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Abstract

Following tremendous success in natural language processing, transformers have
recently shown much promise for computer vision. The self-attention operation
underlying transformers yields global interactions between all tokens, i.e. words
or image patches, and enables flexible modelling of image data beyond the local
interactions of convolutions. This flexibility, however, comes with a quadratic
complexity in time and memory, hindering application to long sequences and high-
resolution images. We propose a “transposed” version of self-attention that operates
across feature channels rather than tokens, where the interactions are based on the
cross-covariance matrix between keys and queries. The resulting cross-covariance
attention (XCA) has linear complexity in the number of tokens, and allows efficient
processing of high-resolution images. Our cross-covariance image transformer
(XCiT) – built upon XCA – combines the accuracy of conventional transformers
with the scalability of convolutional architectures. We validate the effectiveness and
generality of XCiT by reporting excellent results on multiple vision benchmarks,
including (self-supervised) image classification on ImageNet-1k, object detection
and instance segmentation on COCO, and semantic segmentation on ADE20k.

1 Introduction

Transformers architectures [68] have provided quantitative and qualitative breakthroughs in speech
and natural language processing (NLP). After a few attempts to incorporate wide-range self-attention
in vision architectures [71, 82], Dosovitskiy et al. [21] established transformers as a viable architecture
for learning visual representations, reporting competitive results for image classification while relying
on large-scale pre-training. Touvron et al. [64] have shown on par or better accuracy/throughput
compared to strong convolutional baselines such as EfficientNets [58] when training transformers
on ImageNet-1k using extensive data augmentation and improved training schemes. Promising
results have been obtained for other vision tasks, including image retrieval [22], object detection and
semantic segmentation [44, 70, 81, 83], as well as video understanding [2, 7, 23].

One major drawback of transformers is the time and memory complexity of the core self-attention
operation, that increases quadratically with the number of input tokens, or similarly number of
patches in computer vision. For w×h images, this translates to a complexity of O(w2h2), which is
prohibitive for most tasks involving high-resolution images, such as object detection and segmentation.
Various strategies have been proposed to alleviate this complexity, for instance using approximate
forms of self-attention [44, 81], or pyramidal architectures which progressively downsample the
feature maps [70]. However, none of the existing solutions are fully satisfactory, as they either trade
complexity for accuracy, or their complexity remains excessive for processing very large images.

We replace the self-attention, as originally introduced by Vaswani et al. [68], with a “transposed”
attention that we denote as “cross-covariance attention” (XCA). Cross-covariance attention substi-
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Cross-Covariance Attention (XCA)

Figure 1: Our XCiT layer consists of three main blocks, each preceded by LayerNorm and followed by a residual
connection: (i) the core cross-covariance attention (XCA) operation, (ii) the local patch interaction (LPI) module,
and (iii) a feed-forward network (FFN). By transposing the query-key interaction, the computational complexity
of XCA is linear in the number of data elements N , rather than quadratic as in conventional self-attention.

tutes the explicit full pairwise interaction between tokens by self-attention among features, where
the attention map is derived from the cross-covariance matrix computed over the key and query
projections of the token features. Importantly, XCA has a linear complexity in the number of patches.
To construct our Cross-Covariance Image Transformers (XCiT), we combine XCA with local patch
interaction modules that rely on efficient depth-wise convolutions and point-wise feedforward net-
works commonly used in transformers, see Figure 1. XCA can be regarded as a form of a dynamic
1×1 convolution, which multiplies all tokens with the same data-dependent weight matrix. We
find that the performance of our XCA layer can be further improved by applying it on blocks of
channels, rather than directly mixing all channels together. This “block-diagonal” shape of XCA
further reduces the computational complexity with a factor linear in the number of blocks.

Given its linear complexity in the number of tokens, XCiT can efficiently process images with
more than thousand pixels in each dimension. Notably, our experiments show that XCiT does not
compromise the accuracy and achieves similar results to DeiT [64] and CaiT [67] in comparable
settings. Moreover, for dense prediction tasks such as object detection and image segmentation,
our models outperform popular ResNet [28] backbones as well as the recent transformer-based
models [44, 70, 81]. Finally, we also successfully apply XCiT to the self-supervised feature learning
using DINO [12], and demonstrate improved performance compared to a DeiT-based backbone [64].

