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Abstract
The complexity of cyber–physical systems (CPSs) is commonly addressed through complexworkßows, involving models in a
plethora of differentformalisms, each with their own methods, techniques, and tools. Someworkßow patterns, combined with
particulartypes of formalismsandoperationson models in these formalisms, are used successfully in engineering practice.
To identify and reuse them, we refer to these combinations of work�ow and formalism patterns as modellingparadigms. This
paper proposes aunifying (Descriptive) Frameworkto describe these paradigms, as well as their combinations. This work
is set in the context of Multi-Paradigm Modelling(MPM), which is based on the principle to model every part and aspect
of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s) and
work�ows. The purpose of the Descriptive Framework presented in this paper is to serve as a basis to reason about these
formalisms, work�ows, and their combinations. One crucial part of the framework is the ability to capture thestructural
essence of a paradigm through the concept of aparadigmatic structure. This is illustrated informally by means of two
example paradigms commonly used in CPS: Discrete Event Dynamic Systems and Synchronous Data Flow. The presented
framework also identi�es the need to establish whether a paradigmcandidatefollows, or quali�es as, a (given) paradigm.
To illustrate the ability of the framework to supportcombiningparadigms, the paper shows examples of both work�ow and
formalism combinations. The presented framework is intended as a basis for characterisation and classi�cation of paradigms,
as a starting point for a rigorous formalisation of the framework (allowing formal analyses), and as a foundation forMPM
tool development.
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1 Introduction

Cyber–Physical Systems (CPSs) are engineered systems that
emerge from the networking of multi-physical processes
(mechanical, electrical, biochemical, etc.) and computational
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processes (control, signal processing, logical inference, plan-
ning, etc.) that typically interact with a highly uncertain
environment, including human actors, in a socio-economic
context. These systems enable many of our daily activities
and have become innovation drivers in important domains,
such as automotive, avionics, civil engineering, Industry 4.0,
and robotics.

EngineeringCPSsrequires the contribution of experts
from different domains to solve the challenges related to their
own discipline, but also to collaborate to make all parts work
together. BecauseCPSsare generally costly to fully build and
maintain, early modelling and simulation is a de facto tech-
nique crucial in their development. This enables reconciling
the multifaceted aspects of aCPS, studying safety-critical
and emerging properties, and planning for deployment even
before the physical parts of the system are available (e.g. via
Hardware-in-the-Loop (HIL) simulation).

The full complexity of CPSengineering is not covered
by single modelling paradigms. For instance, the Equation-
Based paradigm only covers the physical parts of the system;
the Object-oriented paradigm only covers the code parts of
the system; and the Agile paradigm only covers work�ow
aspects of system development. Consequently, the hetero-
geneity and complexity ofCPSsand their design activities
require the combination of multiple paradigms to describe
the entire system while including all relevant aspects.

In this context, what is aparadigm then? The science
philosopher Kuhn de�nes it as “an open-ended contribution
that frames the thinking of an object study with concepts,
results and procedures that structures future achievements”
[42]. Though seemingly far from the concerns in the dis-
cipline of computer science, this de�nition does highlight
the emergence of astructurethat captures the object of dis-
course and the existence ofprocedures that guides achieve-
ments.

In computer science, paradigms are probably best known
as a means for classifying General-purpose Programming
Languages (GPLs). For example, Eiffel is Object-Oriented
and supports Contract-Based Design, Prolog is considered
Declarative, while Lisp is Functional. A paradigm charac-
terises both the syntaxandsemantics of the language includ-
ing principles that govern it: Object Orientation imposes
viewing the world in terms of communicating objects typed
by classes, whereas the declarative paradigm relies on term
substitution and rewriting. The idea of combining several
paradigms into a singleGPL led to more expressive, pow-
erful programming languages such as Java [28] (which is
Imperative, Object-Oriented, Concurrent, Real-Time, and
Functional) and Maude [13] (which is Declarative, Object-
Oriented, Concurrent, and Real-Time), among many others.

Multi-Paradigm Modelling (MPM) has only recently been
recognized as a powerful paradigm on its own that can help
to design, as well as communicate and reason about,CPSs.

The termMPM �nds its origin in the Modelling and Sim-
ulation community in 1996, when the EU ESPRIT Basic
Research Working Group 8467 “Simulation in Europe” (SiE)
formulated a collection of research directions and policy
guidelines [69] identifying the need for “a multi-paradigm
methodology to express model knowledge using a blend of
different abstract representations rather than inventing some
new super-paradigm”. The main result was a vision where all
parts and aspects of a complex system are modelled explic-
itly, using the most appropriate modelling formalisms to
deal with engineering heterogeneity. The important aspect of
work�ow was not yet present. At �rst, only problems were
identi�ed, but later on, the same group focused on combining
multiple formalisms [70] through architectural composition
(as opposed to view composition). One main merit of the
SiE work was the inclusion ofa-causalmodelling to model
physical phenomena, an effort that led to the design of the
Modelica language.

Physical systems are often modelled using continuous
abstractions, e.g. Differential Algebraic Equations (DAEs)
to express constituent equations relating physical variables
of interest. Software systems are often modelled using dis-
crete abstractions, e.g. State Automata to express the discrete
changes made to data stored in memory by executing program
instructions. A consequence of the fact thatCPSs com-
bine cyber (software) and physical components is that they
are naturally modelled usinghybrid modelling languages
that combine continuous and discrete abstractions [79]. The
meaningful and usable integration of discrete and continuous
domains is at the heart of dealing withCPS. More generally,
dealing with heterogeneity, both in the levels of abstraction
and in the formalisms used, is one of the major challenges in
modellingCPSs.

The main contribution of this paper is a Descriptive Frame-
work for MPM applied toCPSs. The framework is based
on a special kind of metamodel whereplaceholderscan
be used, capturing variousstructural andprocesspatterns.
Such metamodels support expressing property expressions
that we call paradigmatic properties: they are used to
capture the essence of a paradigm and can be bound to
existing elements of candidate formalism/work�ow meta-
models (as well as their semantics) to determine if the
candidate formalism(s)/work�ow(s) effectively follow the
paradigm.

Although not completely formal, our framework allows
experts to better grasp the essence of how theirCPSsare
designed, while providing a common ground for a rigor-
ous engineering ofCPSsbased on theirMPM components.
Ultimately, in a next step not covered by this paper, this
framework aims to support tool builders, language devel-
opers, analysis engineers and other experts to reason about
CPSsand �gure out which formalisms, abstractions, work-
�ows and supporting methods, techniques, and tools are the
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most appropriateto carry out their task(s), thus minimis-
ing accidental complexity due to non-optimaltool selection.
Note that this paper does not intend to present a classi�cation
of formalisms or work�ows that could be used to engineer
CPSs. However, our Descriptive Framework could be used
to better classify these elements by providing more precise
descriptions for them.

This paper is a continuation of an effort started dur-
ing theCOSTAction IC14041 “Multi-Paradigm Modelling
for Cyber-Physical Systems” (MPM4CPS), which surveyed
languages and tools used for engineeringCPSs[12] and cap-
tured the relationships between them in an ontology. More-
over, it signi�cantly extends, and complements, a preliminary
version of our Descriptive Framework [3] by (i) capturing the
various components of a paradigm explicitly and (ii) demon-
strating a simple paradigmcombinationresulting in a valid
paradigm, which could suggest that our framework is closed
under the usual combination operators required for themulti-
paradigms necessary for modellingCPSs.

We organised the paper as follows. Section2 presents an
informal notion of paradigm to serve as a tutorial introduc-
tion to our Descriptive Framework, which itself is described
in Sect.3. Section4 exempli�es the framework with two
well-known paradigms used forCPSdevelopment. Section
5 de�nes a paradigm combinator, namelyembedding, and
shows how to systematically build a paradigm candidate from
candidates of the combined paradigms. Section6 highlights
and discusses related work from other communities, and Sect.
7 re�ects on our results. Section8 proposes future lines of
research and concluding remarks.

2 What is a paradigm?

Broadly speaking, aparadigmacts as apatternfor describ-
ing a whole class of artefacts sharing similar characteristics
or designates a framework that encapsulates theories inside
a scienti�c domain. We aim to capture the meaning of the
paradigm concept precisely enough to make it ultimately
amenable to computer-based analysis and reasoning.

This section provides an intuitive and lightweight intro-
duction to what a paradigm is. We start by a small detour
in linguistics and epistemology to revisit the classical de�ni-
tions in these �elds, before focusing again on their meaning
in computer science. Using two well-known paradigm exam-
ples from computer science, namely the Object Orientation
andAgile developmentparadigms, we clarify the core com-
ponents of our Descriptive Framework. The structure of this
framework is then described by means of a metamodel and
illustrated through typical usage scenarios.

1 http://mpm4cps.eu.

