JMHIB@T ~ /B:K KQ/2HHBM; 7Q" +v#2 T?VDhE
[2b+ BTiBp2 77 K2rQ F

JQmbb K> MB- .QKBMB[m2 "HQmMBM- _Q#2'i >2BM B-
0 M:?2Hmr2- M/ 2 b qQ iK MM

hQ +Bi2 i?Bb p2 " bBQM,

JOQmbb K' MB-.QKBMB[m2"HQmMBM- _Q#2'i>2BM ' B+?- 2M/ _2MbBM]
T /B;K KQ/2HHBM; 7Q" +v#2 T?vbB+ H bvbi2Kb, /2b+"BTiBp2 7° K
JQ/2HBM;- kykR- ky- TTXeRR @ ejNX RyXRyydfbRykdy@ykR@yy3de@:

> G A/, ? H@yj8dkd3k
2iiTh,ff? HXb+B2M+2f? H@yj8dkd3k
am#KBii2/ QM R9 62# kykk

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

Software and Systems Modeling (2021) 20:611-639
https://doi.org/10.1007/s10270-021-00876-z

THEME SECTION PAPER l')

Check for
updates

Multi-paradigm modelling for cyber—physical systems: a descriptive
framework

Moussa Amrant@ - Dominique Blouin?@® - Robert Heinrich®@® - Arend Rensink'® - Hans Vangheluwe® -
Andreas Wortmanr®’@®

Received: 6 April 2020/ Revised: 28 September 2020 / Accepted: 8 December 2020/ Published online: 9 June 2021
© The Author(s) 2021

Abstract

The complexity of cyber—physical systen@RS3 is commonly addressed through complerkZowsinvolving modelsin a

plethora of differenformalismseach with their own methods, techniques, and tools. Seonk3ow patternscombined with
particulartypes of formalismandoperationson models in these formalisms, are used successfully in engineering practice.

To identify and reuse them, we refer to these combinations of work ow and formalism patterns as mquietlidigms This

paper proposes anifying (Descriptive) Frameworto describe these paradigms, as well as their combinations. This work

is set in the context of Multi-Paradigm ModellifyIPM), which is based on the principle to model every part and aspect

of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s) and
work ows. The purpose of the Descriptive Framework presented in this paper is to serve as a basis to reason about these
formalisms, work ows, and their combinations. One crucial part of the framework is the ability to captuséraictural

essence of a paradigm through the concept paedigmatic structureThis is illustrated informally by means of two
example paradigms commonly used in CPS: Discrete Event Dynamic Systems and Synchronous Data Flow. The presented
framework also identi es the need to establish whether a paradmmilidatefollows, or quali es as, a (given) paradigm.

To illustrate the ability of the framework to supp@dambiningparadigms, the paper shows examples of both work ow and
formalism combinations. The presented framework is intended as a basis for characterisation and classi cation of paradigms,
as a starting point for a rigorous formalisation of the framework (allowing formal analyses), and as a foundaWié&ifor

tool development.

KeywordsMulti-paradigm modelling Foundations of model-based systems engineer@yper—physical systems

1 Introduction

C icated by E Syriani and M I Wi . . .
emmunicated by EUgEne syriant and Vanuet immer Cyber—Physical Systems (CPSs) are engineered systems that

B Arend Rensink emerge from the networking of multi-physical processes
arend.rensink@utwente.nl (mechanical, electrical, biochemical, etc.) and computational
Moussa Amrani

Moussa.Amrani@unamur.be

Dominique Blouin
Dominigque.Blouin@telecom-paris.fr

Robert He'_n”_Ch) 2 Télécom Paris, Institut Polytechnique de Paris, Palaiseau,
Robert.Heinrich@kit.edu France
Hans Vangheluwe 3

Karlsruhe Institute of Technology, Karlsruhe, German
Hans.Vangheluwe@uantwerpen.be 24 Y

University of Twente, Enschede, The Netherlands
Andreas Wortmann

Andreas.Wortmann@isw.uni-stuttgart.de University of Antwerp — Flanders Make, Antwerp, Belgium
6 RWTH Aachen, Aachen, Germany

University of Stuttgart, Stuttgart, Germany

1 Namur Digital Institute (NaDi), University of Namur, Namur,
Belgium

123

612 M. Amrani et al.

processes (control, signal processing, logical inference, plaf-he termMPM nds its origin in the Modelling and Sim-
ning, etc.) that typically interact with a highly uncertain ulation community in 1996, when the EU ESPRIT Basic
environment, including human actors, in a socio-economi®Research Working Group 8467 “Simulation in Europe” (SiE)
context. These systems enable many of our daily activitieformulated a collection of research directions and policy
and have become innovation drivers in important domaingguidelines §9] identifying the need for “a multi-paradigm
such as automotive, avionics, civil engineering, Industry 4.0methodology to express model knowledge using a blend of
and robotics. different abstract representations rather than inventing some
EngineeringCPSsrequires the contribution of experts new super-paradigm”. The main result was a vision where all
from different domains to solve the challenges related to theiparts and aspects of a complex system are modelled explic-
own discipline, but also to collaborate to make all parts workitly, using the most appropriate modelling formalisms to
together. BecausePSsare generally costly to fully buildand deal with engineering heterogeneity. The important aspect of
maintain, early modelling and simulation is a de facto techwork ow was not yet present. At rst, only problems were
nique crucial in their development. This enables reconcilindgdenti ed, but later on, the same group focused on combining
the multifaceted aspects of @PS studying safety-critical multiple formalisms 70] through architectural composition
and emerging properties, and planning for deployment evefas opposed to view composition). One main merit of the
before the physical parts of the system are available (e.g. vi@iE work was the inclusion a-causalmodelling to model
Hardware-in-the-Loop (HIL) simulation). physical phenomena, an effort that led to the design of the
The full complexity of CPSengineering is not covered Modelica language.
by single modelling paradigms. For instance, the Equation- Physical systems are often modelled using continuous
Based paradigm only covers the physical parts of the systemapstractions, e.g. Differential Algebraic Equations (DAES)
the Object-oriented paradigm only covers the code parts db express constituent equations relating physical variables
the system; and the Agile paradigm only covers work ow of interest. Software systems are often modelled using dis-
aspects of system development. Consequently, the hetercrete abstractions, e.g. State Automata to express the discrete
geneity and complexity o€PSsand their design activities changes made to data storedin memory by executing program
require the combination of multiple paradigms to describenstructions. A consequence of the fact tH@PSscom-
the entire system while including all relevant aspects. bine cyber (software) and physical components is that they
In this context, what is garadigmthen? The science are naturally modelled usingybrid modelling languages
philosopher Kuhn de nes it as “an open-ended contributiorthat combine continuous and discrete abstracti@@g The
that frames the thinking of an object study with conceptsmeaningful and usable integration of discrete and continuous
results and procedures that structures future achievementddmains is at the heart of dealing withiPS More generally,
[42]. Though seemingly far from the concerns in the dis-dealing with heterogeneity, both in the levels of abstraction
cipline of computer science, this de nition does highlight and in the formalisms used, is one of the major challenges in
the emergence of structurethat captures the object of dis- modellingCPSs
course and the existence @cedurs that guides achieve- The main contribution of this paperis a Descriptive Frame-
ments. work for MPM applied toCPSs The framework is based
In computer science, paradigms are probably best knowan a special kind of metamodel wheptaceholderscan
as a means for classifying General-purpose Programminige used, capturing variowsructural and processpatterns.
LanguagesGPLs). For example, Eiffel is Object-Oriented Such metamodels support expressing property expressions
and supports Contract-Based Design, Prolog is consideratat we call paradigmatic properties: they are used to
Declarative, while Lisp is Functional. A paradigm charac-capture the essence of a paradigm and can be bound to
terises both the syntand semantics of the language includ- existing elements of candidate formalism/work ow meta-
ing principles that govern it: Object Orientation imposesmodels (as well as their semantics) to determine if the
viewing the world in terms of communicating objects typedcandidate formalism(s)/work ow(s) effectively follow the
by classes, whereas the declarative paradigm relies on tenparadigm.
substitution and rewriting. The idea of combining several Although not completely formal, our framework allows
paradigms into a singl&PL led to more expressive, pow- experts to better grasp the essence of how tG€iEsare
erful programming languages such as J&@ [which is designed, while providing a common ground for a rigor-
Imperative, Object-Oriented, Concurrent, Real-Time, anaus engineering o€PSsbhased on theiMPM components.
Functional) and Maudelp] (which is Declarative, Object- Ultimately, in a next step not covered by this paper, this
Oriented, Concurrent, and Real-Time), among many otherframework aims to support tool builders, language devel-
Multi-Paradigm ModellingfPM) has only recently been opers, analysis engineers and other experts to reason about
recognized as a powerful paradigm on its own that can hel@PSsand gure out which formalisms, abstractions, work-
to design, as well as communicate and reason aliRBs ows and supporting methods, techniques, and tools are the

123

Multi-paradigm modelling for cyber—physical systems: a descriptive framework 613

most appropriateto carry out their task(s), thus minimis- 2.1 General definitions

ing accidental complexity due to non-optintabl selection.