Overall, we summarize our contributions as follows:

• We introduce cross-covariance attention (XCA), which provides a “transposed” alternative to
conventional self-attention, attending over channels instead of tokens. Its complexity is linear in
the number of tokens, allowing for efficient processing of high-resolution images, see Figure 2.

• XCA attends to a fixed number of channels, irrespective of the number of tokens. As a result, our
models are significantly more robust to changes in image resolution at test time, and are therefore
more amenable to process variable-size images.

• For image classification, we demonstrate that our models are on par with state-of-the-art vision
transformers for multiple model sizes using a simple columnar architecture, i.e., in which we keep
the resolution constant across layers. In particular, our XCiT-L24 model achieves 86.0% top-1
accuracy on ImageNet, outperforming its CaiT-M24 [67] and NFNet-F2 [10] counterparts with
comparable numbers of parameters.

• For dense prediction tasks with high-resolution images, our models outperform ResNet and multiple
transformer-based backbones. On the COCO benchmark, we achieve a strong performance of
48.5% and 43.7% mAP for object detection and instance segmentation respectively. Moreover,
we report 48.4% mIoU for semantic segmentation on the ADE20k benchmark, outperforming the
state-of-the-art Swin Transformer [44] backbones across all comparable model sizes.

• Finally, our XCiT model is highly effective in self-supervised learning setups, achieving 80.9%
top-1 accuracy on ImageNet-1k using DINO [12].
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2 Related work

Deep vision transformers. Training deep vision transformers can be challenging due to instabilities
and optimization issues. Touvron et al. [67] successfully train models with up to 48 layers using
LayerScale, which weighs contributions of residual blocks across layers and improves optimization.
Additionally, the authors introduce class attention layers which decouple the learning of patch features
and the feature aggregation stage for classification.

Spatial structure in vision transformers. Yuan et al. [79] propose applying a soft split for patch
projection with overlapping patches which is applied repeatedly across model layers, reducing the
number of patches progressively. Han et al. [27] introduce a transformer module for intra-patch
structure, exploiting pixel-level information and integrating with an inter-patch transformer to attain
higher representation power. d’Ascoli et al. [18] consider the initialization of self-attention blocks
as a convolutional operator, and demonstrate that such initialization improves the performance of
vision transformers in low-data regimes. Graham et al. [26] introduce LeViT, which adopts a multi-
stage architecture with progressively reduced feature resolution similar to popular convolutional
architectures, allowing for models with high inference speed while retaining a strong performance.
Moreover, the authors adopt a convolution-based module for extracting patch descriptors. Yuan et al.
[78] improve both the performance and the convergence speed of vision transformers by replacing
the linear patch projection with convolutional layers and max-pooling, as well as modifying the
feed-forward networks in each transformer layer to incorporate depth-wise convolutions.

Efficient attention. Numerous methods for efficient self-attention have been proposed in the
literature to address the quadratic complexity of self-attention in the number of input tokens. These
include restricting the span of the self-attention to local windows [48, 50], strided patterns [14], axial
patterns [30], or an adaptive computation across layers [57]. Other methods provide an approximation
of the self-attention matrix which can be achieved by a projection across the token dimension [69],
or through a factorization of the softmax-attention kernel [15, 37, 56, 77], which avoids explicit
computation of the attention matrix. While conceptually different, our XCA performs similar
computations without being sensitive to the choice of the kernel. Similarly, Lee-Thorp et al. [41]
achieve faster training by substituting self-attention with unparametrized Fourier Transform. Other
efficient attention methods rely on local attention and adding a small number of global tokens, thus
allowing interaction among all tokens only by hopping through the global tokens [1, 5, 34, 80].
Similarly, Goyal et al. [25] use a global workspace though which items interact, albeit one that is
shared across layers.

