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RESEARCH PAPER

Generic Roughness Meta-model in 3D Printing by Fused Deposition

Modeling

–

ABSTRACT
Design for Additive Manufacturing (DfAM) aims at optimizing the product design 
based on design rules defined thanks to Additive Manufacturing (AM) constraints. To 
elaborate a functional design, several parameters like part orientation and layer 
thickness influence the results of mechanical strength, roughness, and manufacturing 
time. Surface roughness is an important input of Fused Deposition Modeling which 
impacts the product functionalities. To participate in product design optimization 
and DfAM development, this research suggests studying roughness models in order to 
clarify the best functional design methodology. This analysis permits to propose a 
meta-model that provides a better estimation for the surface roughness of the FDM 
products. A new roughness model is developed by a combination of genetic 
programming and symbolic regression due to the experimental data which helps the 
manufacturer to predict the surface quality of the products before fabrication. It 
enables us to estimate the surface roughness of all the AM products fabricated in a 
different value of layer thickness for all possible orientations in the space regarding 
part building direction.

KEYWORDS
Additive Manufacturing; Design for Additive Manufacturing; Fused Deposition 
Modeling; 3D printing; Surface Roughness; Functional design with roughness 
optimization

1. Introduction

Nowadays, Additive Manufacturing (AM), as one of the nine main pillars of industry
4.0, has revolutionized product development and fabrication (Asadollahi-Yazdi et al.
(2020)). It is a new technology to produce different versions of complex products with
a material range. Firstly, this manufacturing method was used for Rapid Prototyping
but it is currently used in different industrial and educational applications. It includes
a group of technologies, like Fused Deposition Modeling (FDM), Selective Laser Sin-
tering (SLS), Selective Laser Melting (SLM), which makes the products layer by layer.
These technologies are different in terms of used material, and the process of layer
fabrication (Gardan (2016)). This manufacturing builds the products directly from
3D computer-aided design models or reverse-engineering data without conventional
tooling or fixture (Asadollahi-Yazdi, Gardan, and Lafon (2018)).

Among AM technologies, FDM is one of the most extensively used AM techniques
which has substantially shortened product development time and cost. FDM is a layer
AM process that uses a thermoplastic filament, such as ABS (Acrylonitrile Butadiene
Styrene) and PLA (Poly-lactic Acid), by fused depositing. The layers are fabricated
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by filament extrusion which is extruded by a nozzle. The nozzle contains resistive
heaters that keep the plastic at a temperature just above its melting point so that it
flows easily through the nozzle and forms the layer. The plastic hardens immediately
after flowing from the nozzle and bonds to the layer below. It traces the part’s cross-
sectional geometry layer by layer, then moving up vertically to repeat the process to
produce the layers from down to up for finishing the part fabrication (Gardan (2016)).

This different fabrication process affects the product characteristics which are pro-
duced by these technologies. Design for Additive Manufacturing (DfAM), as a concept
which focuses on the design of products while considering the additive manufacturing
criteria and constraints early in the design process, permits to increase chances of suc-
cess and shorten the development cycle to have a cost-effective production (Vaneker
et al. (2020)). In this concept, it is necessary to evaluate some criteria like mechanical
strength, surface quality, etc. before fabrication in order to create the optimal design
and manufacturing.

One of the most important characteristics of products is surface roughness that will
be presented in the next section. Different models are also presented to predict the
surface roughness of the products which will be discussed in this article and finally, a
new meta-model based on the experimental data will be proposed for calculating the
surface roughness before production. This model permits the users to be sure about
satisfying one of the significant manufacturing criteria as surface roughness.

Therefore, the remainder of this paper is organized as follows. The surface roughness
of AM products will be discussed in the next section. Then, the different existed
models for roughness are discussed in section 3. Section 4 is devoted to the proposed
methodology as a new roughness model to estimate surface quality. Finally, section 5
concludes with a summary.

