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Introduction

Nowadays, Additive Manufacturing (AM), as one of the nine main pillars of industry 4.0, has revolutionized product development and fabrication [START_REF] Asadollahi-Yazdi | Industry 4.0: Revolution or Evolution?[END_REF]). It is a new technology to produce different versions of complex products with a material range. Firstly, this manufacturing method was used for Rapid Prototyping but it is currently used in different industrial and educational applications. It includes a group of technologies, like Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS), Selective Laser Melting (SLM), which makes the products layer by layer. These technologies are different in terms of used material, and the process of layer fabrication [START_REF] Gardan | Additive manufacturing technologies: state of the art and trends[END_REF]). This manufacturing builds the products directly from 3D computer-aided design models or reverse-engineering data without conventional tooling or fixture (Asadollahi-Yazdi, [START_REF] Asadollahi-Yazdi | Toward integrated design of additive manufacturing through a process development model and multi-objective optimization[END_REF]).

Among AM technologies, FDM is one of the most extensively used AM techniques which has substantially shortened product development time and cost. FDM is a layer AM process that uses a thermoplastic filament, such as ABS (Acrylonitrile Butadiene Styrene) and PLA (Poly-lactic Acid), by fused depositing. The layers are fabricated Elnaz Asadollahiyazdi Julien Gardan Pascal Lafon by filament extrusion which is extruded by a nozzle. The nozzle contains resistive heaters that keep the plastic at a temperature just above its melting point so that it flows easily through the nozzle and forms the layer. The plastic hardens immediately after flowing from the nozzle and bonds to the layer below. It traces the part's crosssectional geometry layer by layer, then moving up vertically to repeat the process to produce the layers from down to up for finishing the part fabrication [START_REF] Gardan | Additive manufacturing technologies: state of the art and trends[END_REF]).

This different fabrication process affects the product characteristics which are produced by these technologies. Design for Additive Manufacturing (DfAM), as a concept which focuses on the design of products while considering the additive manufacturing criteria and constraints early in the design process, permits to increase chances of success and shorten the development cycle to have a cost-effective production [START_REF] Vaneker | Design for additive manufacturing: Framework and methodology[END_REF]). In this concept, it is necessary to evaluate some criteria like mechanical strength, surface quality, etc. before fabrication in order to create the optimal design and manufacturing.

One of the most important characteristics of products is surface roughness that will be presented in the next section. Different models are also presented to predict the surface roughness of the products which will be discussed in this article and finally, a new meta-model based on the experimental data will be proposed for calculating the surface roughness before production. This model permits the users to be sure about satisfying one of the significant manufacturing criteria as surface roughness.

Therefore, the remainder of this paper is organized as follows. The surface roughness of AM products will be discussed in the next section. Then, the different existed models for roughness are discussed in section 3. Section 4 is devoted to the proposed methodology as a new roughness model to estimate surface quality. Finally, section 5 concludes with a summary.

Surface roughness in 3D printing

The AM advantages include producing the complex geometries without any additional cost and tooling, etc. encourage the manufacturers to use AM technologies (Asadollahi-Yazdi, [START_REF] Gardan | Additive manufacturing technologies: state of the art and trends[END_REF]Lafon (2016, 2017)) but they have also some disadvantages such as surface quality that is originated from the layer by layer fabrication and the orientation of the part in the build platform.

Surface quality can be measured by surface roughness as R a . As described in ASME B46. 1 (Standard (2002))," R a is the arithmetic average of the absolute values of the profile height deviations from the mean line, recorded within the evaluation length. Simply put, R a is the average of an individual measurement set of surface peaks and valleys." As a consequence of layered manufacturing, the surface finish of AM parts is excessively rough. Since, this surface roughness has influences on the material functional properties, such as mechanical behavior, optical properties, and frictional behavior. Therefore, it is necessary to control the surface of the AM products (Vahabli and Rahmati (2016b)). Surface roughness (R a ) can be defined as Equation (1) [START_REF] Byun | Determination of optimal build direction in rapid prototyping with variable slicing[END_REF]):

R a = 1 l l 0 | y(x) -y c | dx (1)
Where y(x) is roughness profile value, l is the evaluation length, and y c is the centerline position. The areas above and below the line are equal. Therefore, R a represents the 2020)). Moreover, several models are presented to predict and calculate the surface roughness based on different significant parameters. In the following, these models will be analyzed which allow developing a new meta-model.