2.1 General definitions

From alinguisticviewpoint, aparadigmhas three de�nitions
from the English dictionary:

– A framework containing basic assumptions, ways of
thinking, and methodology that are commonly accepted
by members of a scienti�c community [57];

– A philosophical and theoretical framework of a scien-
ti�c school [of thought] or discipline within which are
formulated theories, laws, and generalisations, as well as
the experiments performed in support of [53].

– A model of something, or a very clear and typicalexample
of something [11].

Although very general in nature, there are several aspects
of these linguistic de�nitions that are worth pointing out.
First, in each of the above de�nitions, a paradigm de�nes, in
some sense, astructurethat is shared by several elements the
paradigm is intended to capture. Second, a paradigm also pro-
vides a way ofdecidingwhether an element under analysis
possesses those “basic assumptions” for �tting the structure.
Third, a paradigm organises the elements it characterises in
such a way that it becomes possible toreasonabout them
(with the help of “theories”, “laws” and suitable “general-
isations”). Finally, a paradigm results from anagreement
between “members of a [scienti�c] community”: the pre-
cise de�nition may change over time and may be slightly
different from different “schools of thought”, though sharing
“basic assumptions”.

In the �eld of philosophy of science, the most popular and
commonly agreed-upon de�nition of the concept of paradigm
was formulated by Kuhn [42], who distinguishes the follow-
ing:

– The subject matter, i.e. what is to be observed and scru-
tinised;

– The kind of questions that are supposed to be asked and
probed for answers in relation to the subject;

– How these questions are to be structured;
– What predictions are made by the primary theory within

the discipline;
– How the results of scienti�c investigations should be

interpreted;
– How an experiment is to be conducted and which equip-

ment is available to conduct these experiments.

The aspects highlighted by this philosophical de�nition are
similar to the linguistic ones pointed out above, although
differently framed. Kuhn gives some details about how the
reasoning takes place: he emphasises that a paradigm isques-
tionedin astructuredway, and that some of these questions
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may be general enough to form the basis of predictions about
the subject matter.

Let us summarise what we learnt about the nature and
functions of a paradigm:

1. A paradigm captures theessenceof a collection of
elements that have a substantial impact in a scienti�c dis-
cipline.

2. As a consequence, a paradigm is ontologicallydistinct
from those elements.

3. The essence captured by a paradigm is expressed through
“questions” or, in the case of computer science,properties
of interestthat are supported by variousstructures.

4. Those properties enablereasoninganddrawing suitable
generalisations, andpredictions. They also offer a way
of decidingwhether an element of interest (that we later
call a “candidate”) qualiÞes as, follows, or embodiesthis
paradigm, typically by human assessment.

We claim that in computer science, the “questions” for a
paradigm, orparadigmatic propertiesas we will call them,
always rely on structures that are supported byprocesses, or
workßows, for capturing the dynamic nature of computations,
processes that ultimately manipulateformalisms.

In the next section, we purposely study two paradigm
examples (in a simpli�ed version) that are widely recognised
as having signi�cantly shifted the scienti�c �eld of computer
science, namely Object Orientation and Agile Programming.
Note that these are programming paradigms, which consti-
tute a speci�c subclass of modelling paradigms, with the
advantage of being readily understood by readers from the
Software Engineering community. Both are chosen on pur-
pose: the former pertains to formalisms, whereas the latter
pertains to processes.

For the purpose of the presentation, we had to choose a
particular way of describing those concepts usingsupportive
formalisms(which correspond to meta-metamodels, or tech-
nical spaces, see Wimmer and Kramler [77]). Note, however,
that our Descriptive Framework does not depend on any par-
ticular choice of supportive formalism(s): only the expression
of the (paradigmatic) properties and their underlying struc-
tures depend on them for reasoning and deciding whether
a (candidate) element follows a given paradigm. We further
discuss this point at the end of each example.

2.2 Two simple examples: Object Orientation and
Agile Programming

An important feature for paradigms, which is crucial to clar-
ify the discourse, is the ability to explicitlynameboth the
properties a paradigm relies on, and as well as variations of a
paradigm. We present in this section two (versions of) well-
known paradigms in computer science and discuss some of

their characteristic properties. For each paradigmp, we adopt
a similar presentation:

1. We provide background information on paradigmp to
point out why it signi�cantly impacted programming;

2. We focus ononesingular property� of p that is com-
mon enough to make it easy to grasp, and simple enough
to be easily demonstrated without introducing too much
notation;

3. We present twocandidateelementsC1 andC2, one for
which � is satis�ed, and the other for which it is not;

4. We list the requiredsupporting formalismsnecessary for
building our Descriptive Framework and illustrate them
on the basis of our candidates.

2.2.1 Object Orientation: a formalism-oriented paradigm

Object Orientation (OO) emerged in the 1960s in response to
a need to structure the way programs were speci�ed. Instead
of seeing a computation as just imperative processing of
sequential instructions, OO de�nes and structures computa-
tion through organised, communicating objects that are typed
by means of classes, which de�ne their structure as well as
their computation and communication capabilities. OO con-
cepts are applicable in software engineering sub-domains
such as analysis, design, and software development. Whether
a GPLis classi�ed as OO depends on how tightly integrated
the OO concepts are into the programming language: from
“pure” OO GPLs where every programming construct is an
object (e.g. in Eiffel or Scala), overGPLs that still contain
some procedural elements (e.g. Java or C), toGPLs that inte-
grate some speci�c concepts (e.g. Ada or MATLAB).

There exist many variations of the de�nition of the OO
paradigm forGPLs (cf. among others, [1,75]). As a possi-
ble classi�cation, Wegner [75] distinguishes the notions of
object-based and object-orientedGPLs that may support (or
fail to support) data abstraction, strong typing, and delega-
tion. For illustrative purposes, let us only consider a very
basic feature, namelyinheritance, as a language mechanism
to share and factor out properties, thus promoting reuse.
When a (sub-)classC inherits from a (super-)classC’, then
semantically, all objects that are instances ofCautomatically
inherit the state and behaviour ofC’. Of course, many other
more complex properties de�ne the OO paradigm, and poten-
tially several variations of the same property (e.g. allowing
multiple inheritance) may be considered. As described pre-
viously, a paradigm is often an agreement or a common
understanding in a scienti�c school of thought, but nothing
prevents the co-existence of several variations of de�ni-
tions that are similar. Discriminating between them may be
achieved through distinctnamesrelating to different (vari-
ations of) the set of properties that characterise a given
paradigm.
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One may be interested in checking that a givencandi-
date GPL actually quali�es as OO. Let us consider Java
[28] and Pascal [15] for the purpose of the discussion. For
doing so, one needs to check whether the properties de�ning
(the particular �avour of) OO are indeed satis�ed by such a
candidateGPL. Note that a given candidateGPL is itself a
language speci�ed with candidate formalisms: one for cap-
turing its concrete syntax the programmer manipulates and
one for providing executability through an operational and/or
a translational semantics. We will qualify those ascandidate
formalisms, to distinguish them from theparadigmaticfor-
malisms used for capturing the speci�cs of a given paradigm.

Completely formalising those properties still requires the
use of appropriatesupportingformalisms for capturing them
and a way to relate the descriptions to the formalisms de�ning
the candidates, to check the properties’ satisfaction.

To summarise, we considered the paradigmp as being
Object Orientation, for which one of the characteristic prop-
erties� is inheritance, with two potential candidate elements
C1 as Java, andC2 as Pascal. To be able to actually check
whetherC1 andC2 qualify as Object Oriented, we need at
least four kinds of formalisms:

1. A structural (paradigmatic) formalism for describing
structures, to name, organise and relate the concepts
required by the paradigm. In the case ofinheritance,
this (paradigmatic) formalism would capture the notions
of class, �elds and objects and their relationships, as
described, e.g. by Wegner [75]. Depending on the prop-
erties of interest characterising a given paradigm, this
(paradigmatic) formalism may be used to capture patterns
at both thesyntacticandsemanticlevel of a candidate,
since paradigmatic properties often concern both (as it
is the case for the inheritance property described earlier
anyway).
Figure1 (top) illustrates one way to capture the structure
necessary for expressing the inheritance property using
a Placeholder Class Diagram inspired by theUML MOF
syntax (where placeholders are represented as double rect-
angle “classes”).

2. In the context of GPLs, candidates are usually already
existing programming languages, de�ned in a given (can-
didate) formalism. Java and Pascal certainly have aBnf
grammar de�nition historically, and Java may have a
UML Class Diagram-based (e.g. as a metamodel in the
Eclipse platform) or a Graph Grammar-based de�nition
(e.g. Corradini et al. [16], among others).
Figure1 (bottom) represents the (simpli�ed) metamodels
of two GPLs, Java and Pascal, ascandidatesfor the OO
paradigm, using a MOF Class Diagram.