2. Surface roughness in 3D printing

The AM advantages include producing the complex geometries without any additional
cost and tooling, etc. encourage the manufacturers to use AM technologies (Asadollahi-
Yazdi, Gardan, and Lafon (2016, 2017)) but they have also some disadvantages such as
surface quality that is originated from the layer by layer fabrication and the orientation
of the part in the build platform.

Surface quality can be measured by surface roughness as Ra. As described in ASME
B46.1 (Standard (2002)),” Ra is the arithmetic average of the absolute values of the
profile height deviations from the mean line, recorded within the evaluation length.
Simply put, Ra is the average of an individual measurement set of surface peaks
and valleys.” As a consequence of layered manufacturing, the surface finish of AM
parts is excessively rough. Since, this surface roughness has influences on the material
functional properties, such as mechanical behavior, optical properties, and frictional
behavior. Therefore, it is necessary to control the surface of the AM products (Vahabli
and Rahmati (2016b)). Surface roughness (Ra) can be defined as Equation (1) (Byun
and Lee (2006)):

Ra =
1

l

∫ l

0
| y(x)− yc | dx (1)

Where y(x) is roughness profile value, l is the evaluation length, and yc is the centerline
position. The areas above and below the line are equal. Therefore, Ra represents the
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Figure 1. Deposition angle and layer thickness (Pandey, Reddy, and Dhande (2003c))

summation of the areas above and below the line, divided by the evaluation length
(Byun and Lee (2006)).

Different methods are used to measure and improve the surface roughness like anal-
ysis of different AM parameters effects on surface roughness (Wang et al. (2019);
Garg, Singh, and Ahuja (2017); Huang et al. (2019); Pérez et al. (2018); Salokhe and
Shaikh (2019); Jain et al. (2020)), Pre-processing and post-processing techniques to
enhance surface roughness (Khan and Dash (2019); Mu et al. (2020); Ko and Lee
(2017); Boschetto, Bottini, and Veniali (2016); Jayanth, Senthil, and Prakash (2018);
Lalegani Dezaki, Mohd Ariffin, and Ismail (2020); Rajan et al. (2020); Singh, Singh,
and Boparai (2020)), and mathematical representations and optimization approaches
to analyze and improve the surface roughness (Li et al. (2016); Sheoran and Kumar
(2019); Cherkia et al. (2020); Nagendra et al. (2020)). Moreover, several models are
presented to predict and calculate the surface roughness based on different significant
parameters. In the following, these models will be analyzed which allow developing a
new meta-model.

3. Different roughness models

In this section, different models of surfacde roughnrss presented by other researchers,
will be provided. These various models are provided by consideration of different
schematics for the surface profile.

According to several experiments and researches, roughness depends on layer thick-
ness value and orientation types. Producing with the thicker layer (low resolution)
increases the roughness values and the surface quality is decreased. Moreover, orien-
tation influences the surface quality due to the angle between the tangent vector of
parts and a vertical direction for each orientation. Other parameters affect the surface
quality but they have less effect on the roughness value. Therefore, we deal with the
different models which calculate the surface roughness based on the layer thickness
and orientation will be discussed in this article.

In these models, it is supposed that α, as deposition angle, is a factor to define
the orientation types. It is an angle between the tangent vector of parts and vertical
direction ~z (see Figure 1). In these formulations, Lt as layer thickness and Ra as
roughness value are supposed in the union of mm and µm respectively. These models,
including theoretical and empirical models, can be replaced by trial-and-error methods
to save money and time. A summary of these models is presented as follow:

• Pandey, Reddy, and Dhande (2003c) model (1): This semi-empirical
model is presented through approximating the layer edge profile by a parabola
with base length approximating (Lt/cos(90°− α)) and height as 30−35% of base

3



length as shown in Figure 2. The mean surface (mm2) is assumed to be in the
middle. The centerline average method is used to evaluate the surface roughness.
So, the Ra value is obtained as:

Figure 2. Surface profile approximation (Pandey, Reddy, and Dhande (2003c))