Transformers for high-resolution images. Several works adopt visual transformers to high-
resolution image tasks beyond image classification, such as object detection and image segmentation.
Wang et al. [70] design a model with a pyramidal architecture and address complexity by gradually
reducing the spatial resolution of keys and values. Similarly, for video recognition Fan et al. [23]
utilize pooling to reduce the resolution across the spatial and temporal dimensions to allow for an
efficient computation of the attention matrix. Zhang et al. [81] adopt global tokens and local attention
to reduce the model complexity, while Liu et al. [44] provide an efficient method for local attention
with shifted windows. In addition, Zheng et al. [83] and Ranftl et al. [54] study problems like
semantic segmentation and monocular depth estimation with the quadratic self-attention operation.

Data-dependent layers. Our XCiT layer can be regarded as a “dynamic” 1×1 convolution, which
multiplies all token features with the same data-dependent weight matrix, derived from the key and
query cross-covariance matrix. In the context of convolutional networks, Dynamic Filter Networks [9]
explore a related idea, using a filter generating subnetwork to produce convolutional filters based
on features in previous layers. Squeeze-and-Excitation networks [32] use data dependent 1×1
convolutions in convolutional architectures. Spatially average-pooled features are fed to a 2-layer
MLP which produces per channel scaling parameters. Closer in spirit to our work, Lambda layers
propose a way to ensure global interaction in ResNet models [4]. Their “content-based lambda
function” is computing a similar term as our cross-covariance attention, but differing in how the
softmax and `2 normalizations are applied. Moreover, Lambda layers also include specific position-
based lambda functions, and LambdaNetworks are based on ResNets while XCiT follows the ViT
architecture. Recently data-independent analogues of self-attention have also been found to be an
effective alternative to convolutional and self-attention layers for vision tasks [20, 46, 62, 66]. These
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methods treat entries in the attention map as learnable parameters, rather than deriving the attention
map dynamically from queries and keys, but their complexity remains quadratic in the number of
tokens. Zhao et al. [82] consider alternative attention forms in computer vision.

3 Method

In this section, we first recall the self-attention mechanism, and the connection between the Gram
and covariance matrices, which motivated our work. We then propose our cross-covariance attention
operation (XCA) – which operates along the feature dimension instead of token dimension in
conventional transformers – and combine it with local patch interaction and feedforward layers to
construct our Cross-Covariance Image Transformer (XCiT). See Figure 1 for an overview.

3.1 Background

Token self-attention. Self-attention, as introduced by Vaswani et al. [68], operates on an input
matrix X ∈ RN×d, where N is the number of tokens, each of dimensionality d. The input X
is linearly projected to queries, keys and values, using the weight matrices Wq ∈ Rd×dq , Wk ∈
Rd×dk and Wv ∈ Rd×dv , such that Q=XWq, K=XWk and V=XWv, where dq = dk. Keys and
values are used to compute an attention map A(K,Q) = Softmax(QK>/

√
dk), and the output

of the self-attention operation is defined as the weighted sum of N token features in V with the
weights corresponding to the attention map: Attention(Q,K, V ) = A(K,Q)V . The computational
complexity of self-attention scales quadratically in N , due to pairwise interactions between all N
elements.

Relationship between Gram and covariance matrices. To motivate our cross-covariance atten-
tion operation, we recall the relation between Gram and covariance matrices. The unnormalised
d×d covariance matrix is obtained as C=X>X . The N×N Gram matrix contains all pairwise
innerproducts: G=XX>. The non-zero part of the eigenspectrum of the Gram and covariance matrix
are equivalent, and the eigenvectors of C and G can be computed in terms of each other. If V are the
eigenvectors of G, then the eigenvectors of C are given by U=XV . To minimise the computational
cost, the eigendecomposition of either the Gram or covariance matrix can be obtained in terms of the
decomposition of the other, depending on which of the two matrices is the smallest.1

We draw upon this strong connection between the Gram and covariance matrices to consider whether
it is possible to avoid the quadratic cost to compute the N×N attention matrix, which is computed
from the analogue of the N×N Gram matrix QK>=XWqW

>
k X

>. Below we consider how we
can use the dk×dq cross-covariance matrix, K>Q=W>k X

>XWq , which can be computed in linear
time in the number of elements N , to define an attention mechanism.