3. A mappingformalism for relating the structural (paradig-
matic) formalism with the candidate formalisms. This
mapping is essential because the patterns captured by the

paradigmp need to be related to speci�c (sub-)structures
in the candidates. Precisely de�ning this mapping for-
malism is out of the scope of this paper; we explain only
informally how this mapping would occur (or fail to) for
our candidates Java and Pascal.
We need to check whether the topological structure from
Fig. 1 may be matched against bothGPLs’ metamodels
and if so, whether the property is satis�ed (modulo the
matching) on the corresponding structures.
A PascalProgram is composed ofBlocks, which are
either constant, variable, or type de�nitions, or alterna-
tively function and procedure declarations. None of these
concepts would fully match against theC placeholder,
because no association can be appropriately matched
against thesuperre�exive association, nor with an appro-
priate match withVFand its own associations. Without
further analysis, one can con�dently conclude that Pascal
does not qualify as OO.
In the Java metamodel, however, theNormalClassDec-
laration is a good candidate for a match with theC
placeholder, since it also containsClassMemberDecla-
rations whereFieldDeclarations may potentially match
the TF placeholder, with thesuper relationship being
expressed withextends(as the textual representation of
super in the left of Fig.1). Notice that Java is actually
richer: interfaces may also match withC, but would fail
for the rest (since Java’s interfaces do not declare �elds);
and Java allows �eld overloading.

4. Finally, aproperty (paradigmatic) formalism for speci-
fying properties over the structural (paradigmatic) for-
malism, as well as an appropriate checking procedure
allowing to validate, via the mapping, that a candidate
GPL satis�es the expressed (paradigmatic) properties.
Following our choice of Placeholder Class Diagram as
a structural paradigmatic formalism, a natural choice for
expressing our inheritance property would leverage the
Ocl language that could accommodate with placeholders.
Again, without going into too much formal speci�cation,
we rely on the usualOcl syntax to try and express inher-
itance, in two steps.
First, the set of accessible �elds for an object is recursively
computed by climbing up thesuper relationship in the
object’s typing class.

1 context O inv valuedFieldsMatchAccessibleFields :
2 let valFieldNames :Set(String ) =
3 o. valFields .name
4 in o. type . accessibleFields ()
5 Š>collect ( t f | t f .name)Š> forAll (tfName |
6 valFieldNames. exists (tfName) )

Since Pascal presented no match for the structural pat-
terns of theinheritanceproperty, there is no need to
try and check the property itself. For the Java case,
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Fig. 1 On top, an example of a Placeholder Class Diagram for cap-
turing concepts and relationships needed for expressing paradigmatic
properties, using aUML MOF-based syntax: ”placeholder” classes are
depicted with double rectangles (instead of the regular rectangles for
UML Class Diagram), to indicate that classes are meant to be matched

into a candidate metamodel. The example illustrates (part of) theinher-
itance property of the OO paradigm. On the left, an excerpt of a
metamodel for the JavaGPL, and one for the PascalGPL on the right,
showing how (syntactic) may be appropriately matched or not

the nature ofinheritancerequires to have a look at the
semantic level to check for a similar mechanism. Stärk
et al. [61] proposed a formal semantics for Java based on
Abstract State Machines, which are directly executable,
and compared their speci�cation with the Java Com-
piler. Their speci�cation de�nes (algebraic) functions
for class (namelyclassFieldV alues) and instance �eld
(inst FieldV alue) declarations, and models the dynamic
state of objects through their reference; both collect the
so-calledaccessible�elds for an object and are updated
with the semantic rules translating the effect of �eld access
and assignment. The Inheritance property� is enforced
in their semantic speci�cation by simply ensuring that
the (algebraic) total functions share appropriate domains
(thus forcing accessible �elds to possess a value, be it the
value used at initialisation).
A formal proof is obviously out of this paper’s scope,

but this simple example already demonstrates how it may
be dif�cult to relate and check properties expressed in
different supporting formalisms (anOcl -like expression
for the paradigmatic property and an algebraic expression
for the Java candidate).

2.2.2 Agile development: a work�ow-oriented paradigm

Agile development (AD) emerged in the early 2000s as an
alternative to the so-called heavyweight software develop-
ment processes (such as the traditional V-model), because
many software development projects required less regulation,
a shorter response time to requirement changes from cus-
tomers during the course of a project, and the processes were
perceived as overly constraining for developers, hampering
creativity. The general principles ofAD were summarised
in the Agile Manifesto [50], a general guide that places peo-
ple and software deliverables at the centre of the software
development process, rather than more rigid and procedu-
ral processes that may lose the �nal objective of delivering
high-quality software out of sight.

Here again, multiple variations for the de�nition of the
AD paradigm as a software development process exist (cf.
Merkow [52], Przyby�ek and Morales–Trujillo [59], among
others). A key feature ofAD that distinguishes it from
classical software development approaches is its iterative
nature. Organising shorter “full cycle” phases (from require-
ments to delivered software), in each of which a smaller set
of requirements are addressed, actually helps both parties:
the stakeholders gain con�dence in the developed software,
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which enables them to express their needs more precisely,
while the developers deliver solid, well-tested pieces of the
�nal product, responding quickly to new insights and updated
needs. Selecting a feasible set of functionalities is crucial
for the success of the so-called sprint phases: it is because
the tasks are voluntarily reduced to covering meaningful,
small increments in functionality, that it becomes possible
to achieve a “full cycle” in a limited time.

For illustrative purposes, let us consider a genericDesign
activity that performs what is considered as a “full cycle” or
Sprint. For eachSprint, a limited set of requirements needs
to be selected from the complete set of requirement, thus
capturing the stakeholders’ priorities. The selected set must
be small enough such that the sprint can be performed in
a reasonable short time. Some variants ofAD even require
�xed-length sprints. At the end of the sprint, an assessment
of the maturity of the requirements’ ful�lment is performed,
leading to a new evaluation of the priorities, thus entering a
new sprint.

To formalise the key features ofAD, one needs the means
to again manipulate concepts at both thesyntacticandseman-
tic levels. Syntactically, we need to describe the notion of
“activity” that takes as input (a subset of) the requirements,
expressed in an appropriate formalism; and the control �ow
associated with the loop enclosing a sprint. Semantically, we
need to ensure that any sprint execution is performed within
some time limit.

In summary, in order to precisely formalise our paradigm
Pof choice, in this case,Agile Development, for which one
characteristic property� is the fact that a sprint is performed
in a reasonably short time, we consider two potential candi-
date elementsC1, being the (simpli�ed)SystemDesignPhase
of the V-model, andC2, being a (simpli�ed form of)Sys-
temDesignExploration. For checking whetherC1 and C2

qualify as agile development, we would need at least four
kinds of formalisms:

1. A structural (paradigmatic) formalism for describing a
workßowthat enables distinguishing between control and
artefact �ows. Depending on the properties of interest
characterising a given paradigm, this (paradigmatic) for-
malism may be used to capture patterns at both the
syntactic and semantic level (i.e. over the execution traces
of the paradigmatic work�ow), since paradigmatic prop-
erties often concern both (as it is, for example, for the
requirement that Agile loops span over short periods.
Figure2 (middle) depicts the (paradigmatic, structural)

work�ow associated with theAD key features using a
UML Activity Diagram-like (our choice for the struc-
tural paradigmatic formalism listed above): the short
ShortDesignActivity, contained in theSprintactivity, is a

placeholder activity (note double-rounded rectangle used
as a symbol, in contrast to the regular rounded rectangle
in in UML Activity Diagrams)

2. In the context of Work�ow speci�cations (cf. discussions
in Sect.6.4), candidates are usually already expressed in
a given formalism. We sketch in Fig.2 (top and bottom)
(simpli�ed versions of) parts of the V-Model develop-
ment lifecycle andDesignSpaceExploration. We also use
UML Activity Diagrams as a formalism to simplify the
description.
The upper part of Fig.2 depicts a (simpli�ed)Sys-

temDesignPhaseof theV-Model, with only requirements
analysis and design activities shown (it is assumed that the
design artefacts produced are executable and have been
tested).

3. A mapping (paradigmatic) formalism for relating the
structural (paradigmatic) formalism elements with a can-
didate formalism used for specifying the abstract syntax
of potential candidate work�ows:Bpmn, UML Activity
Diagrams, etc. Precisely de�ning this mapping formalism
is out of this paper’s scope; we only informally visualise
it through the red dashed lines in Fig.2.

Although initially, a match of theSystemDesign-
PhaseAD candidate seems possible (the dashed mapping
arrows), it soon becomes obvious that the mapping can-
not be completed as no control loop can be found in the
SystemDesignPhaseAD candidate. This comes as no sur-
prise, as the essence of the V-model and its phases is its
linear arrangement of activities. One may thus conclude
that theV-Model’s SystemDesignPhasedoes not qualify
as Agile, since not even the syntactic components match.
Consider now a multi-objectiveSystemDesignExplo-

ration process where many variants of aCPSmay be
explored, thus eliminating poor designs and keeping the
ones that satisfy a set of global constraints to be further
analysed against non-functional criteria such as perfor-
mance, cost, power consumption, etc [48]. As the Agile
pattern leaves theShortDesignActivityunspeci�ed, it
will match any work�ow candidate which contains, in
the place of theShortDesignActivity, a work�ow that
matches this activity’s interface, and whose execution
time quali�es as “short”. As shown in Fig.2, substitutinga
DesignSpaceExploration(DSE) work�ow while respect-
ing the appropriate “interface” forShortDesignActivity
guarantees acceptance as followingAD.

