
law is usually no more than an approximation.

The projection images are processed via reconstruction algorithms, image processing methods, or sim-
ulation of X-ray images, to get a better vision of the inspected part. Therefore, for computed tomography,
numerical tools are of fundamental importance. The simulation of radiographic images is an easy linear
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problem, but it makes use of an enormous amount of data. It is essential that such computations be
very fast. One has the choice of commercial products or open-source tools. Commercial tools implement
methods to simulate projections, taking into account multiple artifacts with elaborated physics-based
models, however, they are not well fitted to the inverse problem analysis which is the purpose of re-
construction and of quantitative NDE. Open-source tools with high numerical efficiency, including GPU
optimized codes (GPU-accelerated operations, optimized algorithms), are available [21], but are based
on the unmodified Beer-Lambert’s law. Such powerful open-source tools can still be used efficiently for
optimizing image reconstructions if an accurate description of the formation of the images is established.

2.1 Projection geometry

The information on the projection geometry is usually determined before or after a tomographic acqui-
sition, often using a calibration object with a well known geometry and which is easily readable from
its projection [14, 22]. This step aims to deliver the geometrical description of the tomograph set-up
captured in a set of parameters, e.g. position of source, axis of rotation (position and orientation), detec-
tor (position and orientation). However, these geometrical parameters may be inexact. The fine tuning
of these parameters may be proposed to operators by the commercial reconstruction software based on
a subjective assessment of the reconstruction quality which is useful because an inaccurate geometry
description may compromise a proper reconstruction in particular for metrology assessment [23].

2.2 Beam Hardening

In CT systems, X-ray beams are polychromatic and the attenuation coefficient varies with photon en-
ergy, thus the simple Beer-Lambert attenuation law does not describe the absorption phenomenon well.
Specifically the distribution of X-ray energies changes with the traveled distance in the material, and
consequently the effective (i.e. integrating over all X-ray energies) absorption is no longer a material
property. This phenomenon, known as beam hardening (BH), implies for a monomaterial, a non-linear
relationship between the gray level of an attenuation image and the thickness of the part the beam passed
through. Should Beer-Lambert’s law still be used in the polychromatic case, a deviation between the
model and the actual measurements would be observed. This would lead to a misinterpretation of the
grayscale values where thicknesses are underestimated, yielding overestimated attenuation coefficients,
which in turn deteriorates the quality of the reconstructed volume in the form of streaks and flares, known
as beam hardening artifacts [11].

In the case of monomaterial parts, these artifacts can be corrected through the calibration of the
attenuation. It consists in identifying the relationship between the gray level P (x) of the measured
attenuation image and the thickness of the material T (x) the X-ray beam has gone through before hitting
the pixel detector x (T is called a thickness map). It thus reduces to a non-linear gray level re-encoding
represented by a function U : R+ 7→ R+ such that U (T (x)) = P (x), see Figure 1. A mere gray level
re-encoding with U−1 allows an attenuation image P to be transformed into a thickness map T , hence
enabling a legitimate use of Beer-Lambert’s law even for polychromatic sources. The aim of BH correction
is to determine the function u that best approximates U . Because it depends on the source technology
and settings, u cannot be precomputed and is instead inferred from observations. The parameters of
the correction function are usually identified by acquiring projections of a known reference part, then
fitting the function to the point cloud — pixelwise detector attenuation vs. thickness — by the least-
squares method [10, 16]. This fit is performed via the minimization of the error between observation and
estimation, on a pixel-per-pixel basis. Such an approach does not allow for many parameters to describe
the attenuation. Usually, odd order polynomials are chosen to keep the correction function monotonous,
and a maximum polynomial order may be typically 5, leaving two unknown parameters [24, 25] since
the linear term may be conventionally set to a unit prefactor. The proposed CAD-based calibration
procedure permits many more degrees of freedom to be chosen while avoiding regression stability issues.