3.2 Cross-covariance attention

We propose a cross-covariance based self-attention function that operates along the feature dimension,
rather than along the token dimension as in token self-attention. Using the definitions of queries, keys
and values from above, the cross-covariance attention function is defined as:

XC-Attention(Q,K, V ) = VAXC(K,Q), AXC(K,Q) = Softmax
(
K̂>Q̂/τ

)
, (1)

where each output token embedding dimension is a convex combination of the dv features of its
corresponding token embedding in V . The attention weights A are computed based on the cross-
covariance matrix.

`2-Normalization and temperature scaling. In addition to building our attention operation on the
cross-covariance matrix, we make a second modification compared to token self-attention. We restrict
the magnitude of the query and key matrices by `2-normalising them, such that each column of length
N of the normalised matrices Q̂ and K̂ has unit norm, and every element in d×d cross-covariance
matrix K̂>Q̂ is in the range [−1, 1]. We observed that controlling the norm strongly enhances the

1For C to represent the covariance, X should be centered, i.e. X1=0. For the relation between C and G,
however, centering is not required.
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Figure 3: Performance when changing the resolution
at test-time for models with a similar number of pa-
rameters. All networks were trained at resolution 224,
w/o distillation. XCiT is more tolerant to changes
of resolution than the Gram-based DeiT and benefit
more from the “FixRes” effect [63] when inference is
performed at a larger resolution than at train-time.

stability of training, especially when trained with a variable numbers of tokens. However, restricting
the norm reduces the representational power of the operation by removing a degree of freedom.
Therefore, we introduce a learnable temperature parameter τ which scales the inner products before
the Softmax, allowing for sharper or more uniform distribution of attention weights.

Block-diagonal cross-covariance attention. Instead of allowing all features to interact among
each other, we divide them into a h groups, or “heads”, in a similar fashion as multi-head token
self-attention. We apply the cross-covariance attention separately per head where for each head, we
learn separate weight matrices to project X to queries, keys and values, and collect the corresponding
weight matrices in the tensors Wq ∈ Rh×d×dq , Wk ∈ Rh×d×dk and Wv ∈ Rh×d×dv , where we set
dk=dq=dv=d/h. Restricting the attention within heads has two advantages: (i) the complexity of
aggregating the values with the attention weights is reduced by a factor h; (ii) more importantly,
we empirically observe that the block-diagonal version is easier to optimize, and typically leads to
improved results. This observation is in line with observations made for Group Normalization [73],
which normalizes groups of channels separately based on their statistics, and achieves favorable
results for computer vision tasks compared to Layer Normalization [3], which combines all channels
in a single group. Figure 4 shows that each head learns to focus on semantically coherent parts of the
image, while being flexible to change what type of features it attends to based on the image content.

Complexity analysis. The usual token self-attention with h heads has a time complexity ofO(N2d)
and memory complexity of O(hN2+Nd). Due to the quadratic complexity, it is problematic to
scale token self-attention to images with a large number of tokens. Our cross-covariance attention
overcomes this drawback as its computational cost of O(Nd2/h) scales linearly with the number of
tokens, as does the memory complexity of O(d2/h+Nd). Therefore, our model scales much better
to cases where the number of tokens N is large, and the feature dimension d is relatively small, as is
typically the case, in particularly when splitting the features into h heads.