Different roughness models

In this section, different models of surfacde roughnrss presented by other researchers, will be provided. These various models are provided by consideration of different schematics for the surface profile.

According to several experiments and researches, roughness depends on layer thickness value and orientation types. Producing with the thicker layer (low resolution) increases the roughness values and the surface quality is decreased. Moreover, orientation influences the surface quality due to the angle between the tangent vector of parts and a vertical direction for each orientation. Other parameters affect the surface quality but they have less effect on the roughness value. Therefore, we deal with the different models which calculate the surface roughness based on the layer thickness and orientation will be discussed in this article.

In these models, it is supposed that α, as deposition angle, is a factor to define the orientation types. It is an angle between the tangent vector of parts and vertical direction z (see Figure 1). In these formulations, L t as layer thickness and R a as roughness value are supposed in the union of mm and µm respectively. These models, including theoretical and empirical models, can be replaced by trial-and-error methods to save money and time. A summary of these models is presented as follow:

• Pandey, Reddy, and Dhande (2003c) model ( 1): This semi-empirical model is presented through approximating the layer edge profile by a parabola with base length approximating (L t /cos(90°-α)) and height as 30-35% of base length as shown in Figure 2. The mean surface (mm 2 ) is assumed to be in the middle. The centerline average method is used to evaluate the surface roughness. So, the R a value is obtained as: R a (µm) = 1000

(A 1 + A 2 + A 3 (mm 2 )) L t (mm)/cos(90°-α) (2)
where A 1 , A 2 , and A 3 are the areas that are illustrated in Figure 2. This model can be written based on the experimental data as Equation ( 3). This formulation is an approximation estimation by considering a coefficient which is not fixed:

R a (µm) = (71 ∼ 93) L t cos(90°-α) (3) 
• Pandey, Reddy, and Dhande (2003a) model ( 2): An adaptive slicing methodology is presented based on a realistic build edge profile to predict surface roughness. This methodology uses direct slicing and tessellated model (STL) based on two concepts of limiting cusp height and the limited deviation of the cross-sectional area (plane normal to the z-axis) of the part.

R a (µm) = (69.28 -72.36)

L t cos(90°-α) (4) 
Furthermore, this formulation (Equation 4) is used to determine the best part orientation according to the facet area by optimizing build time, support structure, and accuracy regarding surface roughness [START_REF] Pandey | Part deposition orientation studies in layered manufacturing[END_REF]). • Penday model (3): Thrimurthulu, Pandey, and Reddy (2004) transformed the Penday models into a simple empirical model. This model is developed by approximation of layer edge profile by a parabola with base length L t / cos(90°-α) as Equation ( 5) (Pandey, Reddy, and Dhande (2003a,b,c); Pandey, Thrimurthulu, and Reddy* (2004); Thrimurthulu, Pandey, and Reddy ( 2004)). In this formulation, W is dimensionless adjustment parameter for FDM (W = 0.2). Also, it is evident that this formulation is an approximate estimation by considering a coefficient which is not fixed. It must be mentioned that R a (90, L t ) and R a (70, L t ) are calculated by the same expressions (Equation ( 5)) for R a (α, L t ) when α = 70°, 90°: This formulation is used by [START_REF] Li | Optimization method to fabrication orientation of parts in fused deposition modeling rapid prototyping[END_REF] to find the optimal orientation regarding support area, fabrication time, and surface roughness. [START_REF] Byun | Design of a new test part for benchmarking the accuracy and surface finish of rapid prototyping processes[END_REF] model: The surface profile is considered symmetric in this model. It is assumed that an inclined surface has sharp edges (see Figure 3).

