
HAL Id: hal-03572782
https://hal.science/hal-03572782

Submitted on 14 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-paradigm modelling for cyber–physical systems: a
descriptive framework

Moussa Amrani, Dominique Blouin, Robert Heinrich, Arend Rensink, Hans
Vangheluwe, Andreas Wortmann

To cite this version:
Moussa Amrani, Dominique Blouin, Robert Heinrich, Arend Rensink, Hans Vangheluwe, et al.. Multi-
paradigm modelling for cyber–physical systems: a descriptive framework. Software and Systems
Modeling, 2021, 20, pp.611 - 639. �10.1007/s10270-021-00876-z�. �hal-03572782�

https://hal.science/hal-03572782
https://hal.archives-ouvertes.fr

Software and Systems Modeling (2021) 20:611–639
https://doi.org/10.1007/s10270-021-00876-z

THEME SECT ION PAPER

Multi-paradigmmodelling for cyber–physical systems: a descriptive
framework

Moussa Amrani1 · Dominique Blouin2 · Robert Heinrich3 · Arend Rensink4 · Hans Vangheluwe5 ·
Andreas Wortmann6,7

Received: 6 April 2020 / Revised: 28 September 2020 / Accepted: 8 December 2020 / Published online: 9 June 2021
© The Author(s) 2021

Abstract
The complexity of cyber–physical systems (CPSs) is commonly addressed through complex workflows, involving models in a
plethora of different formalisms, each with their own methods, techniques, and tools. Some workflow patterns, combined with
particular types of formalisms and operations on models in these formalisms, are used successfully in engineering practice.
To identify and reuse them, we refer to these combinations of workflow and formalism patterns as modelling paradigms. This
paper proposes a unifying (Descriptive) Framework to describe these paradigms, as well as their combinations. This work
is set in the context of Multi-Paradigm Modelling (MPM), which is based on the principle to model every part and aspect
of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s) and
workflows. The purpose of the Descriptive Framework presented in this paper is to serve as a basis to reason about these
formalisms, workflows, and their combinations. One crucial part of the framework is the ability to capture the structural
essence of a paradigm through the concept of a paradigmatic structure. This is illustrated informally by means of two
example paradigms commonly used in CPS: Discrete Event Dynamic Systems and Synchronous Data Flow. The presented
framework also identifies the need to establish whether a paradigm candidate follows, or qualifies as, a (given) paradigm.
To illustrate the ability of the framework to support combining paradigms, the paper shows examples of both workflow and
formalism combinations. The presented framework is intended as a basis for characterisation and classification of paradigms,
as a starting point for a rigorous formalisation of the framework (allowing formal analyses), and as a foundation for MPM
tool development.

Keywords Multi-paradigm modelling · Foundations of model-based systems engineering · Cyber–physical systems

Communicated by Eugene Syriani and Manuel Wimmer.

B Arend Rensink
arend.rensink@utwente.nl

Moussa Amrani
Moussa.Amrani@unamur.be

Dominique Blouin
Dominique.Blouin@telecom-paris.fr

Robert Heinrich
Robert.Heinrich@kit.edu

Hans Vangheluwe
Hans.Vangheluwe@uantwerpen.be

Andreas Wortmann
Andreas.Wortmann@isw.uni-stuttgart.de

1 Namur Digital Institute (NaDi), University of Namur, Namur,
Belgium

1 Introduction

Cyber–Physical Systems (CPSs) are engineered systems that
emerge from the networking of multi-physical processes
(mechanical, electrical, biochemical, etc.) and computational

2 Télécom Paris, Institut Polytechnique de Paris, Palaiseau,
France

3 Karlsruhe Institute of Technology, Karlsruhe, Germany

4 University of Twente, Enschede, The Netherlands

5 University of Antwerp – Flanders Make, Antwerp, Belgium

6 RWTH Aachen, Aachen, Germany

7 University of Stuttgart, Stuttgart, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00876-z&domain=pdf
http://orcid.org/0000-0002-6987-1037
http://orcid.org/0000-0001-7606-0251
http://orcid.org/0000-0003-0779-9444
http://orcid.org/0000-0002-1714-6319
http://orcid.org/0000-0003-2079-6643
http://orcid.org/0000-0003-3534-253X

612 M. Amrani et al.

processes (control, signal processing, logical inference, plan-
ning, etc.) that typically interact with a highly uncertain
environment, including human actors, in a socio-economic
context. These systems enable many of our daily activities
and have become innovation drivers in important domains,
such as automotive, avionics, civil engineering, Industry 4.0,
and robotics.

Engineering CPSs requires the contribution of experts
from different domains to solve the challenges related to their
own discipline, but also to collaborate to make all parts work
together. BecauseCPSs are generally costly to fully build and
maintain, early modelling and simulation is a de facto tech-
nique crucial in their development. This enables reconciling
the multifaceted aspects of a CPS, studying safety-critical
and emerging properties, and planning for deployment even
before the physical parts of the system are available (e.g. via
Hardware-in-the-Loop (HIL) simulation).

The full complexity of CPS engineering is not covered
by single modelling paradigms. For instance, the Equation-
Based paradigm only covers the physical parts of the system;
the Object-oriented paradigm only covers the code parts of
the system; and the Agile paradigm only covers workflow
aspects of system development. Consequently, the hetero-
geneity and complexity of CPSs and their design activities
require the combination of multiple paradigms to describe
the entire system while including all relevant aspects.

In this context, what is a paradigm then? The science
philosopher Kuhn defines it as “an open-ended contribution
that frames the thinking of an object study with concepts,
results and procedures that structures future achievements”
[42]. Though seemingly far from the concerns in the dis-
cipline of computer science, this definition does highlight
the emergence of a structure that captures the object of dis-
course and the existence of procedures that guides achieve-
ments.

In computer science, paradigms are probably best known
as a means for classifying General-purpose Programming
Languages (GPLs). For example, Eiffel is Object-Oriented
and supports Contract-Based Design, Prolog is considered
Declarative, while Lisp is Functional. A paradigm charac-
terises both the syntax and semantics of the language includ-
ing principles that govern it: Object Orientation imposes
viewing the world in terms of communicating objects typed
by classes, whereas the declarative paradigm relies on term
substitution and rewriting. The idea of combining several
paradigms into a single GPL led to more expressive, pow-
erful programming languages such as Java [28] (which is
Imperative, Object-Oriented, Concurrent, Real-Time, and
Functional) and Maude [13] (which is Declarative, Object-
Oriented, Concurrent, and Real-Time), among many others.

Multi-Paradigm Modelling (MPM) has only recently been
recognized as a powerful paradigm on its own that can help
to design, as well as communicate and reason about, CPSs.

The term MPM finds its origin in the Modelling and Sim-
ulation community in 1996, when the EU ESPRIT Basic
Research Working Group 8467 “Simulation in Europe” (SiE)
formulated a collection of research directions and policy
guidelines [69] identifying the need for “a multi-paradigm
methodology to express model knowledge using a blend of
different abstract representations rather than inventing some
new super-paradigm”. The main result was a vision where all
parts and aspects of a complex system are modelled explic-
itly, using the most appropriate modelling formalisms to
deal with engineering heterogeneity. The important aspect of
workflow was not yet present. At first, only problems were
identified, but later on, the same group focused on combining
multiple formalisms [70] through architectural composition
(as opposed to view composition). One main merit of the
SiE work was the inclusion of a-causal modelling to model
physical phenomena, an effort that led to the design of the
Modelica language.

Physical systems are often modelled using continuous
abstractions, e.g. Differential Algebraic Equations (DAEs)
to express constituent equations relating physical variables
of interest. Software systems are often modelled using dis-
crete abstractions, e.g. State Automata to express the discrete
changes made to data stored in memory by executing program
instructions. A consequence of the fact that CPSs com-
bine cyber (software) and physical components is that they
are naturally modelled using hybrid modelling languages
that combine continuous and discrete abstractions [79]. The
meaningful and usable integration of discrete and continuous
domains is at the heart of dealing with CPS. More generally,
dealing with heterogeneity, both in the levels of abstraction
and in the formalisms used, is one of the major challenges in
modelling CPSs.

The main contribution of this paper is a Descriptive Frame-
work for MPM applied to CPSs. The framework is based
on a special kind of metamodel where placeholders can
be used, capturing various structural and process patterns.
Such metamodels support expressing property expressions
that we call paradigmatic properties: they are used to
capture the essence of a paradigm and can be bound to
existing elements of candidate formalism/workflow meta-
models (as well as their semantics) to determine if the
candidate formalism(s)/workflow(s) effectively follow the
paradigm.

Although not completely formal, our framework allows
experts to better grasp the essence of how their CPSs are
designed, while providing a common ground for a rigor-
ous engineering of CPSs based on their MPM components.
Ultimately, in a next step not covered by this paper, this
framework aims to support tool builders, language devel-
opers, analysis engineers and other experts to reason about
CPSs and figure out which formalisms, abstractions, work-
flows and supporting methods, techniques, and tools are the

123

Multi-paradigmmodelling for cyber–physical systems: a descriptive framework 613

most appropriate to carry out their task(s), thus minimis-
ing accidental complexity due to non-optimal tool selection.
Note that this paper does not intend to present a classification
of formalisms or workflows that could be used to engineer
CPSs. However, our Descriptive Framework could be used
to better classify these elements by providing more precise
descriptions for them.

This paper is a continuation of an effort started dur-
ing the COST Action IC14041 “Multi-Paradigm Modelling
for Cyber-Physical Systems” (MPM4CPS), which surveyed
languages and tools used for engineering CPSs [12] and cap-
tured the relationships between them in an ontology. More-
over, it significantly extends, and complements, a preliminary
version of our Descriptive Framework [3] by (i) capturing the
various components of a paradigm explicitly and (ii) demon-
strating a simple paradigm combination resulting in a valid
paradigm, which could suggest that our framework is closed
under the usual combination operators required for themulti-
paradigms necessary for modelling CPSs.

We organised the paper as follows. Section 2 presents an
informal notion of paradigm to serve as a tutorial introduc-
tion to our Descriptive Framework, which itself is described
in Sect. 3. Section 4 exemplifies the framework with two
well-known paradigms used for CPS development. Section
5 defines a paradigm combinator, namely embedding, and
shows how to systematically build a paradigm candidate from
candidates of the combined paradigms. Section 6 highlights
and discusses related work from other communities, and Sect.
7 reflects on our results. Section 8 proposes future lines of
research and concluding remarks.

2 What is a paradigm?

Broadly speaking, a paradigm acts as a pattern for describ-
ing a whole class of artefacts sharing similar characteristics
or designates a framework that encapsulates theories inside
a scientific domain. We aim to capture the meaning of the
paradigm concept precisely enough to make it ultimately
amenable to computer-based analysis and reasoning.

This section provides an intuitive and lightweight intro-
duction to what a paradigm is. We start by a small detour
in linguistics and epistemology to revisit the classical defini-
tions in these fields, before focusing again on their meaning
in computer science. Using two well-known paradigm exam-
ples from computer science, namely the Object Orientation
and Agile development paradigms, we clarify the core com-
ponents of our Descriptive Framework. The structure of this
framework is then described by means of a metamodel and
illustrated through typical usage scenarios.

1 http://mpm4cps.eu.

2.1 General definitions

From a linguistic viewpoint, a paradigm has three definitions
from the English dictionary:

– A framework containing basic assumptions, ways of
thinking, and methodology that are commonly accepted
by members of a scientific community [57];

– A philosophical and theoretical framework of a scien-
tific school [of thought] or discipline within which are
formulated theories, laws, and generalisations, as well as
the experiments performed in support of [53].

– A model of something, or a very clear and typical example
of something [11].

Although very general in nature, there are several aspects
of these linguistic definitions that are worth pointing out.
First, in each of the above definitions, a paradigm defines, in
some sense, a structure that is shared by several elements the
paradigm is intended to capture. Second, a paradigm also pro-
vides a way of deciding whether an element under analysis
possesses those “basic assumptions” for fitting the structure.
Third, a paradigm organises the elements it characterises in
such a way that it becomes possible to reason about them
(with the help of “theories”, “laws” and suitable “general-
isations”). Finally, a paradigm results from an agreement
between “members of a [scientific] community”: the pre-
cise definition may change over time and may be slightly
different from different “schools of thought”, though sharing
“basic assumptions”.

In the field of philosophy of science, the most popular and
commonly agreed-upon definition of the concept of paradigm
was formulated by Kuhn [42], who distinguishes the follow-
ing:

– The subject matter, i.e. what is to be observed and scru-
tinised;

– The kind of questions that are supposed to be asked and
probed for answers in relation to the subject;

– How these questions are to be structured;
– What predictions are made by the primary theory within

the discipline;
– How the results of scientific investigations should be

interpreted;
– How an experiment is to be conducted and which equip-

ment is available to conduct these experiments.

The aspects highlighted by this philosophical definition are
similar to the linguistic ones pointed out above, although
differently framed. Kuhn gives some details about how the
reasoning takes place: he emphasises that a paradigm is ques-
tioned in a structured way, and that some of these questions

123

http://mpm4cps.eu

614 M. Amrani et al.

may be general enough to form the basis of predictions about
the subject matter.

Let us summarise what we learnt about the nature and
functions of a paradigm:

1. A paradigm captures the essence of a collection of
elements that have a substantial impact in a scientific dis-
cipline.

2. As a consequence, a paradigm is ontologically distinct
from those elements.

3. The essence captured by a paradigm is expressed through
“questions” or, in the case of computer science, properties
of interest that are supported by various structures.

4. Those properties enable reasoning and drawing suitable
generalisations, and predictions. They also offer a way
of deciding whether an element of interest (that we later
call a “candidate”) qualifies as, follows, or embodies this
paradigm, typically by human assessment.

We claim that in computer science, the “questions” for a
paradigm, or paradigmatic properties as we will call them,
always rely on structures that are supported by processes, or
workflows, for capturing the dynamic nature of computations,
processes that ultimately manipulate formalisms.

In the next section, we purposely study two paradigm
examples (in a simplified version) that are widely recognised
as having significantly shifted the scientific field of computer
science, namely Object Orientation and Agile Programming.
Note that these are programming paradigms, which consti-
tute a specific subclass of modelling paradigms, with the
advantage of being readily understood by readers from the
Software Engineering community. Both are chosen on pur-
pose: the former pertains to formalisms, whereas the latter
pertains to processes.

For the purpose of the presentation, we had to choose a
particular way of describing those concepts using supportive
formalisms (which correspond to meta-metamodels, or tech-
nical spaces, see Wimmer and Kramler [77]). Note, however,
that our Descriptive Framework does not depend on any par-
ticular choice of supportive formalism(s): only the expression
of the (paradigmatic) properties and their underlying struc-
tures depend on them for reasoning and deciding whether
a (candidate) element follows a given paradigm. We further
discuss this point at the end of each example.