Note that this paper does not intend to present a classi catioRrom alinguisticviewpoint, aparadigmhas three de nitions
of formalisms or work ows that could be used to engineerfrom the English dictionary:

CPSs However, our Descriptive Framework could be used

to better classify these elements by providing more precise_ A framework containing basic assumptions, ways of

descriptions for them. thinking, and methodology that are commonly accepted
This paper is a continuation of an effort started dur- by members of a scienti ¢ community];

ing the COSTAction IC1404 “Multi-Paradigm Modelling ~ _ A philosophical and theoretical framework of a scien-

for Cyber-Physical Systems (MPM4CPS), which surveyed ¢ school [of thought] or discipline within which are

languages and tools used for enginee@i5512] and cap- formulated theories, laws, and generalisations, as well as

tured the relationships between them in an ontology. More- {he experiments performed in support 58],

over, it signi cantly extends, and complements, a preliminary _ Amodel of something, or avery clear and typiesample
version of our Descriptive Frameworg] by (i) capturing the of something 1.1].

various components of a paradigm explicitly and (ii) demon-

strathg a S|mple paradigeombinationresilting in ayahd Although very general in nature, there are several aspects
paradigm, which could suggest that our framework is closed

C) . of these linguistic de nitions that are worth pointing out.
under the usual combination operators required fonthki- L I . .
. . First, in each of the above de nitions, a paradigm de nes, in
paradigms necessary for modelliG§Ss

. some sense,sructurethat is shared by several elements the
We organised the paper as follows. Sectigoresents an y

informal notion of paradigm to serve as a tutorial introduc-p.araldlgm N mtend.e(.jto capture. Second, aparadigm also pro
. . L . . vides a way ofdecidingwhether an element under analysis
tion to our Descriptive Framework, which itself is described PR _— .

in Sect.3. Section exempli es the framework with two possesses those “basic assumptions” for tting the structure.

well-known paradiams used f@PSdevelooment. Section Third, a paradigm organises the elements it characterises in
5 de nes a garadigm combinator namedy%bedd.ingand such a way that it becomes possibleréasonabout them
shows how to systematically build a paradigm candidate frorrgW't.h thf hel_p of *theories ! laws” and suitable “general-
candidates of the combined paradigms. Sedsibighlights Isations”). Finally, a paradigm results from agreement

) I etween “members of a [scienti c] community”: the pre-
and discusses related work from other communities, and Sec - . .
: : cise de nition may change over time and may be slightly
7 re ects on our results. Sectiod proposes future lines of

. different from different “schools of thought”, though sharing
research and concluding remarks. o .
basic assumptions”.
Inthe eld of philosophy of science, the most popular and
_ _ commonly agreed-upon de nition of the concept of paradigm
2 What is a paradigm? was formulated by Kuhr42], who distinguishes the follow-

ing:
Broadly speaking, paradigmacts as gatternfor describ-

ing a whole class of artefacts sharing similar characteristics The subject matter, i.e. what is to be observed and scru-
or designates a framework that encapsulates theories inside tinised: ’

a SC|e.nt| ¢ domain. We f"“n? to captl;]re the rEegnlnlgj_ of thle — The kind of questions that are supposed to be asked and
paradlgrln concept precisely enoulg . to make it qtlmatey probed for answers in relation to the subject;
amenable to computer-based analysis and reasoning. — How these questions are to be structured:

This section provides an intuitive and lightweight intro- - _ \\p4¢ predictions are made by the primary theory within
duction to what a paradigm is. We start by a small detour

the discipline;
in linguistics and epistemology to revisit the classical de ni- How thep results of scienti ¢ investigations should be
tions in these elds, before focusing again on their meaning interpreted;

in computer science. Using two well-known paradigm exam-
ples from computer science, namely the Object Orientation
andAgile developmemnparadigms, we clarify the core com-

ponents of our Descriptive Framework. The structure of this

framework is then described by means of a metamodel an-Ehe aspects highlighted by this philosophical de nition are
illustrated through typical usage scenarios similar to the linguistic ones pointed out above, although

differently framed. Kuhn gives some details about how the
reasoning takes place: he emphasises that a paradigress
1 http://mpmdcps.eu tionedin astructuredway, and that some of these questions

— How an experiment is to be conducted and which equip-
ment is available to conduct these experiments.

123

614 M. Amrani et al.

may be general enough to form the basis of predictions abotiheir characteristic properties. For each paradigme adopt

the subject matter. a similar presentation:
Let us summarise what we learnt about the nature and
functions of a paradigm: 1. We provide background information on paradigmnto

point out why it signi cantly impacted programming;
1. A paradigm captures thessenceof a collection of 2. We focus oronesingular property of p that is com-
elements that have a substantial impact in a scienti c dis- mon enough to make it easy to grasp, and simple enough

cipline. to be easily demonstrated without introducing too much
2. As a consequence, a paradigm is ontologicdistinct notation;
from those elements. 3. We present tweandidateelementsCl andC2, one for

3. The essence captured by a paradigm is expressed throughwhich is satis ed, and the other for which it is not;

“questions” or, in the case of computer sciermeperties 4. We list the requiredupporting formalismaecessary for

of interestthat are supported by variosfuctures building our Descriptive Framework and illustrate them
4. Those properties enaldeasoninganddrawing suitable on the basis of our candidates.

generalisationsand predictions They also offer a way

of decidingwhether an element of interest (that we later2.2.1 Object Orientation: a formalism-oriented paradigm

call a “candidaté) qualibes asfollows or embodieshis

paradigm, typically by human assessment. Object Orientation (OO) emerged in the 1960s in response to

a need to structure the way programs were speci ed. Instead
We claim that in computer science, the “questions” for aof seeing a computation as just imperative processing of
paradigm, omparadigmatic propertiess we will call them, sequential instructions, OO de nes and structures computa-
always rely on structures that are supporteghtmcessesor tion through organised, communicating objects that are typed
workf3owsfor capturing the dynamic nature of computations,by means of classes, which de ne their structure as well as
processes that ultimately manipuléemalisms their computation and communication capabilities. OO con-

In the next section, we purposely study two paradigncepts are applicable in software engineering sub-domains
examples (in a simpli ed version) that are widely recognisedsuch as analysis, design, and software development. Whether
as having signi cantly shifted the scienti ¢ eld of computer aGPLis classi ed as OO depends on how tightly integrated
science, namely Object Orientation and Agile Programmingthe OO concepts are into the programming language: from
Note that these are programming paradigms, which constipure” OO GPLs where every programming construct is an
tute a speci c subclass of modelling paradigms, with theobject (e.g. in Eiffel or Scala), ovesPLs that still contain
advantage of being readily understood by readers from theome procedural elements (e.g. Java or QjPhs that inte-
Software Engineering community. Both are chosen on purgrate some speci ¢ concepts (e.g. Ada or MATLAB).
pose: the former pertains to formalisms, whereas the latter There exist many variations of the de nition of the OO
pertains to processes. paradigm forGPLs (cf. among others1[75]). As a possi-

For the purpose of the presentation, we had to chooselae classi cation, Wegner75] distinguishes the notions of
particular way of describing those concepts usingportive object-based and object-orient&dPLs that may support (or
formalismgwhich correspond to meta-metamodels, or tech{ail to support) data abstraction, strong typing, and delega-
nical spaces, see Wimmer and Kraml&r]). Note, however, tion. For illustrative purposes, let us only consider a very
that our Descriptive Framework does not depend on any pabasic feature, namelpheritance as a language mechanism
ticular choice of supportive formalism(s): only the expressiorto share and factor out properties, thus promoting reuse.
of the (paradigmatic) properties and their underlying struc\When a (sub-)clas€ inherits from a (super-)class) then
tures depend on them for reasoning and deciding whethesemantically, all objects that are instance€aiutomatically
a (candidate) element follows a given paradigm. We furthemherit the state and behaviour 6f. Of course, many other
discuss this point at the end of each example. more complex properties de ne the OO paradigm, and poten-

tially several variations of the same property (e.g. allowing
2.2 Two simple examples: Object Orientation and multiple inheritance) may be considered. As described pre-

Agile Programming viously, a paradigm is often an agreement or a common

understanding in a scienti ¢ school of thought, but nothing
An important feature for paradigms, which is crucial to clar-prevents the co-existence of several variations of de ni-
ify the discourse, is the ability to explicitlgameboth the tions that are similar. Discriminating between them may be
properties a paradigm relies on, and as well as variations ofachieved through distinetamesrelating to different (vari-
paradigm. We present in this section two (versions of) well-ations of) the set of properties that characterise a given
known paradigms in computer science and discuss some paradigm.

123

Multi-paradigm modelling for cyber—physical systems: a descriptive framework

One may be interested in checking that a gieamdi-
date GPL actually qualies as OO. Let us consider Java
[28] and Pascal15] for the purpose of the discussion. For

paradigmp need to be related to speci ¢ (sub-)structures
in the candidates. Precisely de ning this mapping for-
malism is out of the scope of this paper; we explain only

doing so, one needs to check whether the properties de ning informally how this mapping would occur (or fail to) for

(the particular avour of) OO are indeed satis ed by such a
candidateGPL. Note that a given candidatePL is itself a
language speci ed with candidate formalisms: one for cap-

our candidates Java and Pascal.
We need to check whether the topological structure from
Fig. 1 may be matched against bdBPLs’ metamodels

turing its concrete syntax the programmer manipulates and and if so, whether the property is satis ed (modulo the

one for providing executability through an operational and/or
a translational semantics. We will qualify thosecasdidate
formalisms, to distinguish them from tlparadigmaticfor-
malisms used for capturing the speci cs of a given paradigm.

Completely formalising those properties still requires the
use of appropriatsupportingformalisms for capturing them
and away to relate the descriptions to the formalisms de ning
the candidates, to check the properties’ satisfaction.