R a (α, L t ) =                (69.28 ∼ 72.36) Lt(mm) cos(90°-α) 0 ≤ α ≤ 70°1 20 (90R a (70, L t ) -70R a (90, L t ) + α(Ra(90, L t ) -R a (70, L t )) 70°< α < 90°R a = 112.6L t α = 90°R a (α -90, L t )(1 + W ) 90°< α ≤ 180°( 5) R a (α, L t ) = 0 α = 0, π 2 , π 1000 Lt 4 - (R 2 1 +R 2 2 )(1-π 4 ) sin(90°-α) 1000Lt + ((R 2 1 -R 2 2 )(1-π 4 )) 2 (1000Lt) 3 sin(90°-α) tan(90°-α) Otherwise (7)
The predicted values coming from Equation ( 6) are obtained and compared with the experimental results. If the surface profile is symmetric, the arithmetic surface roughness must be calculated as set out in Equation ( 6), where L is range of evaluation which is equal to L = L t / sin(90°-α). The proposed model is applied to diverse features of varying sizes in the x, y, and z directions. • [START_REF] Byun | Determination of optimal build direction in rapid prototyping with variable slicing[END_REF] model: In this model, the maximum value of R a is defined as Equation ( 7). Surface roughness of an inclined facet and the contact area of supports are used to estimate the surface quality of a part. In this model, roughness is a function of L t , α, R 1 , and R 2 (Equation ( 7)). In the case of α = 0, π 2 , and π, it is assumed that R a is zero. In this equation, R 1 is the radius of fillet and R 2 is the corner radius. • [START_REF] Mason | Surface modification of prototypes in fused filament fabrication using chemical vapour smoothing[END_REF] model: A multi-axis fused deposition is investigated in this study. This model is written as Equation ( 8) that is eventually a similar estima- 

R a (µm) = 1000 L 2 t L cos(90°-α) sin(90°-α) (6) 
R a = 1000L t cos(90°-α) (8)
• Ahn, Kim, and Lee ( 2009) model ( 1): From the approximated modeling for the stair-stepping effect (see Figure 5), a theoretical distribution model for average surface roughness (R a ) can be presented. This model is developed according to the changes in the surface angle which can be expressed by Equation ( 9) that is coming from interpolation. A and W , shown in Figure 5, are the elements of surface profile schematic. The validation of this methodology is examined by several applications. Therefore, both theoretical and empirical methods are defined in an analytical modeling. 

R a = 1000 A W = 1000 L 2 cos((90 -α) -φ) cos φ (9)
Generally, φ is defined between 5°and 15°. In this study, it is supposed as an average value equal to 10°. • Ahn et al. ( 2009) model ( 2): Surface profile is considered as an elliptical curve which depends on the surface angle, cross-sectional shape, layer thickness, overlap interval, and horizontal interval as air gap in this model.

R a = A f I = A fp + A fv (x 1 -x 2 ) 2 + (y 1 -y 2 ) 2 (10) 
In this equation, A f as the final computed area is determined by moving the temporary center-line and I is the distance between two boundary lines (distance between two points of p 1 and p 2 ) which are demonstrated in Figure 6. [START_REF] Sreedhar | Experimental investigation of surface roughness for fused deposition modeled part with different angular orientation[END_REF] model: In this model, the center line average (CLA) method is used to evaluate the surface roughness as Equation ( 11). It is assumed that width and the radius can be calculated according to:

r = L t /2 csc α f = L t csc α ( 12 
)
Roughness model is provided as Equation ( 13). Experimental data proved that this model is not reliable for the α less than 30°and greater than 150°.

R a = 1000L t csc α 9 (3) (13) 
• Boschetto, Giordano, and Veniali (2013a) model: Neural network is used to fit experimental data and to find the best formulation by an evaluation function. This formulation is useful for the value of layer thickness between 0.254 and 0.331 mm. • Vahabli and Rahmati (2016a,b) to find the roughness for different values of deposition angles (α). In this formulation (Equation ( 14)), W is the fixed dimensionless adjustment parameter for supported facets in roughness calculation that is supposed equal to 0.2 for all FDM systems based on an experimentally measured surface roughness by [START_REF] Reddy | Enhancement of surface finish in Fused Deposition Modelling[END_REF] for the supported area. R 1 = 0.045 and R 2 = 0.01 are the radius of fillet and corner respectively.