2.2 Two simple examples: Object Orientation and
Agile Programming

An important feature for paradigms, which is crucial to clar-
ify the discourse, is the ability to explicitly name both the
properties a paradigm relies on, and as well as variations of a
paradigm. We present in this section two (versions of) well-
known paradigms in computer science and discuss some of

their characteristic properties. For each paradigm p, we adopt
a similar presentation:

1. We provide background information on paradigm p to
point out why it significantly impacted programming;

2. We focus on one singular property π of p that is com-
mon enough to make it easy to grasp, and simple enough
to be easily demonstrated without introducing too much
notation;

3. We present two candidate elements C1 and C2, one for
which π is satisfied, and the other for which it is not;

4. We list the required supporting formalisms necessary for
building our Descriptive Framework and illustrate them
on the basis of our candidates.

2.2.1 Object Orientation: a formalism-oriented paradigm

Object Orientation (OO) emerged in the 1960s in response to
a need to structure the way programs were specified. Instead
of seeing a computation as just imperative processing of
sequential instructions, OO defines and structures computa-
tion through organised, communicating objects that are typed
by means of classes, which define their structure as well as
their computation and communication capabilities. OO con-
cepts are applicable in software engineering sub-domains
such as analysis, design, and software development. Whether
a GPL is classified as OO depends on how tightly integrated
the OO concepts are into the programming language: from
“pure” OO GPLs where every programming construct is an
object (e.g. in Eiffel or Scala), over GPLs that still contain
some procedural elements (e.g. Java or C), to GPLs that inte-
grate some specific concepts (e.g. Ada or MATLAB).

There exist many variations of the definition of the OO
paradigm for GPLs (cf. among others, [1,75]). As a possi-
ble classification, Wegner [75] distinguishes the notions of
object-based and object-oriented GPLs that may support (or
fail to support) data abstraction, strong typing, and delega-
tion. For illustrative purposes, let us only consider a very
basic feature, namely inheritance, as a language mechanism
to share and factor out properties, thus promoting reuse.
When a (sub-)class C inherits from a (super-)class C’, then
semantically, all objects that are instances of C automatically
inherit the state and behaviour of C’. Of course, many other
more complex properties define the OO paradigm, and poten-
tially several variations of the same property (e.g. allowing
multiple inheritance) may be considered. As described pre-
viously, a paradigm is often an agreement or a common
understanding in a scientific school of thought, but nothing
prevents the co-existence of several variations of defini-
tions that are similar. Discriminating between them may be
achieved through distinct names relating to different (vari-
ations of) the set of properties that characterise a given
paradigm.

123

Multi-paradigmmodelling for cyber–physical systems: a descriptive framework 615

One may be interested in checking that a given candi-
date GPL actually qualifies as OO. Let us consider Java
[28] and Pascal [15] for the purpose of the discussion. For
doing so, one needs to check whether the properties defining
(the particular flavour of) OO are indeed satisfied by such a
candidate GPL. Note that a given candidate GPL is itself a
language specified with candidate formalisms: one for cap-
turing its concrete syntax the programmer manipulates and
one for providing executability through an operational and/or
a translational semantics. We will qualify those as candidate
formalisms, to distinguish them from the paradigmatic for-
malisms used for capturing the specifics of a given paradigm.

Completely formalising those properties still requires the
use of appropriate supporting formalisms for capturing them
and a way to relate the descriptions to the formalisms defining
the candidates, to check the properties’ satisfaction.

To summarise, we considered the paradigm p as being
Object Orientation, for which one of the characteristic prop-
erties π is inheritance, with two potential candidate elements
C1 as Java, and C2 as Pascal. To be able to actually check
whether C1 and C2 qualify as Object Oriented, we need at
least four kinds of formalisms:

1. A structural (paradigmatic) formalism for describing
structures, to name, organise and relate the concepts
required by the paradigm. In the case of inheritance,
this (paradigmatic) formalism would capture the notions
of class, fields and objects and their relationships, as
described, e.g. by Wegner [75]. Depending on the prop-
erties of interest characterising a given paradigm, this
(paradigmatic) formalism may be used to capture patterns
at both the syntactic and semantic level of a candidate,
since paradigmatic properties often concern both (as it
is the case for the inheritance property described earlier
anyway).
Figure 1 (top) illustrates one way to capture the structure
necessary for expressing the inheritance property using
a Placeholder Class Diagram inspired by the UML MOF
syntax (where placeholders are represented as double rect-
angle “classes”).

2. In the context of GPLs, candidates are usually already
existing programming languages, defined in a given (can-
didate) formalism. Java and Pascal certainly have a Bnf
grammar definition historically, and Java may have a
UML Class Diagram-based (e.g. as a metamodel in the
Eclipse platform) or a Graph Grammar-based definition
(e.g. Corradini et al. [16], among others).
Figure 1 (bottom) represents the (simplified) metamodels
of two GPLs, Java and Pascal, as candidates for the OO
paradigm, using a MOF Class Diagram.

3. A mapping formalism for relating the structural (paradig-
matic) formalism with the candidate formalisms. This
mapping is essential because the patterns captured by the

paradigm p need to be related to specific (sub-)structures
in the candidates. Precisely defining this mapping for-
malism is out of the scope of this paper; we explain only
informally how this mapping would occur (or fail to) for
our candidates Java and Pascal.
We need to check whether the topological structure from
Fig. 1 may be matched against both GPLs’ metamodels
and if so, whether the property is satisfied (modulo the
matching) on the corresponding structures.
A Pascal Program is composed of Blocks, which are
either constant, variable, or type definitions, or alterna-
tively function and procedure declarations. None of these
concepts would fully match against the C placeholder,
because no association can be appropriately matched
against the super reflexive association, nor with an appro-
priate match with VF and its own associations. Without
further analysis, one can confidently conclude that Pascal
does not qualify as OO.
In the Java metamodel, however, the NormalClassDec-
laration is a good candidate for a match with the C
placeholder, since it also contains ClassMemberDecla-
rations where FieldDeclarations may potentially match
the TF placeholder, with the super relationship being
expressed with extends (as the textual representation of
super in the left of Fig. 1). Notice that Java is actually
richer: interfaces may also match with C, but would fail
for the rest (since Java’s interfaces do not declare fields);
and Java allows field overloading.

4. Finally, a property (paradigmatic) formalism for speci-
fying properties over the structural (paradigmatic) for-
malism, as well as an appropriate checking procedure
allowing to validate, via the mapping, that a candidate
GPL satisfies the expressed (paradigmatic) properties.
Following our choice of Placeholder Class Diagram as
a structural paradigmatic formalism, a natural choice for
expressing our inheritance property would leverage the
Ocl language that could accommodate with placeholders.
Again, without going into too much formal specification,
we rely on the usual Ocl syntax to try and express inher-
itance, in two steps.
First, the set of accessible fields for an object is recursively
computed by climbing up the super relationship in the
object’s typing class.

1 context O inv valuedFieldsMatchAccessibleFields :
2 let valFieldNames : Set(String) =
3 o. valFields .name
4 in o. type . accessibleFields ()
5 −>collect (t f | t f .name)−> forAll (tfName |
6 valFieldNames . exists (tfName))

Since Pascal presented no match for the structural pat-
terns of the inheritance property, there is no need to
try and check the property itself. For the Java case,

123

616 M. Amrani et al.

Fig. 1 On top, an example of a Placeholder Class Diagram for cap-
turing concepts and relationships needed for expressing paradigmatic
properties, using a UMLMOF-based syntax: ”placeholder” classes are
depicted with double rectangles (instead of the regular rectangles for
UML Class Diagram), to indicate that classes are meant to be matched

into a candidate metamodel. The example illustrates (part of) the inher-
itance property of the OO paradigm. On the left, an excerpt of a
metamodel for the Java GPL, and one for the Pascal GPL on the right,
showing how (syntactic) may be appropriately matched or not

the nature of inheritance requires to have a look at the
semantic level to check for a similar mechanism. Stärk
et al. [61] proposed a formal semantics for Java based on
Abstract State Machines, which are directly executable,
and compared their specification with the Java Com-
piler. Their specification defines (algebraic) functions
for class (namely classFieldValues) and instance field
(inst FieldValue) declarations, and models the dynamic
state of objects through their reference; both collect the
so-called accessible fields for an object and are updated
with the semantic rules translating the effect of field access
and assignment. The Inheritance property π is enforced
in their semantic specification by simply ensuring that
the (algebraic) total functions share appropriate domains
(thus forcing accessible fields to possess a value, be it the
value used at initialisation).
A formal proof is obviously out of this paper’s scope,

but this simple example already demonstrates how it may
be difficult to relate and check properties expressed in
different supporting formalisms (an Ocl-like expression
for the paradigmatic property and an algebraic expression
for the Java candidate).

2.2.2 Agile development: a workflow-oriented paradigm

Agile development (AD) emerged in the early 2000s as an
alternative to the so-called heavyweight software develop-
ment processes (such as the traditional V-model), because
many software development projects required less regulation,
a shorter response time to requirement changes from cus-
tomers during the course of a project, and the processes were
perceived as overly constraining for developers, hampering
creativity. The general principles of AD were summarised
in the Agile Manifesto [50], a general guide that places peo-
ple and software deliverables at the centre of the software
development process, rather than more rigid and procedu-
ral processes that may lose the final objective of delivering
high-quality software out of sight.

Here again, multiple variations for the definition of the
AD paradigm as a software development process exist (cf.
Merkow [52], Przybyłek and Morales–Trujillo [59], among
others). A key feature of AD that distinguishes it from
classical software development approaches is its iterative
nature. Organising shorter “full cycle” phases (from require-
ments to delivered software), in each of which a smaller set
of requirements are addressed, actually helps both parties:
the stakeholders gain confidence in the developed software,

123

Multi-paradigmmodelling for cyber–physical systems: a descriptive framework 617

which enables them to express their needs more precisely,
while the developers deliver solid, well-tested pieces of the
final product, responding quickly to new insights and updated
needs. Selecting a feasible set of functionalities is crucial
for the success of the so-called sprint phases: it is because
the tasks are voluntarily reduced to covering meaningful,
small increments in functionality, that it becomes possible
to achieve a “full cycle” in a limited time.

For illustrative purposes, let us consider a generic Design
activity that performs what is considered as a “full cycle” or
Sprint. For each Sprint, a limited set of requirements needs
to be selected from the complete set of requirement, thus
capturing the stakeholders’ priorities. The selected set must
be small enough such that the sprint can be performed in
a reasonable short time. Some variants of AD even require
fixed-length sprints. At the end of the sprint, an assessment
of the maturity of the requirements’ fulfilment is performed,
leading to a new evaluation of the priorities, thus entering a
new sprint.

To formalise the key features of AD, one needs the means
to again manipulate concepts at both the syntactic and seman-
tic levels. Syntactically, we need to describe the notion of
“activity” that takes as input (a subset of) the requirements,
expressed in an appropriate formalism; and the control flow
associated with the loop enclosing a sprint. Semantically, we
need to ensure that any sprint execution is performed within
some time limit.

In summary, in order to precisely formalise our paradigm
P of choice, in this case, Agile Development, for which one
characteristic property π is the fact that a sprint is performed
in a reasonably short time, we consider two potential candi-
date elements C1, being the (simplified) SystemDesignPhase
of the V-model, and C2, being a (simplified form of) Sys-
temDesignExploration. For checking whether C1 and C2

qualify as agile development, we would need at least four
kinds of formalisms:

1. A structural (paradigmatic) formalism for describing a
workflow that enables distinguishing between control and
artefact flows. Depending on the properties of interest
characterising a given paradigm, this (paradigmatic) for-
malism may be used to capture patterns at both the
syntactic and semantic level (i.e. over the execution traces
of the paradigmatic workflow), since paradigmatic prop-
erties often concern both (as it is, for example, for the
requirement that Agile loops span over short periods.
Figure 2 (middle) depicts the (paradigmatic, structural)

workflow associated with the AD key features using a
UML Activity Diagram-like (our choice for the struc-
tural paradigmatic formalism listed above): the short
ShortDesignActivity, contained in the Sprint activity, is a

placeholder activity (note double-rounded rectangle used
as a symbol, in contrast to the regular rounded rectangle
in in UML Activity Diagrams)

2. In the context of Workflow specifications (cf. discussions
in Sect. 6.4), candidates are usually already expressed in
a given formalism. We sketch in Fig. 2 (top and bottom)
(simplified versions of) parts of the V-Model develop-
ment lifecycle and DesignSpaceExploration. We also use
UML Activity Diagrams as a formalism to simplify the
description.
The upper part of Fig. 2 depicts a (simplified) Sys-
temDesignPhase of the V-Model, with only requirements
analysis and design activities shown (it is assumed that the
design artefacts produced are executable and have been
tested).

3. A mapping (paradigmatic) formalism for relating the
structural (paradigmatic) formalism elements with a can-
didate formalism used for specifying the abstract syntax
of potential candidate workflows: Bpmn, UML Activity
Diagrams, etc. Precisely defining this mapping formalism
is out of this paper’s scope; we only informally visualise
it through the red dashed lines in Fig. 2.

Although initially, a match of the SystemDesign-
Phase AD candidate seems possible (the dashed mapping
arrows), it soon becomes obvious that the mapping can-
not be completed as no control loop can be found in the
SystemDesignPhaseAD candidate. This comes as no sur-
prise, as the essence of the V-model and its phases is its
linear arrangement of activities. One may thus conclude
that the V-Model’s SystemDesignPhase does not qualify
as Agile, since not even the syntactic components match.
Consider now a multi-objective SystemDesignExplo-
ration process where many variants of a CPS may be
explored, thus eliminating poor designs and keeping the
ones that satisfy a set of global constraints to be further
analysed against non-functional criteria such as perfor-
mance, cost, power consumption, etc [48]. As the Agile
pattern leaves the ShortDesignActivity unspecified, it
will match any workflow candidate which contains, in
the place of the ShortDesignActivity, a workflow that
matches this activity’s interface, and whose execution
time qualifies as “short”. As shown in Fig. 2, substituting a
DesignSpaceExploration (DSE) workflow while respect-
ing the appropriate “interface” for ShortDesignActivity
guarantees acceptance as following AD.

4. A property (paradigmatic) formalism for specifying prop-
erties over the structural (paradigmatic) workflow, as well
as an appropriate checking procedure to validate, via the
mapping, that a candidate workflow satisfies the (paradig-
matic) properties.

123

618 M. Amrani et al.

Fig. 2 A proposal for capturing the Agile development (AD) life cycle
pattern, as a WorkflowPH in the middle. On the top, a representation of
the SystemDesignPhase of the V-Model, which fails to fully match the
AD pattern. The V-Model workflow essentially lacks a loop (so-called

Sprint) that addresses a small, self-contained subset of requirements (it
actually aims at the full set). On the bottom, a successful match between
the AD workflow pattern and SystemDesignExploration if the latter is
embedded in ShortDesignActivity

We would have to define a paradigmatic property for π

in a formalism that would allow constraining the (poten-
tially parameterisable) duration of the placeholder activity
ShortDesignActivity in the Agile workflow pattern. Note
that this property refers to the trace semantics of the struc-
tural paradigmatic formalism.