The function u is discretized over a basis of shape functions φk,

u(ξ) =

K∑
k=1

ck φk(ξ) (1)

where ck are parameters to be determined. u being defined up to an arbitrary scale factor, a convention
is used to lift this degeneracy, for instance by imposing du

dξ = 1 for ξ ∼ 0. A desirable property for φk
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Figure 1: Differences between monochromatic assumptions (blue line), and polychromatic
measurements (green dashed line). The aim is to determine the relationship between the two curves

through the fit of a parametric function u (red line) to observed data.

is that the addition or removal of one of these functions has only a local effect on the function u. This
amounts to saying that, for a given k, φk acts on a restricted range of values for ξ, i.e. φk has a compact
support.

In this work, a piecewise-linear function for u is used. Besides its simplicity, it has the advantage of
being a good interpolant of U with the property that, the more parameters, the better the interpolation,
without loss of stability. Considering a discretization ξ0, ξ1, . . . , ξK+1 of the gray levels of the thickness
map, φk is the triangular function, compactly supported, defined by

φk(ξ) =


ξ−ξk−1

ξk−ξk−1
if ξk−1 ≤ ξ < ξk

ξk+1−ξ
ξk+1−ξk if ξk ≤ ξ < ξk+1

0 otherwise

(2)

Once the function u described by (1) and (2) is identified, it can be applied to each pixel of the simulated
projections. The study of the differences between acquired and simulated projections with the correction
of BH assesses the relevance of this choice of model.

An optimal discretization must meet two conditions:

1. The discretization must properly reflect the curvature of the BH calibration function: the resolution
of the mesh must be higher in zones of high curvature than in zones of low curvature,

2. The number of points observations covered by the shape function φk has to be large enough to
estimate the corresponding parameter ck.

To perform an ideal discretization satisfying condition 2., it is suggested to carry out a sampling via
an arithmetic sequence on the cumulative frequency of the gray levels of T . This produces a sequence
ξ0, ξ1, . . . , ξK . The last shape function is extended to infinity assuming a constant value so that the
model can cope with the highest material thicknesses: ξK+1 = +“∞” (in practice, a sufficiently high
value, i.e. maximum thickness, is chosen). This discretization can be further refined so that condition 1.
is verified, potentially at the expense of increasing the number of interpolation shape functions and thus
the number of parameters.

2.3 Compton scattering

In a radiographic image, over-intensities are observed in regions away from the part where the absorption
of X-rays is null or negligible. They originate from X-rays scattered away by the sample due to, inter
alia, the Compton effect (Figure 2).

The measured intensity at pixel x is described as the sum of two components: a primary one IP (x),
derived from photons passing directly through the object without scattering or absorption, and a sec-
ondary contribution IS (x), that corresponds to photons scattered away from the initial trajectory by
the Compton effect. Although scattering leads to complications in the analysis of radiographic images,
it has a very minor effect in most applications of material science where energies are large (in contrast
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Figure 2: Illustration of Compton effect. A beam emerging from the source interacts along its path with
the atoms of the object: X-ray photons are scattered away from their initial trajectory, leading to an

additional signal captured by the detector.

to medical applications). Hence scattering is treated as a small perturbation and multiple scattering is
neglected in front of single scattering. Usually, CT reconstruction does not account for scatter, leading to
artifacts in the reconstructed volume such as streaking or cupping [11, 13]. It may also cause a deviation
of dimensional measurements from their actual values because of the difficulty to position edges precisely.

Methods using signal processing techniques have been developed to estimate and correct for scattering
effects. The scattered X-ray distribution can be predicted via Monte-Carlo (MC) simulations [26, 27].
Although it is a powerful tool, the poor convergence properties of MC sampling leads to time consuming
calculations. Point-Spread Functions (PSFs) have been used to describe single scattering of the pencil
beam [28, 29, 30, 31]. PSFs are represented as the convolution between the incident photon flux and a
kernel to be determined.