To summarise, we considered the paradigras being
Object Orientation, for which one of the characteristic prop-
erties isinheritancewith two potential candidate elements
Cl as Java, an@2 as Pascal. To be able to actually check
whetherCl andC2 qualify as Object Oriented, we need at
least four kinds of formalisms:

1. A structural (paradigmatic) formalism for describing

matching) on the corresponding structures.

A PascalProgramis composed ofBlocks, which are
either constant, variable, or type de nitions, or alterna-
tively function and procedure declarations. None of these
concepts would fully match against tti@placeholder,
because no association can be appropriately matched
against thesuperre exive association, nor with an appro-
priate match withVFand its own associations. Without
further analysis, one can con dently conclude that Pascal
does not qualify as OO.

In the Java metamodel, however, tNermalClassDec-
laration is a good candidate for a match with ti@
placeholder, since it also contai@assMemberDecla-
rations whereFieldDeclaratios may potentially match
the TF placeholder, with thesuper relationship being
expressed witlextends (as the textual representation of

structures, to name, organise and relate the concepts superin the left of Fig.1). Notice that Java is actually

required by the paradigm. In the case inheritance
this (paradigmatic) formalism would capture the notions
of class, elds and objects and their relationships, as
described, e.g. by Wegnery]. Depending on the prop-

richer: interfaces may also match wi@) but would fail
for the rest (since Java’s interfaces do not declare elds);
and Java allows eld overloading.

615

erties of interest characterising a given paradigm, thigl. Finally, aproperty (paradigmatic) formalism for speci-
(paradigmatic) formalism may be used to capture patterns fying properties over the structural (paradigmatic) for-
at both thesyntacticand semanticlevel of a candidate, malism, as well as an appropriate checking procedure
since paradigmatic properties often concern both (as it allowing to validate, via the mapping, that a candidate
is the case for the inheritance property described earlier GPL satis es the expressed (paradigmatic) properties.
anyway). Following our choice of Placeholder Class Diagram as
Figurel (top) illustrates one way to capture the structure a structural paradigmatic formalism, a natural choice for
necessary for expressing the inheritance property using expressing our inheritance property would leverage the
a Placeholder Class Diagram inspired by thdL. MOF Ocl language that could accommodate with placeholders.
syntax (where placeholders are represented as double rect- Again, without going into too much formal speci cation,
angle “classes”). we rely on the usuaDcl syntax to try and express inher-

2. In the context of GPLs, candidates are usually already itance, in two steps.
existing programming languages, de ned in a given (can- First, the setofaccessible eldsforanobjectis recursively
didate) formalism. Java and Pascal certainly hainfi computed by climbing up theuper relationship in the
grammar de nition historically, and Java may have a object’s typing class.
UML Class Diagram-based (e.g. as a metamodel in the
Eclipse platform) or a Graph Grammar-based de nition »
(e.g. Corradini et al.]6], among others). 3
Figurel (bottom) represents the (simpli ed) metamodels 4
of two GPLs, Java and Pascal, eandidatedor the OO 2
paradigm, using a MOF Class Diagram.

3. Amappingformalism for relating the structural (paradig- Since Pascal presented no match for the structural pat-
matic) formalism with the candidate formalisms. This terns of theinheritanceproperty, there is no need to
mapping is essential because the patterns captured by thetry and check the property itself. For the Java case,

context O inv valuedFieldsMatchAccessibleFields :
let valFieldNames :Set(String) =
o.valFields.name
in o.type.accessibleFields()
S>collect(tf | tf.name§> forAll(tfName |
valFieldNames. exists (tfName))

123

616

M. Amrani et al.

IField: value

Semantic Level name : String

Syntactic Level type | 1
i type
[¢ Jo—ee] T Jo— "5 Tye |

. .. — =
Inheritance Structure 1 super name : String b
(to be matched) \I

... reerrnrsri
1

Metamodel of Java ' Metamodel of Pascal

(excerpt) ! (excerpt)
I
i
1
|
i
1

Pack TypeDeclarati Block Program
ackage }%| ypeDeclaration | ' oc| '—0 _ gl "
4& " 4 identifier : Identifier
I] [! |
| InterfaceDeclaration | | ClassDeclaration ‘ | ConstantDefintiion | TypeDefinition ‘ VariableDefinition ‘
7y oo
L 3 fo

NormalClassDecl

typeldentifier : Identifier j Type

super

ClassBodyDecl
/N

EnumbDecl

FieldDecl

Fig. 1 On top, an example of a Placeholder Class Diagram for capinto a candidate metamodel. The example illustrates (part ofijHee-
turing concepts and relationships needed for expressing paradigmatiiance property of the OO paradigm. On the left, an excerpt of a
properties, using ML MOF-based syntax: "placeholder” classes are metamodel for the Jav@PL, and one for the Pasc@PL on the right,
depicted with double rectangles (instead of the regular rectangles fahowing how (syntactic) may be appropriately matched or not

UML Class Diagram), to indicate that classes are meant to be matched

the nature ofinheritancerequires to have a look at the 2.2.2 Agile development: a work ow-oriented paradigm
semantic level to check for a similar mechanism. Stark

et al. [61] proposed a formal semantics for Java based oi\gile developmentAD) emerged in the early 2000s as an
Abstract State Machines, which are directly executablealternative to the so-called heavyweight software develop-
and compared their speci cation with the Java Com-ment processes (such as the traditional V-model), because
piler. Their speci cation de nes (algebraic) functions many software development projects required less regulation,
for class (namelglassFieldValuesand instance eld a shorter response time to requirement changes from cus-
(instFieldV alug declarations, and models the dynamictomers during the course of a project, and the processes were
state of objects through their reference; both collect theerceived as overly constraining for developers, hampering
so-calledaccessibleelds for an object and are updated creativity. The general principles &D were summarised
with the semantic rules translating the effect of eld accessn the Agile Manifesto $0], a general guide that places peo-
and assignment. The Inheritance propertis enforced ple and software deliverables at the centre of the software
in their semantic speci cation by simply ensuring that development process, rather than more rigid and procedu-
the (algebraic) total functions share appropriate domaingal processes that may lose the nal objective of delivering

(thus forcing accessible elds to possess a value, be it thhigh-quality software out of sight.
value used at initialisation). Here again, multiple variations for the de nition of the

A formal proof is obviously out of this paper’'s scope, AD paradigm as a software development process exist (cf.
but this simple example already demonstrates how it malerkow [52], Przyby ek and Morales—Truijillog9], among
be dif cult to relate and check properties expressed inothers). A key feature ofAD that distinguishes it from
different supporting formalisms (a@cl -like expression classical software development approaches is its iterative

for the paradigmatic property and an algebraic expressionature. Organising shorter “full cycle” phases (from require-
for the Java candidate). ments to delivered software), in each of which a smaller set
of requirements are addressed, actually helps both parties:
the stakeholders gain con dence in the developed software,

123

Multi-paradigm modelling for cyber—physical systems: a descriptive framework

617

which enables them to express their needs more precisely, placeholder activity (note double-rounded rectangle used

while the developers deliver solid, well-tested pieces of the
nal product, responding quickly to new insights and updated

needs. Selecting a feasible set of functionalities is crucia®.

as a symbol, in contrast to the regular rounded rectangle
in in UML Activity Diagrams)
In the context of Work ow speci cations (cf. discussions

for the success of the so-called sprint phases: it is because in Sect.6.4), candidates are usually already expressed in

the tasks are voluntarily reduced to covering meaningful,
small increments in functionality, that it becomes possible
to achieve a “full cycle” in a limited time.

For illustrative purposes, let us consider a genBgsign
activity that performs what is considered as a “full cycle” or
Sprint. For eachSprint, a limited set of requirements needs
to be selected from the complete set of requirement, thus
capturing the stakeholders’ priorities. The selected set must
be small enough such that the sprint can be performed in
a reasonable short time. Some variantA@f even require

xed-length sprints. At the end of the sprint, an assessmen3.

of the maturity of the requirements’ ful Iment is performed,
leading to a new evaluation of the priorities, thus entering a
new sprint.

To formalise the key features &fD, one needs the means
to again manipulate concepts at bothsgatacticandseman-
tic levels. Syntactically, we need to describe the notion of
“activity” that takes as input (a subset of) the requirements,
expressed in an appropriate formalism; and the control ow
associated with the loop enclosing a sprint. Semantically, we
need to ensure that any sprint execution is performed within
some time limit.

In summary, in order to precisely formalise our paradigm
P of choice, in this caséigile Development, for which one
characteristic property is the fact that a sprint is performed
in a reasonably short time, we consider two potential candi-
date element§;, being the (simpli ed)SystemDesignPhase
of the V-model, and%, being a (simpli ed form of)Sys-
temDesignExploration For checking whethe€; and G
qualify as agile development, we would need at least four
kinds of formalisms:

1. A structural (paradigmatic) formalism for describing a
workl3owthat enables distinguishing between control and
artefact ows. Depending on the properties of interest
characterising a given paradigm, this (paradigmatic) for-
malism may be used to capture patterns at both the
syntactic and semantic level (i.e. over the execution traces
of the paradigmatic work ow), since paradigmatic prop-
erties often concern both (as it is, for example, for the

requirement that Agile loops span over short periods. 4.

Figure2 (middle) depicts the (paradigmatic, structural)
work ow associated with theAD key features using a
UML Activity Diagram-like (our choice for the struc-
tural paradigmatic formalism listed above): the short
ShortDesignActivity contained in th&printactivity, is a

a given formalism. We sketch in Fig.(top and bottom)
(simpli ed versions of) parts of the V-Model develop-
ment lifecycle andDesignSpaceExplorationVe also use
UML Activity Diagrams as a formalism to simplify the
description.