4. A property(paradigmatic) formalism for specifyingprop-
ertiesover the structural (paradigmatic) work�ow, as well
as an appropriate checking procedure to validate, via the
mapping, that a candidate work�ow satis�es the (paradig-
matic) properties.
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Fig. 2 A proposal for capturing the Agile development (AD) life cycle
pattern, as aWork�owPH in the middle. On the top, a representation of
theSystemDesignPhaseof theV-Model, which fails to fully match the
AD pattern. TheV-Modelwork�ow essentially lacks a loop (so-called

Sprint) that addresses a small, self-contained subset of requirements (it
actually aims at the full set). On the bottom, a successful match between
theAD work�ow pattern andSystemDesignExplorationif the latter is
embedded inShortDesignActivity

We would have to de�ne a paradigmatic property for�
in a formalism that would allow constraining the (poten-
tially parameterisable) duration of the placeholder activity
ShortDesignActivityin the Agile work�ow pattern. Note
that this property refers to thetrace semanticsof the struc-
tural paradigmatic formalism.

Design Space Exploration may in itself be characterised
as a paradigm on its own, since it describes a character-
istic way of producing valid, optimal designs that satisfy
a selection of requirements. The use of patterns within
the structural (paradigmatic) formalism (based here on
UML Activity Diagrams) allows to easily describeAgile
Design Space Exploration compositionally by separating
the work�ow for the Design Space Exploration paradigm
from the one specifying its Agile nature. This leads to the
notion of the proper combination of multiple paradigms:
we further investigate one possible combination operator in
Sect.5.

3 A Descriptive Framework for capturing
modelling paradigms

The complexity of (designing)CPSsis commonly addressed
through complexworkßows, involving models in a plethora
of different formalisms, each with their own methods,
techniques and tools, and combining particulartypes of for-
malismsand operationson models in these formalisms.
MPM proposes to model everything explicitly, at the most
appropriate level of abstraction, using the most appropriate
modelling formalisms.

In the previous section, we offered a tutorial presentation
and example of each constitutive element of a paradigm, as
well as the intuition behind how to check whether a can-
didate quali�es as a paradigm’s element: object orientation
illustrated theformalismaspect with Java and Pascal as can-
didates. Agile development focused on theworkßowaspect,
with classical V-model and design space exploration life
cycles. In this section, we go one step further and capture
precisely, through a metamodel, the structuring elements of

123



Multi-paradigm modelling for cyber–physical systems: a descriptive framework 619

Fig. 3 A metamodel describing the concepts and structure of paradigms. AParadigmis de�ned by a set ofParadigmaticPropertys that characterise
components consisting of placeholders:FormalismPHs,TransformationPHs andWork�owPHs

paradigms, namelypropertiesover formalisms and work-
�ows. This metamodel, as pictured in Fig.3, as well as the
general principle behind effectively checking whether a given
candidate quali�es as, or follows a paradigm, as pictured in
Fig. 4, constitutes together our Descriptive Framework for
MPM.

From Fig.3, a paradigm (name) denotes a set ofParadig-
maticPropertiesthat capture the essence of the intended
paradigm. Many variations or combinations of those prop-
erties, grouped inCharacteristicSets, lead to conceptually
different paradigms in our framework: for example, Object
Orientation with single or multiple inheritance should be
named differently. The necessary components of these prop-
erties are formally captured by aParadigmaticStructure,
which consists of three interrelated parts: aWork�owPH
capturing the dynamics of how appropriate elements are
produced, consumed, and exchanged in an organised fash-
ion within the paradigm, where both activities and objects
are typed againstTransformationPHs andFormalismPHs,
respectively.

We describe in detail each component of the Descriptive
Framework, before explaining how to use it concretely to
check whether a candidate follows a given paradigm.

3.1 Paradigmatic properties

A ParadigmaticPropertyis a property that captures one
aspect of the paradigm’s essence that is shared by all arte-
facts that follow it. In other words, such a property is de�ned
“universally” at the level of the paradigm and holds for all
artefacts following this paradigm. To check whether it holds
or not, aParadigmaticPropertyde�nes explicitly a Deci-
sionProcedure, which may be automated, or performed by
a human (or any combination of both): it may be a math-
ematical proof, or it may be so dif�cult to prove that only
an agreement among those interested in theParadigmmay
be feasible and provide the decision. When all paradigmatic
properties are checked to be valid, the artefact then becomes
an artefact that quali�es as, or follows, the corresponding
paradigm.

3.2 Paradigmatic structure

For a ParadigmaticPropertyto be expressed (formally or
not), a paradigm needs to de�ne a minimal structure that
captures the vocabulary, the concepts and their relation-
ships that the property is about. AParadigmaticProperty
is appliedover a ParadigmaticStructure, which is com-
posed of one (or several) work�ow(s) with placeholders
(Work�owPH); one (or several) formalism(s) with place-
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holders (FormalismPH), or one (or several) transformation(s)
with placeholders (TransformationPH).

A Work�owPH links activities with placeholders
(ActivityPH) and their object nodes with placeholders
(ObjectNodePH) in various ways (sequential or concurrent),
described as�ow s driven byControlNodes (at this abstrac-
tion level, there is no need to distinguish between so-called
object and control �ows).

A TransformationPHtypes anActivityPH by de�ning
a signature, i.e. which source(s) and target(s) placeholder
formalisms (FormalismPH) the placeholder transformation
operates on. We requireTransformationPHs to be at least
terminating(since they are combined in so-called transfor-
mation chains [25], they shall always produce outputs), or to
fail when inputs are not conforming to their sourceFormal-
ismPH.

A FormalismPHshall at least de�ne, through anAbstract-
SyntaxPH, the expected structure supporting aParadigmat-
icProperty; it may eventually specify a (partial) semantic
speci�cation through aSemanticMappingPHthat maps ele-
ments from theAbstractSyntaxPHto an appropriateSeman-
ticDomainPH. All three of them contain placeholders (as
illustrated in Fig.1for the inheritance property in OO), allow-
ing arbitrary precision for aParadigmProperty.

As an example, Fig.1 describes (part of) the support-
ing FormalismPHand PropertyExpressionfor expressing
the inheritanceParadigmaticProperty, as part of the char-
acteristic set for the Object Orientation paradigm

Note that in this example, we expressed the structure sup-
porting the Inheritance property, and the property itself, in
speci�c formalisms: for the structural part, we selected a
MOF-like formalism; for the property, we naturally turned to
OCL as it is a standard, and expressive enough for capturing
our property of interest. To obtain an explicit speci�ca-
tion, many languages of our descriptive framework need
to be expressed as valid models of an appropriate formal-
ism. In Fig.3, we denote by light bluestructuralformalisms
(e.g. BNF/Graph Grammars, metamodels, Entity/Relations,
or any other suitable ones), and in orangebehavioural
formalisms (GPLs, transformation languages, graph trans-
formations, and so on). Note that both need to be extended
to capturepatternsover candidates (as we suggested and
demonstrated using placeholders for the pattern mechanism).

Although the activities comprising aWork�owPHmay be
combined freely usingControlNodes andFlows, we require
the following conditions to hold, for aWork�owPH to be
well-de�ned:

– EachActivityPHistypedby aTransformationPHappear-
ing in the sameParadigmaticStructure;

– EachObjectNodeused asinput or output of anActivi-
tyPHis typedby aFormalismPH, so that

– the type(s) of theObjectNodes used as input and output
of theActivityPHmatch the signature of theTransforma-
tionPHthat types theActivityPH.

Similar to the structural and behavioural formalisms required
for other various components of aParadigmaticStructure,
the elements comprising aWork�owPHand coloured in dark
blue may be part of a (richer) formalism dedicated to the
description of work�ows (such as UML Activity Diagrams,
Business Process Models, etc.); the only constraint is that the
NodeandFlowconcepts are in that formalism. In this paper,
we choose Activity Diagrams for this purpose (cf. Sect.6.4
for a discussion).

As already noticed, our Descriptive Framework admits as
valid paradigms de�nitions that are restricted:

– to onlyFormalismPH: we assume in this case that there
always exists adefault associatedWork�owPH that
allows creating appropriate instances of the formalism
it is matched to; or

– to only Work�owPH: we assume in this case that there
exists ageneric, defaultFormalismPHthat is used by one
of theActivityPHde�ned inside theProcessPHs.