Ra(µm) = 1000
(A1 +A2 +A3(mm2))

Lt(mm)/cos(90°− α)
(2)

where A1, A2, and A3 are the areas that are illustrated in Figure 2. This model
can be written based on the experimental data as Equation (3). This formulation
is an approximation estimation by considering a coefficient which is not fixed:

Ra(µm) = (71 ∼ 93)
Lt

cos(90°− α)
(3)

• Pandey, Reddy, and Dhande (2003a) model (2): An adaptive slicing
methodology is presented based on a realistic build edge profile to predict sur-
face roughness. This methodology uses direct slicing and tessellated model (STL)
based on two concepts of limiting cusp height and the limited deviation of the
cross-sectional area (plane normal to the z-axis) of the part.

Ra(µm) = (69.28− 72.36)
Lt

cos(90°− α)
(4)

Furthermore, this formulation (Equation 4) is used to determine the best part
orientation according to the facet area by optimizing build time, support struc-
ture, and accuracy regarding surface roughness (Pandey, Reddy, and Dhande
(2007)).
• Penday model (3): Thrimurthulu, Pandey, and Reddy (2004) transformed

the Penday models into a simple empirical model. This model is devel-
oped by approximation of layer edge profile by a parabola with base length
Lt/ cos(90° − α) as Equation (5) (Pandey, Reddy, and Dhande (2003a,b,c);
Pandey, Thrimurthulu, and Reddy* (2004); Thrimurthulu, Pandey, and Reddy
(2004)). In this formulation, W is dimensionless adjustment parameter for FDM
(W = 0.2). Also, it is evident that this formulation is an approximate estima-
tion by considering a coefficient which is not fixed. It must be mentioned that
Ra(90, Lt) and Ra(70, Lt) are calculated by the same expressions (Equation (5))
for Ra(α,Lt) when α = 70°, 90°: This formulation is used by Li et al. (2010) to
find the optimal orientation regarding support area, fabrication time, and surface
roughness.
• Byun and Lee (2003) model: The surface profile is considered symmetric in

this model. It is assumed that an inclined surface has sharp edges (see Figure 3).
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Ra(α,Lt) =



(69.28 ∼ 72.36) Lt(mm)
cos(90°−α) 0 ≤ α ≤ 70°

1
20(90Ra(70, Lt)− 70Ra(90, Lt) + α(Ra(90, Lt)−Ra(70, Lt)) 70° < α < 90°

Ra = 112.6Lt α = 90°

Ra(α− 90, Lt)(1 +W ) 90° < α ≤ 180°

(5)

Ra(α,Lt) =

{
0 α = 0, π2 , π

1000Lt4 −
(R2

1+R2
2)(1−π

4
) sin(90°−α)

1000Lt
+

((R2
1−R2

2)(1−π
4

))
2

(1000Lt)3
sin(90°− α) tan(90°− α) Otherwise

(7)

The predicted values coming from Equation (6) are obtained and compared
with the experimental results. If the surface profile is symmetric, the arithmetic
surface roughness must be calculated as set out in Equation (6), where L is
range of evaluation which is equal to L = Lt/ sin(90°− α). The proposed model
is applied to diverse features of varying sizes in the x, y, and z directions.

Ra(µm) = 1000
L2
t

L

cos(90°− α)

sin(90°− α)
(6)

Figure 3. Surface profile of inclined surface (Byun and Lee (2003))

• Byun and Lee (2006) model: In this model, the maximum value of Ra is
defined as Equation (7). Surface roughness of an inclined facet and the contact
area of supports are used to estimate the surface quality of a part. In this model,
roughness is a function of Lt, α, R1, and R2 (Equation (7)). In the case of
α = 0, π2 , and π, it is assumed that Ra is zero. In this equation, R1 is the radius
of fillet and R2 is the corner radius.