3.3 Cross-covariance image transformers

To construct our cross-covariance image transformers (XCiT), we adopt a columnar architecture
which maintains the same spatial resolution across layers, similarly to [21, 64, 67]. We combine
our cross-covariance attention (XCA) block with the following additional modules, each one being
preceded by a LayerNorm [3]. See Figure 1 for an overview. Since in this section we specifically
design the model for computer vision tasks, tokens correspond to image patches in this context.
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Table 1: XCiT models. Design choices include model depth, patch embeddings dimensionality d, and the
number of heads h used in XCA. By default our models are trained and tested at resolution 224 with patch sizes
of 16×16. We also train with distillation using a convolutional teacher (denoted Υ) as proposed by Touvron et al.
[64]. Finally, we report performance of our strongest models obtained with 8×8 patch size, fine-tuned (↑) and
tested at resolution 384×384 (column @384/8), using distillation with a teacher that was also fine-tuned @384.

Model Depth d #heads #params GFLOPs ImageNet-1k-val top-1 acc. (%)
@224/16 @384/8 @224/16 @224/16Υ @384/8Υ ↑

XCiT-N12 12 128 4 3M 0.5 6.4 69.9 72.2 77.8
XCiT-T12 12 192 4 7M 1.2 14.3 77.1 78.6 82.4
XCiT-T24 24 192 4 12M 2.3 27.3 79.4 80.4 83.7
XCiT-S12 12 384 8 26M 4.8 55.6 82.0 83.3 85.1
XCiT-S24 24 384 8 48M 9.1 106.0 82.6 83.9 85.6
XCiT-M24 24 512 8 84M 16.2 188.0 82.7 84.3 85.8
XCiT-L24 24 768 16 189M 36.1 417.9 82.9 84.9 86.0

Local patch interaction. In the XCA block communication between patches is only implicit
through the shared statistics. To enable explicit communication across patches we add a simple
Local Patch Interaction (LPI) block after each XCA block. LPI consists of two depth-wise 3×3
convolutional layers with Batch Normalization and GELU non-linearity in between. Due to its
depth-wise structure, the LPI block has a negligible overhead in terms of parameters, as well as a
very limited overhead in terms of throughput and memory usage during inference.

Feed-forward network. As is common in transformer models, we add a point-wise feedforward
network (FFN), which has a single hidden layer with 4d hidden units. While interaction between
features is confined within groups in the XCA block, and no feature interaction takes place in the LPI
block, the FFN allows for interaction across all features.

Global aggregation with class attention. When training our models for image classification, we
utilize the class attention layers as proposed by Touvron et al. [67]. These layers aggregate the patch
embeddings of the last XCiT layer through writing to a CLS token by one-way attention between the
CLS tokens and the patch embeddings. The class attention is also applied per head, i.e. feature group.

Handling images of varying resolution. In contrast to the attention map involved in token self-
attention, in our case the covariance blocks are of fixed size independent of the input image resolution.
The softmax always operates over the same number of elements, which may explain why our models
behave better when dealing with images of varying resolutions (see Figure 3). In XCiT we include
additive sinusoidal positional encoding [68] with the input tokens. We generate them in 64 dimensions
from the 2d patch coordinates and then linearly project to the transformer working dimension d. This
choice is orthogonal to the use of learned positional encoding, as in ViT [21]. However, it is more
flexible since there is no need to interpolate or fine-tune the network when changing the image size.

Model configurations. In Table 1 we list different variants of our model which we use in our
experiments, with different choices for model width and depth. For the patch encoding layer, unless
mentioned otherwise, we adopt the alternative used by Graham et al. [26] with convolutional patch
projection layers. We also experimented with a linear patch projection as described in [21], see our
ablation in Table 4. Our default patch size is 16×16, as in other vision transformer models including
ViT [21], DeiT [64] and CaiT [67]. We also experiment with smaller 8×8 patches, which has been
observed to improve performance [12]. Note that this is efficient with XCiT as its complexity scales
linearly which the number of patches, while ViT, DeiT and CaiT scale quadratically.

4 Experimental evaluation

In this section we demonstrate the effectiveness and versatility of XCiT on multiple computer vision
benchmarks, and present ablations providing insight on the importance of its different components.
In the supplementary material we provide additional analysis, including the impact on performance
of image resolution in Section A.1 and of multiple approximate attention baselines in Section A.2.
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Table 2: ImageNet classification. Number of parame-
ters, FLOPs, image resolution, and top-1 accuracy on
ImageNet-1k and ImageNet-V2. Training strategies vary
across models, transformer-based models and the re-
ported RegNet mostly follow recipes from DeiT [64].