This is precisely the case for the examples given in Sect.
2.2, making them valid paradigm de�nitions in our frame-
work (assuming allParadigmaticPropertys are effectively
speci�ed).

3.3 Checking whether a candidate follows a
paradigm

A typical usage for our Descriptive Framework is check-
ing whether aCandidate artefact indeed follows a given
paradigm. A candidate is structurally similar to a paradigm’s
ParadigmaticStructure, with the fundamental difference that
components are not merely placeholders anymore. ACan-
didate may exhibit arbitrarily complex components: the
Formalisms may have complicated, intricate syntax and
semantics; and theWork�ow s and associatedTransforma-
tions (chains) may describe large real-life (industrial, or
conceptual) processes related toCpsengineering.

Conceptually, checking that aParadigmaticProperty
holds on aCandidaterequires the de�nition of aMapping
that binds (all) placeholders appearing in the property to the
constituents of theCandidate. A mappingmay be arbitrarily
complex: the languages (metamodels) de�ning theCandi-
date may differ radically from the ones used for specifying
the ParadigmaticProperty; the semantics of aCandidate
may be expressedcandidatemay be expressed in a differ-
ent “style” (it is certainly operational for theCandidatein
order for it to be executable, while theFormalismPHmay
use an axiomatic de�nition to provide constraints over the
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Fig. 4 Checking whether aCandidate follows a given paradigm
through amapping that binds all placeholders in theParadigmat-
icStructure’s components with concrete elements constituting the
Candidate, then applying allDecisionProcedure

semantic domain); and aParadigmaticPropertymay oper-
ate at various levels at the same time (syntactic and semantic,
just like the inheritance property for OO), making theMap-
ping sensitive to implementation details. Formally speaking,
checking the validity of aParadigmaticPropertyconsists of
invoking theDecisionProcedureover the components the
properties apply to (eitherTransformations, Work�ow s or
Formalisms). but via theMappings. Note that we de�ne
a Work�owTrafoMapping referencing both theTransfor-
mationPH and theWork�owPH, becausecandidates may
abstract away or re�ne some parts in the other (i.e. a complex
Work�ow Placeholdermay be realised through a transfor-
mation delegated to an external tool, which is then perceived
from theCandidateviewpoint as a black box without further

control on the internals, thus preventing matching to explicit
placeholders).

Formally proving all of the paradigmatic properties
required for a candidate to follow a given paradigm may
prove extremely tedious, assumingMappings are actually
available. This explains why we expect that theDecisionPro-
cedures associated with aParadigmaticPropertymay well
be conducted by humans to overcome this dif�cult task. Fur-
thermore, as described in the previous section, the formalism
choices for expressing the required elements of the Descrip-
tive Framework introduce another burden for performing the
proof: as an illustration, if aCandidatefor the Object Ori-
entation paradigm captures theFormalismusing a different
formalism language than the ones we used in Fig.1, then
checking that the InheritanceParadigmaticPropertyholds
requires not only aMapping but additionally anequivalence
proof between formalisms.

3.4 Final remarks

From our point of view,CPSengineering has largely under-
valued the importance ofworkßows in the engineering
process. Although manipulating various artefacts (which cor-
responds to theActivityPH in our Descriptive Framework,
as part of the overallWork�owPH) is de factoa core con-
cern, we believe that explicitly representinghow, when, and
to which purposethose artefacts interact with each other
towards the greater goal of reaching an end product is a
crucial part for ensuring deeper understanding of the method-
ologies and construction processes, but also promotes reuse
and adaptation to new constraints. Making work�ow pattern
descriptions an integral part of our Descriptive Framework
is a �rst step towards recognising this fact and also enables
support for the underlying activities with adequate tooling at
the level of paradigms (just the way it is for other engineer-
ing disciplines, as emphasised, e.g. by Pahl et al. [58] for
mechanical engineering).

In our framework, nothing prevents a candidate from being
involved in several mappings, allowing it to qualify as various
paradigms. As an example, Java, our witness candidate for
theobject-orientedparadigm in Sect.2.2, may well qualify
as an object-oriented, but also as a concurrentGPL, assum-
ing one can provide a proper property characterisation of
what concurrency for imperative programming languages
may look like. As a consequence, theMapping component
of our Descriptive Framework needs to be separated from
the potential candidates; if not for conceptual reasons (as
above) then for legacy reasons, because often paradigm ele-
ments are built without thinking much of the paradigm they
belong, but rather on which kind of issues the element is
intended to solve.

When describing informally the kind of formalisms
required for capturing the nature of a paradigm, we referred
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to “supportive formalisms” to designate the so-calledmeta-
formalisms, i.e. the formalisms in which the listed for-
malisms (paradigmatic structural, mapping and property, but
also the candidate’s formalism(s) themselves) are expressed
in. In our conceptual metamodel of Fig.3, we further clas-
si�ed them into two categories:structural metaformalisms
in blue, which describe structures, andbehaviouralmetafor-
malisms in yellow, which describe computations. We also
showed in our tutorial examples from Sect.2.2 that it is
often the case that already existing formalisms may be
extended to provide adequate pattern languages for captur-
ing the various components of our descriptive framework
(namely ParadigmaticProperty, FormalismPH, Transfor-
mationPHandWork�owPH): we used an extension of UML
Class Diagrams and Activity Diagrams to convey the idea of
“patterns” that need to be �lled by elements of a potential
candidate (note that the exact speci�cation and semantics of
such extendedplaceholderformalisms remains future work).

We believe that many formalisms may be suitable to be
promoted aspattern/placeholderformalisms for capturing
paradigms’ properties when considering suitable research
on model typing [17,62,63]. The nature of the relation-
ship between the paradigm’s “patterns” and the candidate’s
matched elements are different from the classical class/in-
stance relationship, since a whole submodel may be matched
into a single placeholder. Such “extended” pattern/place-
holder languages may be partially obtained through semi-
automated processes (e.g.RAMi�cation (Kühne et al [43])),
but a precise (semantic) design, speci�cation, and matching
process of such languages is left as future work.

The diversity of supporting formalisms gives rise to two
crucial, and related, issues:

1. Having different choices for supportive formalisms for
the paradigm and a potential candidate requires either
that extra effort is put totranslateone of them (typically,
the candidate, which may be de�ned in various forms)
into an appropriate formalism, or to perform mathemat-
ical equivalence (or rather, simulation) proofs in order
to appropriately match elements. For simpli�cation pur-
poses, we stick to supportive formalisms (UML Class
Diagrams and Class Diagrams with placeholders; and
Activity Diagrams and Activity Diagrams with place-
holders) that correspond to the ones used for potential
candidate, to avoid another level of complication; but in
practice, this may happen often.

2. Similarly, having different choices impacts the decision
procedure, since the paradigmatic properties, as well
as the matchings, rely on the paradigm’s supportive
formalisms. The decision procedure may be seen as a pro-
ceduremodulothe formalisms: here again, equivalence
proofs taking into account both the supporting formalisms

Fig. 5 Classi�cation of modelling abstractions for dynamic systems
according to the nature of thetimeandstatevariables [72,79]

and the properties are necessary to prove we are manipu-
lating the “same” paradigm.

4 Two paradigms for CPS: discrete event
dynamic systems and synchronous data
ßow

This section presents two compact examples of paradigms
relevant to the engineering ofCPSsthat have been selected
and abstracted to illustrate the concepts ofMPM that we
strive to convey.

Among the many classi�cations forCPS modelling
abstractions and associated formalisms (cf. Sect.1for a quick
survey), the simplest and most widespread ones are based on
the nature of the representations of the characteristic quanti-
ties of aCPS: thetime baseover which theCPSevolves and
thestate variables. Both quantities may becontinuous, i.e.
their domains range over dense domains (such as reals), or
discrete, i.e. they range over discrete, enumerable domains
(such as integers).

Taking a helicopter view, the behaviour of aCPSmay be
seen as a trajectory that depicts the evolution of state vari-
ables over time, which are falling into one of the following
categories (cf. Fig.5 and [79]):

Continuous Variables/Continuous Time leads to com-
plex Differential Equations System Speci�cations (DESS)
where theconstituentrelationships between quantities are
captured in the form of differential algebraic equations.
Such speci�cations often require numerical solvers to
obtain approximate solutions on digital computers. Typi-
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cal realisations of this paradigm are Ordinary Differential
Equations, Bond Graphs, Equation-Based Object-Oriented
Languages such as Modelica, and Analog Electrical Circuit
Diagrams.

Continuous Variables/Discrete Time leads to Discrete
Time System Speci�cations (DTSS). These are for example
used in sampled system models, representing data period-
ically obtained from a physical system through sensors.
Typical realisations of this paradigm are Difference Equa-
tions (DE), and Cellular Automata (CA).