Figure 4. (a) Manufactured surface with sharp edge- (b) with round edge (Byun and Lee (2006))

• Mason (2006) model: A multi-axis fused deposition is investigated in this
study. This model is written as Equation (8) that is eventually a similar estima-
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Figure 6. Schematic for modeling the surface profile of the FDM parts (Ahn et al. (2009))

tion proposed by Ahn et al. (2009) with a phase shift (φ):

Ra = 1000Lt cos(90°− α) (8)

• Ahn, Kim, and Lee (2009) model (1): From the approximated modeling for
the stair-stepping effect (see Figure 5), a theoretical distribution model for aver-
age surface roughness (Ra) can be presented. This model is developed according
to the changes in the surface angle which can be expressed by Equation (9) that
is coming from interpolation. A and W , shown in Figure 5, are the elements of
surface profile schematic. The validation of this methodology is examined by sev-
eral applications. Therefore, both theoretical and empirical methods are defined
in an analytical modeling.

Figure 5. Stair stepping effect- (a) CAD model; (b) AM processed part;(c)Surface profile schematic (Ahn,
Kim, and Lee (2009))

Ra = 1000
A

W
= 1000

L

2

∣∣∣∣cos((90− α)− φ)

cosφ

∣∣∣∣ (9)

Generally, φ is defined between 5° and 15°. In this study, it is supposed as an
average value equal to 10°.
• Ahn et al. (2009) model (2): Surface profile is considered as an elliptical

curve which depends on the surface angle, cross-sectional shape, layer thickness,
overlap interval, and horizontal interval as air gap in this model.
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Ra =
Af
I

=
Afp +Afv√

(x1 − x2)2 + (y1 − y2)2
(10)

In this equation, Af as the final computed area is determined by moving the
temporary center-line and I is the distance between two boundary lines (distance
between two points of p1 and p2) which are demonstrated in Figure 6.
• Sreedhar, Mathikumar, and Jothi (2012) model: In this model, the center

line average (CLA) method is used to evaluate the surface roughness as Equation
(11).

Ra = 1000
Lt sinα

4
(11)

• Boschetto, Giordano, and Veniali (2013b) model: A geometrical model
of the deposited filament is developed as shown in Figure 7. In this figure, the
planes Γ and Ω are defined perpendicular to the build direction (b) and deposition
direction (d), respectively. α is the angle between the part surface and the Ω
plane. γ is the angle between the Γ plane and the measurement direction of the
profile.

Figure 7. Filament geometry (Boschetto, Giordano, and Veniali (2013b))

It is assumed that width and the radius can be calculated according to:

r = Lt/2 cscα f = Lt cscα (12)

Roughness model is provided as Equation (13). Experimental data proved that
this model is not reliable for the α less than 30° and greater than 150°.

Ra = 1000Lt
cscα

9
√

(3)
(13)

• Boschetto, Giordano, and Veniali (2013a) model: Neural network is used
to fit experimental data and to find the best formulation by an evaluation func-
tion. This formulation is useful for the value of layer thickness between 0.254
and 0.331 mm.

Ra = −6118 + 1766 tanh[15.67 + 0.016α− 0.049Lt]− 200.4 tanh[11.54− 0.08α− 0.045Lt]

−24.87 tanh[17.13− 0.044α− 0.042Lt]− 1131 tanh[10.33 + 0.019α− 0.034Lt]

+5501 tanh[20.84− 0.056α− 0.02Lt]− 195.5 tanh[4.559 + 0.062α− 0.018Lt]

−101.3 tanh[20.09− 0.088α− 0.018Lt] + 116.1 tanh[21.66− 0.105α− 0.013Lt]

• Vahabli and Rahmati (2016a,b) model: Roughness (Ra in µm) is calculated
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Ra(α,Lt) =



70
Lt

cos(α)
0 ≤ α ≤ 70°

1000Lt sin
(

90°−α
4

)
tan(90°− α) 70° < α ≤ 90°

70
Lt

cos(α− 90°)
(1 +W ) 90° < α ≤ 135°

1000Lt4 −
(R2

1+R2
2)(1−π

4
) sin(90°−α)