Design Space Exploration may in itself be characterised
as a paradigm on its own, since it describes a character-
istic way of producing valid, optimal designs that satisfy
a selection of requirements. The use of patterns within
the structural (paradigmatic) formalism (based here on
UML Activity Diagrams) allows to easily describe Agile
Design Space Exploration compositionally by separating
the workflow for the Design Space Exploration paradigm
from the one specifying its Agile nature. This leads to the
notion of the proper combination of multiple paradigms:
we further investigate one possible combination operator in
Sect. 5.

3 A Descriptive Framework for capturing
modelling paradigms

The complexity of (designing) CPSs is commonly addressed
through complex workflows, involving models in a plethora
of different formalisms, each with their own methods,
techniques and tools, and combining particular types of for-
malisms and operations on models in these formalisms.
MPM proposes to model everything explicitly, at the most
appropriate level of abstraction, using the most appropriate
modelling formalisms.

In the previous section, we offered a tutorial presentation
and example of each constitutive element of a paradigm, as
well as the intuition behind how to check whether a can-
didate qualifies as a paradigm’s element: object orientation
illustrated the formalism aspect with Java and Pascal as can-
didates. Agile development focused on the workflow aspect,
with classical V-model and design space exploration life
cycles. In this section, we go one step further and capture
precisely, through a metamodel, the structuring elements of

123

Multi-paradigmmodelling for cyber–physical systems: a descriptive framework 619

Fig. 3 A metamodel describing the concepts and structure of paradigms. A Paradigm is defined by a set of ParadigmaticPropertys that characterise
components consisting of placeholders: FormalismPHs, TransformationPHs and WorkflowPHs

paradigms, namely properties over formalisms and work-
flows. This metamodel, as pictured in Fig. 3, as well as the
general principle behind effectively checking whether a given
candidate qualifies as, or follows a paradigm, as pictured in
Fig. 4, constitutes together our Descriptive Framework for
MPM.

From Fig. 3, a paradigm (name) denotes a set of Paradig-
maticProperties that capture the essence of the intended
paradigm. Many variations or combinations of those prop-
erties, grouped in CharacteristicSets, lead to conceptually
different paradigms in our framework: for example, Object
Orientation with single or multiple inheritance should be
named differently. The necessary components of these prop-
erties are formally captured by a ParadigmaticStructure,
which consists of three interrelated parts: a WorkflowPH
capturing the dynamics of how appropriate elements are
produced, consumed, and exchanged in an organised fash-
ion within the paradigm, where both activities and objects
are typed against TransformationPHs and FormalismPHs,
respectively.

We describe in detail each component of the Descriptive
Framework, before explaining how to use it concretely to
check whether a candidate follows a given paradigm.

3.1 Paradigmatic properties

A ParadigmaticProperty is a property that captures one
aspect of the paradigm’s essence that is shared by all arte-
facts that follow it. In other words, such a property is defined
“universally” at the level of the paradigm and holds for all
artefacts following this paradigm. To check whether it holds
or not, a ParadigmaticProperty defines explicitly a Deci-
sionProcedure, which may be automated, or performed by
a human (or any combination of both): it may be a math-
ematical proof, or it may be so difficult to prove that only
an agreement among those interested in the Paradigm may
be feasible and provide the decision. When all paradigmatic
properties are checked to be valid, the artefact then becomes
an artefact that qualifies as, or follows, the corresponding
paradigm.

3.2 Paradigmatic structure

For a ParadigmaticProperty to be expressed (formally or
not), a paradigm needs to define a minimal structure that
captures the vocabulary, the concepts and their relation-
ships that the property is about. A ParadigmaticProperty
is applied over a ParadigmaticStructure, which is com-
posed of one (or several) workflow(s) with placeholders
(WorkflowPH); one (or several) formalism(s) with place-

123

620 M. Amrani et al.

holders (FormalismPH), or one (or several) transformation(s)
with placeholders (TransformationPH).

A WorkflowPH links activities with placeholders
(ActivityPH) and their object nodes with placeholders
(ObjectNodePH) in various ways (sequential or concurrent),
described as flows driven by ControlNodes (at this abstrac-
tion level, there is no need to distinguish between so-called
object and control flows).

A TransformationPH types an ActivityPH by defining
a signature, i.e. which source(s) and target(s) placeholder
formalisms (FormalismPH) the placeholder transformation
operates on. We require TransformationPHs to be at least
terminating (since they are combined in so-called transfor-
mation chains [25], they shall always produce outputs), or to
fail when inputs are not conforming to their source Formal-
ismPH.

A FormalismPH shall at least define, through an Abstract-
SyntaxPH, the expected structure supporting a Paradigmat-
icProperty; it may eventually specify a (partial) semantic
specification through a SemanticMappingPH that maps ele-
ments from the AbstractSyntaxPH to an appropriate Seman-
ticDomainPH. All three of them contain placeholders (as
illustrated in Fig. 1 for the inheritance property in OO), allow-
ing arbitrary precision for a ParadigmProperty.

As an example, Fig. 1 describes (part of) the support-
ing FormalismPH and PropertyExpression for expressing
the inheritance ParadigmaticProperty, as part of the char-
acteristic set for the Object Orientation paradigm

Note that in this example, we expressed the structure sup-
porting the Inheritance property, and the property itself, in
specific formalisms: for the structural part, we selected a
MOF-like formalism; for the property, we naturally turned to
OCL as it is a standard, and expressive enough for capturing
our property of interest. To obtain an explicit specifica-
tion, many languages of our descriptive framework need
to be expressed as valid models of an appropriate formal-
ism. In Fig. 3, we denote by light blue structural formalisms
(e.g. BNF/Graph Grammars, metamodels, Entity/Relations,
or any other suitable ones), and in orange behavioural
formalisms (GPLs, transformation languages, graph trans-
formations, and so on). Note that both need to be extended
to capture patterns over candidates (as we suggested and
demonstrated using placeholders for the pattern mechanism).

Although the activities comprising a WorkflowPH may be
combined freely using ControlNodes and Flows, we require
the following conditions to hold, for a WorkflowPH to be
well-defined:

– EachActivityPH is typed by a TransformationPH appear-
ing in the same ParadigmaticStructure;

– Each ObjectNode used as input or output of an Activi-
tyPH is typed by a FormalismPH, so that

– the type(s) of the ObjectNodes used as input and output
of the ActivityPH match the signature of the Transforma-
tionPH that types the ActivityPH.

Similar to the structural and behavioural formalisms required
for other various components of a ParadigmaticStructure,
the elements comprising a WorkflowPH and coloured in dark
blue may be part of a (richer) formalism dedicated to the
description of workflows (such as UML Activity Diagrams,
Business Process Models, etc.); the only constraint is that the
Node and Flow concepts are in that formalism. In this paper,
we choose Activity Diagrams for this purpose (cf. Sect. 6.4
for a discussion).

As already noticed, our Descriptive Framework admits as
valid paradigms definitions that are restricted:

– to only FormalismPH: we assume in this case that there
always exists a default associated WorkflowPH that
allows creating appropriate instances of the formalism
it is matched to; or

– to only WorkflowPH: we assume in this case that there
exists a generic, default FormalismPH that is used by one
of the ActivityPH defined inside the ProcessPHs.

This is precisely the case for the examples given in Sect.
2.2, making them valid paradigm definitions in our frame-
work (assuming all ParadigmaticPropertys are effectively
specified).

3.3 Checking whether a candidate follows a
paradigm

A typical usage for our Descriptive Framework is check-
ing whether a Candidate artefact indeed follows a given
paradigm. A candidate is structurally similar to a paradigm’s
ParadigmaticStructure, with the fundamental difference that
components are not merely placeholders anymore. A Can-
didate may exhibit arbitrarily complex components: the
Formalisms may have complicated, intricate syntax and
semantics; and the Workflows and associated Transforma-
tions (chains) may describe large real-life (industrial, or
conceptual) processes related to Cps engineering.

Conceptually, checking that a ParadigmaticProperty
holds on a Candidate requires the definition of a Mapping
that binds (all) placeholders appearing in the property to the
constituents of the Candidate. Amappingmay be arbitrarily
complex: the languages (metamodels) defining the Candi-
date may differ radically from the ones used for specifying
the ParadigmaticProperty; the semantics of a Candidate
may be expressed candidate may be expressed in a differ-
ent “style” (it is certainly operational for the Candidate in
order for it to be executable, while the FormalismPH may
use an axiomatic definition to provide constraints over the

123

Multi-paradigmmodelling for cyber–physical systems: a descriptive framework 621

Fig. 4 Checking whether a Candidate follows a given paradigm
through a mapping that binds all placeholders in the Paradigmat-
icStructure’s components with concrete elements constituting the
Candidate, then applying all DecisionProcedure

semantic domain); and a ParadigmaticProperty may oper-
ate at various levels at the same time (syntactic and semantic,
just like the inheritance property for OO), making the Map-
ping sensitive to implementation details. Formally speaking,
checking the validity of a ParadigmaticProperty consists of
invoking the DecisionProcedure over the components the
properties apply to (either Transformations, Workflows or
Formalisms). but via the Mappings. Note that we define
a WorkflowTrafoMapping referencing both the Transfor-
mationPH and the WorkflowPH, because candidates may
abstract away or refine some parts in the other (i.e. a complex
Workflow Placeholder may be realised through a transfor-
mation delegated to an external tool, which is then perceived
from the Candidate viewpoint as a black box without further

control on the internals, thus preventing matching to explicit
placeholders).

Formally proving all of the paradigmatic properties
required for a candidate to follow a given paradigm may
prove extremely tedious, assuming Mappings are actually
available. This explains why we expect that the DecisionPro-
cedures associated with a ParadigmaticProperty may well
be conducted by humans to overcome this difficult task. Fur-
thermore, as described in the previous section, the formalism
choices for expressing the required elements of the Descrip-
tive Framework introduce another burden for performing the
proof: as an illustration, if a Candidate for the Object Ori-
entation paradigm captures the Formalism using a different
formalism language than the ones we used in Fig. 1, then
checking that the Inheritance ParadigmaticProperty holds
requires not only a Mapping but additionally an equivalence
proof between formalisms.

3.4 Final remarks

From our point of view, CPS engineering has largely under-
valued the importance of workflows in the engineering
process. Although manipulating various artefacts (which cor-
responds to the ActivityPH in our Descriptive Framework,
as part of the overall WorkflowPH) is de facto a core con-
cern, we believe that explicitly representing how, when, and
to which purpose those artefacts interact with each other
towards the greater goal of reaching an end product is a
crucial part for ensuring deeper understanding of the method-
ologies and construction processes, but also promotes reuse
and adaptation to new constraints. Making workflow pattern
descriptions an integral part of our Descriptive Framework
is a first step towards recognising this fact and also enables
support for the underlying activities with adequate tooling at
the level of paradigms (just the way it is for other engineer-
ing disciplines, as emphasised, e.g. by Pahl et al. [58] for
mechanical engineering).

In our framework, nothing prevents a candidate from being
involved in several mappings, allowing it to qualify as various
paradigms. As an example, Java, our witness candidate for
the object-oriented paradigm in Sect. 2.2, may well qualify
as an object-oriented, but also as a concurrent GPL, assum-
ing one can provide a proper property characterisation of
what concurrency for imperative programming languages
may look like. As a consequence, the Mapping component
of our Descriptive Framework needs to be separated from
the potential candidates; if not for conceptual reasons (as
above) then for legacy reasons, because often paradigm ele-
ments are built without thinking much of the paradigm they
belong, but rather on which kind of issues the element is
intended to solve.

When describing informally the kind of formalisms
required for capturing the nature of a paradigm, we referred

123

622 M. Amrani et al.

to “supportive formalisms” to designate the so-called meta-
formalisms, i.e. the formalisms in which the listed for-
malisms (paradigmatic structural, mapping and property, but
also the candidate’s formalism(s) themselves) are expressed
in. In our conceptual metamodel of Fig. 3, we further clas-
sified them into two categories: structural metaformalisms
in blue, which describe structures, and behavioural metafor-
malisms in yellow, which describe computations. We also
showed in our tutorial examples from Sect. 2.2 that it is
often the case that already existing formalisms may be
extended to provide adequate pattern languages for captur-
ing the various components of our descriptive framework
(namely ParadigmaticProperty, FormalismPH, Transfor-
mationPH and WorkflowPH): we used an extension of UML
Class Diagrams and Activity Diagrams to convey the idea of
“patterns” that need to be filled by elements of a potential
candidate (note that the exact specification and semantics of
such extended placeholder formalisms remains future work).

We believe that many formalisms may be suitable to be
promoted as pattern/placeholder formalisms for capturing
paradigms’ properties when considering suitable research
on model typing [17,62,63]. The nature of the relation-
ship between the paradigm’s “patterns” and the candidate’s
matched elements are different from the classical class/in-
stance relationship, since a whole submodel may be matched
into a single placeholder. Such “extended” pattern/place-
holder languages may be partially obtained through semi-
automated processes (e.g. RAMification (Kühne et al [43])),
but a precise (semantic) design, specification, and matching
process of such languages is left as future work.

The diversity of supporting formalisms gives rise to two
crucial, and related, issues:

1. Having different choices for supportive formalisms for
the paradigm and a potential candidate requires either
that extra effort is put to translate one of them (typically,
the candidate, which may be defined in various forms)
into an appropriate formalism, or to perform mathemat-
ical equivalence (or rather, simulation) proofs in order
to appropriately match elements. For simplification pur-
poses, we stick to supportive formalisms (UML Class
Diagrams and Class Diagrams with placeholders; and
Activity Diagrams and Activity Diagrams with place-
holders) that correspond to the ones used for potential
candidate, to avoid another level of complication; but in
practice, this may happen often.

2. Similarly, having different choices impacts the decision
procedure, since the paradigmatic properties, as well
as the matchings, rely on the paradigm’s supportive
formalisms. The decision procedure may be seen as a pro-
cedure modulo the formalisms: here again, equivalence
proofs taking into account both the supporting formalisms

Fig. 5 Classification of modelling abstractions for dynamic systems
according to the nature of the time and state variables [72,79]

and the properties are necessary to prove we are manipu-
lating the “same” paradigm.

4 Two paradigms for CPS: discrete event
dynamic systems and synchronous data
flow

This section presents two compact examples of paradigms
relevant to the engineering of CPSs that have been selected
and abstracted to illustrate the concepts of MPM that we
strive to convey.