The upper part of Fig2 depicts a (simpli ed) Sys-
temDesignPhasef theV-Model with only requirements
analysis and design activities shown (itis assumed that the
design artefacts produced are executable and have been
tested).

A mapping (paradigmatic) formalism for relating the
structural (paradigmatic) formalism elements with a can-
didate formalism used for specifying the abstract syntax
of potential candidate work owsBpmn UML Activity
Diagrams, etc. Precisely de ning this mapping formalism
is out of this paper’s scope; we only informally visualise
it through the red dashed lines in FRy.

Although initially, a match of theSystemDesign-
PhaseAD candidate seems possible (the dashed mapping
arrows), it soon becomes obvious that the mapping can-
not be completed as no control loop can be found in the
SystemDesignPhas&D candidate. This comes as no sur-
prise, as the essence of the V-model and its phases is its
linear arrangement of activities. One may thus conclude
that theV-Models SystemDesignPhaseoes not qualify
as Agile, since not even the syntactic components match.

Consider now a multi-objectiv&ystemDesignExplo-
ration process where many variants ofGPS may be
explored, thus eliminating poor designs and keeping the
ones that satisfy a set of global constraints to be further
analysed against non-functional criteria such as perfor-
mance, cost, power consumption, e4g][As the Agile
pattern leaves theShortDesignActivity unspeci ed, it
will match any work ow candidate which contains, in
the place of theShortDesignActivity a work ow that
matches this activity’s interface, and whose execution
time quali es as “short”. As shown in Fi@, substitutinga
DesignSpaceExploratio(DSE) work ow while respect-
ing the appropriate “interface” foBhortDesignActivity
guarantees acceptance as followiig.

A property(paradigmatic) formalism for specifyimgop-
ertiesover the structural (paradigmatic) work ow, as well
as an appropriate checking procedure to validate, via the
mapping, that a candidate work ow satis es the (paradig-
matic) properties.

123

618 M. Amrani et al.

/ V-Model \

oo (System Design Phase

[s
V-Model Workflow

‘ Requirements

ents sl >
H Analysis ﬁ
Excerpt L Requirements
(to be matched)

®

Design

|
[U Remaining | ! v
Requirements es
Select

Limited Set of

A No
Requirements [Has remaining > @

i)
Designs requirements?]

Previous =7 oS Improved Satisfying
=D P N > N :
Designs Pid Designs H
i

Designs

Agile Workflow

\
,’, /’/ ‘\ A
Pattern ’ e \ \
--- dussssmssssssssssandansnsnaasEEEEREREREREEER AR R R R naE A n s naanananns AN G RN GG EEEEEEEEEEEEEEEEEEEEEEEEEEES
1 e \
DSE Workflow ' . | .
(to be matched) \ (it Design-Space Exploration (DSE) ‘:(R

Selected
Requirements

Candidate
Selection

Candidate
Generation ﬁ >

New Design
Candidates

Previous
Designs

**** o e
Fig. 2 A proposal for capturing the Agile development (AD) life cycle Sprint) that addresses a small, self-contained subset of requirements (it
pattern, as &/ork owPH in the middle. On the top, a representation of actually aims at the full set). On the bottom, a successful match between

the SystemDesignPhasef theV-Model| which fails to fully match the the AD work ow pattern andSystemDesignExploratioif the latter is
AD pattern. TheV-Modelwork ow essentially lacks a loop (so-called embedded irBhortDesignActivity

We would have to de ne a paradigmatic property for 3 A Descriptive Framework for capturing
in a formalism that would allow constraining the (poten- modelling paradigms
tially parameterisable) duration of the placeholder activity
ShortDesignActivityin the Agile work ow pattern. Note The complexity of (designingyPSss commonly addressed
that this property refers to thieace semanticsf the struc- through complexvorkf3ows involving models in a plethora
tural paradigmatic formalism. of different formalisms each with their own methods,
techniques and tools, and combining partictyjgres of for-
malismsand operationson models in these formalisms.
MPM proposes to model everything explicitly, at the most
Design Space Exploration may in itself be characterisedppropriate level of abstraction, using the most appropriate
as a paradigm on its own, since it describes a charactefnode"ing formalisms.
istic way of producing valid, optimal designs that satisfy | the previous section, we offered a tutorial presentation
a selection of requirements. The use of patterns withiyhg example of each constitutive element of a paradigm, as
the structural (paradigmatic) formalism (based here oRye| as the intuition behind how to check whether a can-
UML Activity Diagrams) allows to easily describkgile gigate quali es as a paradigm’s element: object orientation
Design Space Exploration compositionally by separating|jystrated theformalismaspect with Java and Pascal as can-
the work ow for the Design Space Exploration paradigm digates. Agile development focused on therkRowaspect,
from the one specifying its Agile nature. This leads to theyith classical V-model and design space exploration life
notion of the proper combination of multiple paradigms:cycles. In this section, we go one step further and capture

we further investigate one possible combination operator i'ibrecisely, through a metamodel, the structuring elements of
Sect.5.

123

Multi-paradigm modelling for cyber—physical systems: a descriptive framework 619

Fig. 3 A metamodel describing the concepts and structure of paradigParadigmis de ned by a set oParadigmaticPropertg that characterise
components consisting of placeholddfsrmalismPH, TransformationPid andWork owPHs

paradigms, namelypropertiesover formalisms and work- 3.1 Paradigmatic properties

ows. This metamodel, as pictured in Fig, as well as the

general principle behind effectively checking whether a giverA ParadigmaticPropertyis a property that captures one

candidate quali es as, or follows a paradigm, as pictured iraspect of the paradigm’s essence that is shared by all arte-

Fig. 4, constitutes together our Descriptive Framework forfacts that follow it. In other words, such a property is de ned

MPM. “universally” at the level of the paradigm and holds for all
From Fig.3, a paradigm (name) denotes a sePafadig- artefacts following this paradigm. To check whether it holds

maticPropertiesthat capture the essence of the intendedr not, aParadigmaticPropertyde nes explicitly a Deci-

paradigm. Many variations or combinations of those propsionProcedure which may be automated, or performed by

erties, grouped irCharacteristicSes, lead to conceptually a human (or any combination of both): it may be a math-

different paradigms in our framework: for example, Objectematical proof, or it may be so dif cult to prove that only

Orientation with single or multiple inheritance should bean agreement among those interested inRamdigmmay

named differently. The necessary components of these prope feasible and provide the decision. When all paradigmatic

erties are formally captured by RaradigmaticStructure properties are checked to be valid, the artefact then becomes

which consists of three interrelated parts\Weork owPH an artefact that quali es as, or follows, the corresponding

capturing the dynamics of how appropriate elements arparadigm.

produced, consumed, and exchanged in an organised fash-

ion within the paradigm, Whe_re both activities a_lnd objects3_2 Paradigmatic structure

are typed againstransformationPld and FormalismPIs,

respectlvely..) For aParadigmaticPropertyto be expressed (formally or
We describe in detalil eggh component of.the Descrlptlvenot)’ a paradigm needs to de ne a minimal structure that
Framework, before e>§pla|n|ng how to_ use It con_cretely tocaptures the vocabulary, the concepts and their relation-
check whether a candidate follows a given paradigm. ships that the property is about. RaradigmaticProperty
is appliedover a ParadigmaticStructure which is com-
posed of one (or several) work ow(s) with placeholders
(Work owPH); one (or several) formalism(s) with place-

123

620 M. Amrani et al.

holders FormalismPH, or one (or several) transformation(s) — the type(s) of th®©bjectNodes used as input and output
with placeholdersTransformationPHl of theActivityPHmatch the signature of thigransforma-
A Work owPH links activities with placeholders tionPHthat types thé\ctivityPH
(ActivityPH and their object nodes with placeholders
(ObjectNodePHiin various ways (sequential or concurrent), Similar to the structural and behavioural formalisms required
described aw s driven byControlNodes (at this abstrac- for other various components ofRaradigmaticStructure
tion level, there is no need to distinguish between so-callethe elements comprisingiork owPH and coloured in dark
object and control ows). blue may be part of a (richer) formalism dedicated to the
A TransformationPHtypes anActivityPH by de ning description of work ows (such as UML Activity Diagrams,
a signature i.e. which source(s) and target(s) placeholdeBusiness Process Models, etc.); the only constraint is that the
formalisms FormalismPHl the placeholder transformation NodeandFlowconcepts are in that formalism. In this paper,
operates on. We requirransformationPHd to be at least we choose Activity Diagrams for this purpose (cf. Séct
terminating(since they are combined in so-called transfor-for a discussion).
mation chains25], they shall always produce outputs), orto As already noticed, our Descriptive Framework admits as
fail when inputs are not conforming to their soufe@mal- valid paradigms de nitions that are restricted:
ismPH