1000Lt
+

((R2
1−R2

2)(1−π
4

))
2

(1000Lt)3
sin2(90°−α)
cos(90°−α) 135° < α < 160°

1000Lt2 cos(90°− α) 160° ≤ α ≤ 180°

(14)

Table 1. Experimental analysis details

Specimen Material Machine Model Measurement machine Details Research

a

ABS Stratasys,Dimension BST 768 Taylor-Hobson Form Talysurf Plus Lt = 0.254 mm Boschetto, Giordano, and Veniali (2013a)
ABS plus Stratasys,Fortus 400

ULTEM 9085 Stratasys,Fortus 400
Poly carbonate Stratasys,Fortus 360

b

ABS Stratasys, MAXUM Surftest Formtracer Lt = 0.178 mm,αstep = 3° Ahn et al. (2009)
ABS Stratasys, MAXUM Surftest Formtracer Lt = 0.254 mm,αstep = 3° Ahn, Kwon, and Lee (2008)

ABSplus Stratasys, Dimension SST 1200es MahrSurf MFW250 Lt = 0.3302 mm,αstep = 5° Vahabli and Rahmati (2016b)
ABS-M30 FDMFortus 400mc Rugosurf 10G surface tester Lt = 0.178, 0.254 mm,αstep = 5° Taufik and Jain (2016)

c ABS Stratasys, FDM 8000 wavelength cut-off Lt = 0.25 mm Byun et al Byun and Lee (2006)

through a hybrid estimation methodology. Vahabli and Rahmati (2016a,b) pro-
posed this estimation by comparison of experimental data obtained in Vahabli
and Rahmati (2016a) and the other existed models (Mason (2006); Byun and
Lee (2006); Ahn, Kwon, and Lee (2008); Pandey, Reddy, and Dhande (2003c))
to find the roughness for different values of deposition angles (α). In this formu-
lation (Equation (14)), W is the fixed dimensionless adjustment parameter for
supported facets in roughness calculation that is supposed equal to 0.2 for all
FDM systems based on an experimentally measured surface roughness by Reddy
and Pandey (2005) for the supported area. R1 = 0.045 and R2 = 0.01 are the
radius of fillet and corner respectively.

To validate the proposed approach by researchers, the practical data is gathered
through the measurement of surface roughness of the parts fabricated by FDM. A
summary of these experimental analyses is described in Table 1. This table contains
different experiments that perform on several types of specimens, which are different
in terms of geometry, material, machine, measurement instrument, and layer thickness
values. These specimens categorized as types of ”a” to ”c” as illustrated in Figure 8.

To analyze and compare these models with experimental results, the models are

Figure 8. Different specimens for experimental measurements (Vahabli and Rahmati (2016b))
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Figure 9. Roughness models and experimental data for Lt = 0.178,0.254, and 0.3301 mm

described for layer thickness of Lt = 0.178, 0.254, and 0.331 mm as shown in Figure 9.
As shown in Figure 9, the experimental data are illustrated by squares. For

Lt = 0.178 mm, there are some models like the Boschetto model, Taufik model, and
Penday model which seem efficient to predict the product roughness for some depo-
sition angle ranges but they are not cover all the possible orientations. In this figure
for Lt = 0.254 mm, these models are not able to predict the product roughness for all
possible orientations. Also, it is illustrated that the models of Boschetto and Ahn do
not correspond to their experimental data. Also, the figure related to Lt = 0.331 mm
illustrates that these presented models do not correspond to experimental data for all
possible values of deposition angle as orientation factor of product.

To conclude, there is no model that support the experimental data as illustrated in
these figures. Therefore, it is essential to provide a novel model that will be developed
based on the interpolation of experimental data as a meta-modeling approach in this
study.

In the next section, a new roughness model for AM as our proposed methodology
will be explained comprehensively.