R a = -
model: Roughness (R a in µm) is calculated R a (α, L t ) =                      70 L t cos(α) 0 ≤ α ≤ 70°1 000L t sin 90°-α 4 tan(90°-α) 70°< α ≤ 90°7 0 L t cos(α -90°) (1 + W ) 90°< α ≤ 135°1 000 Lt 4 - (R 2 1 +R 2 2 )(1-π 4 ) sin(90°-α) 1000Lt + ((R 2 1 -R 2 2 )(1-π 4 )) 2 (1000Lt) 3 sin 2 (90°-α) cos(90°-α) 135°< α < 160°1 000 Lt 2 cos(90°-α) 160°≤ α ≤ 180°( 14)
To validate the proposed approach by researchers, the practical data is gathered through the measurement of surface roughness of the parts fabricated by FDM. A summary of these experimental analyses is described in Table 1. This table contains different experiments that perform on several types of specimens, which are different in terms of geometry, material, machine, measurement instrument, and layer thickness values. These specimens categorized as types of "a" to "c" as illustrated in Figure 8.

To analyze and compare these models with experimental results, the models are As shown in Figure 9, the experimental data are illustrated by squares. For L t = 0.178 mm, there are some models like the Boschetto model, Taufik model, and Penday model which seem efficient to predict the product roughness for some deposition angle ranges but they are not cover all the possible orientations. In this figure for L t = 0.254 mm, these models are not able to predict the product roughness for all possible orientations. Also, it is illustrated that the models of Boschetto and Ahn do not correspond to their experimental data. Also, the figure related to L t = 0.331 mm illustrates that these presented models do not correspond to experimental data for all possible values of deposition angle as orientation factor of product.

To conclude, there is no model that support the experimental data as illustrated in these figures. Therefore, it is essential to provide a novel model that will be developed based on the interpolation of experimental data as a meta-modeling approach in this study.

In the next section, a new roughness model for AM as our proposed methodology will be explained comprehensively.

New roughness model

To provide a generic new roughness model which can be used for all the layer thickness and deposition angle values, it is necessary to find the database to create the metamodel based on this data. For this purpose, the first step is to collect the appropriate data as follow: Analysis of different researches creates a possibility to gather the experimental data for the roughness value of the product fabricated on ABS (Acrylonitrile Butadiene Styrene). As summarized in Table 1, Ahn et al. (2009) andBoschetto, Giordano, andVeniali (2013a) performed the experiments on the specimens fabricated on ABS. As illustrated in Figure 10, Ahn presented the experimental data for layer thickness of 0.178 and 0.254 mm. Also, Boschetto performed the experiments which permit gathering the product roughness data for L t = 0.254 and L t = 0.331 mm. Therefore, these data are collected (see Figure 10 a) in this study to create a meta-model for roughness value based on two parameters of layer thickness and deposition angle.

To propose our meta-model, it is necessary to treat the data in order to have a robust model. For the angles, 0°, 25°, 155°, and 180°, the Ahn model presents oscillations which seem difficult to justify physically, whereas the Boschetto model gives a much more coherent response without any oscillations. Therefore, the experimental values obtained by Boschetto are supposed for these mentioned angles. Then, the mean values of data coming from Ahn and Boschetto are supposed for other angles as selected data. Therefore, this treated data for different layer thickness values are shown in Figure 10 b. After finding the appropriate database, the meta-model can be explored as follow:

Meta-model

The data obtained by analyzing experimental data can be used to find a surface response or meta-model. There are several "families" of meta-models, including models based on polynomial functions (polynomials of degrees a few, RBF (Radial Basis Function), Krigeage, etc.) and models using a list of basic analytical functions (trigonometric functions, logarithmic functions, etc.) [START_REF] Forrester | Engineering design via surrogate modelling: a practical guide[END_REF]). In this study, the second category is used to find the meta-model as its implementation is more simple and it used fewer coefficients than other techniques based on polynomial functions. Therefore, Genetic programming as a GPTIPS tool in Matlab is used to find the proposed model.