The above modelling is 3D and thus costly and difficult to be coupled to tomographic reconstruction.
Following [18, 19, 20], it is proposed to resort to an approximation that captures a large part of the
scattering. The approximation formulas are derived from an expression of the scattered intensity based
on the interactions a beam undergoes as it propagates through the object [32]. The intensity IS(x)
received at a pixel x from all the scattered rays is expressed as

IS(x) =

∫
x′
T (x′) I0(x′) e−T (x′)/ξ G(x′ − x) dx′ (3)

where T is the thickness map, I0 is the flat-field image, ξ is the attenuation length of the radiation, and
G is a scatter kernel to be estimated. As long as the scattering occurs in a short range (x′ − x small as
compared to ξ), the gradient of I0 may be ignored so that I0(x′)/I0(x) ≈ 1, and thus

IS(x)/I0(x) = (IA ∗G) (x) (4)

with IA(x) = T (x) e−T (x)/ξ.
The kernel G is parametrized, i.e. represented as the weighted sum of basic kernels kσ,

G(x) =
∑
σ∈Σ

aσ kσ(x) (5)

with Σ ⊂ R+. Coefficients aσ need to be adjusted to the best fit of the observations. The parametrization
is expected to account for the effective scatter distribution with a reasonable number of parameters. The
contribution of Compton scattering suggests that the kernel is bell-shaped. A superposition of Gaussian
functions can be chosen to describe it, so that the kernels kσ are modeled as

kσ(x) = gσ(x)− δ(x)

2πσ2
(6)

where gσ is the 2D-Gaussian filter with standard deviation σ. The introduction of the Dirac function δ
is based on the observation that photons that were supposed to reach the detector at pixel x, but that
have been deflected, reach the detector at another pixel. Hence, its contribution is removed from the

5



measured signal. This part of the kernel is merely equivalent to increasing the absorption in proportion
to the crossed thickness T (x), as if the coefficient of absorption of the material were slightly increased
by the total amount of scattering. Note that the beam may also be scattered away from the detector,
and here again contributes to an additional attenuation. In the end, provided that an adjustment of the
attenuation coefficient is considered (as for BH correction), δ in (6) may be omitted.

In order to account for scattered photons that reach the detector over a broad range of distances from
pixel x, the set Σ =

{
2k, k ∈ L ⊂ R+

}
is suggested. This geometric progression is introduced to limit

the overlap of Gaussian kernels gσ which would render the determination of the kernel ill-conditioned.
Once the kernel G is identified, the correction of the images produced by the system via deconvolution

techniques should be avoided because it is known to be an ill-behaved problem generating spurious high
frequency signals. Instead, an alternative method consists in computing the scatter signal by numerically
simulating the radiographic images and by convolving them with the kernel G. The subtraction of this
signal from the acquired images is expected to produce close to scatter-free radiographic images provided
they are properly registered.

The correction of the above artifacts as well as the determination of the precise geometry of the tomo-
graph finally reduce to a single problem: the identification of the optimal parameters needed to produce
an accurate synthetic radiographic image from a known object geometry and a numerical simulation of
the projection.

3 Calibration of parameters

A calibration procedure, based on sensitivity fields, is proposed to identify optimal parameters for the
model describing the formation of images in X-Ray CT-scanners. This model is defined by the projection
geometry parameters p = (pk), the coefficients c = (ck) of the beam hardening calibration function (1),
and the amplitudes a = (aσ) of the scattering kernel (6).

Suppose the K parameters dk, gathered in a vector d = (dk), are to be identified. Let Pna (x), n ≤ N , be
the N projections acquired with a CT-scanner, regarded as reference images. Given an initial estimate
d0 and a reference volume of the inspected part, projections Pns (x;d0) are numerically simulated. The
reference volume representing the ideal design can have several formats: a CAD model described by
analytical functions or by a polygon mesh, a tomographic volume, etc. The sensitivity fields

snk (x) =
∂Pns (x;d)

∂dk

∣∣∣∣
d=d0

(7)

are then computed. The partial derivatives involved in the calculation of these fields may be approximated
by finite differences

snk (x) =
Pns
(
x;d0 + h ek

)
− Pns

(
x;d0

)
h

(8)

where ek refers to the kth vector of the canonical basis of the space of parameters, i.e. (ek)i = δki. These
sensitivity fields quantify how small perturbations around the value d0 affect the simulated projections
Pns (x) for each parameter dk.