4. New roughness model

To provide a generic new roughness model which can be used for all the layer thickness
and deposition angle values, it is necessary to find the database to create the meta-
model based on this data. For this purpose, the first step is to collect the appropriate
data as follow:
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Figure 10. (a) Experimental data from Ahn and Boschetto roughness tests (b) Treated data of roughness

experiments for different layers thicknesses

4.1. Collecting the data:

Analysis of different researches creates a possibility to gather the experimental data
for the roughness value of the product fabricated on ABS (Acrylonitrile Butadiene
Styrene). As summarized in Table 1, Ahn et al. (2009) and Boschetto, Giordano, and
Veniali (2013a) performed the experiments on the specimens fabricated on ABS. As
illustrated in Figure 10, Ahn presented the experimental data for layer thickness of
0.178 and 0.254 mm. Also, Boschetto performed the experiments which permit gath-
ering the product roughness data for Lt = 0.254 and Lt = 0.331 mm. Therefore, these
data are collected (see Figure 10 a) in this study to create a meta-model for roughness
value based on two parameters of layer thickness and deposition angle.

To propose our meta-model, it is necessary to treat the data in order to have a robust
model. For the angles, 0°, 25°, 155°, and 180°, the Ahn model presents oscillations
which seem difficult to justify physically, whereas the Boschetto model gives a much
more coherent response without any oscillations. Therefore, the experimental values
obtained by Boschetto are supposed for these mentioned angles. Then, the mean values
of data coming from Ahn and Boschetto are supposed for other angles as selected data.
Therefore, this treated data for different layer thickness values are shown in Figure 10
b.
After finding the appropriate database, the meta-model can be explored as follow:

4.2. Meta-model

The data obtained by analyzing experimental data can be used to find a surface re-
sponse or meta-model. There are several ”families” of meta-models, including models
based on polynomial functions (polynomials of degrees a few, RBF (Radial Basis Func-
tion), Krigeage, etc.) and models using a list of basic analytical functions (trigonomet-
ric functions, logarithmic functions, etc.) (Forrester, Sobester, and Keane (2008)). In
this study, the second category is used to find the meta-model as its implementation is
more simple and it used fewer coefficients than other techniques based on polynomial
functions. Therefore, Genetic programming as a GPTIPS tool in Matlab is used to
find the proposed model.

Genetic programming (GP) is a biologically inspired machine learning method for
performing a task by computer programming (Koza and Koza (1992)). In this method,
a random population is generated (represented by tree structures). Then, mutation and
cross-over as genetic operators are used to find the best performing trees to create a
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Figure 11. Example of a multi-gene symbolic model (Searson (2009))

new population. This process is repeated for the specified iteration until the population
contains programs that solve the task well. The GP can be known as symbolic regres-
sion when the task is building an empirical mathematical model of data acquired from
a process or system. Unlike traditional regression analysis (in which the user must
specify the model structure), GP automatically evolves both the structure and the
parameters of the mathematical model (Searson (2009)). This symbolic regression can
be used in academic (Alfaro-Cid et al. (2009)) and industrial applications (Kordon
(2006)).

GP is used in symbolic regression to evolve a population of trees. Each of these
threes encodes a mathematical equation which predicts a (N × 1) vector of outputs
y by using a corresponding (N × M) matrix of inputs X where N is the number
of observations of the response variable and M is the number of input (predictor)
variables. For example, the ith column of X consists of the N input values for the
ith input variable and may be designated as the input variable xi (Searson (2009)).
While in multi-gene symbolic regression, each symbolic model (and each member of
the GP population) is a weighted linear combination of the outputs from several GP
trees, where each tree is considered as a “gene”. For instance, as shown in Figure 11,
the multi-gene model predicts an output variable by using the input variables x1, x2,
and x3. The structure of this model contains non-linear terms (e.g. the hyperbolic
tangent) but it is linear in the parameters with respect to the coefficients d0, d1 and
d2 (Searson (2009)). In this method, the maximum number of genes Gmax and the
maximum tree depth Dmax are specified by the user which controls the maximum
complexity of the evolved models. The linear coefficients of each model are estimated
from the experimental data by using ordinary least squares techniques. Therefore,
multi-gene GP combines the power of classical linear regression with the ability to
capture non-linear behavior without needing to pre-specify the structure of the non-
linear model (Searson (2009)).