Discrete Variables/Continuous Time leads to Discrete
Event dynamic system speci�cations (DEv). Discrete Event
speci�cations start from the insight that discrete state
changes only occur at times of pertinent “events”. In
between those events, the state does not change and the
state trajectory is hence piecewise constant. In a �nite
time interval, only a �nite number of events may occur.
Typical realisations of this paradigm are Timed Finite
State Machines, Event Graphs and the Discrete Event Sys-
tem Speci�cation (Ziegler’sDEVSFormalism [79] which,
though Discrete Event, does permit a continuous state
space).

Discrete Variables/Discrete TimeThe other end of the spec-
trum leads to Discrete Event System Speci�catio (DTDS)
where discrete state changes only occur at equidistant times.
Typical realisations of this paradigm are State Machines.

This section presents theDiscrete Event dynamic systems
speciÞcation(abbreviated asDEv) and Synchronous Data
Flow (abbreviated asSDF) paradigms. We describe both in
details within our Descriptive Framework. This choice is
guided by three criteria. First, we have selected systems that
have opposite natures for the characteristic variables. Second,
they are simple enough to convey the necessary concepts for
illustrating our Descriptive Framework, while serving as a
basis for generalisation to more elaborateCPSmodels. Third,
the combination of those paradigms covers a large spectrum
of CPSmodels used in practice, making them illustrative of
the various combinations that exist.

Each paradigm is described systematically using the fol-
lowing approach:

1. We �rst capture the general requirements from a well-
known source that informally describes the paradigm;

2. We translate these requirements within our Descriptive
Framework (cf. Fig.3), using appropriate formalisms;

3. We then present a potentialCandidate, specifying its
various components (Formalisms, Transformations and
Work�ow s) to a certain extent.

4. We �nally apply the checking scenario of Sect.3.3: we
show howMappings may be (informally) de�ned, val-
idating that theCandidateindeed follows the paradigm
mentioned above.

Fig. 6 FormalismPHs andParadigmaticPropertiesfor the speci�ca-
tion of theDEv paradigm

4.1 Discrete Event dynamic systems (DEv) paradigm

The discrete event dynamic systemparadigm uses discrete
state variables with continuous time. We illustrate it with the
Timed Finite State Automata[22].

4.1.1 Paradigm description

From the previous categorisation, we summarise the rel-
evant properties of theDEv paradigm and express them in
our Descriptive Framework, as depicted in Fig.6

– The time is continuous: theFormalismPH Timemandates
the use of real values for elements matched withTime.

– The system’sdynamicsis captured through timed events:
the FormalismPH TimedEventTraceexpresses the fact
that some elements may be considered asEvents that
occur at speci�c time occurrences; theParadigmat-
icProperty isMonotonic (as expressed in pseudo-
Ocl ) ensures thatEvents occur at monotonically increas-
ing timestamps.

– The system’s (dynamic) state is composed of vari-
ables that range over discrete domains: twoFormal-
ismPHs describe system speci�cations (SystemS) and
instances (SystemI). A SystemSpeci�cation describes
dynamic systems at a high abstraction level, assuming
only the declaration of variables (SynVar), while aSys-
temInstance imposes that variables (SemVar) have val-
ues, together with aParadigmaticPropertythat enforces
values are actually discrete.

To simplify the description of theDEv paradigm, we only
consider one fundamentalTransformationPH, namedExe-
cute, with a trivial Work�owPH that allows executing the
system assuming a given trace.
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Fig. 7 Metamodels for specifying aTFSA (from ClassTFSA); its
semantic domain (ClassDomain) for accepting a (�nite)TimedEvent-
Trace

4.1.2 Candidate: timed �nite state automata (TFSA)

When augmented with time constraints, Timed Finite State
Automata (TFSA) are powerful formal models, suitable
for describing engineered and natural systems in various
application domains, which range from sequential circuits,
communication protocols, reactive and biological systems.
We describe here a simpli�edconceptualformalism for
TFSA that may represent concrete implementations in vari-
ous tools.

Figure 7 describes theTFSA formalism. A TFSAis a
Finite State Automaton with anINITIALand someFINAL
states interconnected byTransitions. A TimedEventTrace
is a �nite list of TimedEvent, consisting of a pair oftimes-
tampedevent names. ATransitionmay �re when itsTrigger
occurs, assuming itsguardevaluates totrue (theExpression
language is left unspeci�ed, as it is not necessary for under-
standing). When there is anEvent Trigger, it should match
the currentTimedEvent; otherwise, when theTrigger is an
After, theTransition�res only when the associatedtimeout
has elapsed, when no otherTimedEventoccurs before. The
TFSA formalism de�nes a semanticDomain (also called
conÞguration) for specifying an accepting behaviour, pro-
vided a speci�c �nite TimedEventTrace: a TFSA accepts a
trace iff consuming theTimedEvents composing the trace,
in order, results in aFINAL State. TheDomainreferences the
current Statewithin theTFSAand manipulates twoClocks:
a logicalone that records the global time elapse; and a clock
used for tracking theelapsedtime locally to aState.

Figure8 shows a simpleTFSAthat models the behaviour
of a (simpli�ed) car Power Window [56] equipped with a
three-position command button: when pressedup or down,
it indicates the window should move in the appropriate direc-
tion; when released, the button produces theneutral event.
For safety reasons, when a force is detected resisting the win-
dow moving up, the system produces anemergency event,

Fig. 8 A simpleTFSA conforming to theTFSAdomain metamodel of
Fig. 7

bringing the system into theEmergencymode: after one
millisecond, the window stops moving, allowing whatever is
obstructing the upward movement to be removed safely.

Listing 1 speci�es a procedureexecute capturing the
behavioural semantics of aTFSA. It operates on a(n instance
of a)Domain, assuming a(n instance of a)TFSAand a given
(instance of a �nite)TimedEventTrace, and proceeds as fol-
lows:

Initialise During this phase (Lines 5–7), the various time and
state variables are set, pointing thecurrentStatepointing
the currentStateof the computation to the (unique)INITIAL
Statein theTFSA.

Check Stopping ConditionsA loop captures the compu-
tation, which runs until no newTimedEvent(Line 9) is
present within the givenTimedTraceEvent tet, after the
currentStateis compared to the list ofFINAL Stateof the
TFSA.

Perform Step A computation step (Lines 10 – 25) depends
on the list of outgoingTransitionsof thecurrentState:

– If an Event Transitionlabelled with the samename
as the currentTimeEvent teexists, theTransitionis �red
(must-semantics), changing thecurrentStateto theTransi-
tion’s tgt ;

– Otherwise, if anAfter Transitionis present, it is �red
assuming it already reached itstimeout (i.e. timeout �
elapsed). After that, a discrete time step is taken, incre-
menting both clocks (elapsedandlogical) by the prede�ned
delta).

Terminate It remains to check (Line 27) whether thecur-
rentStateat the end of the computation is aFINAL State.

While explaining the behavioural semantics, we explicitly
distinguished separate activities whose dynamics are cap-
tured in the Activity Diagram of Fig.9.
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1 procedure execute(d : Domain,
2 tfsa : TFSA,
3 tet : TimedEventTrace)
4 do
5 d. logical . value = d. elapsed . value = 0
6 d. current = tfsa . getInit ialState ()
7 currentState = d. current
8
9 foreach( tevent : tet . timedEvents)do

10 outs = tfsa . outgoingTransitions(currentState )
11 transition = outs . fi l te r [Event]
12 . find [name = tevent .name]
13 i f ( transition != null ) then
14 currentState = transition . tgt
15 d. elapsed . value = 0
16 else
17 transition = outs . fi l te r [After ]
18 i f ( transition != null &&
19 transition . timeout <= d. elapsed)then
20 currentState = transition . tgt
21 d. elapsed . value = 0
22 endif
23 endif
24 d. logical . value += d. delta
25 d. elapsed . value += d. delta
26 endfor
27 return tfsa . getFinalStates () . contains(currentState )
28 endprocedure

Listing 1 Algorithmic for theExecutetransformation, specifying the
behavioural semantics forTFSA.

4.1.3 Mapping

We brie�y discuss how to (partially) build theMapping
between theParadigmaticStructurede�ning ourDEv paradigm
and the components of ourTFSACandidate, as an instance
of the metamodel de�ned in Fig.3.

First, theTimedEventTracemetamodel in Fig.7 maps
directly to the TimedEventTrace FormalismPHof
Fig. 6: names were kept identical on purpose, sinceTimed-
TraceEvents are a rather simple collection structure.

Second, theSystemSpeci�cation may correspond to the
TFSAconcept, assuming the rest binds appropriately. As state
variables forTFSA, which are required by aParadigmat-
icPropertyto be discrete, we may bind theStateconcept. As
it occurs forTFSA, the classStateappears both as a com-
ponent for the classTFSA, which is matched toSystemS,
and as an element in the semanticDomain, which should
therefore be bound toSystemI. Since the number ofStates
is always �nite (the usual meaning of the “*” in the states
reference), it de�nes adiscretedomain, thereby validating
theParadigmaticProperty.