Projection residuals ρnd0(x) = Pna (x)− Pns (x;d0), i.e. the differences between X-ray acquisitions and
simulated projections, are interpreted as resulting from the misidentification of the parameters. In order
to quantify the discrepancy between estimated and optimal parameters, these residuals are projected in
the least-squares sense onto the sensitivity vectors,

δd∗ = arg min
δd

N∑
n=1

‖ρnd0(x)− sn(x) δd‖22 (9)

where the notation sn(x) =
(
sn1 (x) . . . snK(x)

)
is used, and δd is the column vector containing the

variables of the minimization problem. The use of the L2-norm can be justified as being optimal when the
images Pna (x) are polluted by white Gaussian noise: the maximum of the log-likelihood corresponds to
the minimum of the L2-norm. Assuming a Poisson noise on I(x) and I0(x), a change in the expression of
(9) into a weighted sum may be used to take into account the local uncertainty. δd∗ represents the error
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made in the identification of the parameters, and thus provides the amount by which the parameters d0

are to be changed to reduce the discrepancy between Pna (x) and Pns (x;d0). This value is given by

δd∗ = H−1b (10)

where the matrix H is defined by

Hij =
∑
n

∑
x

sni (x) snj (x)wn(x) (11)

and b is the vector whose components bk are given by

bk =
∑
n

∑
x

snk (x) ρnd0(x)wn(x) (12)

with wn(x) the reciprocal of the variance of the noise polluting Pna (x). Note that H represents the
matrix of the second derivatives of the cost function (9) with respect to δd, assuming the sensitivity
fields snk (x) do not depend on δd, and is thus referred to as the Hessian matrix.

Repeating this CAD-based calibration procedure usually leads to a fixed point solution (one that no
longer evolves) after few iterations. Although there is no guarantee to obtain a unique solution, the
proposed parametrization together with the use of a complex shape CAD model (with high and low
frequency power) and a good initialization make the problem well behaved.

It is important to emphasize that if the observed object differs from its model by a mere homothety,
the projection geometry parameters can be adjusted to inexact values and yet produce a perfect match
of the projections. Assuming the analyzed object has a complex shape, this scale factor is the only
degeneracy of the geometrical calibration. It can only be lifted if one additional length measurement is
performed and used jointly in the calibration process.

It should be noted that the very same procedure holds for any set or subset of parameters. Because of
non-linearities, the order in which subsets may be considered is important. An appropriate rule is to rank
the impact of the projection geometry, beam hardening and Compton scattering, and fit corresponding
parameters in descending impact order. The impact can be assessed by the observation of the projection
residuals computed before any correction.

4 Case study

The inspection of a turbine blade (Figure 3) was selected as a case study to illustrate this methodology.
This mono-material part is made of a monocrystalline nickel alloy.

Figure 3: View of a turbine blade [33].

The reference volume representing the ideal part was the CAD model of the part described by a
polygon mesh. To obtain a universal structure — i.e. usable by a vast majority of software — describing
the 3D volume, it was discretized into voxels whose size were 0.05 mm using a ray tracing algorithm
similar to that described in [34]. Each voxel was characterized by a binary numerical value (0 or 1)
depending on whether it lies inside or outside the object.

7



A set of N = 6 intensity images representing the turbine blade from complementary points of view
were exploited, each image being obtained from the average of 2 frames with an exposure time of 354
ms each. This is in line with the number of views routinely used for their inspection. The images have
been acquired with the XT H 450 system developed by Nikon Metrology, with a high-energetic source
of 390kV. The tube current was set to 641 µA. The system produced 2000 × 2000-pixel radiographs,
each pixel being encoded as a 16-bit unsigned integer. The associated attenuation images were denoted
Pna , n ≤ N .

From the reference volume, attenuation images Pns , n ≤ N , were simulated using the ASTRA Toolbox
[21]. The latter proposes projection operators with highly flexible source/detector positioning, GPU-
acceleration and is callable from Matlab and Python. A scale factor for the gray levels of the reference
volume has been adjusted (by taking into account the actual attenuation coefficient of the part) so that
the projection Pns of the binarized volume matches the true projection Pna .

The following description of the parameters was used to perform the calibration.

• The projection geometry was controlled by a vector p of 14 parameters: the size of detector pixels,
the source-to-object distance (SOD), the 6 components of the position of the detector (3 translations,
one of which with respect to the source via the source-to-detector distance, SDD, and 3 rotations),
and the 6 components of the position of the studied object (3 rotations and 3 translations).