Among the many classifications for CPS modelling
abstractions and associated formalisms (cf. Sect. 1 for a quick
survey), the simplest and most widespread ones are based on
the nature of the representations of the characteristic quanti-
ties of a CPS: the time base over which the CPS evolves and
the state variables. Both quantities may be continuous, i.e.
their domains range over dense domains (such as reals), or
discrete, i.e. they range over discrete, enumerable domains
(such as integers).

Taking a helicopter view, the behaviour of a CPS may be
seen as a trajectory that depicts the evolution of state vari-
ables over time, which are falling into one of the following
categories (cf. Fig. 5 and [79]):

Continuous Variables/Continuous Time leads to com-
plex Differential Equations System Specifications (DESS)
where the constituent relationships between quantities are
captured in the form of differential algebraic equations.
Such specifications often require numerical solvers to
obtain approximate solutions on digital computers. Typi-

123

Multi-paradigmmodelling for cyber–physical systems: a descriptive framework 623

cal realisations of this paradigm are Ordinary Differential
Equations, Bond Graphs, Equation-Based Object-Oriented
Languages such as Modelica, and Analog Electrical Circuit
Diagrams.

Continuous Variables/Discrete Time leads to Discrete
Time System Specifications (DTSS). These are for example
used in sampled system models, representing data period-
ically obtained from a physical system through sensors.
Typical realisations of this paradigm are Difference Equa-
tions (DE), and Cellular Automata (CA).

Discrete Variables/Continuous Time leads to Discrete
Event dynamic system specifications (DEv). Discrete Event
specifications start from the insight that discrete state
changes only occur at times of pertinent “events”. In
between those events, the state does not change and the
state trajectory is hence piecewise constant. In a finite
time interval, only a finite number of events may occur.
Typical realisations of this paradigm are Timed Finite
State Machines, Event Graphs and the Discrete Event Sys-
tem Specification (Ziegler’s DEVS Formalism [79] which,
though Discrete Event, does permit a continuous state
space).

DiscreteVariables/DiscreteTimeThe other end of the spec-
trum leads to Discrete Event System Specificatio (DTDS)
where discrete state changes only occur at equidistant times.
Typical realisations of this paradigm are State Machines.

This section presents the Discrete Event dynamic systems
specification (abbreviated as DEv) and Synchronous Data
Flow (abbreviated as SDF) paradigms. We describe both in
details within our Descriptive Framework. This choice is
guided by three criteria. First, we have selected systems that
have opposite natures for the characteristic variables. Second,
they are simple enough to convey the necessary concepts for
illustrating our Descriptive Framework, while serving as a
basis for generalisation to more elaborateCPSmodels. Third,
the combination of those paradigms covers a large spectrum
of CPS models used in practice, making them illustrative of
the various combinations that exist.

Each paradigm is described systematically using the fol-
lowing approach:

1. We first capture the general requirements from a well-
known source that informally describes the paradigm;

2. We translate these requirements within our Descriptive
Framework (cf. Fig. 3), using appropriate formalisms;

3. We then present a potential Candidate, specifying its
various components (Formalisms, Transformations and
Workflows) to a certain extent.

4. We finally apply the checking scenario of Sect. 3.3: we
show how Mappings may be (informally) defined, val-
idating that the Candidate indeed follows the paradigm
mentioned above.

Fig. 6 FormalismPHs and ParadigmaticProperties for the specifica-
tion of the DEv paradigm

4.1 Discrete Event dynamic systems (DEv) paradigm

The discrete event dynamic system paradigm uses discrete
state variables with continuous time. We illustrate it with the
Timed Finite State Automata [22].

4.1.1 Paradigm description

From the previous categorisation, we summarise the rel-
evant properties of the DEv paradigm and express them in
our Descriptive Framework, as depicted in Fig. 6

– The time is continuous: the FormalismPHTimemandates
the use of real values for elements matched with Time.

– The system’s dynamics is captured through timed events:
the FormalismPH TimedEventTrace expresses the fact
that some elements may be considered as Events that
occur at specific time occurrences; the Paradigmat-
icProperty isMonotonic (as expressed in pseudo-
Ocl) ensures that Events occur at monotonically increas-
ing timestamps.

– The system’s (dynamic) state is composed of vari-
ables that range over discrete domains: two Formal-
ismPHs describe system specifications (SystemS) and
instances (SystemI). A SystemSpecification describes
dynamic systems at a high abstraction level, assuming
only the declaration of variables (SynVar), while a Sys-
temInstance imposes that variables (SemVar) have val-
ues, together with a ParadigmaticProperty that enforces
values are actually discrete.

To simplify the description of the DEv paradigm, we only
consider one fundamental TransformationPH, named Exe-
cute, with a trivial WorkflowPH that allows executing the
system assuming a given trace.

123

624 M. Amrani et al.

Fig. 7 Metamodels for specifying a TFSA (from Class TFSA); its
semantic domain (Class Domain) for accepting a (finite) TimedEvent-
Trace

4.1.2 Candidate: timed finite state automata (TFSA)

When augmented with time constraints, Timed Finite State
Automata (TFSA) are powerful formal models, suitable
for describing engineered and natural systems in various
application domains, which range from sequential circuits,
communication protocols, reactive and biological systems.
We describe here a simplified conceptual formalism for
TFSA that may represent concrete implementations in vari-
ous tools.

Figure 7 describes the TFSA formalism. A TFSA is a
Finite State Automaton with an INITIAL and some FINAL
states interconnected by Transitions. A TimedEventTrace
is a finite list of TimedEvent, consisting of a pair of times-
tamped event names. A Transitionmay fire when its Trigger
occurs, assuming its guard evaluates to true (the Expression
language is left unspecified, as it is not necessary for under-
standing). When there is an Event Trigger, it should match
the current TimedEvent; otherwise, when the Trigger is an
After, the Transition fires only when the associated timeout
has elapsed, when no other TimedEvent occurs before. The
TFSA formalism defines a semantic Domain (also called
configuration) for specifying an accepting behaviour, pro-
vided a specific finite TimedEventTrace: a TFSA accepts a
trace iff consuming the TimedEvents composing the trace,
in order, results in a FINAL State. The Domain references the
current State within the TFSA and manipulates two Clocks:
a logical one that records the global time elapse; and a clock
used for tracking the elapsed time locally to a State.

Figure 8 shows a simple TFSA that models the behaviour
of a (simplified) car Power Window [56] equipped with a
three-position command button: when pressed up or down,
it indicates the window should move in the appropriate direc-
tion; when released, the button produces the neutral event.
For safety reasons, when a force is detected resisting the win-
dow moving up, the system produces an emergency event,

Fig. 8 A simple TFSA conforming to the TFSA domain metamodel of
Fig. 7

bringing the system into the Emergency mode: after one
millisecond, the window stops moving, allowing whatever is
obstructing the upward movement to be removed safely.

Listing 1 specifies a procedure execute capturing the
behavioural semantics of a TFSA. It operates on a(n instance
of a) Domain, assuming a(n instance of a) TFSA and a given
(instance of a finite) TimedEventTrace, and proceeds as fol-
lows:

Initialise During this phase (Lines 5–7), the various time and
state variables are set, pointing the currentState pointing
the current State of the computation to the (unique) INITIAL
State in the TFSA.

Check Stopping Conditions A loop captures the compu-
tation, which runs until no new TimedEvent (Line 9) is
present within the given TimedTraceEvent tet, after the
currentState is compared to the list of FINAL State of the
TFSA.

Perform Step A computation step (Lines 10 – 25) depends
on the list of outgoing Transitions of the currentState:

– If an Event Transition labelled with the same name
as the current TimeEvent te exists, the Transition is fired
(must-semantics), changing the currentState to the Transi-
tion’s tgt;

– Otherwise, if an After Transition is present, it is fired
assuming it already reached its timeout (i.e. timeout ≤
elapsed). After that, a discrete time step is taken, incre-
menting both clocks (elapsed and logical) by the predefined
delta).

Terminate It remains to check (Line 27) whether the cur-
rentState at the end of the computation is a FINAL State.

While explaining the behavioural semantics, we explicitly
distinguished separate activities whose dynamics are cap-
tured in the Activity Diagram of Fig. 9.

123

Multi-paradigmmodelling for cyber–physical systems: a descriptive framework 625

1 procedure execute(d : Domain,
2 tfsa : TFSA,
3 tet : TimedEventTrace)
4 do
5 d. logical . value = d. elapsed . value = 0
6 d. current = tfsa . getInitialState ()
7 currentState = d. current
8
9 foreach(tevent : te t . timedEvents) do

10 outs = tfsa . outgoingTransitions(currentState)
11 transition = outs . f i l t e r [Event]
12 . find [name = tevent .name]
13 i f (transition != null) then
14 currentState = transition . tgt
15 d. elapsed . value = 0
16 else
17 transition = outs . f i l t e r [After]
18 i f (transition != null &&
19 transition . timeout <= d. elapsed) then
20 currentState = transition . tgt
21 d. elapsed . value = 0
22 endif
23 endif
24 d. logical . value += d. delta
25 d. elapsed . value += d. delta
26 endfor
27 return tfsa . getFinalStates () . contains (currentState)
28 endprocedure

Listing 1 Algorithmic for the Execute transformation, specifying the
behavioural semantics for TFSA.

4.1.3 Mapping

We briefly discuss how to (partially) build the Mapping
between theParadigmaticStructuredefining our DEv paradigm
and the components of our TFSA Candidate, as an instance
of the metamodel defined in Fig. 3.

First, the TimedEventTrace metamodel in Fig. 7 maps
directly to the TimedEventTrace FormalismPH of
Fig. 6: names were kept identical on purpose, since Timed-
TraceEvents are a rather simple collection structure.

Second, the SystemSpecification may correspond to the
TFSA concept, assuming the rest binds appropriately. As state
variables for TFSA, which are required by a Paradigmat-
icProperty to be discrete, we may bind the State concept. As
it occurs for TFSA, the class State appears both as a com-
ponent for the class TFSA, which is matched to SystemS,
and as an element in the semantic Domain, which should
therefore be bound to SystemI. Since the number of States
is always finite (the usual meaning of the “*” in the states
reference), it defines a discrete domain, thereby validating
the ParadigmaticProperty.

Third, the execute procedure presented in Listing 1 maps
in a straightforward way to the trivial WorfkflowPH contain-
ing the Execute TransformationPH mentioned at the end of
Sect. 4.2.2.

Fig. 9 Activity Diagram capturing the dynamics of the activities com-
posing the behavioural semantics common to a TFSA (Listing 1) and a
CBD (Listing 2)

4.2 Synchronous Data Flow (SDF) paradigm

TheSynchronousDataFlowparadigm uses continuous time
and state variables, and is illustrated withCausal Block Dia-
gram , a formalism representative for many tools such as
Simulink and Scade.

4.2.1 Presentation

The Data Flow paradigm [74] describes computations as a
special directed graph, with the following features:

Signals represent infinite streams of data, where each data
piece is called a sample.

Nodes also called blocks, represent computation units that
execute (or fire) whenever enough input data become avail-
able. Blocks without input can fire at any time. Nodes
may be atomic, i.e. performing basic computations (such
as adders or multipliers), or composite, thereby encapsu-
lating themselves a subgraph.

Arcs connect nodes, thus describing how data streams flow
throughout the computation blocks.

Executing a Data Flow graph consists of accumulating
enough samples within the system, produced by blocks
without inputs, and performing the computations within the
blocks, thus consuming a number of samples on each input
and producing samples on all outputs in a concurrent way.
Samples may be reused within the system (for example, in
case of cycles) to be used as old samples Messerschmitt [54],
but they will not be considered as new once consumed.

The synchronous data flow paradigm [47] is a specialisa-
tion of the data flow paradigm where all blocks appearing in
a data flow graph are required to be synchronous, i.e. each
block explicitly defines how many samples are consumed
and produced.

4.2.2 Paradigm description

The previous description leads to the following proposal
in our Descriptive Framework, as illustrated in Fig. 10:

123

626 M. Amrani et al.

Fig. 10 FormalismPHs and ParadigmaticProperties for the specifica-
tion of the SDF paradigm (the plain arrow denotes inheritance over
placeholder classes)

– Signals are composed of an infinite, ordered stream of
Samples (note the ω multiplicity denoting a collection
with an infinite, dynamic number of elements, as sug-
gested by Combemale et al. [14]).

– An SDF has the structure of a directed graph with Arcs
and Blocks as nodes.

– Blocks possess Ports that explicitly define how many
Samples are used (consumed by Inputs, or produced by
Outputs).

– Arcs connect Ports, and flow Signals that travel on them
instantaneously. Note that a Port may be plugged to sev-
eral Arcs; only shortcuts are prevented by the noShortcut
ParadigmaticProperty, which forbids Arcs to connect as
src and tgt Ports of the same Type.

– A memoryfull Block should always define an extra Port
corresponding to initial conditions.

To simplify the description of the Sdf paradigm, we only
consider one fundamental TransformationPH, named Exe-
cute, with a trivial WorkflowPH that allows executing the
system assuming valid inputs.

4.2.3 Causal block diagrams CBDs

Viewing a CPS as a set of interacting components that
may be further decomposed is a natural and intuitive way
for breaking its internal complexity. Because they offer an
intuitive graphical description in terms of interconnected
nodes, Causal Block Diagrams (CBDs) represent a natural
formalism for capturing the dynamics of CPSs in a so-
called feedback control loop: the evolution of a physical
plant is monitored through sensors (thereby introducing a
time discretisation), which provide a data stream constantly
monitored and analysed by a software that influences back
the software plant through actuators.CBDs come in different
flavours, depending on the type of blocks that are available
for describing a system [20,27]:

– Algebraic CBDs only expose mathematical computation
blocks (over integers andboolean data flows). There is no

Fig. 11 Metamodels for specifying a CBD (from Class CBD) and its
semantic domain (Class Domain) for executing it

time progression. They may describe steady-state CPSs
occurring once the system has reached a steady state (e.g.
an engine after its transition phase);

– Discrete Time CBDs extend algebraic CBDs with blocks
that introduce delay, forcing all algebraic blocks to
update their output streams whenever the delay is eval-
uated. They naturally describe discrete time dynamic
systems.

– Continuous Time CBDs also extend CBDs, but in a dif-
ferent way: instead of introducing a time step notion with
a delay, it extends algebraic CBDs with continuous time,
using the mathematical integration and derivative oper-
ators. Although theoretically more powerful and more
complex than the previous CBD class, they are still
suitable for dynamic systems but require numerical dis-
cretisation.

CBDs have strong mathematical foundations and largely
leverage recent advances in numerical solvers, making their
use widespread within several tools (e.g. MathWorks’MAT-
LAB/SimuLink; Ansys/Esterel Scade, to only name the
most renowned ones). Without loss of generality, and to
simplify the presentation, we will also consider the SDF
paradigm a conceptual formalism for Continuous Time CBD
that may be part of concrete tool implementations.