Model #params FLOPs Res. ImNet V2
EfficientNet-B5 RA [17] 30M 9.9B 456 83.7 _
RegNetY-4GF [53] 21M 4.0B 224 80.0 72.4
DeiT-SΥ [64] 22M 4.6B 224 81.2 68.5
Swin-T [44] 29M 4.5B 224 81.3 _
CaiT-XS24Υ ↑ [67] 26M 19.3B 384 84.1 74.1
XCiT-S12/16Υ 26M 4.8B 224 83.3 72.5
XCiT-S12/16Υ ↑ 26M 14.3B 384 84.7 74.1
XCiT-S12/8Υ ↑ 26M 55.6B 384 85.1 74.8
EfficientNet-B7 RA [17] 66M 37.0B 600 84.7 _
NFNet-F0 [10] 72M 12.4B 256 83.6 72.6
RegNetY-8GF [53] 39M 8.0B 224 81.7 72.4
TNT-B [79] 66M 14.1B 224 82.8 _
Swin-S [44] 50M 8.7B 224 83.0 _
CaiT-S24Υ ↑ [67] 47M 32.2B 384 85.1 75.4
XCiT-S24/16Υ 48M 9.1B 224 83.9 73.3
XCiT-S24/16Υ ↑ 48M 26.9B 384 85.1 74.6
XCiT-S24/8Υ ↑ 48M 105.9B 384 85.6 75.7
Fix-EfficientNet-B8 [65] 87M 89.5B 800 85.7 75.9
RegNetY-16GF [53] 84M 16.0B 224 82.9 72.4
Swin-B↑ [44] 88M 47.0B 384 84.2 _
DeiT-BΥ ↑ [64] 87M 55.5B 384 85.2 75.2
CaiT-S48Υ ↑ [67] 89M 63.8B 384 85.3 76.2
XCiT-M24/16Υ 84M 16.2B 224 84.3 73.6
XCiT-M24/16Υ ↑ 84M 47.7B 384 85.4 75.1
XCiT-M24/8Υ ↑ 84M 187.9B 384 85.8 76.1

NFNet-F2 [10] 194M 62.6B 352 85.1 74.3
NFNet-F3 [10] 255M 114.8B 416 85.7 75.2
CaiT-M24Υ ↑ [67] 186M 116.1B 384 85.8 76.1
XCiT-L24/16Υ 189M 36.1B 224 84.9 74.6
XCiT-L24/16Υ ↑ 189M 106.0B 384 85.8 75.8
XCiT-L24/8Υ ↑ 189M 417.8B 384 86.0 76.6

Figure 4: Visualization of the attention map be-
tween the CLS token and individual patches in the
class-attention stage. For each column, each row
represents the attention map w.r.t. one head, corre-
sponding to the image in the first row. Each head
appears sensitive to semantically coherent regions.
Heads are sensitive to similar features within the
same or across images (e.g. people or bird faces).
They are trigger by different concepts when such
features are missing (e.g., cockpit for race cars).

4.1 Image classification

We use ImageNet-1k [19] to train and evaluate our models for image classification. It consists of
1.28M training images and 50k validation images, labeled across 1,000 semantic categories. Our
training setup follows the DeiT recipe [64]. We train our model for 400 epochs with the AdamW
optimizer [45] using a cosine learning rate decay. In order to enhance the training of larger models,
we utilize LayerScale [67] and adjust the stochastic depth [33] for each of our models accordingly
(see the supplementary material for details). Following [67], images are cropped with crop ratio of 1.0
for evaluation. In addition to the ImageNet-1k validation set, we report results for ImageNet-V2 [55]
which has a distinct test set. Our implementation is based on the Timm library [72].