Genetic programming (GP) is a biologically inspired machine learning method for performing a task by computer programming [START_REF] Koza | Genetic programming: on the programming of computers by means of natural selection[END_REF]). In this method, a random population is generated (represented by tree structures). Then, mutation and cross-over as genetic operators are used to find the best performing trees to create a new population. This process is repeated for the specified iteration until the population contains programs that solve the task well. The GP can be known as symbolic regression when the task is building an empirical mathematical model of data acquired from a process or system. Unlike traditional regression analysis (in which the user must specify the model structure), GP automatically evolves both the structure and the parameters of the mathematical model [START_REF] Searson | GPTIPS genetic programming & symbolic regression for MATLAB user guide[END_REF]). This symbolic regression can be used in academic (Alfaro-Cid et al. ( 2009)) and industrial applications [START_REF] Kordon | Future trends in soft computing industrial applications[END_REF]).

GP is used in symbolic regression to evolve a population of trees. Each of these threes encodes a mathematical equation which predicts a (N × 1) vector of outputs y by using a corresponding (N × M ) matrix of inputs X where N is the number of observations of the response variable and M is the number of input (predictor) variables. For example, the ith column of X consists of the N input values for the i th input variable and may be designated as the input variable x i [START_REF] Searson | GPTIPS genetic programming & symbolic regression for MATLAB user guide[END_REF]). While in multi-gene symbolic regression, each symbolic model (and each member of the GP population) is a weighted linear combination of the outputs from several GP trees, where each tree is considered as a "gene". For instance, as shown in Figure 11, the multi-gene model predicts an output variable by using the input variables x 1 , x 2 , and x 3 . The structure of this model contains non-linear terms (e.g. the hyperbolic tangent) but it is linear in the parameters with respect to the coefficients d 0 , d 1 and d 2 [START_REF] Searson | GPTIPS genetic programming & symbolic regression for MATLAB user guide[END_REF]). In this method, the maximum number of genes G max and the maximum tree depth D max are specified by the user which controls the maximum complexity of the evolved models. The linear coefficients of each model are estimated from the experimental data by using ordinary least squares techniques. Therefore, multi-gene GP combines the power of classical linear regression with the ability to capture non-linear behavior without needing to pre-specify the structure of the nonlinear model [START_REF] Searson | GPTIPS genetic programming & symbolic regression for MATLAB user guide[END_REF]).

The multi-gene symbolic regression is more accurate and computationally efficient than the standard GP approach for symbolic regression and it can be successfully embedded within a non-linear partial least squares algorithm [START_REF] Hinchliffe | Modelling chemical process systems using a multi-gene genetic programming algorithm[END_REF]; [START_REF] Searson | GPTIPS genetic programming & symbolic regression for MATLAB user guide[END_REF]). In the following, GPTIPS is described comprehensively:

• In GPTIPS, the initial population is constructed by creating individuals that contain randomly generated GP trees with between 1 and G max genes. A gene is selected randomly from each parent individual, a standard sub-tree crossover is performed and the resulting trees replace the parent trees in the otherwise unaltered individual in the next generation. • Genes are acquired and deleted using a tree crossover operator called a two-point high-level crossover. This allows the exchange of genes between individuals and it is used in addition to the "standard" GP recombination operators. If the ith gene in an individual is labeled G i then a two-point high-level crossover is performed. For example, the first parent individual contains the genes (G 1 G 2 G 3 ) and the second one contains the genes (G 4 G 5 G 6 G 7 ) where G max = 5. Two randomly selected crossover points are created for each individual. The genes enclosed by the crossover points are denoted by < . . . > as ((

G 1 < G 2 > G 3 )(G 4 < G 5 G 6 G 7 >))
. The genes enclosed by the crossover points are then exchanged resulting in the two new individuals ((

G 1 G 5 > G 6 G 7 G 3 )(G 4 G 2 )).
• Two-point high-level crossover permits not only the acquisition of new genes for both individuals but also removing the genes. Therefore, if an exchange of genes results in an individual containing more genes than G max then genes are randomly selected and deleted until the individual contains G max genes.

• GPTIPS provides several methods of mutating trees.

• The relative probabilities will be devoted to each recombination process. These processes are grouped as events. These events are mutation and crossover. The probabilities for the event are sub-types like the probability of two-point highlevel crossover and sub-tree of mutation. However, GPTIPS provides the default values for each of these probabilities, so there is no need to be set by the user. • Overall, GPTIPS contains the following configurable GP features: tournament selection and plain lexicographic tournament selection [START_REF] Luke | Lexicographic parsimony pressure[END_REF]), elitism, three different tree-building methods (full, grow and ramped-half and a half), and six different mutation operators including sub-tree mutation, mutation of constants using an additive Gaussian perturbation, as well as substitution of a randomly selected input node with another randomly selected input node, set a randomly selected constant to zero, substitute a randomly selected constant with another randomly generated constant, and set a randomly selected constant to one.