A FormalismPHshall at least de ne, through akbstract- — to only FormalismPHwe assume in this case that there
SyntaxPHthe expected structure supportin@aradigmat- always exists adefault associatedWork owPH that
icProperty, it may eventually specify a (partial) semantic allows creating appropriate instances of the formalism
speci cation through &emanticMappingPHhat maps ele- it is matched to; or
ments from the\bstractSyntaxPHo an appropriat€eman- — to only Work owPH: we assume in this case that there

ticDomainPH All three of them contain placeholders (as exists ageneric, defaulFormalismPHhat is used by one
illustrated in Fig1for the inheritance property in OO), allow- of the ActivityPHde ned inside theProcessPHl
ing arbitrary precision for #aradigmProperty
As an example, Figl describes (part of) the support- This is precisely the case for the examples given in Sect.
ing FormalismPHand PropertyExpressiorfor expressing 2.2 making them valid paradigm de nitions in our frame-
the inheritanceParadigmaticProperty as part of the char- work (assuming alParadigmaticPropertg are effectively
acteristic set for the Object Orientation paradigm speci ed).
Note that in this example, we expressed the structure sup-
porting the Inheritance property, and the property itself, in3.3 Checking whether a candidate follows a
speci ¢ formalisms: for the structural part, we selected a paradigm
MOF-like formalism; for the property, we naturally turned to
OCLas itis a standard, and expressive enough for capturing typical usage for our Descriptive Framework is check-
our property of interest. To obtain an explicit speci ca- ing whether aCandidate artefact indeed follows a given
tion, many languages of our descriptive framework neegaradigm. A candidate is structurally similar to a paradigm’s
to be expressed as valid models of an appropriate formaParadigmaticStructurewith the fundamental difference that
ism. In Fig.3, we denote by light blustructuralformalisms components are not merely placeholders anymor€&af-
(e.g. BNF/Graph Grammars, metamodels, Entity/Relationgjidate may exhibit arbitrarily complex components: the
or any other suitable ones), and in orangehavioural Formalisns may have complicated, intricate syntax and
formalisms GPLs, transformation languages, graph transsemantics; and th&/ork ow s and associate@iransforma-
formations, and so on). Note that both need to be extendeibns (chains) may describe large real-life (industrial, or
to capturepatternsover candidates (as we suggested andonceptual) processes relatedXpsengineering.
demonstrated using placeholders for the pattern mechanism). Conceptually, checking that #&aradigmaticProperty
Although the activities comprisingWork owPHmay be holds on aCandidaterequires the de nition of &Mapping
combined freely usin@ontrolNodes andFlows, we require that binds (all) placeholders appearing in the property to the
the following conditions to hold, for &/ork owPH to be constituents of th€andidate A mapping may be arbitrarily
well-de ned: complex: the languages (metamodels) de ning @endi-
date may differ radically from the ones used for specifying
the ParadigmaticProperty the semantics of &andidate
— EachActivityPHistypedby aTransformationPHappear- may be expressechndidate may be expressed in a differ-

ing in the saméaradigmaticStructure ent “style” (it is certainly operational for thEandidatein
— EachObjectNodeused asnput or output of anActivi- order for it to be executable, while tHeormalismPHmay
tyPHis typedby aFormalismPHiso that use an axiomatic de nition to provide constraints over the

123

Multi-paradigm modelling for cyber—physical systems: a descriptive framework 621

control on the internals, thus preventing matching to explicit
placeholders).

Formally proving all of the paradigmatic properties
required for a candidate to follow a given paradigm may
prove extremely tedious, assumiipppings are actually
available. This explains why we expect that becisionPro-
cedures associated with RaradigmaticPropertymay well
be conducted by humans to overcome this dif cult task. Fur-
thermore, as described in the previous section, the formalism
choices for expressing the required elements of the Descrip-
tive Framework introduce another burden for performing the
proof: as an illustration, if &andidatefor the Object Ori-
entation paradigm captures tRermalismusing a different
formalism language than the ones we used in Ejghen
checking that the Inheritand@aradigmaticPropertyholds
requires not only Mapping but additionally arequivalence
proof between formalisms.

3.4 Final remarks

From our point of viewCPSengineering has largely under-
valued the importance oWorkRBowsin the engineering
process. Although manipulating various artefacts (which cor-
responds to théctivityPHin our Descriptive Framework,

as part of the overaNVork owPH) is de factoa core con-
cern, we believe that explicitly representingw, when and

to which purposethose artefacts interact with each other
towards the greater goal of reaching an end product is a
crucial part for ensuring deeper understanding of the method-
ologies and construction processes, but also promotes reuse
and adaptation to new constraints. Making work ow pattern
descriptions an integral part of our Descriptive Framework
is a rst step towards recognising this fact and also enables
support for the underlying activities with adequate tooling at

Fig. 4 Checking whether &Candidate follows a givenparadigm the level of paradigms (just the way it is for other engineer-

through amapping that binds all placeholders in thearadigmat- ing disciplines, as emphasised, e.g. by Pahl et5d] for
icStructurés components with concrete elements constituting themechanical engineering).

Candidate then applying albecisionProcedure In our framework, nothing prevents a candidate from being

involved in several mappings, allowing itto qualify as various
semantic domain); and RaradigmaticPropertymay oper- paradigms. As an example, Java, our witness candidate for
ate at various levels at the same time (syntactic and semantitie object-orientegharadigm in Seci2.2, may well qualify
just like the inheritance property for OO), making t@ap- as an object-oriented, but also as a concur@@&aL, assum-
ping sensitive to implementation details. Formally speakingjing one can provide a proper property characterisation of
checking the validity of @aradigmaticPropertyconsists of what concurrency for imperative programming languages
invoking the DecisionProcedureover the components the may look like. As a consequence, thpping component
properties apply to (eithefransformatiors, Work ows or of our Descriptive Framework needs to be separated from
Formalisns). but via theMappings. Note that we de ne the potential candidates; if not for conceptual reasons (as
a Work owTrafoMapping referencing both th&ransfor- above) then for legacy reasons, because often paradigm ele-
mationPH and theWork owPH, becausecandidates may ments are built without thinking much of the paradigm they
abstract away or re ne some parts in the other (i.e. acomplekelong, but rather on which kind of issues the element is
Work ow Placeholdermay be realised through a transfor- intended to solve.
mation delegated to an external tool, which is then perceived When describing informally the kind of formalisms
from theCandidateviewpoint as a black box without further required for capturing the nature of a paradigm, we referred

123

622

M. Amrani et al.

Time

to “supportive formalisnigo designate the so-calledeta
. State
formalisms, i.e. the formalisms in which the listed for- . izpies

Continuous

Discrete

malisms (paradigmatic structural, mapping and property, bu
also the candidate’s formalism(s) themselves) are expresse
in. In our conceptual metamodel of Fig,. we further clas-

si ed them into two categoriesstructural metaformalisms

in blue, which describe structures, dmehaviouralmetafor-
malisms in yellow, which describe computations. We also
showed in our tutorial examples from Se2t2 that it is

Continuous

DESS: Differential Equation
System Specification

%

Time

State

ODE, Bond Graphs, Modelica, ...

DTSS: Discrete Time Dynamic
System Specification

State

Time

DE, CA

often the case that already existing formalisms may be
extended to provide adequate pattern languages for captu

DEv: Discrete Event
system specification

DTDS: Discrete Time Discrete
State system specification

ing the various components of our descriptive framework

(namely ParadigmaticProperty FormalismPH Transfor-

mationPHandWork owPH): we used an extension of UML

Class Diagrams and Activity Diagrams to convey the idea of : EEEERE

“patterns” that need to be lled by elements of a potential Time Time

candidate (note that the exact speci cation and semantics o Timed Petri Nets, Timed FSA, ... | FSM, Petri Nets, ...

such extendeplaceholderformalisms remains future work). o , _)

We believe that many formalisms may be suitable to béilg. 5 _Cla55| cation of modt_alllng abstractlo_ns for dynamic systems
. . according to the nature of thiene andstatevariables 72,79

promoted agatternplaceholderformalisms for capturing

paradigms’ properties when considering suitable research

on model typing 17,62,63. The nature of the relation- and the properties are necessary to prove we are manipu-

ship between the paradigm’s “patterns” and the candidate’s lating the “same” paradigm.

matched elements are different from the classical class/in-

stance relationship, since a whole submodel may be matched

into a single placeholder. Such “extended” pattern/place4 Two paradigms for CPS: discrete event

holder languages may be partially obtained through semi- dynamic systems and synchronous data

automated processes (eRAMi cation (Kuhne et al B3])), Bow

but a precise (semantic) design, speci cation, and matching

process of such languages is left as future work. This section presents two compact examples of paradigms
The diversity of supporting formalisms gives rise to two relevant to the engineering @PSsthat have been selected

crucial, and related, issues: and abstracted to illustrate the conceptsMi®PM that we

strive to convey.
Among the many classi cations folCPS modelling

1. Having different choices for supportive formalisms for abstractions and associated formalisms (cf. Sdot.a quick
the paradigm and a potential candidate requires eithesurvey), the simplest and most widespread ones are based on
that extra effort is put teranslateone of them (typically, the nature of the representations of the characteristic quanti-
the candidate, which may be de ned in various forms)ties of aCPS thetime basever which theCPSevolves and
into an appropriate formalism, or to perform mathemat-the state variablesBoth quantities may beontinuousi.e.
ical equivalence (or rather, simulation) proofs in ordertheir domains range over dense domains (such as reals), or
to appropriately match elements. For simpli cation pur- discrete i.e. they range over discrete, enumerable domains
poses, we stick to supportive formalisms (UML Class(such as integers).

Diagrams and Class Diagrams with placeholders; and Taking a helicopter view, the behaviour oC#Smay be
Activity Diagrams and Activity Diagrams with place- seen as a trajectory that depicts the evolution of state vari-
holders) that correspond to the ones used for potentiables over time, which are falling into one of the following
candidate, to avoid another level of complication; but incategories (cf. Figs and [79]):

practice, this may happen often.