Results on ImageNet. We present a family of seven models in Table 1 with different operating
points in terms of parameters and FLOPs. We observe that the performance of the XCiT models
benefits from increased capacity both in depth and width. Additionally, consistent with [64, 67] we
find that using hard distillation with a convolutional teacher improves the performance. Because
of its linear complexity in the number of tokens, it is feasible to train XCiT at 384×384 resolution
with small 8×8 patches, i.e. 2304 tokens, which provides a strong boost in performance across all
configurations.

We compare to the state-of-the-art convolutional and transformer-based architectures [10, 44, 53,
58, 67] in Table 2. By varying the input image resolution and/or patch size, our models provide
competitive or superior performance across model sizes and FLOP budgets. First, the models
operating on 224×224 and 16×16 (e.g. XCiT-S12/16) enjoy high accuracy at relatively few FLOPs
compared to their counterparts with comparable parameter count and FLOPs. Second, our models
with 16×16 and 384×384 resolution images (e.g. XCiT-S12/16↑) yield an improved accuracy at the
expense of higher FLOPs, and provide superior or on-par performance compared to state-of-the-art
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Table 3: Self-supervised learning. Top-1 acc. on
ImageNet-1k. We report with a crop-ratio 0.875 for consis-
tency with DINO. For the last row it is set to 1.0 (improves
from 80.7% to 80.9%). All models are trained for 300
epochs.

SSL Method Model #params FLOPs Linear k-NN
MoBY [76] Swin-T [44] 29M 4.5B 75.0 –
DINO [12] ResNet-50 [28] 23M 4.1B 74.5 65.6
DINO [12] ViT-S/16 [21] 22M 4.6B 76.1 72.8
DINO [12] ViT-S/8 [21] 22M 22.4B 79.2 77.2
DINO [12] XCiT-S12/16 26M 4.9B 77.8 76.0
DINO [12] XCiT-S12/8 26M 18.9B 79.2 77.1

DINO [12] ViT-B/16 [21] 87M 17.5B 78.2 76.1
DINO [12] ViT-B/8 [21] 87M 78.2B 80.1 77.4
DINO [12] XCiT-M24/16 84M 16.2B 78.8 76.4
DINO [12] XCiT-M24/8 84M 64.0B 80.3 77.9
DINO [12] XCiT-M24/8↑384 84M 188.0B 80.9 78.3

Table 4: Ablations of various architectural design
choices on the task of ImageNet-1k classification
using the XCiT-S12 model. Our baseline model
uses the convolutional projection adopted from
LeVit.

Model Ablation ImNet top-1 acc.

XCiT-S12/16 Baseline 82.0
XCiT-S12/8 83.4

XCiT-S12/16 Linear patch proj. 81.1
XCiT-S12/8 83.1

XCiT-S12/16 w/o LPI layer 80.8
w/o XCA layer 75.9

XCiT-S12/16 w/o `2-normal. failed
w/o learned temp. τ 81.8

models with comparable computational requirements. Finally, the linear complexity of XCiT allows
us to scale to process 384×384 images with 8 × 8 patch sizes (e.g. XCiT-S12/8↑), achieving the
highest accuracy across the board, albeit at a relatively high FLOPs count.

Class attention visualization. In Figure 4 we show the class attention map obtained in the feature
aggregation stage. Each head focuses on different semantically coherent regions in the image (e.g.
faces or umbrellas). Furthermore, heads tend to focus on similar patterns across images (e.g. bird
head or human face), but adapts by focusing on other salient regions when such patterns are absent.

Robustness to resolution changes. In Figure 3 we report the accuracy of XCiT-S12, DeiT-S and
ResNet-50 trained on 224×224 images and evaluated at different image resolutions. While DeiT
outperforms ResNet-50 when train and test resolutions are similar, it suffers from a larger drop in
performance as the image resolution deviates farther from the training resolution. XCiT displays a
substantially increased accuracy when train and test resolutions are similar, while also being robust to
resolution changes, in particular for the model with 8×8 patches.