The multi-gene symbolic regression is more accurate and computationally efficient
than the standard GP approach for symbolic regression and it can be successfully
embedded within a non-linear partial least squares algorithm (Hinchliffe et al. (1996);
Searson (2009)). In the following, GPTIPS is described comprehensively:

• In GPTIPS, the initial population is constructed by creating individuals that
contain randomly generated GP trees with between 1 and Gmax genes. A gene
is selected randomly from each parent individual, a standard sub-tree crossover
is performed and the resulting trees replace the parent trees in the otherwise
unaltered individual in the next generation.
• Genes are acquired and deleted using a tree crossover operator called a two-point
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Table 2. GPTIPS algorithm parameters

Population size 200 Number of generation 500 Number of run 10
Tournament size 100 Tournament percentage of Pareto 0.4 Elite fraction 0.3

Maximum iteration 500

high-level crossover. This allows the exchange of genes between individuals and it
is used in addition to the “standard” GP recombination operators. If the ith gene
in an individual is labeled Gi then a two-point high-level crossover is performed.
For example, the first parent individual contains the genes (G1G2G3) and the
second one contains the genes (G4G5G6G7) where Gmax = 5. Two randomly
selected crossover points are created for each individual. The genes enclosed
by the crossover points are denoted by < . . . > as ((G1 < G2 > G3)(G4 <
G5G6G7 >)). The genes enclosed by the crossover points are then exchanged
resulting in the two new individuals ((G1G5 > G6G7G3)(G4G2)).
• Two-point high-level crossover permits not only the acquisition of new genes

for both individuals but also removing the genes. Therefore, if an exchange of
genes results in an individual containing more genes than Gmax then genes are
randomly selected and deleted until the individual contains Gmax genes.
• GPTIPS provides several methods of mutating trees.
• The relative probabilities will be devoted to each recombination process. These

processes are grouped as events. These events are mutation and crossover. The
probabilities for the event are sub-types like the probability of two-point high-
level crossover and sub-tree of mutation. However, GPTIPS provides the default
values for each of these probabilities, so there is no need to be set by the user.
• Overall, GPTIPS contains the following configurable GP features: tournament

selection and plain lexicographic tournament selection (Luke and Panait (2002)),
elitism, three different tree-building methods (full, grow and ramped-half and a
half), and six different mutation operators including sub-tree mutation, mutation
of constants using an additive Gaussian perturbation, as well as substitution of
a randomly selected input node with another randomly selected input node, set
a randomly selected constant to zero, substitute a randomly selected constant
with another randomly generated constant, and set a randomly selected constant
to one.

Therefore, this GPTIPS method is used in this study to find the best fitness function
of the surface roughness based on the experimental data. The best fitness is obtained
through considering the parameters of the algorithm as shown in Table 2. This function
is a mathematical formulation of roughness in terms of deposition angle and layer
thickness. Therefore, Equation (15) illustrates the relation between layer thickness as
Lt and deposition angle as α and surface roughness (Ra) as shown in Figure 12. This
function is a prediction of surface roughness with a maximum gap of 3.93 µm. This gap
is the maximum difference between the predicted model and the experimental data.
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Figure 12. Surface roughness model

Ra = 0.09309 e
√
α − 20.12Lt − 0.6626 e

√
Lt α − 49.08α− 77.35 e0.0427α + 0.3953 eeeLt
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(15)

4.3. Discussions and results analysis

The effect of this roughness value on the surface quality of the product is a significant
challenge in the utilization of AM as a manufacturing technology in the industrial
world. AM is a new technology that coming in the age of industry 4.0 which must
be competitive with the other classic manufacturing methods due to its advantages
like flexibility, ability to produce complex products, etc. Therefore, it is necessary not
only to improve the AM features but also, to predict these features before production
through estimation methodologies to have a cost-effective production. Therefore, a
comprehensive analysis of different studies on surface roughness models is provided in
this paper which permits to find a generic roughness model based on layer thickness
and part orientation as the most significant factors for surface roughness.