Third, theexecuteprocedure presented in Listing 1 maps
in a straightforward way to the trivialWorfk�owPH contain-
ing theExecute TransformationPHmentioned at the end of
Sect.4.2.2.

Fig. 9 Activity Diagram capturing the dynamics of the activities com-
posing the behavioural semantics common to aTFSA(Listing 1) and a
CBD (Listing 2)

4.2 Synchronous Data Flow (SDF) paradigm

TheSynchronous Data Flowparadigm uses continuous time
and state variables, and is illustrated withCausal Block Dia-
gram , a formalism representative for many tools such as
Simulink andScade.

4.2.1 Presentation

The Data Flow paradigm [74] describes computations as a
special directed graph, with the following features:

Signalsrepresent in�nite streams of data, where each data
piece is called asample.

Nodesalso calledblocks, represent computation units that
execute(or Þre) whenever enough input data become avail-
able. Blocks without input can �re at any time. Nodes
may be atomic, i.e. performing basic computations (such
as adders or multipliers), or composite, thereby encapsu-
lating themselves a subgraph.

Arcs connect nodes, thus describing how data streams �ow
throughout the computation blocks.

Executing a Data Flow graph consists of accumulating
enough samples within the system, produced by blocks
without inputs, and performing the computations within the
blocks, thus consuming a number of samples on each input
and producing samples on all outputs in a concurrent way.
Samples may be reused within the system (for example, in
case of cycles) to be used as old samples Messerschmitt [54],
but they will not be considered as new once consumed.

The synchronous data �ow paradigm [47] is a specialisa-
tion of the data �ow paradigm where all blocks appearing in
a data �ow graph are required to besynchronous, i.e. each
block explicitly de�nes how many samples are consumed
and produced.

4.2.2 Paradigm description

The previous description leads to the following proposal
in our Descriptive Framework, as illustrated in Fig.10:
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Fig. 10 FormalismPHs andParadigmaticPropertiesfor the speci�ca-
tion of the SDF paradigm (the plain arrow denotes inheritance over
placeholder classes)

– Signals are composed of an in�nite, ordered stream of
Samples (note the� multiplicity denoting a collection
with an in�nite, dynamic number of elements, as sug-
gested by Combemale et al. [14]).

– An SDFhas the structure of adirectedgraph withArcs
andBlocks as nodes.

– Blocks possessPorts that explicitly de�ne how many
Samples are used (consumed byInputs, or produced by
Outputs).

– Arcs connectPorts, and �owSignals that travel on them
instantaneously. Note that aPortmay be plugged to sev-
eralArcs; only shortcuts are prevented by thenoShortcut
ParadigmaticProperty, which forbidsArcs to connect as
srcandtgt Ports of the sameType.

– A memoryfull Blockshould always de�ne an extraPort
corresponding to initial conditions.

To simplify the description of theSdf paradigm, we only
consider one fundamentalTransformationPH, namedExe-
cute, with a trivial Work�owPH that allows executing the
system assuming valid inputs.

4.2.3 Causal block diagramsCBDs

Viewing a CPSas a set of interacting components that
may be further decomposed is a natural and intuitive way
for breaking its internal complexity. Because they offer an
intuitive graphical description in terms of interconnected
nodes, Causal Block Diagrams (CBDs) represent a natural
formalism for capturing the dynamics ofCPSs in a so-
called feedback control loop: the evolution of a physical
plant is monitored through sensors (thereby introducing a
time discretisation), which provide a data stream constantly
monitored and analysed by a software that in�uences back
the software plant through actuators.CBDs come in different
�avours, depending on the type of blocks that are available
for describing a system [20,27]:

– AlgebraicCBDs only expose mathematical computation
blocks (over integers andbooleandata �ows). There is no

Fig. 11 Metamodels for specifying aCBD (from ClassCBD) and its
semantic domain (ClassDomain) for executing it

time progression. They may describe steady-stateCPSs
occurring once the system has reached a steady state (e.g.
an engine after its transition phase);

– Discrete TimeCBDs extend algebraicCBDs with blocks
that introducedelay, forcing all algebraic blocks to
update their output streams whenever the delay is eval-
uated. They naturally describe discrete time dynamic
systems.

– Continuous TimeCBDs also extendCBDs, but in a dif-
ferent way: instead of introducing a time step notion with
a delay, it extends algebraicCBDs with continuous time,
using the mathematical integration and derivative oper-
ators. Although theoretically more powerful and more
complex than the previousCBD class, they are still
suitable for dynamic systems but require numerical dis-
cretisation.

CBDs have strong mathematical foundations and largely
leverage recent advances in numerical solvers, making their
use widespread within several tools (e.g. MathWorks’MAT-
LAB/SimuLink; Ansys/EsterelScade, to only name the
most renowned ones). Without loss of generality, and to
simplify the presentation, we will also consider theSDF
paradigm aconceptualformalism for Continuous Time CBD
that may be part of concrete tool implementations.

Figure11 describes theCBD formalism. ACBDis com-
posed ofBlocks that possess a number ofInputPorts and
OutputPorts. ThosePorts areLinked appropriately (i.e. a
Link connects an output to an input). To simplify the presen-
tation, we only consider three kinds ofBlocks: anAdderand
aMultiplier (which are both Memoryless) and anIntegrator
(which is Memoryfull). The semanticDomainfor executing
aCBDconsists of a time stepdelta, and a dependencyGraph
(edges are not explicitly represented here) whoseNodes
aggregate thoseBlocks that are cyclically interdependent.
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1 procedure execute(d : Domain, cbd : CBD)
2 do
3 d.dGraph =
4 cbd.computeDependencyGraphWithStrongComponents()
5 d. logical . time = 0
6 while(not end_condition)do
7 foreach (scomponent : d.dGraph.nodes)do
8 i f (scomponent. size () = 1)then
9 scomponent.nodes.pop() .compute()

10 elseŠŠ Strong Component: compute the whole cycle!
11 scomponent.nodes.compute()
12 endif
13 endfor
14 endwhile
15 d. logical . time += d. delta
16 endprocedure

Listing 2 Algorithmic for theExecutetransformation, specifying the
behavioural semantics forCBD.

Listing 2 describes a procedureexecutefor capturing the
behavioural semantics of aCBD. It operates on a(n instance
of a) Domain and a(n instance of a)CBD, and proceeds as
follows [27]:

Initialise During this phase (Lines 3–5), the various time and
state variables are set: thelogical clock is initialised, and the
dependency graph with strong components is computed.

Check Stopping ConditionsThe stopping condition is pro-
vided by the user (captured by theend_condition predicate
in Line 6) since aCBD computes values at each time step.

Perform StepThis step consists of iterating over eachBlock,
in the order of the dependency graph. The (overloaded)Com-
pute procedure depends on the nature of theBlock:

MemorylessA memorylessBlock(such as ourAdderor
Multiplier) simply applies a stepwise basic operation
(here, an arithmetic one) on theSamples available on
the Input Port, and delivers the result on theOutput
Port.

Memoryfull Blocks are split in two categories: adelay
performs a discrete operation based on previous values
of Inputs, thus requiring memory to store such values,
while anaccumulator(like our Integrator) performs
an approximation of a continuous behaviour by accu-
mulating theInput (cf. Gomes et al [27] for a detailed
explanation; cf. Burden and Faires [9] for details on
how numerical approximations may be used for these
Blocks).

After having completed the computation of allBlock, the
logical clock progresses by adelta step value.

Theexecuteprocedure may be described as an activity dia-
gram in a similar way asTFSA were, as depicted in Fig.9.
Note that forCBD, theterminate activity is, in fact, empty.

4.2.4 Mapping

Some of theMappings between theParadigmaticStructure
de�ning our SDFparadigm and the components of ourCBD
Candidateare almost straightforward: theCBDmetamodel
is similar to theFormalismPHfor SDF, aside from renaming
(e.g.Link trivially binds to Arc), and tagging the proposed
Blockappropriately (AdderandMultiplier areMemoryLess,
while Integrator is MemoryFull). EachBlockconsumes and
produces exactly oneSampleon each of itsInput andOutput
Port (assuming the value on the extra Input ofMemory-
FullBlocks for initial conditions does not change). Note that
the timestep in aCBD is implicit, as no syntactic element
manipulates it directly. Rather, the timestep corresponds to
an evaluation of the fullCBD (as shown by theexecutepro-
cedure, where the time progresses after each full iteration).

Note that theexecute procedure described in Listing 2
trivially matches theExecute TransformationPHrequired in
Sect.4.2.2.