Figure 11 describes the CBD formalism. A CBD is com-
posed of Blocks that possess a number of InputPorts and
OutputPorts. Those Ports are Linked appropriately (i.e. a
Link connects an output to an input). To simplify the presen-
tation, we only consider three kinds of Blocks: an Adder and
a Multiplier (which are both Memoryless) and an Integrator
(which is Memoryfull). The semantic Domain for executing
a CBD consists of a time step delta, and a dependencyGraph
(edges are not explicitly represented here) whose Nodes
aggregate those Blocks that are cyclically interdependent.

123

Multi-paradigmmodelling for cyber–physical systems: a descriptive framework 627

1 procedure execute(d : Domain, cbd : CBD)
2 do
3 d.dGraph =
4 cbd.computeDependencyGraphWithStrongComponents()
5 d. logical . time = 0
6 while(not end_condition) do
7 foreach (scomponent : d.dGraph.nodes) do
8 i f (scomponent . size () = 1) then
9 scomponent .nodes .pop() .compute()

10 else −− Strong Component: compute the whole cycle!
11 scomponent .nodes .compute()
12 endif
13 endfor
14 endwhile
15 d. logical . time += d. delta
16 endprocedure

Listing 2 Algorithmic for the Execute transformation, specifying the
behavioural semantics for CBD.

Listing 2 describes a procedure execute for capturing the
behavioural semantics of a CBD. It operates on a(n instance
of a) Domain and a(n instance of a) CBD, and proceeds as
follows [27]:

Initialise During this phase (Lines 3–5), the various time and
state variables are set: the logical clock is initialised, and the
dependency graph with strong components is computed.

Check Stopping Conditions The stopping condition is pro-
vided by the user (captured by the end_condition predicate
in Line 6) since a CBD computes values at each time step.

Perform Step This step consists of iterating over each Block,
in the order of the dependency graph. The (overloaded) Com-
pute procedure depends on the nature of the Block:

MemorylessA memoryless Block (such as our Adder or
Multiplier) simply applies a stepwise basic operation
(here, an arithmetic one) on the Samples available on
the Input Port, and delivers the result on the Output
Port.

Memoryfull Blocks are split in two categories: a delay
performs a discrete operation based on previous values
of Inputs, thus requiring memory to store such values,
while an accumulator (like our Integrator) performs
an approximation of a continuous behaviour by accu-
mulating the Input (cf. Gomes et al [27] for a detailed
explanation; cf. Burden and Faires [9] for details on
how numerical approximations may be used for these
Blocks).

After having completed the computation of all Block, the
logical clock progresses by a delta step value.

The execute procedure may be described as an activity dia-
gram in a similar way as TFSA were, as depicted in Fig. 9.
Note that for CBD, the terminate activity is, in fact, empty.

4.2.4 Mapping

Some of the Mappings between the ParadigmaticStructure
defining our SDF paradigm and the components of our CBD
Candidate are almost straightforward: the CBD metamodel
is similar to the FormalismPH for SDF, aside from renaming
(e.g. Link trivially binds to Arc), and tagging the proposed
Block appropriately (Adder and Multiplier are MemoryLess,
while Integrator is MemoryFull). Each Block consumes and
produces exactly one Sample on each of its Input andOutput
Port (assuming the value on the extra Input of Memory-
Full Blocks for initial conditions does not change). Note that
the timestep in a CBD is implicit, as no syntactic element
manipulates it directly. Rather, the timestep corresponds to
an evaluation of the full CBD (as shown by the execute pro-
cedure, where the time progresses after each full iteration).

Note that the execute procedure described in Listing 2
trivially matches the Execute TransformationPH required in
Sect. 4.2.2.

5 Multi-paradigmmodelling: combining
paradigms

Since CPSs combine physical phenomena with logical deci-
sion making, mostly implemented in software, modelling
their complex behaviour requires the use of a combination of
continuous time models to capture the physical aspects, with
discrete time and discrete event models to represent logical
computations. Depending on the level of abstraction used,
the networking part of CPS may be modelled using either
type of models. Furthermore, for many complex CPSs, in
order to address the diverse concerns stakeholders may have,
complexity is tackled through orthogonal, yet complemen-
tary viewpoints. Not only the individual views need to be
modelled explicitly, but above all, their often complex inter-
actions and integration.

This section starts by presenting some general mecha-
nisms in engineering that govern the design of a complex
CPS. It then proceeds to precisely define one example MPM
combinator, namely embedding, before applying it to our
two CPS-oriented candidates, namely TFSA for the Dis-
crete Event Dynamic System paradigm, and CBD for the
synchronous Synchronous Data Flow paradigm.

We are aware that embedding is just one of the many com-
binators applicable to formalisms and workflows, such as
extension, unification or self-extension [23], merging [19],
and aggregation [36]. However, embedding is popular in
practice, and simple enough for us to explain our paradigm
combinator concepts concisely. Future work will investigate
other paradigm combinators.

123

628 M. Amrani et al.

5.1 General mechanisms for tackling complexity

Benveniste et al. [5] argue that three basic mechanisms,
namely model abstraction/refinement, architectural decom-
position and view decomposition/merge, are sufficient to
describe any complexCPS engineering effort. In our descrip-
tive framework, these mechanisms may be captured by a
combination of TransformationPHs and/or WorkflowPHs,
depending on the available machinery, the granularity at
which a design needs to be tackled at any point of the CPS
engineering life cycle, and the details different engineers
need to know about the complete CPS. At this point, it is
still not clear whether these mechanisms may themselves
be considered as paradigms on their own, or as relationships
that paradigms may leverage to capture complex engineering
processes (in a similar way to operations over the algebraic
structure of paradigm). We simply describe them succinctly,
leaving their integration as an extension of our Descriptive
Framework.

5.1.1 Model abstraction/refinement

Model abstraction (and its dual, refinement) is used when
focusing on a particular set of properties of interest. A rela-
tionship A between a detailed model md and a more abstract
model ma is an abstraction with respect to a set of prop-
erties �, iff for all properties π ∈ �, the satisfaction of
π by the more abstract ma implies the satisfaction of π by
the more detailed md . This allows one to substitute md by
ma whenever questions about the properties in � need to be
answered. Substitution is useful as the analysis of properties
on the more detailed model is usually more costly than on the
abstracted model. Note that the abstraction relationship may
hold between models in the same or in different formalisms,
as long as for both, the semantics allows for the evaluation of
the same properties. When modelling physical systems, con-
tinuous domains are frequently used. In that case, a more
relaxed notion of substitutability based on approximation
may be appropriate.

5.1.2 Architectural decomposition/component composition

Architectural decomposition (and its dual, component com-
position) is used when the problem can be broken into
parts, each with an appropriate interface. Such an encapsu-
lation reduces a problem to (i) a number of sub-problems,
each requiring the satisfaction of its own properties, and
each leading to the design of a component and (ii) the
design of an appropriate architecture connecting the com-
ponents in such a way that the composition satisfies the
original required properties. Such a breakdown often comes
naturally at some levels of abstraction, using appropriate for-
malisms (which support hierarchy). This may occur when

the problem/solution domain exhibits locality or continuity
properties. Note that the component models may again be
described in different formalisms, as long their interfaces
match and the multi-formalism composition has a precise
semantics.

5.1.3 View decomposition/merge

View decomposition (and its dual, view merge) is used in
the collaboration between multiple stakeholders, each with
different concerns. Each viewpoint allows the evaluation of a
stakeholder-specific set of properties. When concrete views
are merged, the conjunction of all the views’ properties must
hold. In the software realm, IEEE Standard 1471 defines
the relationships between viewpoints and their realisations
views. Note that the views may be described in different for-
malisms.

5.2 Embedding: a simple, powerful MPM combinator

As an orthogonal view to the general mechanisms presented
above, there exists the possibility to combine paradigms
to form new paradigms through combinators, i.e. opera-
tors that allow the combination of two artefacts that follow
two paradigms (distinct or not). Combinators may even have
higher arities, allowing combination of a finite collection of
artefacts.

Given the way our Descriptive Framework captures the
notion of paradigm, a natural (yet not completely general)
way to describe combinators is to proceed in a component-
wise fashion:

F-CombinatorCombiningFormalisms, keeping their default
Workflows separate, while ensuring ParadigmaticProp-
ertys that ensure soundness of the operation; or

W-CombinatorCombiningWorkflows, assuming their default
Formalisms are distinct, while ensuring soundness.

In this section, we propose to capture a simple binary F-
Combinator named embedding that we note ⊕:

⊕ : Formalism × Formalism → Formalism
(Host,Guest) �→ New

An embedding takes two source formalisms (together with
their default workflows), the Host and the Guest, each fol-
lowing its own paradigm, and produces a New formalism
with two separate, default workflows that may be improved
to help co-design the new formalism instances. Note that ⊕
is a non-commutative combinator: switching Host, i.e. the
formalism that embeds, or is extended with, the Guest, gen-
erally results in two radically different results, as we will
illustrate in Sects. 5.4 and 5.3.

123

Multi-paradigmmodelling for cyber–physical systems: a descriptive framework 629

For the new formalism to be valid, an embedding should:

– Define a new, valid abstract syntax based on the abstract
syntaxes of the Host and Guest source formalisms;

– Define a new semantics that is conservative, i.e. if the
embedded (syntactic) elements are removed from the
new formalism instances, the execution semantics shall
coincide, as a projection, with each one of the source
formalism instance execution semantics.

At a high level, one can see the execution (operational
semantics) of an embedding as a three-step process:

1. The host starts the execution, following its semantics;
2. At some specific steps during the execution, correspond-

ing to the embedding, the host delegates the execution to
the guest;

3. The guest then proceeds with its own execution semantics;
4. At some predefined steps during the guest’s execution, or

when something global occurs for the host, the delegation
stops and returns to the host.

The specific point where the delegation occurs is defined
syntactically, while the mechanisms for delegating from the
higher, macro-level of the host, to the lower, micro-level
of the guest and back, is defined in a semantic adaptation
(embedding).

For illustrative purpose, we will describe the following
embedding, which results in the well-known hierarchical
TFSA (HTFSA):

HTFSA � TFSA ⊕ TFSA

5.2.1 Abstract syntax

The pattern described in Fig. 12 (bottom) captures how the
resulting paradigm’s abstract syntax is constructed: a Direc-
tor class from the host is extended with aDelegate class from
the guest. The Delegate then contains a Delegation where
the micro-steps occur. As a guideline for helping identify
potential matches, a Director is often a super class extended
with particular cases that behave slightly differently from
each other.

For building a HTFSA by embedding, we need to match the
previous pattern (cf. Fig. 12, top, unnecessary details omit-
ted). We identify as a natural candidate the State class as a
Director, which leads to internal computations inside Com-
posite states, performed by an full TFSA as a Delegation.

5.2.2 Execution semantics

The Activity Diagram of Fig. 13 describes a possible
recursive operationalisation of the execution semantics in

Fig. 12 The Embedding Pattern (bottom) defines how the Abstract
Syntax may be built from Host and Guest abstract syntax elements: in
the Host, a Director performs macro-steps, and sometimes Delegates
computations to the Guest, resulting in micro-steps performed by the
Guest’s Delegation. In the case of HTFSA, the State class is matched
as the Director, using a a full TFSA as a Delegation.

an embedding, by implementing the following algorithm
expressed as Activity Diagrams:

1. Starting from the Host, an Initialise phase sets time
and system state variables for preparing the computation
steps;

2. A CheckStopConditions checks whether this (hierarchi-
cal) level’s halting conditions are fulfilled. If they are, this
level’s computation halts: control is transferred back the
outer level, eventually performing a Terminate activity
for final settings; or the whole computation terminates.

3. If CheckStopConditions are not fulfilled, a PerformStep
occurs, making progress for this level’s computation;

4. Then, a CheckForDelegation checks whether the cur-
rent element embeds an internal instance: if this is
the case, control is transferred to the inner structure
(Delegate::Execute); otherwise, the control loops back
to CheckStopConditions for another (macro) step.

The check and eventual call to theDelegate’s Execute Trans-
formation (depicted in green) transfers control to the lower
level, performing the micro-steps embedded inside the cur-
rent level’smacro-step (depicted in red). Note that this pattern
may occur finitely many times, allowing the embedding of
an arbitrary number of levels.

Applying this pattern to the particular case of the HTFSA
embedding performs a transfer to the sub-TFSA, while keep-
ing the same Execute specification. Note that this pattern
produces a behaviour for HTFSA that is opposite to the one
promoted by UML: in case of competition between transi-
tions at different hierarchical levels with identical Events,
the outermost transition takes priority, following Harel’s

123

630 M. Amrani et al.

Fig. 13 Pattern expressing the behavioural semantics of an embedding.
After a preliminary phase that Initialises necessary variables, a macro-
step (in red) is performed by theHost. In case of aDelegation at this step
(CheckForDelegation), control is transferred to the micro-level, after
a preliminary phase (InitialiseInternal, corresponding to the Initialise
phase, but at the micro-level). When CheckStopConditions fails, it
transfers control back to the micro-level, or stops the whole computation
if there is none

Statecharts semantics [32] (as opposed to the conventional
innermost choice in UML).

5.3 EmbeddingCBD into TFSA

Many CPSs evolve through so-called running modes [51],
i.e. their behaviour changes significantly depending on high-
level, clearly identifiable modes. For example, regulatory
systems in biology identify potential deviations from a
normal course of action (such as cell mitosis, DNA repli-
cation, metabolic regulation and so on), and take measures
to recover, thus exhibiting two clear modes; robot arms in a
factory exhibit different behaviour depending on the way they
move in space in order to avoid hurting the humans work-
ing around them, or to hit an obstacle, thus making clear
distinctions when operating in either secure or risky envi-
ronments; autonomous electric vehicles introduce several
driving modes for handling snow, allowing user-controlled
drifting for circuit driving, or avoiding obstacles dangerous
for the occupants, thus exhibiting clear distinctions on how to
manage power, drive trains and so on depending on potential
dangers or road conditions.

Consider as a small example of such a CPS, a bounc-
ing ball that may be kicked from time to time [73]: a ball
starts free-falling from a predefined height; it will eventu-
ally collide with the ground, then bounces up again with
reduced energy; sometimes it is kicked, adding a prede-
fined velocity. To model such a system, we immediately
notice three modes: a FreeFall mode describes the ball’s free
fall, following Newton’s laws; the (artificial, infinitesimally
short) Collision mode describes the moment the ball hits the
ground and bounces up, going again in free fall; and the Kick
mode represent a kick, adding to the ball’s upward veloc-
ity. At a high level of abstraction, this small system switches
from one of those modes to one of the others, depending on
clearly defined events, where each mode describes the sys-
tem’s dynamics with continuous, physical (Newtonian) laws.
There are two paradigms at play in this scenario:

Fig. 14 Concretising the Embedding Pattern of Fig. 12 (bottom) for
TFSA ⊕ CBD (top) and CBD ⊕ TFSA (bottom) (Delegate in grey and
Delegation in red)

– at an outer level, describing modes where switching
occurs when particular events are identified corresponds
to the Discrete Event Dynamic System paradigm;

– at an inner level, in each mode, representing the dynamics
of a Newtonian physical system may be approximated in
a Synchronous Data Flow paradigm.