2. Similarly, having different choices impacts the decisionContinuous Variables/Continuous Time leads to com-
procedure, since the paradigmatic properties, as wellplex Differential Equations System Speci cations (DESS)
as the matchings, rely on the paradigm’s supportive where theconstituentrelationships between quantities are
formalisms. The decision procedure may be seen as a pro€aptured in the form of differential algebraic equations.
ceduremodulothe formalisms: here again, equivalence Such speci cations often require numerical solvers to
proofs taking into account both the supporting formalisms obtain approximate solutions on digital computers. Typi-

State

Discrete

123

Multi-paradigm modelling for cyber—physical systems: a descriptive framework 623

cal realisations of this paradigm are Ordinary Differential [_tme || [Tmestventirace | [Csystems |#—""2=synvar
Equations, Bond Graphs, Equation-Based Object-Oriente "‘"f'“e:"f" «ordereds> type | 1 name : String
. . . ., time timedEvents |, 0..*
Lgnguages such as Modelica, and Analog Electrical Circuit Tredeven] | X g
D|ag rams. 0 name : String
Continuous Variables/Discrete Time leads to Discrete event |1 value®1
Time System Speci cations (DTSS). These are for examplel_&ent_]
used in sampled system models, representing data perioc TimedEventTrance valuesAreDiscrete

ically obtained from a physical system through sensors. _3"iecbie | sl
Typical realisations of this paradigm are Difference Equa- ~ "{=o7¢o) < ndexcrt
tions (DE), and Cellular Automata (CA).

Discrete Variables/Continuous Time leads to Discrete Eig. 6 FormalismPH'andParadigmaticPropertiesfor the speci ca-
Eventdynamic system speci cations (DEv). Discrete Evenfion of the DEv paradigm
speci cations start from the insight that discrete state
changes only occur at times of pertinent “events”. In
between those events, the state does not change and #héd Discrete Event dynamic systems (DEv) paradigm
state trajectory is hence piecewise constant. In a nite
time interval, only a nite number of events may occur. The discrete event dynamic systgmaradigm uses discrete
Typical realisations of this paradigm are Timed Finitestate variables with continuous time. We illustrate it with the
State Machines, Event Graphs and the Discrete Event Sy$imed Finite State Automaf22].
tem Speci cation (Ziegler¥EVS Formalism [f9] which,
though Discrete Event, does permit a continuous state
space).

Discrete Variables/Discrete TiméeTl he other end of the spec-
trum leads to Discrete Event System Speci calii0S) From the previous categorisation, we summarise the rel-

where discrete state changes only occuratequidistanttimeévant properties of th®Ev paradigm and express them in
Typical realisations of this paradigm are State Machines. our Descriptive Framework, as depicted in Fég.

4.1.1 Paradigm description

This section presents tii#screte Event dynamic systems
specibcatior(abbreviated a®Ev) and Synchronous Data o .)]
Flow (abbreviated aSDF) paradigms. We describe both in — Thetimeiscontinuous: tteormalismPH Timenandates
details within our Descriptive Framework. This choice is 1€ use of real values for elements matched Withe.
guided by three criteria. First, we have selected systems that | "€ System'slynamicss captured through timed events:
have opposite natures for the characteristic variables. Second, the FormalismPH TimedEventTraaxpresses the fact
they are simple enough to convey the necessary concepts for that some elements may be considered=aent that
illustrating our Descriptive Framework, while serving as a 9CCUr at specic time occurrences; trearadigmat-
basis for generalisation to more elaboi@®Smodels. Third, icProperty isMonotonic (as expressed in pseudo-
the combination of those paradigms covers a large spectrum OCl) €nsures thavens occur at monotonically increas-
of CPSmodels used in practice, making them illustrative of N9 timestamps.

the various combinations that exist. — The system’s (dynamic)_ state is composed of vari-
Each paradigm is described systematically using the fol- Pes that range over discrete domains: tharmal-
lowing approach: ismPHs describe system speci cationSystem$ and

instances $ystem). A System®eci cation describes
dynamic systems at a high abstraction level, assuming
only the declaration of variableSynVay, while a Sys-
teminstance imposes that variabl&eMmVa) have val-
ues, together with RaradigmaticPropertithat enforces
values are actually discrete.

1. We rst capture the general requirements from a well-
known source that informally describes the paradigm;

2. We translate these requirements within our Descriptive
Framework (cf. Fig3), using appropriate formalisms;

3. We then present a potenti@landidate specifying its
various componentd=prmalisns, Transformatiors and
Work ow s) to a certain extent.

4. We nally apply the checking scenario of Se8t3 we To simplify the description of théEv paradigm, we only
show howMappings may be (informally) de ned, val- consider one fundament@ransformationPHnamedExe-
idating that theCandidateindeed follows the paradigm cute, with a trivial Work owPH that allows executing the
mentioned above. system assuming a given trace.

123

624 M. Amrani et al.

Fig. 8 A simple TFSA conforming to theTFSAdomain metamodel of
Fig. 7 Metamodels for specifying @FSA (from ClassTFSA; its Fo-7
semantic domain (Clagdomain) for accepting a (nite)TimedEvent-
Trace

bringing the system into thEmergencymode: after one

millisecond, the window stops moving, allowing whatever is
4.1.2 Candidate: timed nite state automata (TFSA) obstructing the upward movement to be removed safely.

Listing 1 speci es a procedurexecute capturing the

When augmented with time constraints, Timed Finite Stat®ehavioural semantics of EESAIlt operates on a(n instance
Automata (TFSA) are powerful formal models, SUitab'eof a) Domain, assuming a(n instance Of'ﬁFSAand a given

for describing engineered and natural systems in variougnstance of a nite)TimedEventTraceand proceeds as fol-
application domains, which range from sequential circuits|gws:

communication protocols, reactive and biological systems.
We describe here a simpli e¢onceptualformalism for

TFSA that may represent concrete implementations in vari- .. ,
oUS t00lS. Initialise During this phase (Lines 5-7), the various time and

Figure 7 describes theTFSA formalism. A TFSAis a state variables are set, pointing ttmarrentSta.tepointing
Finite State Automaton with aiNITIALand someFINAL h€ currenStateof the computation to the (uniquiyITIAL
states interconnected biyransitiors. A TimedEventTrace Statein theTFSA .
is a nite list of TimedEvenf consisting of a pair ofimes- Che_ck StoPp'”g Cond|t_|onsA Ioop captures the compu-
tampedevent names. Aransitionmay re whenitsTrigger tation, Wh'_Ch_ runs “T‘“' no newimedEvent(Line 9) is
occurs, assuming itguard evaluates térue (the Expression present W'th_m the g|veﬁ'|medTr§ceEvent tetafter the
language is left unspeci ed, as it is not necessary for under- currentStateis compared to the list oFINAL Statef the

standing). When there is d@went Trigger it should match TFSA . .
the currentTimedEvenf otherwise, when th&riggeris an Perform StepA com.putatlon. .step (Lines 10 - 25) depends
After, theTransition res only when the associate@meout on the list of outh|ngrgn3|t|onwf thgcurrentState
has elapsed, when no othEimedEventoccurs before. The —Ifan Event. TranS|t|onIab§IIed with the.?""".‘eame
TESA formalism de nes a semantiBomain (also called as the curren?l'lmeEvent.teexsts, theTransitionis reo!
conbguratioh for specifying an accepting behaviour, pro- (_rnu:stsemantlcs), changing tloairrentStateto theTransi-
vided a speci ¢ nite TimedEventTracea TFSA accepts a tion's tgt; L o -
trace iff consuming th@imedEvens composing the trace, B Othervwse, If anAfter Transitionis prgser_nt, itis red
in order, results in &INAL StateTheDomainreferences the assuming it already reaphed “".‘e"“t (|.e: timeout .
current Statewithin the TFSAand manipulates tw@locks: eIapgeq. After that, a discrete “”.‘e step is taken, incre-
alogical one that records the global time elapse; and a clock menting both clocksfapsedandogical) by the prede ned
used for tracking thelapsedtime locally to aState deltg).))

Figure8 shows a simpl&d FSAthat models the behaviour Terminate It remains to check (Line _27) 'Whether toar-
of a (simpli ed) car Power Window56| equipped with a rentStateat the end of the computation iFdNAL State
three-position command button: when presgpar down,
itindicates the window should move in the appropriate direc-
tion; when released, the button producesrikatral event. While explaining the behavioural semantics, we explicitly
For safety reasons, when a force is detected resisting the widistinguished separate activities whose dynamics are cap-
dow moving up, the system producesamergency event, tured in the Activity Diagram of Fig9.

123

Multi-paradigm modelling for cyber—physical systems: a descriptive framework 625

1 procedure execute(d : Domain,

2 tfsa: TFSA,

3 tet : TimedEventTrace)
4 do

5 d.logical.value = d.elapsed.value = 0
6 d.current = tfsa.getlnitialState ()

7 currentState = d.current

8

9 foreach(tevent : tet.timedEventsdlo Fig._9 Activity Diagram capturipg the dynamics ofth_e gctivities com-
10 outs = tfsa.outgoingTransitions(currentState) posing th_e behavioural semantics common T¢-8A (Listing 1) and a
11 transition = outs.ifiter[Event] CBD (Listing 2)

12 .find[name = tevent.name]

13 if (transition !'= null) then

14 currentState = transition.igt 4.2 Synchronous Data Flow (SDF) paradigm

15 d.elapsed.value = 0

16 else . . .