• The BH calibration function u was modeled as a sum of K = 8 triangular functions φk controlled
by a K-component vector c. In the simulated images, the attenuation of the X-ray beam follows
the Beer-Lambert’s law, so that Pns (x) ∝ Tn (x) where Tn denotes the nth thickness map. This
relation is based on the assumption that the simulated images perfectly match the acquired images.
Although it may not be actually the case at the beginning of the CAD-based calibration procedure,
it becomes more and more valid along iterations. Hence, the discretization described in Section 2.2
was performed, not on the gray levels of the unknown Tn, but on those of Pns . The last discretization
point was set to ξk+1 = 20.

• Regarding the scatter kernel used to reproduce the scatter signals and described by a vector a of 7
parameters, the gaussian standard deviations σ are defined by the sequence Σ =

{
2k, 2 ≤ k ≤ 8

}
.

The CAD-based calibration procedure was performed using restricted (rectangular) Regions Of Inter-
est (ROIs) of the images. The information on the projection geometry and BH only come from the region
containing the projection of the object. On the other hand, the scatter is more observable in regions
outside of it (as it is clearly due only to scattering, and does not depend on the other parameters such
as geometry or BH), more specifically next to regions containing the projection of the thickest part of
the object. Based on these elements, two ROIs were considered for each view, as illustrated in Figure
4, depending on which parameters were being fine-tuned. If only a subset of images is considered, the
procedure is not optimal but is much faster (less data to process), and the benefit of using all data is
modest provided the subregions are well chosen.

The calibration of the parameters p, c and a was conducted iteratively according to the procedure
described in Algorithm 1. A misregistration between observed and simulated images is likely to be
confused with small angle scattering, distorting the entire calibration procedure. Hence, the scatter
parameters were at first not considered, and were added to the procedure after the parameters p and c
first converge. The first and final convergence criteria can be based on a maximum number of iterations,
on the computed increments (δp∗, δc∗ and δa∗), or, as used in this work, on the discrepancies between
observed and simulated projections after the iteration. The order in which the calibrations were performed
was based on the above-mentioned principle. Close to the fixed point, one may refine the parameters in
any order.

A study has been performed to quantify the noise polluting a projection and thus determine wn(x). A
series of intensity images representing the turbine blade from the same point of view have been acquired
without modifying the acquisition parameters. The cologarithm of these images normalized by the flat-
field image are computed. A mean projection, i.e. noiseless, is determined, which allows the extraction

of the noise polluting the projections. Its variance is given by V (x) = σ2
(

1
N(x) + 1

M(x)

)
, with σ2 ≈

1.7× 10−5 (for the CT-scanner and acquisition parameters used), and where N(x) and M(x) correspond
to the noiseless (i.e. simulated) intensity image and flat-field image, respectively.
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Figure 4: Example of the two ROIs for one view. The ROI associated to the calibration of the
projection geometry and BH is displayed in green, the one associated to the calibration of scattering is

displayed in red.

Algorithm 1: Iterative calibration procedure

Data: Initial estimations p0, c0, a0

Result: Optimal values p∗, c∗, a∗

do
Simulate images with the current parameters p, c and a;
Compute δp∗ using (10) and update p← p+ δp∗;
Simulate images with the current parameters p, c and a;
Compute δc∗ using(10) and update c← c+ δc∗;
if First convergence criterion reached then

Simulate images with the current parameters p, c and a;
Compute δa∗ using (10) and update a← a+ δa∗;

while Final convergence criterion reached ;

Once the parameters estimated, the BH and scatter are reproduced on the simulated images, which
are then denoted with a star superscript, Pn,∗s .