The presence of an outer and an inner level suggests to embed
an SDF formalism into a DEv formalism, following the pro-
cedure described previously:

Abstract Syntax Modes may be captured by States; there-
fore, matching the State class as a Delegate seems appro-
priate. The Delegation is composed of a full CBD for
capturing the various physical laws governing the free falls
(up and down) and the kick-up (cf. Fig. 14).

Execution Semantics Two instances of the ExecuteActivity
Diagram of Fig. 9 may be composed following the pattern
described in Sect. 5.2.2: the macro-step would follow the
activities described for the behavioural semantics of TFSA
(Listing 1), while the micro-step would embed the activities
for the behavioural semantics of CBD (Listing 2). Note
that to effectively allow a simulation of the whole system,
a new time step delta should be computed as the maximum
common divisor of the TFSA semantic Domain’s delta and
the CBD semantic Domain’s delta.

123

Multi-paradigmmodelling for cyber–physical systems: a descriptive framework 631

Fig. 15 Model of the Kickable Bouncing Ball: after Initialising the
necessary state variables, the ball is in FreeFall, following Netwton’s
Free Fall Law, then Colliding, thus bouncing. Sometimes, the ball gets
Kicked, allowing it to momentarily gain upward speed. The Global
Variables are shared by the CBD inside the States

The ⊕ combinator only provides guidelines for embedding:
some syntactic and semantic adjustments need to be provided
to obtain a full fledged formalism. In this case, two elements
need to be taken care of to enable communication between
both formalisms:

– Since CBDs continuously compute outputs from input
when activated inside a State, they need persistent Glob-
alVariables to enable communication between instances
in various State.

– Possibly new Triggers may need to be defined to cap-
ture the so-called level/zero-crossing phenomenon, i.e.
producing inside the environment an Event when some
continuous variables exceed a predefined threshold [80].

As a result, Fig. 15 depicts a possible instance of the embed-
ding TFSA⊕ CBD that captures the behaviour of the kickable
bouncing ball. The GlobalVariables are declared outside the
TFSA, and two specific Events (namely when +- and when
-+) detect the moments when the ball reaches the lowest (on
the ground) and highest positions during falls.

5.4 Embedding TFSA intoCBD

Many CPSs are, from an abstract viewpoint, so-called feed-
back control systems ([4]), i.e. they are composed of two (or
more) subsystems that are connected so that each influences
the other(s), with the particularity that at least one of these
subsystems (often realised as a software component) senses
the operations of the other subsystems through various sen-
sors, compares the sensed behaviour to a desired behaviour,
and computes corrective actions that are applied through

actuators. Such interconnected, strongly coupled CPSs are
notoriously difficult to analyse, making modelling and sim-
ulation a crucial enabler in the large-scale development of
such systems.

Consider again the small CPS example of a car’s Power
Window, introduced earlier in Sect. 4.1.2, but now taking
physical effects into consideration. A driver has at his dis-
posal two buttons Up and Down, which manually command
a motor that moves a driver-side window. For safety reasons,
the Window is also equipped with a sensor that detects a
resistive Force against the upward movement, helping detect
whether an object obstructs the Window’s course. One pos-
sible way to check the safety of the system is to simulate it
and to check that a reasonable Force always leads to halting
the window’s upward motion. A possible (simplified) model
would compute the position of the Window, given the mul-
tiple inputs (provided by the user’s manual commands and
the sensor) and some predefined parameters (corresponding
to the Friction the window’s frame imposes on the Window
during its movement, and the motor’s linear force Motor).
We can distinguish two different paradigms that are involved
in a Control/Command pair:

– at an outer level, the Window’s movement simply fol-
lows Newton’s Second Law, since the overall mass of the
system (frame + motor + window) stays constant.

– at an inner level, deciding which direction the Window
should move in may be modelled in a discrete way by
analysing the window’s state over time and detecting the
emergency cases due to excessive resistive force.

From an abstract viewpoint, the Window’s movement may
be simulated using the SDF paradigm (using a discretisation
of its equations of motion), while the control part may be
described through the DEv paradigm, suggesting to embed
a Dev formalism into an SDF one, following the procedure
presented above:

Abstract Syntax In a CBD, the Block class plays the role
of the Director, attaching as a Delegation a full TFSA (cf.
Fig. 14).

Execution Semantics A construction similar to the previous
case may be used, this time using CBD as the macro-step
and TFSA as a micro-step.

As a result, Fig. 16 depicts a possible instance of the embed-
ding CBD ⊕ TFSA, for modelling (part of) the behaviour of
the Power Window CPS.

6 Related work

Our work proposes an explicit definition of the notion of
modelling paradigm, which is a generalisation of the notion
of programming paradigm to the more general domain of

123

632 M. Amrani et al.

Fig. 16 Partial model of a power window in a car. The first CBD Block
continuously computes in which direction the Window (motor) moves,
transmitting the information to the second Block, which effectively
realises the movement

modelling. Over the years, a plethora of programming lan-
guages have been developed to deal with the heterogeneity
of software systems. The notion of programming paradigm
[31,78] was proposed more than 30 years ago to categorise
the different approaches or styles used by the many differ-
ent programming languages. This lead to the rich research
field of multi-paradigm programming. We did, however, not
find any work making the notion of programming paradigm
as explicit and precise as we propose in this work. Rather,
the notion of programming paradigm is expressed in natural
language and varies slightly from one author to another. Van
Roy [68] proposed a more precise definition where a pro-
gramming paradigm is defined as “[...] a set of programming
concepts, organised into a simple core language called the
paradigm’s kernel language”. Even this definition is neither
precise, nor does it propose, or even identify the need for
a procedure to decide whether a programming language is
based on a given paradigm.

We find the same issue with MPM, which as mentioned
earlier, originated from the Modelling and Simulation Com-
munity in 1996. While the initial work of the Cost Action
IC1404 MPM4CPS2 proposed an ontology for the domain
of MPM for CPS, we do not find a precise definition of
the notion of a modelling paradigm in the ontology. There
is, however, a body of work well suited to support multi-
paradigm modelling, such as the composition of modelling
languages, the composition of analyses, the composition of
tools and the composition of workflows. Furthermore, while
research has produced a variety of interesting textbooks on
modelling for CPS, such as Alur [2], Lee and Seshia [47],
Taha et al [65], these usually employ selected modelling tech-
niques and do not cover the multi-paradigm aspects of CPSs.

The related work regarding each of these topics is dis-
cussed in the following subsections.

2 http://mpm4cps.eu.

6.1 Composition of Modelling Languages

The composition of modelling languages is closely related
to multi-paradigm modelling as composed languages often
comprise different formalisms (e.g. UML class diagrams for
the Object-Oriented description of structures, State Machines
that describe state-based behaviour, and OCL to describe
constraints of the overall system). To this end, software lan-
guage engineering [36] produced a variety of formalisms,
such as

– the integrated syntax definitions of MontiCore [35], Nev-
erlang [66], and Xtext [6];

– methods to define well-formedness rules, including OCL
[33] or the Name-Binding Language NaBL [71] of
Spoofax;

– model transformation techniques and frameworks, such
as ATL [40], T-Core [64], or the Epsilon Transformation
Language ETL [41].

For such language definition formalisms, the composition
techniques range from embedding and merging of abstract
syntax definitions [19,35], over matching grammar non-
terminals by name [66] and importing syntactic elements
from other DSLs [6], to the integration of interpreters or code
generators [10,45]. All of these have in common that their
compositionality is limited to the level of their formalisms,
i.e. yet there is no software language reuse technology that
considers composing the intended usage workflows (e.g.
compiling, transforming, validating) that come with them.

Language workbenches [24] span technological spaces by
providing and combining multiple formalisms, such as gram-
mars and template languages for code generation [66] or
reference architectures for metamodels [34] and interpreters
for model execution [76] to support engineering multiple
aspects of modelling languages. Such workbenches come
with powerful tools and documented workflows describ-
ing how to engineer languages with the given formalisms.
The workflows are usually given in natural language, which
severely hampers reasoning about the compatibility with
other workflows. Also, often the mappings between their
supporting formalisms (e.g. metamodelling techniques and
code generators) are not modelled explicitly but encoded in
the tooling. A formal basis for MPM can enable the mak-
ing explicit of workflows and their relations to formalisms,
thus facilitating language composition not only across for-
malisms, but also across workbenches.

6.2 Composition of analyses

Another field of research closely related to MPM is the com-
position of analyses, since composed analyses often comprise
different formalisms (e.g. discrete event systems for reason-

123

http://mpm4cps.eu

Multi-paradigmmodelling for cyber–physical systems: a descriptive framework 633

ing about event-based communication, queuing networks for
resource utilisation analysis and logical programming for
constraint checking).

One established way to realise analysis composition is
simulator coupling and co-simulation. Distributed Interac-
tive Simulation (DIS) [38] is a decentralised approach to
simulator coupling, where the state of the analysis is shared
between all participants of the simulation. The successor
of DIS is High-Level Architecture (HLA) [37] standard.
Coupling information is stored by a central manager which
enables the combination of analyses. An overview of the state
of the art of co-simulation is presented by Gomes et al. [26].

All of these approaches have in common that their com-
positionality is limited to the level of their formalisms and to
information exchange between partial analyses implemented
in tools. There is, however, no modularisation and composi-
tion concept for analyses on a semantic level. A formal basis
for MPM can serve as a foundation for modularisation and
composition of analyses on a semantic level.

6.3 Composition of software tools

Combining different formalisms usually implies combining
the tools that operate on models in these formalisms. Tools
are commonly integrated to form so-called toolchains. How-
ever, the field lacks methodical or theoretical foundations for
systematically combining such tools across various domains.

Co-Simulation [26], as already mentioned in the previ-
ous section, is one specific area where tools composition is
supported by foundational work. Co-simulation allows one to
combine existing simulation tools into a integrated simulator,
with some guarantees of correctness. The Functional Mockup
Interface (FMI)3 standard provides Functional Mock-Up
Units (FMU) that can be combined/orchestrated using stan-
dardised interfaces.

The Open Services for Lifecycle Collaboration (OSLC)
Initiative4 proposes a set of specifications that enable the
integration of any kind of software development tools. It
builds on the W3C RDF (Resource Description Framework)
to describe resources shared by tools, linked data to relate
these resources and a REST (REpresentation State Tansfer)
interface to expos the tool APIs as Web services for their
integration, as techniques to enable the preview, creation and
selection of links between resources. OSLC strongly relies
on Web technologies which may limit performance. It also
lacks technology agnostic foundations.

The SPIRIT framework [39] for model and data integra-
tion and toolchain development tries to provide a more all-
encompassing foundation. One advantage of this approach
is that it considers the evaluation of how well the developed

3 https://fmi-standard.org/.
4 https://open-services.net/.

toolchains perform and adopts a service-oriented approach.
For evaluation, metrics are defined for the capabilities of indi-
vidual tools within a toolchain, and the interoperability of the
whole toolchain. SPIRIT integrates several open standards
such as the GOPPRR (Graph Object Property Point Role
Relationship) metametamodel, the Web Ontology Language
(OWL), the FMI and Business Process Modelling Notation
(BPMN) for workflow modelling. However, it is not clear
whether the approach requires that existing formalisms are
re-implemented based on this metametamodel.

6.4 Composition of workflows

While the MPM community recognised that the explicit spec-
ification of MBSE workflows (as, for example, described in
this paper) is needed, the workflow management community
has long understood the usefulness of explicitly modelling
service composition and choreography (e.g. [18,67]) using
appropriate formalisms.

Service Composition and Business Process Composition
[21,44] are two well-known approaches. Service Compo-
sition is usually split into two broad categories: static
composition, which includes orchestration, i.e. one service
orchestrating the others, and choreography, i.e. each service
describes its interactions, for which different formalisms and
languages have been developed over the years such as WS-
BPEL, WS-CDL and OWL-S; and dynamic composition,
which uses semantic annotations as proposed by Lauten-
bacher and Bauer [44].

Many Business Process Composition algorithms have
been proposed based on graphical notations: for example,
Brockmans et al. [7] proposed to model business pro-
cesses through Petri Nets, which are annotated with domain
ontologies using similarity computation and aggregation.
However, none of these approaches from the workflow man-
agement community considers the composition of multiple
formalisms.

7 Discussion

Our Descriptive Framework for MPM is the first approach
to enable the systematic integration, use, and evaluation of
the variety of paradigms necessary to successfully engineer
CPSs. Built on the generic concepts of formalisms, work-
flows, model operations, and their integration, the framework
is agnostic to the kind of systems it is applied to. While we
consider this beneficial for the applicability of our theory,
specific instances of the use of MPM, with predefined for-
malisms and workflows for specific challenges, can be useful
in more limited contexts.

Our Framework shows that specific metaformalisms for
describing formalisms, transformations, and workflows are

123

https://fmi-standard.org/
https://open-services.net/

634 M. Amrani et al.

necessary to achieve enough precision to be able to explic-
itly check whether a paradigm candidate follows a paradigm.
This choice of metaformalisms imposes a particular view
on MPM. Other choices such as functional or logical views
might yield different results. However, as metamodels have
been successfully employed to describe (parts of) the world
in software engineering, we consider this choice well-suited
to describe the foundations of MPM. Nonetheless, free-
dom in this choice entails that when paradigm candidates
are described using formalisms different from those used in
this paper to capture the paradigmatic structure, mechanisms
are required to (dis)prove their equivalence and compati-
bility. This will complicate establishing relations between
these paradigms and demands further research. The existing
research on the topic of semantic equivalence is seen as a
possible starting point.

This freedom of choice also extends to the property lan-
guages of choice (such as the metamodel patterns used in this
paper). When the formalisms to specify paradigms are fixed
and integrated, suitable and more specific property languages
can be derived automatically using modelling language engi-
neering techniques (such as ProMoBox [55], among other
approaches). When this choice is not fixed, the paradigms
used for property description and property checking need to
be integrated properly as well. When no automated meth-
ods exist to check the equivalence of properties expressed in
different formalisms, a manual proof might be required.

The Physical part in CPS introduces the need for compu-
tationally acausal models in order to capture the constitutive
physical laws of such systems, which may well be expressed
through an acausal paradigm. Note how Equation-based
Object-Oriented Languages such as Modelica supporting the
acausal paradigm still only capture mathematical relation-
ships. Still, they may not capture all constraints imposed
by the laws of physics. That requires even more physics-
oriented paradigms, those based on Power Flows [29] as used
in Bond Graphs [8]. On the other hand, combining inherently
causal “cyber” components and aspects of CPSs, also implies
the combination of causal paradigms (i.e. refinements such
as the Data Flow or the State Automata paradigms that we
illustrated in this paper) with acausal paradigms. This com-
bination does fit in our proposal for a Descriptive Framework
and is indeed the heart and soul of CPSs. However, for ped-
agogical reasons and for the purpose of illustration when
presenting this Framework, we have restricted the illustrative
formalisms and workflows to the simplest possible, yet keep-
ing the key ingredients to illustrate how combinations of such
paradigms may look like. Further application of our Descrip-
tive Framework to more elaborated acausal paradigms and
their possible combinations is left as future work.