17 transition = outs.ifter [After] TheSynchronous Data Flowparadigm uses continuoustime
18 if (transition != null & and state variables, and is illustrated withusal Block Dia-

19 transition.timeout <= d.elapsedhen gram , a formalism representative for many tools such as
20 currentState = transition.tgt Simulink andScade.

21 d.elapsed.value = 0

22 endif

23 endif 4.2.1 Presentation

24 d.logical.value += d.delta

25 d.elapsed.value += d.delta . . .

26 endfor The Data Flow paradigni7fl] describes computations as a

27 return tfsa.getFinalStates().contains(currentState) special directed graph, with the following features:
28 endprocedure

Listing 1 Algorithmic for the Executetransformation, specifying the

behavioural semantics faiESA Signalsrepresent in nite streams of data, where each data

piece is called sample

Nodesalso calledblocks represent computation units that
executdor bre) whenever enough input data become avail-
able. Blocks without input can re at any time. Nodes
may be atomic, i.e. performing basic computations (such

))))) as adders or multipliers), or composite, thereby encapsu-
We briey discuss how to (partially) build thélapping lating themselves a subgraph

between th@aradigmaticStructurele ning our DEvparadigm a5 connect nodes, thus describing how data streams ow
and the components of oliFSA Candidate as an instance throughout the computation blocks

of the metamodel de ned in Fig.
First, the TimedEventTracenetamodel in Fig7 maps
directly to the TimedEventTrace FormalismPHof

4.1.3 Mapping

Executing a Data Flow graph consists of accumulating

Fig. 6: names were kept identical on purpose, sifizaed- ~ €nough samples within the system, produced by blocks
TraceEverg are a rather simple collection structure. without inputs, and pgrformmg the computations within .the
Second, theSystem$eci cation may correspond to the blocks, thu; consuming a number of sa}mples on each input
TFS/Aconcept, assuming the rest binds appropriately. As sta@1d Producing samples on all outputs in a concurrent way.
variables forTFSA which are required by @aradigmat- Samples may be reused within the system (for example, in
icPropertyto be discrete, we may bind tistateconcept. As ¢@S€ of cycles) to be used as old samples MesserscbAjitt |
it occurs forTFSA, the classState appears both as a com- Put they will not be considered as new once consumed.
ponent for the clas¥FSAwhich is matched t®ystems ~ 1he synchronous data ow paradigri] is a specialisa-
and as an element in the semariiomain, which should tion of the data ow paradigm where all blocks appearing in
therefore be bound tBystem! Since the number dBtates & data ow graph are required to Isynchronousi.e. each
is always nite (the usual meaning of theé™in the states Plock explicitly de nes how many samples are consumed
reference), it de nes aliscretedomain, thereby validating @nd produced.
the ParadigmaticProperty
Third, theexecuteprocedure presented in Listing 1 maps4.2.2 Paradigm description
in a straightforward way to the triviaWorfk owPH contain-
ing theExecute TransformationPlmhentioned at the end of The previous description leads to the following proposal
Sect4.2.2 in our Descriptive Framework, as illustrated in Figpx

123

626 M. Amrani et al.

[sor o
1 subgraph blocks |, 0..* 1 s arcsio.ﬁ
[ook |&—"7
lock ¥ | Port ”
A n:int 1wt

H Composite H H Atomic H H Input H H Output H

Memoryfull

Arc noShortcut:
self.src.oclIsTypeOf(Input) implies
not self.tgt.oclIsTypeOf(Output)

Fig. 10 FormalismPld andParadigmaticPropertie$or the speci ca-
tion of the SDF paradigm (the plain arrow denotes inheritance over
placeholder classes)

— Signak are composed of an in nite, ordered stream of
Samples (note the multiplicity denoting a collection Fig. 11 Metamodels for specifying €BD (from ClassCBL) and its
with an in nite, dynamic number of elements, as sug-semantic domain (Clagdomain) for executing it
gested by Combemale et al4]).

— An SDFhas the structure of directedgraph withArcs
andBlocks as nodes. time progression. They may describe steady-St&&s

— Blocks posses$orts that explicitly de ne how many occurripg once the system has reached a steady state (e.g.
Samples are used (consumed byputs, or produced by an engine after its transition phase);
Outputs). — Discrete TimeCBDs extend algebrai€BDs with blocks

— Arcs connecPorts, and ow Signak that travel on them that introducedelay, forcing all algebraic blocks to
instantaneously. Note thaiRort may be plugged to sev- update their output streams whenever the delay is eval-
eralArcs; only shortcuts are prevented by treShortcut uated. They naturally describe discrete time dynamic

ParadigmaticPropertywhich forbidsArcs to connect as systems.

srcandtgt Ports of the sam&@ype — Continuous Tim&BDs also extendCBDs, but in a dif-

— A memoryfull Blockshould always de ne an extrfaort
corresponding to initial conditions.

To simplify the description of th&df paradigm, we only

ferentway: instead of introducing a time step notion with
a delay, it extends algebra@BDs with continuous time,

using the mathematical integration and derivative oper-
ators. Although theoretically more powerful and more

complex than the previou€BD class, they are still
suitable for dynamic systems but require numerical dis-
cretisation.

consider one fundament@ransformationPHnamedExe-
cute, with a trivial Work owPH that allows executing the
system assuming valid inputs.

CBDs have strong mathematical foundations and largely
leverage recent advances in numerical solvers, making their

Viewing a CPSas a set of interacting components thatuse widespread within several tools (e.g. MathWolAT-
may be further decomposed is a natural and intuitive way-AB/SimuLink; Ansys/EsterelScade, to only name the
for breaking its internal complexity. Because they offer anMoSt renowned ones). Without loss of generality, and to
intuitive graphical description in terms of interconnectedSIMPlify the presentation, we will also consider t6®F
nodes, Causal Block Diagrams (CBDs) represent a natur@@aradigm aonceptuaformalism for Continuous Time CBD
formalism for capturing the dynamics &PSsin a so- that may be part of concrete tool implementations.
called feedback control loop: the evolution of a physical Figurelldescribes th€BD formalism. ACBDis com-
plant is monitored through sensors (thereby introducing £0S€d ofBlocks that possess a number loiputPorts and
time discretisation), which provide a data stream constantl{PUtPutPorts. ThosePorts areLinked appropriately (i.e. a
monitored and analysed by a software that in uences backink connects an output to an input). To simplify the presen-
the software plant through actuato®BDs come in different tation, we only consider three kinds Bfocks: anAdder and

avours, depending on the type of blocks that are availablét Multiplier (which are both Memoryless) and &tegrator
for describing a systen2p,27: (which is Memoryfull). The semantibomainfor executing

aCBD consists of a time stegelta, and a dependen&raph
— AlgebraicCBDs only expose mathematical computation(edges are not explicitly represented here) whhieeles
blocks (over integers arimboleandata ows). Thereisno aggregate thosBlocks that are cyclically interdependent.

4.2.3 Causal block diagrar@BDs

123

Multi-paradigm modelling for cyber—physical systems: a descriptive framework 627

1 procedure execute(d : Domain, cbd : CBD) 4.2.4 Mapping

2 do

3 d.dGraph = _ Some of theMappings between th@aradigmaticStructure

4 i cbd.?omputeDependencyGraphwlthStrongComponents() de ning our SDFparadigm and the components of &BD

5 .logical.time = 0 . .

6 \,\,h”eg(not end_condition)do _Car_1d|_dateare almost_stralghtforward: Ff@BDmetamod_el

7 foreach (scomponent : d.dGraphodes)do is similar to theFormalismPHor SDF, aside from renaming

g if (Scomponent-jize() =()1then 0 (e.g.Link trivially binds to Arc), and tagging the proposed
scomponennodes.pop() .compute ; Ol

10 elseSS Strong Component: compute the whole cycle! quckapproprlat_elyAdderandMuItlpllerareMemoryLess

11 scomponenhodes . compute () while Integrator is MemoryFul). EachBIockconsumes and

12 endif produces exactly orfeampleon each of itshput andOutput

13 endfor Port (assuming the value on the extra Input emory-

14 endwhie = Full Blocks for initial conditions does not change). Note that

15 d.logical.time += d.delta

16 endprocedure the timestep in &BD is implicit, as no syntactic element

Listing 2 Algorithmic for the Executetransformation, specifying the ma”'p“'at‘?s it directly. Rather, the timestep corresponds to
behavioural semantics f@BD an evaluation of the fulCBD (as shown by thexecutepro-

cedure, where the time progresses after each full iteration).
Note that theexecute procedure described in Listing 2
trivially matches théxecute TransformationPkequired in

Listing 2 describes a proceduegecutefor capturing the Sectd.22

behavioural semantics of@BD It operates on a(n instance
of a) Domain and a(n instance of &B0 and proceeds as
follows [27]:

Initialise During this phase (Lines 3-5), the various time andg Multi-paradigm modelling: combining
state variables are set: thogyical clock is initialised, and the paradigms

dependency graph with strong components is computed.