5 Multi-paradigm modelling: combining
paradigms

SinceCPSscombine physical phenomena with logical deci-
sion making, mostly implemented in software, modelling
their complex behaviour requires the use of a combination of
continuous time models to capture the physical aspects, with
discrete time and discrete event models to represent logical
computations. Depending on the level of abstraction used,
the networking part ofCPSmay be modelled using either
type of models. Furthermore, for many complexCPSs, in
order to address the diverse concerns stakeholders may have,
complexity is tackled through orthogonal, yet complemen-
tary viewpoints. Not only the individual views need to be
modelled explicitly, but above all, their often complex inter-
actions and integration.

This section starts by presenting some general mecha-
nisms in engineering that govern the design of a complex
CPS. It then proceeds to precisely de�ne one exampleMPM
combinator, namelyembedding, before applying it to our
two CPS-oriented candidates, namelyTFSA for the Dis-
crete Event Dynamic System paradigm, andCBD for the
synchronousSynchronousData Flow paradigm.

We are aware that embedding is just one of the many com-
binators applicable to formalisms and work�ows, such as
extension, uni�cation or self-extension [23], merging [19],
and aggregation [36]. However, embedding is popular in
practice, and simple enough for us to explain our paradigm
combinator concepts concisely. Future work will investigate
other paradigm combinators.
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5.1 General mechanisms for tackling complexity

Benveniste et al. [5] argue that three basic mechanisms,
namelymodel abstraction/reÞnement, architectural decom-
position and view decomposition/merge, are suf�cient to
describe any complexCPSengineering effort. In our descrip-
tive framework, these mechanisms may be captured by a
combination ofTransformationPHs and/orWork�owPHs,
depending on the available machinery, the granularity at
which a design needs to be tackled at any point of theCPS
engineering life cycle, and the details different engineers
need to know about the completeCPS. At this point, it is
still not clear whether these mechanisms may themselves
be considered as paradigms on their own, or as relationships
that paradigms may leverage to capture complex engineering
processes (in a similar way to operations over the algebraic
structure of paradigm). We simply describe them succinctly,
leaving their integration as an extension of our Descriptive
Framework.

5.1.1 Model abstraction/re�nement

Model abstraction (and its dual, re�nement) is used when
focusing on a particular set ofpropertiesof interest. A rela-
tionshipA between a detailed modelmd and a more abstract
model ma is an abstractionwith respect to aset of prop-
erties � , iff for all properties� � � , the satisfaction of
� by the more abstractma implies the satisfaction of� by
the more detailedmd. This allows one tosubstitute md by
ma whenever questions about the properties in� need to be
answered. Substitution is useful as the analysis of properties
on the more detailed model is usually more costly than on the
abstracted model. Note that the abstraction relationship may
hold between models in the same or in different formalisms,
as long as for both, the semantics allows for the evaluation of
the same properties. When modelling physical systems, con-
tinuous domains are frequently used. In that case, a more
relaxed notion of substitutability based onapproximation
may be appropriate.

5.1.2 Architectural decomposition/component composition

Architectural decomposition (and its dual, component com-
position) is used when the problem can be broken into
parts, each with an appropriateinterface. Such an encapsu-
lation reduces a problem to (i) a number of sub-problems,
each requiring the satisfaction of its own properties, and
each leading to the design of a component and (ii) the
design of an appropriate architecture connecting the com-
ponents in such a way that the composition satis�es the
original required properties. Such a breakdown often comes
naturally at some levels of abstraction, using appropriate for-
malisms (which support hierarchy). This may occur when

the problem/solution domain exhibits locality or continuity
properties. Note that the component models may again be
described in different formalisms, as long their interfaces
match and the multi-formalism composition has a precise
semantics.

5.1.3 View decomposition/merge

View decomposition (and its dual, view merge) is used in
the collaboration between multiple stakeholders, each with
different concerns. Each viewpoint allows the evaluation of a
stakeholder-speci�c set of properties. When concrete views
are merged, the conjunction of all the views’ properties must
hold. In the software realm, IEEE Standard 1471 de�nes
the relationships between viewpoints and their realisations
views. Note that the views may be described in different for-
malisms.

5.2 Embedding: a simple, powerful MPM combinator

As an orthogonal view to the general mechanisms presented
above, there exists the possibility to combine paradigms
to form new paradigms throughcombinators, i.e. opera-
tors that allow the combination of two artefacts that follow
two paradigms (distinct or not). Combinators may even have
higher arities, allowing combination of a �nite collection of
artefacts.

Given the way our Descriptive Framework captures the
notion of paradigm, a natural (yet not completely general)
way to describe combinators is to proceed in a component-
wise fashion:

F-Combinator CombiningFormalisms, keeping their default
Work�ow s separate, while ensuringParadigmaticProp-
ertys that ensure soundness of the operation; or

W-Combinator CombiningWork�ow s, assuming their default
Formalisms are distinct, while ensuring soundness.

In this section, we propose to capture a simple binary F-
Combinator namedembeddingthat we note� :

� : Formalism× Formalism� Formalism
(Host, Guest) �� New

An embedding takes twosourceformalisms (together with
their default work�ows), theHost and theGuest, each fol-
lowing its own paradigm, and produces aNew formalism
with two separate, default work�ows that may be improved
to help co-design the new formalism instances. Note that�
is a non-commutative combinator: switchingHost, i.e. the
formalism that embeds, or is extended with, theGuest, gen-
erally results in two radically different results, as we will
illustrate in Sects.5.4and5.3.
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For the new formalism to be valid, an embedding should:

– De�ne a new, validabstract syntaxbased on the abstract
syntaxes of theHostandGuestsource formalisms;

– De�ne a newsemanticsthat isconservative, i.e. if the
embedded (syntactic) elements are removed from the
new formalism instances, the execution semantics shall
coincide, as a projection, with each one of the source
formalism instance execution semantics.

At a high level, one can see the execution (operational
semantics) of an embedding as a three-step process:

1. The host starts the execution, following its semantics;
2. At some speci�c steps during the execution, correspond-

ing to the embedding, the host delegates the execution to
the guest;

3. The guest then proceeds with its own execution semantics;
4. At some prede�ned steps during the guest’s execution, or

when something global occurs for the host, the delegation
stops and returns to the host.

The speci�c point where the delegation occurs is de�ned
syntactically, while the mechanisms for delegating from the
higher, macro-level of the host, to the lower,micro-level
of the guest and back, is de�ned in a semantic adaptation
(embedding).

For illustrative purpose, we will describe the following
embedding, which results in the well-knownhierarchical
TFSA (HTFSA):

HTFSA� TFSA� TFSA

5.2.1 Abstract syntax

The pattern described in Fig.12(bottom) captures how the
resulting paradigm’s abstract syntax is constructed: aDirec-
tor class from the host is extended with aDelegateclass from
the guest. TheDelegatethen contains aDelegationwhere
the micro-steps occur. As a guideline for helping identify
potential matches, aDirector is often a super class extended
with particular cases that behave slightly differently from
each other.

For building aHTFSAby embedding, we need to match the
previous pattern (cf. Fig.12, top, unnecessary details omit-
ted). We identify as a natural candidate theStateclass as a
Director, which leads to internal computations insideCom-
posite states, performed by an fullTFSAas aDelegation.

5.2.2 Execution semantics

The Activity Diagram of Fig. 13 describes a possible
recursive operationalisation of the execution semantics in

Fig. 12 The Embedding Pattern (bottom) de�nes how the Abstract
Syntax may be built fromHostandGuestabstract syntax elements: in
theHost, a Director performs macro-steps, and sometimesDelegates
computations to theGuest, resulting in micro-steps performed by the
Guest’s Delegation. In the case ofHTFSA, theStateclass is matched
as theDirector, using a a fullTFSAas aDelegation.

an embedding, by implementing the following algorithm
expressed as Activity Diagrams:

1. Starting from theHost, an Initialise phase sets time
and system state variables for preparing the computation
steps;

2. A CheckStopConditionschecks whether this (hierarchi-
cal) level’s halting conditions are ful�lled. If they are, this
level’s computation halts: control is transferred back the
outer level, eventually performing aTerminateactivity
for �nal settings; or the whole computation terminates.

3. If CheckStopConditionsare not ful�lled, aPerformStep
occurs, making progress for this level’s computation;

4. Then, aCheckForDelegationchecks whether the cur-
rent element embeds an internal instance: if this is
the case, control is transferred to the inner structure
(Delegate::Execute); otherwise, the control loops back
to CheckStopConditionsfor another (macro) step.

The check and eventual call to theDelegate’s Execute Trans-
formation (depicted in green) transfers control to the lower
level, performing themicro-steps embedded inside the cur-
rent level’smacro-step (depicted in red). Note that this pattern
may occur �nitely many times, allowing the embedding of
an arbitrary number of levels.

Applying this pattern to the particular case of theHTFSA
embedding performs a transfer to the sub-TFSA, while keep-
ing the sameExecutespeci�cation. Note that this pattern
produces a behaviour forHTFSAthat is opposite to the one
promoted byUML: in case of competition between transi-
tions at different hierarchical levels with identicalEvents,
the outermost transition takes priority, following Harel’s
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