Our framework is also completely agnostic with respect to
the specific way the integration of two (or more) paradigms
is done, as this integration highly depends on the constituent

paradigms, as well as on the purpose of the integration. We
illustrated paradigm integration with an example (namely
TFSA ⊕ CBD for mode automata) where one paradigm
describes the system’s structure, while the other captures
the state-based behaviour of the system’s elements. Moving
towards, for example, assembly lines would require the inte-
gration of geometry (supported by Computer-Aided Design)
with kinematics and rule-based assembly knowledge, open-
ing the way to radically different types of integration. Our
extensional perspective for joining the paradigms’ specifica-
tions is the foundation for integration in our MPM theory.
This does require further restrictions to be identified, e.g.
information about the formalisms, workflows, and the inten-
tions of integration (as it has been identified for Model
Transformations [49]).

The combinations of paradigms discussed in the examples
focus on the formalisms and detail corresponding composi-
tions. As sketched in Fig. 2, the combination of workflows
demands for composition operations such as activity embed-
ding (or similar combinations) that, again, depend on the
formalisms of choice. Note also that in practice, many oper-
ations that should be enforced at the formalism level may be
delegated to the workflow part as an external operation. For
example, checking the validity of a CPS design may require
the knowledge of other views or components of the over-
all system, thereby relying on legacy procedures to ensure
consistency, which will naturally take the form of an activ-
ity. In future work, we will detail this for various workflow
formalisms and their usage in concrete situations.

Our vision of applying MPM includes structuring the
engineering of CPSs by making the paradigms of the dif-
ferent stakeholders explicit and machine-processable, and,
ultimately, applying our theory to foster automation in Sys-
tems Engineering. This may include building, deriving, and
validating tool ensembles for engineering specific CPSs as
well as making the cooperation between the different stake-
holders through the paradigms explicit. Moreover, we expect
this vision to enable predicting various qualities of the engi-
neering process as well as of the CPS product.

To properly integrate different paradigms and prevent
operating on incompatible paradigms, we must be able to
identify formalisms and workflows belonging to a certain
well-defined paradigm. To this end, decision procedures need
to be established to determine whether formalisms and work-
flows belong to a certain paradigm, that can subsequently
be integrated. Of course, these procedures are also highly
dependent on the paradigms in question and may not be auto-
matically decidable in all cases.

Paradigms may be related to one another, e.g. through
extension, refinement, or substitutability. These relationships
may form the basis for reuse of paradigm-based analyses,
proofs, tools, etc. We illustrated a rather simplistic example
for Object Orientation (with single vs. multiple inheritance).

123

Multi-paradigmmodelling for cyber–physical systems: a descriptive framework 635

This is subject to ongoing work and might relate to the notion
of model types [17,30] for the structure of formalisms and
to the notion of semantic refinement [60] for the behaviour
specified in workflows.

To capitalise on the foundations of MPM, the construction,
analysis, and integration of paradigms should, ultimately, be
supported through automation. Therefore, software tools are
needed that capture workflows related to paradigms, such
as analysing whether a set of paradigms can be integrated to
achieve certain results, to store, query, and retrieve paradigms
from repositories, and more. The functional requirements for
such tools and repositories demand further research and form
the core of MPM engineering as a discipline.

The examples presented throughout the paper are care-
fully selected to clarify the concepts of MPM that we strive
to convey. Consequently, these are compact and cannot cover
the complete landscape of paradigms and their combinations
necessary to engineer a sophisticated CPS. In the future, we
will investigate selecting and combining specific paradigms
to design, engineer, and deploy CPSs to present the applica-
tion of our framework in the large.

MPM advocates using the most appropriate formalisms.
This may lead to different components and views expressed
in different formalisms with different semantics. The burden
is on the modeller to prove equivalence—if that is needed
or indeed even possible. However, once formalisms and
workflows have been explicitly modelled, implementing a
decision procedure becomes possible. This will most likely
require a community to stick to a particular “style” of mod-
elling. If multiple styles are needed, proofs of equivalence
may not be possible. Then again, a community may agree on
equivalence until the converse is proven.

8 Conclusion

This paper proposed a structural Descriptive Framework for
Multi-Paradigm Modelling. A paradigm P is defined as a
set of characteristics, so-called paradigmatic properties, that
requires a paradigmatic structure to be expressed explicitly.
This paradigmatic structure captures “universal” concepts
expressed through placeholders and shared by all artefacts
qualifying as, or following P. The placeholders are intended
to be mapped to the concrete constructs defining poten-
tial candidates. This enables decision procedures associated
with the paradigmatic properties to be performed to validate
whether a paradigm candidate follows P. To tackle the het-
erogeneity and complexity of CPSs, it is often necessary to
combine multiple paradigms to adequately capture all facets
of a CPS. This calls for Multi-Paradigm Modelling. To that
end, we have explored a first paradigm combinator, namely
embedding, and have shown how to systematically build a

valid paradigm candidate for the resulting multi-paradigm
combination.

The Descriptive Framework presented in this paper is a
first step towards more formal foundations for MPM for
CPSs, which future research can build upon. For instance,
during the COST Action IC1404, we actively collected and
classified several industrial paradigmatic scenarios involv-
ing various workflows and formalisms. From this work,
an interesting library of CPS paradigms currently used in
industry may follow. Such a library will allow researchers
and practitioners to reflect and build upon. It will also pro-
vide a further validation of the structures described in our
Descriptive Framework. Capturing other paradigm combi-
nation operators observed in practice would also contribute
to the exploration of the various ways MPM is already used
in industry for modelling and simulating complex CPSs.
Based on the understanding gained in this work, of different
paradigms and their interaction for modelling and analysing
complex CPSs, we will explore a feature-based decomposi-
tion and composition of modelling languages and analyses.
Ultimately, a better understanding of the different paradigms
that are in place to model CPSs and of their integration
can yield better modelling, analysis, design, and optimisa-
tion tools. This will contribute to more efficient engineering
practices of future CPSs.

Acknowledgements Moussa Amrani was funded by the Walloon
Region Cluster of Excellence SkyWin SW_D-DAMS Project. Dominique
Blouin was partially supported by the ISC Chair (Ingénierie des Sys-
tèmes Complexes) on cyber–physical systems and distributed control
systems. Robert Heinrich was partially funded by the German Fed-
eral Ministry of Education and Research under grant 01IS18067D
(RESPOND), and the KASTEL institutional funding. Hans Vangheluwe’s
Research Group was partially supported by Flanders Make, the strate-
gic research centre for the Flemish manufacturing industry. Andreas
Wortmann was partially funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany Excellence
Strategy—EXC 2023 Internet of Production.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, New York
(1998)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

636 M. Amrani et al.

2. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cam-
bridge (2015)

3. Amrani, M., Blouin, D., Heinrich, R., Rensink, A., Vangheluwe, H.,
Wortmann, A.: Towards a formal specification of multi-paradigm
modelling. In: International Conference on Model Driven Engi-
neering Languages and Systems Companion, pp. 419–424 (2019)

4. Åström, K.J., Murray, R.M.: Feedback Systems: An Introduction
for Scientists and Engineers. Princeton University Press, Princeton
(2012)

5. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R.,
Raclet, J.B., Reinkemeier, P., Sangiovanni-Vincentelli, A., Damm,
W., Henzinger, T.A., Larsen, K.G.: Contracts for system
design. Foundations and trends in electronic design automation.
12(2–3) (2018). https://www.amazon.co.uk/Contracts-System-
Foundations-Electronic-Automation/dp/1680834029

6. Bettini, L.: Implementing Domain-Specific Languages with Xtext
and Xtend. Packt Publishing Ltd, Birmingham (2016)

7. Brockmans, S., Ehrig, M., Koschmider, A., Oberweis, A., Studer,
R.: Semantic alignment of business processes. In: Proceedings of
the Eighth International Conference on Enterprise Information Sys-
tems: Databases and Information Systems Integration, pp. 191–196
(2006)

8. Broenink, J.F.: Bond graphs: A unifying framework for modelling
of physical systems. In: Foundations of Multi-Paradigm Modelling
for Cyber-Physical Systems, pp. 15–44. Springer (2020)

9. Burden, R.L., Faires, J.D.: Numerical Analysis. Cengage Learning
(2015)

10. Butting, A., Eikermann, R., Kautz, O., Rumpe, B., Wortmann, A.:
Modeling language variability with reusable language components.
In: International Conference on Systems and Software Product Line
(SPLC’18). ACM (2018)

11. Cambridge University Press: Cambridge Dictionary (2020).
https://dictionary.cambridge.org/dictionary/english/paradigm.
Accessed 25 Mar 2020

12. Carreira, P., Amaral, V., Vangheluwe, H.: Foundations of Multi-
Paradigm Modelling for Cyber-Physical Systems. Springer, New
York (2020)

13. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N.,
Meseguer, J., Talcott, C.: All About Maude. How to Specify,
Program and Verify Systems in Rewriting Logic. Springer, A High-
Performance Logical Framework (2007)

14. Combemale, B., Thirioux, X., Baudry, B.: Formally defining and
iterating infinite models. In: International Conference on Model
Driven Engineering Languages and Systems, pp. 119–133 (2012)

15. Cooper, D.: Standard Pascal User Reference Manual. W. W. Norton,
New York (1983)

16. Corradini, A., Dotti, F.L., Foss, L., Ribeiro, L.: Translating java
code to graph transformation systems. In: International Conference
on Graph Transformation, pp. 383–398 (2004)

17. De Lara, J., Guerra, E.: A posteriori typing for model-driven engi-
neering: concepts, analysis, and applications. ACM Trans. Softw.
Eng. Methodol. 25(4), 1–31 (2017)

18. Decker, G., Weske, M.: Interaction-centric modeling of process
choreographies. Inf. Syst. 36(2), 292–312 (2011). https://doi.org/
10.1016/j.is.2010.06.005

19. Degueule, T., Combemale, B., Blouin, A., Barais, O., Jézéquel,
J.M.: Melange: A meta-language for modular and reusable devel-
opment of DSLs. Proceedings of the 2015 ACM SIGPLAN
International Conference on Software Language Engineering, pp.
25–36 (2015b)

20. Denckla, B., Mosterman, P.J.: Formalizing causal block diagrams
for modeling a class of hybrid dynamic systems. In: Proceedings
of the 44th IEEE Conference on Decision and Control, pp. 4193–
4198, (2005). https://doi.org/10.1109/CDC.2005.1582820

21. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals
of Business Process Management, 2nd edn. Springer, New York
(2018)

22. El-Fakih, K., Gromov, M., Shabaldina, N.V., Yevtushenko, N.:
Distinguishing experiments for timed nondeterministic finite state
machines. Acta Cybern. 21(2), 205–222 (2013)

23. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition
untangled. In: Proceedings of the Twelfth Workshop on Language
Descriptions, Tools, and Applications, pp. 1–8 (2012)

24. Erdweg, S., Van Der Storm, T., Völter, M., Tratt, L., Bosman, R.,
Cook, W.R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., et al.:
Evaluating and comparing language workbenches: existing results
and benchmarks for the future. Comput. Lang. Syst. Struct. 44,
24–47 (2015)

25. Fritzsche, M., Gilani, W., Lämmel, R., Jouault, F.: Model trans-
formation chains in model-driven performance engineering: expe-
riences and future research needs. In: Modellierung, pp. 213–220
(2011)

26. Gomes, C., et al.: Co-simulation: a survey. ACM Comput. Surv.
51(3), 49 (2018)

27. Gomes, C., Denil, J., Vangheluwe, H.: Causal-block diagrams:
a family of languages for causal modelling of cyber-physical
systems. In: Carreira, P., Amaral, V., Vangheluwe, H. (eds.) Foun-
dations of Multi-Paradigm Modelling for Cyber-Physical Systems,
pp. 97–125. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-43946-0_4

28. Gosling, J., Joy, B., Steele, G.L., Bracha, G., Buckley, A.: The
Java Language Specification. Java SE, 8th edn. Addison-Wesley
Professional, Redwood City (2014)

29. Grainger, J.J., Stevenson, W.D., Chang, G.W.: Power Systems
Analysis. Mc Graw Hill, New York (2015)

30. Guy, C., Combemale, B., Derrien, S., Steel, J.R., Jézéquel, J.M.:
On model subtyping. In: European Conference on Modelling Foun-
dations and Applications, pp. 400–415. Springer (2012)

31. Hailpern, B.: Guest editor’s introduction multiparadigm languages
and environments. IEEE Softw. 3(01), 6–9 (1986). https://doi.org/
10.1109/MS.1986.232426

32. Harel, D., Naamad, A.: The STATEMATE Semantics of State-
charts. ACM Trans. Softw. Eng. Methodol. 5, 293–333 (1996)

33. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Thiele, M.,
Wende, C., Wilke, C.: Integrating OCL and textual modelling lan-
guages. In: International Conference on Model Driven Engineering
Languages and Systems, pp 349–363. Springer (2010)

34. Heinrich, R., Strittmatter, M., Reussner, R.H.: A layered reference
architecture for metamodels to tailor quality modeling and analy-
sis. IEEE Trans. Softw. Eng. (2019). https://doi.org/10.1109/TSE.
2019.2903797

35. Hölldobler, K., Rumpe, B.: MontiCore 5 Language Workbench
Edition 2017. Aachener Informatik-Berichte, Software Engineer-
ing, Band, vol. 32. Shaker Verlag (2017)

36. Hölldobler, K., Rumpe, B., Wortmann, A.: software language engi-
neering in the large: towards composing and deriving languages.
Comput. Lang. Syst. Struct. 54, 386–405 (2018)

37. IEEE Ieee standard for modeling and simulation (m amp;s) high
level architecture (hla)—framework and rules. IEEE Std 1516-
2010 (Revision of IEEE Std 1516-2000) pp 1–38 (2010). https://
doi.org/10.1109/IEEESTD.2010.5553440

38. IEEE: IEEE Standard for distributed interactive simulation—
communication services and profiles. IEEE Std 12782–1995, 1–20
(1996). https://doi.org/10.1109/IEEESTD.1996.80824

39. Jinzhi, L.: A framework for cyber-physical system tool-chain devel-
opment: A service-oriented and model-based systems engineering
approach. PhD thesis, KTH Royal Institute of Technology (2019)

40. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: ATL:
a QVT-like transformation language. In: Companion to the 21st