Check Stopping ConditionsThe stopping condition is pro- - gincecpSscombine physical phenomena with logical deci-
vided by the user (captured by tead_condition predicate g, making, mostly implemented in software, modelling
in Line 6) since &CBD computes values at each time step. nejr complex behaviour requires the use of a combination of

Perform Step This step consists of iterating over ed8lock ¢ontinyous time models to capture the physical aspects, with
inthe order of the dependency graph. The (overloaGed)- iscrete time and discrete event models to represent logical
pute procedure depends on the nature ofteck computations. Depending on the level of abstraction used,

MemorylessA memoryles8Block(such as ouAdderor the networking part oCPSmay be modelled using ei.ther
Multiplier) simply applies a stepwise basic operationtyPe of models. Furthermore, for many complé®Ss in
(here, an arithmetic one) on tigamples available on order to address the diverse concerns stakeholders may have,

the Input Port, and delivers the result on tf@utput ~ complexity is tackled through orthogonal, yet complemen-
Port tary viewpoints. Not only the individual views need to be
Memoryfull Blocks are split in two categories:delay modelled explicitly, but above all, their often complex inter-
performs a discrete operation based on previous valugctions and integration.
of Inputs, thus requiring memory to store such values, This section starts by presenting some general mecha-
while anaccumulator(like our Integrator) performs ~ Nisms in engineering that govern the design of a complex
an approximation of a continuous behaviour by accuCPS It then proceeds to precisely de ne one exanigieM
mulating thelnput (cf. Gomes et al37] for a detailed ~ COmbinator, namelyembedding before applying it to our
explanation; cf. Burden and Faired] for details on two CPSoriented candidates, namelFSA for the Dis-

how numerical approximations may be used for thesérete Event Dynamic System paradigm, &BBD for the
Blocks). synchronoussynchronousData Flow paradigm.

We are aware that embedding is just one of the many com-
binators applicable to formalisms and work ows, such as
extension, uni cation or self-extensior2d], merging [L9],
and aggregation3p]. However, embedding is popular in
The executeprocedure may be described as an activity diapractice, and simple enough for us to explain our paradigm
gram in a similar way a3 FSA were, as depicted in Fi®. combinator concepts concisely. Future work will investigate
Note that forCBD, theterminate activity is, in fact, empty. other paradigm combinators.

After having completed the computation of &lock the
logical clock progresses by delta step value.

123

628 M. Amrani et al.

5.1 General mechanisms for tackling complexity the problem/solution domain exhibits locality or continuity
properties. Note that the component models may again be

Benveniste et al.§] argue that three basic mechanisms,described in different formalisms, as long their interfaces

namelymodel abstraction/rePnemeatchitectural decom- match and the multi-formalism composition has a precise

position and view decomposition/mergare sufcient to semantics.

describe any comple@PSengineering effort. In our descrip-

tive framework, these mechanisms may be captured by 5.1.3 View decomposition/merge

combination of TransformationPKd and/orWork owPHSs,

depending on the available machinery, the granularity a¥iew decomposition (and its dual, view merge) is used in

which a design needs to be tackled at any point ofGRS the collaboration between multiple stakeholders, each with

engineering life cycle, and the details different engineerslifferent concerns. Each viewpoint allows the evaluation of a

need to know about the comple@PS At this point, it is stakeholder-speci ¢ set of properties. When concrete views

still not clear whether these mechanisms may themselvesre merged, the conjunction of all the views’ properties must

be considered as paradigms on their own, or as relationship®Id. In the software realm, IEEE Standard 1471 de nes

that paradigms may leverage to capture complex engineerirthe relationships between viewpoints and their realisations

processes (in a similar way to operations over the algebraiiews. Note that the views may be described in different for-

structure of paradigm). We simply describe them succinctlymalisms.

leaving their integration as an extension of our Descriptive

Framework. 5.2 Embedding: a simple, powerful MPM combinator

5.1.1 Model abstraction/re nement As an orthogonal view to the general mechanisms presented
above, there exists the possibility to combine paradigms

Model abstraction (and its dual, re nement) is used wherto form new paradigms througbombinators i.e. opera-
focusing on a particular set pfopertiesof interest. Arela- tors that allow the combination of two artefacts that follow
tionship A between a detailed model; and a more abstract two paradigms (distinct or not). Combinators may even have
modelm, is an abstractionwith respect to eet of prop- higher arities, allowing combination of a nite collection of
erties , iff for all properties , the satisfaction of artefacts.

by the more abstrach, implies the satisfaction of by Given the way our Descriptive Framework captures the
the more detailedny. This allows one tesubstitute g by notion of paradigm, a natural (yet not completely general)
ma Whenever questions about the properties ineed to be way to describe combinators is to proceed in a component-
answered. Substitution is useful as the analysis of propertiagise fashion:
on the more detailed model is usually more costly than on the
abstracted model. Note that the abstraction relationship mdy-Combinator Combining=ormalisns, keeping their default
hold between models in the same or in different formalisms, Work ows separate, while ensurir@aradigmaticProp-
as long as for both, the semantics allows for the evaluation ofertys that ensure soundness of the operation; or
the same properties. When modelling physical systems, coiV-Combinator CombiningWork ow s, assuming their default
tinuous domains are frequently used. In that case, a moregFormalisns are distinct, while ensuring soundness.
relaxed notion of substitutability based approximation
may be appropriate. In this section, we propose to capture a simple binary F-

Combinator namedmbeddinghat we note :

5.1.2 Architectural decomposition/component composition]) .
Formalismx Formalism Formalism

Architectural decomposition (and its dual, component com- (Host Gues) New

position) is used when the problem can be broken into

parts, each with an appropriatgerface Such an encapsu- An embedding takes twsourceformalisms (together with
lation reduces a problem to (i) a number of sub-problemstheir default work ows), theHost and theGuest each fol-
each requiring the satisfaction of its own properties, andowing its own paradigm, and produces\ew formalism
each leading to the design of a component and (ii) thevith two separate, default work ows that may be improved
design of an appropriate architecture connecting the come help co-design the new formalism instances. Note that
ponents in such a way that the composition satis es theés a non-commutative combinator: switchikpst, i.e. the
original required properties. Such a breakdown often comeformalism that embeds, or is extended with, Gaest gen-
naturally at some levels of abstraction, using appropriate forerally results in two radically different results, as we will
malisms (which support hierarchy). This may occur whernillustrate in Sects5.4and5.3.

123

Multi-paradigm modelling for cyber—physical systems: a descriptive framework 629

For the new formalism to be valid, an embedding should:

— De ne a new, validabstract syntadased on the abstract
syntaxes of thédostandGuestsource formalisms;

— De ne a newsemanticghat isconservativei.e. if the
embedded (syntactic) elements are removed from the
new formalism instances, the execution semantics shal

--

formalism instance execution semantics. Embedding =
Pattern

1

At a high level, one can see the execution (operational

; ; _ . - delegation
semantics) of an embedding as a three-step process: Delegation [«

1. The host starts the execution, following its semantics; Fig. 12 The Embedding Pattern (bottom) de nes how the Abstract
2. At some speci ¢ steps during the execution, CorrespOHdSyntax may be built fronHHostand Guestabstract syntax elements: in

. . . he Host, a Director performs macro-steps, and sometiniedegates
ing to the embedding, the host delegates the execution mputations to th&uest resulting in micro-steps performed by the

the guest; Guests Delegation In the case oHTFSAthe Stateclass is matched
. The guestthen proceeds with its own execution semanticss theDirector, using a a fullTFSAas aDelegation

4. At some prede ned steps during the guest’s execution, or

when something global occurs for the host, the delegation

stops and returns to the host. an embedding, by implementing the following algorithm

expressed as Activity Diagrams:

The speci ¢ point where the delegation occurs is de ned
syntactically, while the mechanisms for deleggting from thel_ Starting from theHost, an Initialise phase sets time
higher, macrclevel of the host, to the lowemicro-level
of the guest and back, is de ned in a semantic adaptation
(embedding).

For illustrative purpose, we will describe the following
embedding, which results in the well-knowrerarchical
TFSA (HTFSA

w

and system state variables for preparing the computation

steps;

2. A CheckStopConditionghecks whether this (hierarchi-
cal) level's halting conditions are ful lled. If they are, this
level's computation halts: control is transferred back the
outer level, eventually performing Berminate activity
for nal settings; or the whole computation terminates.

3. If CheckStopConditiongre not ful lled, aPerformStep
occurs, making progress for this level’s computation;

4. Then, aCheckForDelegationchecks whether the cur-

rent element embeds an internal instance: if this is

the case, control is transferred to the inner structure

(Delegate::Execute otherwise, the control loops back

to CheckStopConditiongor another (macro) step.

HTFSA TFSA TFSA
5.2.1 Abstract syntax

The pattern described in Figj2 (bottom) captures how the
resulting paradigm’s abstract syntax is constructddirac-
tor class from the hostis extended witBalegateclass from
the guest. Thdelegatethen contains ®elegationwhere
the micro-steps occur. As a guideline for helping identify
potential matches, Birectoris often a super class extended The check and eventual call to tbelegates Execute Trans-
with particular cases that behave slightly differently fromformation (depicted in green) transfers control to the lower
each other. level, performing thamicro-steps embedded inside the cur-

For building aHTFSAy embedding, we need to match the rentlevel’smacrostep (depicted in red). Note that this pattern
previous pattern (cf. Figl2, top, unnecessary details omit- may occur nitely many times, allowing the embedding of
ted). We identify as a natural candidate ®iateclass as a an arbitrary number of levels.

Director, which leads to internal computations insidem- Applying this pattern to the particular case of tHEFSA

posite states, performed by an fullFSAas aDelegation embedding performs a transfer to the SUEBSA, while keep-
ing the sameExecutespeci cation. Note that this pattern

5.2.2 Execution semantics produces a behaviour fé(f TFSAhat is opposite to the one

promoted byUML: in case of competition between transi-
The Activity Diagram of Fig.13 describes a possible tions at different hierarchical levels with identicalens,
recursive operationalisation of the execution semantics ithe outermost transition takes priority, following Harel's

123

	Multi-paradigm modelling for cyber–physical systems: a descriptive framework