To the best of our knowledge, no generic model is presented for predicting the
surface roughness value which respects the experimental data. This study proposed a
meta-model based on experimental data that permits researchers and manufacturers to
quantify the surface quality before production. Also, this quantification helps the users
to find the best or optimal values of the significant manufacturing parameters, as layer
thickness and deposition angle, in order to create a production more cost-effective.

To illustrate the effectiveness of our proposed meta-model, the results obtained
by this model is compared with the existed models and experimental data. As illus-
trate in Figure 13, these data are presented for the layer thickness of 0.178, 0.254,
and 0.3302 mm. These comparisons illustrate that the proposed model is sufficiently
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Figure 13. Gap between experimental data and different models

efficient to predict the product surface roughness before production.
According to this analysis, shown in Figure 14, the minimum and maximum pre-

diction error are illustrated. This analysis shows that the minimum prediction error
are for the layer thickness 0.178, 0.254, and 0.331 mm are respectively 0.065, 0.65, and
0.24 %. These maximum errors are 77 % for the layer thickness of 0.178 mm, and 110 %
for the values of 0.254 and 0.331 mm. It is noteworthy to mention that for the small
values of roughness in µm, these values can be negligible. Also, it can be concluded
that this model is not very efficient for the values of more than 170°. To implement
this model for a product and predict its roughness before production, a methodology
is presented before by Asadollahi-Yazdi, Gardan, and Lafon (2018), to calculate the
surface roughness for all facets of STL files in all possible orientations in the space
and values of layer thickness.

5. Conclusions and Future works

This paper provides a comprehensive analysis of the surface quality of the FDM prod-
uct as a major issue of fabrication with AM technologies. Different models including
empirical and theoretical models are presented by other researchers but no model is
reliable due to experimental data for predicting the surface quality of the produced
product before fabrication. Therefore, a new model for roughness estimation is devel-
oped according to experimental data through a meta-modeling approach. Analyses of
different studies provide a precondition to present a generic model that can be used
to predict the surface roughness of the product before producing it or to optimize its
geometry. This generic model permits to investigate surface roughness in design and
fabrication of FDM products in order to apply an integrated design based on DfAM
methodology.

The quality of this proposed meta-model depends on the experimental data. So, data
robustness is a factor that can improve the proposed model. Providing an appropriate
condition in terms of other AM parameters as temperature, fabrication speed, etc. for
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Figure 14. Prediction error based on layer thicknesses and deposition angles data

performing different experiments, as well as collecting more data help to present a
more precise model.

For future works, this model will be used to find the optimal manufacturing pa-
rameters to minimize surface roughness. Also, different technologies need a prediction
model for the roughness of AM products before fabrication to reduce time and cost,
as well as improve the surface quality.

6. Acknowledgements

The authors gratefully acknowledge the Grand-Est region in France and the European
Regional Development Fund (ERDF) for their financial supports.

References

Ahn, Dae-Keon, Soon-Man Kwon, and Seok-Hee Lee. 2008. “Expression for surface roughness
distribution of FDM processed parts.” In Smart Manufacturing Application, 2008. ICSMA
2008. International Conference on, 490–493. IEEE.

Ahn, Daekeon, Hochan Kim, and Seokhee Lee. 2009. “Surface roughness prediction using
measured data and interpolation in layered manufacturing.” Journal of materials processing
technology 209 (2): 664–671.

Ahn, Daekeon, Jin-Hwe Kweon, Soonman Kwon, Jungil Song, and Seokhee Lee. 2009. “Rep-
resentation of surface roughness in fused deposition modeling.” Journal of Materials Pro-
cessing Technology 209 (15): 5593–5600.
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