123

https://www.amazon.co.uk/Contracts-System-Foundations-Electronic-Automation/dp/1680834029
https://www.amazon.co.uk/Contracts-System-Foundations-Electronic-Automation/dp/1680834029
https://dictionary.cambridge.org/dictionary/english/paradigm
https://doi.org/10.1016/j.is.2010.06.005
https://doi.org/10.1016/j.is.2010.06.005
https://doi.org/10.1109/CDC.2005.1582820
https://doi.org/10.1007/978-3-030-43946-0_4
https://doi.org/10.1007/978-3-030-43946-0_4
https://doi.org/10.1109/MS.1986.232426
https://doi.org/10.1109/MS.1986.232426
https://doi.org/10.1109/TSE.2019.2903797
https://doi.org/10.1109/TSE.2019.2903797
https://doi.org/10.1109/IEEESTD.2010.5553440
https://doi.org/10.1109/IEEESTD.2010.5553440
https://doi.org/10.1109/IEEESTD.1996.80824

Multi-paradigmmodelling for cyber–physical systems: a descriptive framework 637

ACM SIGPLAN symposium on Object-oriented programming sys-
tems, languages, and applications, pp. 719–720. ACM (2006)

41. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon transforma-
tion language. In: International Conference on Theory and Practice
of Model Transformations, pp. 46–60. Springer (2008)

42. Kuhn, T.: The Structure of Scientific Revolutions. Chicago Press,
Chicago (2012)

43. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.:
Explicit transformation modeling. In: MODELS Workshops, pp.
240–255 (2009)

44. Lautenbacher, F., Bauer, B.: A survey on workflow annotation
and composition approaches. In: Proceedings of the Workshop on
Semantic Business Process and Product Lifecycle Management
(2007)

45. Leduc, M., Degueule, T., Combemale, B.: Modular Language
Composition for the Masses. In: Proceedings of the 11th ACM
SIGPLAN International Conference on Software Language Engi-
neering, pp 47–59. ACM (2018)

46. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous
data flow programs for digital signal processing. IEEE Trans. Com-
put. 36(1), 24–35 (1987)

47. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems: A
Cyber-Physical Systems Approach. MIT Press, Cambridge (2016)

48. Liu, S.H.: Design Space Exploration for Distributed Real-Time:
A Software Product Line Engineering Approach for Design and
Analysis of Component-Based Distributed Real-Time and Embed-
ded Systems. VDM Verlag (2010)

49. Lúcio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim, G.,
Syriani, E., Wimmer, M.: Model transformation intents and their
properties. SoSyM 15(3), 647–684 (2014)

50. Manifesto, A.: Manifesto for agile software development. (2001)
See https://agilemanifesto.org/. Accessed 2 Aug 2020

51. Maraninchi, F., Rémond, Y.: Mode Automata. A New Domain-
Specific Construct For The Development of Safe Critical Systems.
Science of Computer Programming (2003)

52. Merkow, M.: Secure, Resilient, and Agile Software Development.
Auerbach Publications, New York (2019)

53. Merriam-Webster : Merriam-Webster Online Dictionary.
(2020). https://www.merriam-webster.com/dictionary/paradigm.
Accessed: 25 Mar 2020

54. Messerschmitt, D.G.: A tool for structured functional simulation.
IEEE J. Sel. Areas Commun. 2(1), 137–147 (1984)

55. Meyers, B., Vangheluwe, H., Denil, J., Salay, R.: A framework for
temporal verification support in domain-specific modelling. IEEE
Trans. Softw. Eng. (TSE) 93(12), 1045–1061 (2017)

56. Mosterman, P.J., Sztipanovits, J., Engell, S.: Computer-automated
multiparadigm modeling in control systems technology. IEEE
Trans. Control Syst. Technol. 12(2), 223–234 (2012)

57. Oxford University Press (2020) Oxford English Dictionary. https://
www.oed.com/view/Entry/137329. Accessed: 25 Mar 2020

58. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design.
A Systematic Approach. Springer, New York (2007)

59. Przybyłek, A., Morales-Trujillo, M.E. (eds.): Advances in Agile
and User-Centred Software Engineering. Lecture Notes in Business
Information Processing, vol. 376. Springer, New York (2019)

60. Rumpe, B., Wortmann, A.: Abstraction and refinement in hierar-
chically decomposable and underspecified CPS-architectures. In:
Lohstroh, M., Derler, P., Sirjani, M. (eds.) Principles of Modeling:
Essays Dedicated to Edward A. Lee on the Occasion of His 60th
Birthday, LNCS 10760, pp. 383–406. Springer, New York (2018)

61. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual
Machine: Definition. Verification Validation. Springer, New York
(2014)

62. Steel, J., Jézéquel, J.M.: On Model Typing. Software And Systems
Modeling (2007)

63. Sun, W., Combemale, B., Derrien, S., France, R.B.: Using Model
Types to Support Contract-Aware Model Substitutability. In: Euro-
pean Conference on Modelling Foundations and Applications, pp.
118–133 (2013)

64. Syriani, E., Vangheluwe, H., LaShomb, B.: T-core: a framework for
custom-built model transformation engines. Softw. Syst. Model.
14(3), 1215–1243 (2015)

65. Taha, W., Taha, A.E.M., Thunberg, J.: Cyber-Physical Systems: A
Model-Based Approach. Springer, New York (2020)

66. Vacchi, E., Cazzola, W.: Neverlang: a framework for feature-
oriented language development. Comput. Lang. Syst. Struct. 43,
1–40 (2015)

67. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Ser-
vice Interaction: Patterns, Formalization, and Analysis, pp. 42–
88. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-
01918-0_2

68. Van Roy, P.: Concepts, Techniques, and Models of Computer Pro-
gramming, Chap Programming Paradigms for Dummies: What
Every Programmer Should Know, pp. 9–47. MIT Press, Cambridge
(2012)

69. Vangheluwe, H., Vansteenkiste, G., Kerckhoffs, E.: Simulation for
the Future: Progress of the ESPRIT Basic Research working group
8467. In: European Simulation Symposium (ESS), SCS (1996)

70. Vangheluwe, H., Vansteenkiste, G.: A multi-paradigm modeling
and simulation methodology: Formalisms and languages. In: Euro-
pean Simulation Symposium (ESS), SCS, pp. 168–172 (1996)

71. Wachsmuth, G.H., Konat, G.D.P., Visser, E.: language design
with the Spoofax language Workbench. IEEE Softw. 31(5), 35–
43 (2014)

72. Wainer, G.A.: Discrete-Event Modeling and Simulation: A Practi-
tioner’s Approach. CRC Press, Boca Raton (2009)

73. Wainer, G.A., Mosterman, P.J. (eds.): Discrete-Event Modeling
and Simulation: Theory and Applications. CRC Press, Boca Raton
(2010)

74. Watson, I., Gürd, J.G.: A practical data flow computer. IEEE Com-
put. 15, 51–57 (1982)

75. Wegner, P.: Dimensions of object-based language design. SIG-
PLAN Not. 22(12), 168–182 (1987)

76. Wende, C.: Language Family Engineering—with Features and
Role-Based Composition. PhD thesis, Technische Universitaet
Dresden (2012)

77. Wimmer, M., Kramler, G.: Bridging Grammarware and Model-
ware. In: Workshop in Software Model Engineering, pp. 159–168
(2005)

78. Zave, P.: A compositional approach to multiparadigm program-
ming. IEEE Softw. 6(05), 15–18 (1989). https://doi.org/10.1109/
52.795096

79. Zeigler, B.P., Muzy, A., Kofman, E.: Theory of Modeling and
Simulation: Discrete Event and Iterative System Computational
Foundations. Academic Press, London (2018)

80. Zhang, F., Yeddanapudi, M., Mosterman, P.J.: Zero-crossing loca-
tion and detection algorithms for hybrid system simulation. Int.
Fed. Autom. Control 41(2), 7967–7972 (2008)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://agilemanifesto.org/
https://www.merriam-webster.com/dictionary/paradigm
https://www.oed.com/view/Entry/137329
https://www.oed.com/view/Entry/137329
https://doi.org/10.1007/978-3-642-01918-0_2
https://doi.org/10.1007/978-3-642-01918-0_2
https://doi.org/10.1109/52.795096
https://doi.org/10.1109/52.795096

638 M. Amrani et al.

Moussa Amrani is currently a post-
doc researcher at the University
of Namur (Belgium). His research
topics focus on formal verifica-
tion of model transformations and
visual domain-specific modelling.
He is working on a Belgian Clus-
ter of Excellence SkyWin Project
called D-DAMS, centred on DO-
178C certification of flying soft-
ware, where he pushes model-
based development approaches for
facilitating the certification activi-
ties. He received a Ph.D. in com-
puter science in 2013 from Univer-

sity of Luxembourg, and a M.Sc. in computer science from University
Grenoble Alpes in 1998. Prior to his Ph.D., he worked for a decade in
R&D departments of various research laboratories and companies.

Dominique Blouin is a perma-
nent research engineer at the Tele-
com Paris engineering school of
the Institut Polytechnique de Paris
in France. His research interests
are model management, (bidirec-
tional) model transformation and
synchronization, domain-specific
languages development, require
ments engineering, and architec-
ture description languages. He was
the vice-chair of working group 1
of the Multi-Paradigm Modelling
for Cyber-Physical Systems
(MPM4CPS) COST action on foun-

dations for MPM4CPS. He is an active member of the SAE AADL
standardisation committee where he initiated the RDAL language,
which lead to the ALISA (Architecture-led Incremental System Assur-
ance) framework for AADL. He is also an active contributor to the
RAMSES analysis and code generation tool for AADL.

Robert Heinrich is head of the
Quality-driven System Evolution
research group at Karlsruhe Insti-
tute of Technology (Germany). He
holds a doctoral degree from Hei-
delberg University and a degree
in Computer Science from Univer-
sity of Applied Sciences Kaiser-
slautern. His research interests
include decomposition and com-
position of model-based analysis
for several quality properties, such
as performance, confidentiality,
and maintainability, as well as for
several domains, such as informa-

tion systems, business processes, and automated production systems.
One core asset of his work is the Palladio software architecture simu-
lator. He is involved in the organisation committees of several inter-
national conferences, established and organised various workshops,
is reviewer for international premium journals, like IEEE Transac-
tions on Software Engineering and IEEE Software, and is reviewer for
international academic funding agencies. Robert is principal investiga-
tor or chief coordinator in several grants from the German Research
Foundation and governmental funding agencies. He has (co-)authored

more than 80 peer-reviewed publications and spent research visits in
Chongqing (China) and Tel Aviv (Israel).

Arend Rensink is full profes-
sor at the Formal Methods and
Tools group, on the topic of Soft-
ware Modelling, Transformation
and Verification. As means for this,
he focuses on process algebra and
graph transformation, addressing
especially their usability in prac-
tice. He has developed and main-
tains the graph transformation tool
GROOVE. Besides his research,
Arend is Programme Director of
the Computer Science Bachelor
and Master programmes at the Uni-
versity of Twente, which have

grown fivefold in the last decade and are rated among the top pro-
grammes in the Netherlands.

Hans Vangheluwe is a professor in
the Computer Science Department
of the University of Antwerp. His
Modelling, Simulation and Design
Lab (MSDL) is a core laboratory
in the Design and Optimization
cluster of Flanders Make, the strate-
gic research centre for the Flem-
ish manufacturing industry. In his
research on multi-paradigm mod-
elling, he studies the foundations
and applications of modelling lan-
guage engineering. This covers the
entire spectrum, from acausal mod-
elling languages such as Modelica

for lumped parameter modelling of physical systems, to discrete-event
simulation languages such as DEVS and GPSS to model software
and production systems. He investigates modular combinations of
these formalisms, of views and of abstractions. He develops scalable
(meta-)modelling and (co-)simulation tools to help engineers design,
build, optimise and maintain Cyber-Physical Systems. He was the co-
founder and coordinator of the EU ESPRIT Basic Research Work-
ing Group 8467 “Simulation in Europe”, a founding member of the
Modelica language Design Team, and the chair of the EU COST
Action IC1404 Multi-Paradigm Modelling for Cyber-Physical Sys-
tems (MPM4CPS).

Andreas Wortmann is a professor
at the Institute for Machine Tools
and Manufacturing Units (ISW) of
the University of Stuttgart. Before,
he was a senior researcher at the
Chair for Software Engineering at
RWTH Aachen University and
head of the model-driven systems
engineering research group. His
main research interests are model-
driven software and systems engi-
neering, software language engi-
neering, and digital twins. He
served as PC member and chair
for several international workshops

and conferences related to model-driven systems engineering and lan-

123

https://sourceforge.net/projects/groove/

Multi-paradigmmodelling for cyber–physical systems: a descriptive framework 639

guage engineering. He also is a member of ACM and ACM SIGSOFT
and co-author of over 80 peer-reviewed international publications.
Moreover, he serves on the board of the European Association for Pro-
gramming Languages and Systems (EAPLS), on the editorial board

of the Journal of Automotive Software Engineering (JASE), and co-
organises the working group on Model-Based Systems Engineering of
the German Society for Systems Engineering (GfSE). For more infor-
mation, consult http://www.wortmann.ac.

123

http://www.wortmann.ac

	Multi-paradigm modelling for cyber–physical systems: a descriptive framework
	Abstract
	1 Introduction
	2 What is a paradigm?
	2.1 General definitions
	2.2 Two simple examples: Object Orientation and Agile Programming
	2.2.1 Object Orientation: a formalism-oriented paradigm
	2.2.2 Agile development: a workflow-oriented paradigm

	3 A Descriptive Framework for capturing modelling paradigms
	3.1 Paradigmatic properties
	3.2 Paradigmatic structure
	3.3 Checking whether a candidate follows a paradigm
	3.4 Final remarks

	4 Two paradigms for CPS: discrete event dynamic systems and synchronous data flow
	4.1 Discrete Event dynamic systems (DEv) paradigm
	4.1.1 Paradigm description
	4.1.2 Candidate: timed finite state automata (TFSA)
	4.1.3 Mapping

	4.2 Synchronous Data Flow (SDF) paradigm
	4.2.1 Presentation
	4.2.2 Paradigm description
	4.2.3 Causal block diagrams CBDs
	4.2.4 Mapping

	5 Multi-paradigm modelling: combining paradigms
	5.1 General mechanisms for tackling complexity
	5.1.1 Model abstraction/refinement
	5.1.2 Architectural decomposition/component composition
	5.1.3 View decomposition/merge

	5.2 Embedding: a simple, powerful MPM combinator
	5.2.1 Abstract syntax
	5.2.2 Execution semantics

	5.3 Embedding CBD into TFSA
	5.4 Embedding TFSA into CBD

	6 Related work
	6.1 Composition of Modelling Languages
	6.2 Composition of analyses
	6.3 Composition of software tools
	6.4 Composition of workflows

	7 Discussion
	8 Conclusion
	Acknowledgements
	References