5 Results and discussions

The discrepancy between a simulated and acquired intensity image before and after the CAD-based
calibration procedures for restricted regions of interest of the image is displayed in Figure 5. Prior to
any adjustments, the differences were mostly due to an incorrect projection geometry, whose correction
is illustrated in Figure 6. The major change concerns the adjustment of the position and orientation of
the volume, and of the position of the detector, see Table 1. The second most important factor was the
correction of gray levels brought by BH corrections. The reproduction of BH lead to an attenuation of
the differences inside the part, thus allowing a better interpretation of the graylevel intensities as the
thickness of material crossed by the beam. By reproducing scattering, the differences around the part
were reduced, resulting in a finer edge definition. Figure 5 shows that the mis-estimation of the projection
geometry and the beam hardening phenomena have a greater impact than the scatter (most visible in
subfigures c and d). This observation confirms the order chosen in Algorithm 1. Figure 7 indicates that
a stable solution was reached after only a few iterations. The norms of residuals were reduced on average
from 959 to 96, that is by a factor of 10.

It is assumed that, after the CAD-based calibration procedure, Pn,∗s perfectly matches Pna , ∀n. Let
Pn,+s be the simulated attenuation images after the calibration procedure, but for which the BH is left
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Parameter Initial estimation Final estimation Change
Size of detector pixels (mm) 0.20 0.21 0.01
SOD (mm) 226.43 217.96 -8.47
SDD (mm) 1009.67 1034.67 24.99

Translation vector of the detector (mm)
0.00 -2.60 -2.60
0.00 13.64 13.64

Rotation angles of the detector (deg)
0.00 -0.16 -0.16
0.00 -0.18 -0.18
0.00 -0.15 -0.15

Translation vector of the studied object (mm)
3.14 5.99 2.85
8.97 17.20 8.23
0.45 4.26 3.81

Rotation angles of the studied object (deg)
0.00 -3.30 -3.30
0.00 2.07 2.07
0.00 1.03 1.03

Table 1: Change in the projection geometry.

a b c d e

Figure 5: Difference (color) between acquired and simulated intensity images, before (top) and after
(bottom) identification of the projection geometry and consideration of BH and scatter artifacts.
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Figure 6: Modification of the projection geometry using the proposed CAD-based calibration method
for N = 6 (distance expressed in mm).

Figure 7: Evolution of the L2-norm of residuals over iterations.
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uncorrected. As stated before, the simulation of radiographic images is based on the Beer-Lambert’s
law, so that Pn,+s (x) ∝ Tn (x). Thus, by generating the point cloud (Pn,+s , Pna ) one can observe the
discrepancy between the Beer-Lambert’s law and the experimental measurements, see Figure 8(a). The
estimated function u provides a good approximation of the scatter plot of the projection data Pna . It is
shown that a different discretization, from 4 to 12 parameters (Figure 8(b)), leads to a similar function.
By applying u to each pixel of Pn,+s , the simulated images Pn,∗s were more faithful to reality, as shown
by the residuals Figure 5.

This quality of calibration can be explained by the fact that, unlike the usual approaches, the spatial
correlations of the projection were exploited. The measured image resulted from the projection of a part
on the detector. This part provided information on the expected gray levels given its geometry, position
and orientation in space and chemical composition. The proposed methodology used this knowledge to
produce a more stable and accurate calibration of BH.

(a)

(b)

Figure 8: Result of the calibration of BH. (a) Result for a view n restricted to the associated ROI with
K=8. The blue line shows the ideal case given by Beer-Lambert’s law, i.e. no beam hardening. The

green point cloud presents the measurement Pna (x). The red curve shows the piece-wise linear function
u after calibration of the parameters ck. (b) Estimated piece-wise linear function u with less and more

parameters.

The estimated scatter kernel G is represented in Figure 9. At high energy, the scattering probabilities
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are rather small, and a photon is mostly scattered in the forward direction. Then, the intensity of the
scatter signal is negligible as compared to that of the primary signal. These characteristics were observed
here as the scatter kernel has a low amplitude and a small radius. In CT, the correction of such a signal
is not necessary, but it becomes crucial when individual radiographs are to be quantitatively analyzed.

(a)

(b) (c)

Figure 9: (a) Estimated scatter kernel G over x1 for x2 = 0. Difference (color) between acquired and
simulated intensity images (b) without and (c) with scatter correction.

The final differences, Figure 5 bottom, represent the deviation between the ideal part (CAD model)
and the inspected part. A small difference in thickness at the trailing edge of the blade (subfigure c) is
observed, and two cooling holes (subfigure d) are misplaced. These two differences have no consequence
on the quality of the produced part, but simply reveals the excellent sensitivity of the analysis after
proper calibration. They would not be detectable from the raw data (Figure 5 top).