Therefore, this GPTIPS method is used in this study to find the best fitness function of the surface roughness based on the experimental data. The best fitness is obtained through considering the parameters of the algorithm as shown in Table 2. This function is a mathematical formulation of roughness in terms of deposition angle and layer thickness. Therefore, Equation ( 15) illustrates the relation between layer thickness as L t and deposition angle as α and surface roughness (R a ) as shown in Figure 12. This function is a prediction of surface roughness with a maximum gap of 3.93 µm. This gap is the maximum difference between the predicted model and the experimental data. 

Discussions and results analysis

The effect of this roughness value on the surface quality of the product is a significant challenge in the utilization of AM as a manufacturing technology in the industrial world. AM is a new technology that coming in the age of industry 4.0 which must be competitive with the other classic manufacturing methods due to its advantages like flexibility, ability to produce complex products, etc. Therefore, it is necessary not only to improve the AM features but also, to predict these features before production through estimation methodologies to have a cost-effective production. Therefore, a comprehensive analysis of different studies on surface roughness models is provided in this paper which permits to find a generic roughness model based on layer thickness and part orientation as the most significant factors for surface roughness.

To the best of our knowledge, no generic model is presented for predicting the surface roughness value which respects the experimental data. This study proposed a meta-model based on experimental data that permits researchers and manufacturers to quantify the surface quality before production. Also, this quantification helps the users to find the best or optimal values of the significant manufacturing parameters, as layer thickness and deposition angle, in order to create a production more cost-effective.

To illustrate the effectiveness of our proposed meta-model, the results obtained by this model is compared with the existed models and experimental data. As illustrate in Figure 13, these data are presented for the layer thickness of 0.178, 0.254, and 0.3302 mm. These comparisons illustrate that the proposed model is sufficiently According to this analysis, shown in Figure 14, the minimum and maximum prediction error are illustrated. This analysis shows that the minimum prediction error are for the layer thickness 0.178, 0.254, and 0.331 mm are respectively 0.065, 0.65, and 0.24 %. These maximum errors are 77 % for the layer thickness of 0.178 mm, and 110 % for the values of 0.254 and 0.331 mm. It is noteworthy to mention that for the small values of roughness in µm, these values can be negligible. Also, it can be concluded that this model is not very efficient for the values of more than 170°. To implement this model for a product and predict its roughness before production, a methodology is presented before by Asadollahi-Yazdi, [START_REF] Asadollahi-Yazdi | Toward integrated design of additive manufacturing through a process development model and multi-objective optimization[END_REF], to calculate the surface roughness for all facets of STL files in all possible orientations in the space and values of layer thickness.

Conclusions and Future works

This paper provides a comprehensive analysis of the surface quality of the FDM product as a major issue of fabrication with AM technologies. Different models including empirical and theoretical models are presented by other researchers but no model is reliable due to experimental data for predicting the surface quality of the produced product before fabrication. Therefore, a new model for roughness estimation is developed according to experimental data through a meta-modeling approach. Analyses of different studies provide a precondition to present a generic model that can be used to predict the surface roughness of the product before producing it or to optimize its geometry. This generic model permits to investigate surface roughness in design and fabrication of FDM products in order to apply an integrated design based on DfAM methodology.

The quality of this proposed meta-model depends on the experimental data. So, data robustness is a factor that can improve the proposed model. Providing an appropriate condition in terms of other AM parameters as temperature, fabrication speed, etc. for For future works, this model will be used to find the optimal manufacturing parameters to minimize surface roughness. Also, different technologies need a prediction model for the roughness of AM products before fabrication to reduce time and cost, as well as improve the surface quality.
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 1 Figure 1. Deposition angle and layer thickness (Pandey, Reddy, and Dhande (2003c))

Figure 2 .

 2 Figure 2. Surface profile approximation (Pandey, Reddy, and Dhande (2003c))
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 3 Figure 3. Surface profile of inclined surface (Byun and Lee (2003))
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 4 Figure 4. (a) Manufactured surface with sharp edge-(b) with round edge (Byun and Lee (2006))
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 6 Figure 6. Schematic for modeling the surface profile of the FDM parts (Ahn et al. (2009))
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 5 Figure 5. Stair stepping effect-(a) CAD model; (b) AM processed part;(c)Surface profile schematic[START_REF] Ahn | Surface roughness prediction using measured data and interpolation in layered manufacturing[END_REF] 
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  Boschetto, Giordano, and Veniali (2013b) model: A geometrical model of the deposited filament is developed as shown in Figure7. In this figure, the planes Γ and Ω are defined perpendicular to the build direction (b) and deposition direction (d), respectively. α is the angle between the part surface and the Ω plane. γ is the angle between the Γ plane and the measurement direction of the profile.
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 7 Figure 7. Filament geometry (Boschetto, Giordano, and Veniali (2013b))
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 89 Figure8. Different specimens for experimental measurements(Vahabli and Rahmati (2016b)) 
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 10 Figure 10. (a) Experimental data from Ahn and Boschetto roughness tests (b) Treated data of roughness experiments for different layers thicknesses
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 11 Figure 11. Example of a multi-gene symbolic model (Searson (2009))
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 12 Figure 12. Surface roughness model
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 13 Figure 13. Gap between experimental data and different models
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 14 Figure 14. Prediction error based on layer thicknesses and deposition angles data
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Table 1 .

 1 Experimental analysis details

	Specimen	Material	Machine Model	Measurement machine	Details	Research
		ABS	Stratasys,Dimension BST 768	Taylor-Hobson Form Talysurf Plus	Lt = 0.254 mm	Boschetto, Giordano, and Veniali (2013a)
	a	ABS plus ULTEM 9085	Stratasys,Fortus 400 Stratasys,Fortus 400			
		Poly carbonate	Stratasys,Fortus 360			
		ABS	Stratasys, MAXUM	Surftest Formtracer	Lt = 0.178 mm,αstep = 3°Ahn et al. (2009)
	b	ABS ABSplus	Stratasys, MAXUM Stratasys, Dimension SST 1200es	Surftest Formtracer MahrSurf MFW250	Lt = 0.254 mm,αstep = 3°Ahn, Kwon, and Lee (2008) Lt = 0.3302 mm,αstep = 5°Vahabli and Rahmati (2016b)
		ABS-M30	FDMFortus 400mc	Rugosurf 10G surface tester	Lt = 0.178, 0.254 mm,αstep = 5°Taufik and Jain (2016)
	c	ABS	Stratasys, FDM 8000	wavelength cut-off	Lt = 0.25 mm	Byun et al Byun and Lee (2006)

through a hybrid estimation methodology.

Vahabli and Rahmati (2016a,b) 

proposed this estimation by comparison of experimental data obtained in

Vahabli and Rahmati (2016a) 

and the other existed models

[START_REF] Mason | Surface modification of prototypes in fused filament fabrication using chemical vapour smoothing[END_REF]

;

[START_REF] Byun | Determination of optimal build direction in rapid prototyping with variable slicing[END_REF]

;

[START_REF] Ahn | Expression for surface roughness distribution of FDM processed parts[END_REF]

;

Pandey, Reddy, and Dhande (2003c)) 

Table 2 .

 2 GPTIPS algorithm parameters

	Population size 200	Number of generation	500 Number of run 10
	Tournament size 100 Tournament percentage of Pareto 0.4	Elite fraction 0.3
		Maximum iteration	500

√
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-0.09309 e α L t + 2.915 × 10 -5 α 4 L t 2 + 34.64 α L t Lt + 0.1443 α Lt e 0.0427 α + 0.7036 α L t +0.2505 α e 0.0427 α -190.7 L t α Lt 2 -32.11 α Lt e Lt +4.919 e √ α -3.945 α L t -0.02231 α 5/2 L t -83.18 L t e t ) 1.0 α +34.64 α L t e Lt +1.194 α 2 L t α e α -61.17 α Lt e Lt √ e Lt +212.7 (15)
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