The identified parameters are used to enhance the quality of the tomographic volume. A set of
3000 projections have been acquired using the same CT-scanner and acquisition parameters than the
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few projections exploited to estimate the optimal parameters. The associated tomographic volume is
calculated (i) without any gray level correction on the projections and (ii) after using the function u−1

on the gray levels of the projections. Two regions of slices of the reconstructed volume are displayed in
Figure 10. They indicate that the gray level gradients in homogeneous area are highly reduced, while
being increased at the frontiers between the part and the background. This phenomena is observed at
a global scale (exterior surface, see Figures 10a and 10c) and at a more local scale (cooling holes, see
Figures 10b and 10d). During the industrial inspection process, the tomographic volume is segmented
into two parts: the object and the background. The volume reconstructed using corrected projections
would lead to a more faithful segmentation and thus a more accurate control.

(a) (b)

(c) (d)

Figure 10: Tomographic volumes using (a) and (b) uncorrected projections, (c) and (d) projections
corrected with the identified function u−1.

The findings of this study does have some limitations. Some phenomena that result in artifacts,
e.g. afterglow, are still to be included in the model. The proposed method renders such additional
corrections easily accessible once a suitable parametrization is formulated. Regarding the identification
of the projection geometry, the use of a simple geometry part might lead to an ill-posed problem. This
point was not addressed nor studied in this work. Additionally, the sensitivity fields rely on a linearization
of the problem, which suggests that only small corrections are accessible to the procedure. This can be
relaxed by a coarse-grained (i.e. multi-scale) procedure, in which the residuals and sensitivity fields are
observed at the most relevant scale. Finally, in practice, another limitation is the important computation
time due to the voxelisation step. The voxelisation algorithm may be improved (e.g. parallelized) to
make this step faster. Other strategies can be adopted to improve the execution time, e.g. compute
the sensitivity fields in a single judiciously chosen direction and deduce the sensitivity fields in the other
directions from the ones of the previous iteration. This limits the number of voxelisation steps by iteration.
Other X-ray simulation tools that uses directly the CAD model, and thus does not require a voxelisation
step, might reduce the computation time.
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6 Conclusion

A parametric model describing the formation of images in X-ray CT-scanners that embeds phenomena
occurring during acquisition, namely the Compton scattering and beam hardening, is presented. A
calibration procedure is proposed to estimate the optimal values of the model parameters. Using the
differences between observations and numerical simulations from the CAD model, their norm is minimized
through the use of sensitivity fields. This method requires the acquisition of a few projections, without any
calibration object, phantom or landmark. Applied to a case study, the associated iterative algorithm has
shown the feasibility and interest of the method as the residuals were significantly attenuated throughout
the procedure. Only a few iterations are needed to obtain a stable solution with a reduced number of
views. The CAD-based calibration procedure introduced in this paper allowed the determination of the
projection geometry and estimate X-ray artifacts arising from different phenomena.

The chosen parametrization ensures a well-behaved problem. The geometric correction however suffers
from a degeneracy issue involving a scale factor, which is easily lifted by one additional length measure-
ment. The number of parameters appears to have no impact on the quality of the calibration, provided
that no degeneracy of the parametrization is introduced. The multi-view nature of the procedure is
essential to produce a good estimate as it permits the model to take full advantage of different angles of
projection.

In this study, the procedure has been carried out with a reduced number of views to meet the industrial
demand for Non Destructive Evaluation of turbine blades. The final residuals reveal the discrepancies
between the inspected part and the ideal design given by the CAD model. Based on this analysis, a NDE
can be performed to control the part under inspection. For instance, a baseline measurement, e.g. derived
from the noise found in a radiographic image, allows the detection of dimensional irregularities. It is
shown that the estimated artifact corrections enhance the quality and reliability of the reconstructed
tomographic volumes.

The question of the number of projections to be exploited is interesting. The method requires a
minimal amount of information to estimate the various parameters. As more images N are considered,
the accuracy of the parameters is expected to be increased, but more and more faintly with N whereas
the processing time increases essentially linearly with N .
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