Self-supervised learning. We train XCiT in a self-supervised manner using DINO [12] on
ImageNet-1k. In Table 3 we report performance using the linear and k-NN protocols as in [12].
Across model sizes XCiT obtains excellent accuracy with both protocols, substantially improving
DINO with ResNet-50 or ViT architectures, as well as over those reported for Swin-Transformer
trained with MoBY [76]. Comparing the larger models to ViT, we also observed improved perfor-
mance for XCiT achieving a strong 80.3% accuracy. For fair comparison, all reported models have
been trained for 300 epochs. Further improved performance of small models is reported by Caron
et al. [12] when training for 800 epochs, which we expect to carryover to XCiT based on the results
presented here.

Analysis and ablations. In Table 4 we provide ablation experiments to analyse the impact of
different design choices for our XCiT-S12 model. First, we observe the positive effect of using the
convolutional patch projection as compared to using linear patch projection, for both 8×8 and 16×16
patches. Second, while removing the LPI layer reduces the accuracy by only 1.2% (from 82.0 to
80.8), removing the XCA layer results in a large drop of 6.1%, underlining the effectiveness of XCA.
We noticed that the inclusion of two convolutional components – convolutional patch projection and
LPI – not only brings improvements in accuracy, but also accelerates training. Third, although we
were able to ensure proper convergence without `2-normalization of queries and keys by tweaking
the hyper-parameters, we found that it provides stability across model size (depth and width) and
other hyper-parameters. Finally, while the learnable softmax temperature parameter is not critical,
removing it drops accuracy by 0.2%. Additional ablations are provided in the supplementary material.
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Table 5: COCO object detection and instance segmen-
tation performance on the mini-val set. All backbones are
pre-trained on ImageNet-1k, use Mask R-CNN model [29]
and are trained with the same 3x schedule.

Backbone #params APb APb
50 APb

75 APm APm
50 APm

75

ResNet18 [28] 31.2M 36.9 57.1 40.0 33.6 53.9 35.7
PVT-Tiny [70] 32.9M 39.8 62.2 43.0 37.4 59.3 39.9
ViL-Tiny [81] 26.9M 41.2 64.0 44.7 37.9 59.8 40.6
XCiT-T12/16 26.1M 42.7 64.3 46.4 38.5 61.2 41.1
XCiT-T12/8 25.8M 44.5 66.4 48.8 40.3 63.5 43.2
ResNet50 [28] 44.2M 41.0 61.7 44.9 37.1 58.4 40.1
PVT-Small [70] 44.1M 43.0 65.3 46.9 39.9 62.5 42.8
ViL-Small [81] 45.0M 43.4 64.9 47.0 39.6 62.1 42.4
Swin-T [44] 47.8M 46.0 68.1 50.3 41.6 65.1 44.9
XCiT-S12/16 44.3M 45.3 67.0 49.5 40.8 64.0 43.8
XCiT-S12/8 43.1M 47.0 68.9 51.7 42.3 66.0 45.4
ResNet101 [28] 63.2M 42.8 63.2 47.1 38.5 60.1 41.3
ResNeXt101-32 62.8M 44.0 64.4 48.0 39.2 61.4 41.9
PVT-Medium [70] 63.9M 44.2 66.0 48.2 40.5 63.1 43.5
ViL-Medium [81] 60.1M 44.6 66.3 48.5 40.7 63.8 43.7
Swin-S [44] 69.1M 48.5 70.2 53.5 43.3 67.3 46.6
XCiT-S24/16 65.8M 46.5 68.0 50.9 41.8 65.2 45.0
XCiT-S24/8 64.5M 48.1 69.5 53.0 43.0 66.5 46.1

ResNeXt101-64 [75] 101.9M 44.4 64.9 48.8 39.7 61.9 42.6
PVT-Large [70] 81.0M 44.5 66.0 48.3 40.7 63.4 43.7
ViL-Large [81] 76.1M 45.7 67.2 49.9 41.3 64.4 44.5
XCiT-M24/16 101.1M 46.7 68.2 51.1 42.0 65.6 44.9
XCiT-M24/8 98.9M 48.5 70.3 53.4 43.7 67.5 46.9

Table 6: ADE20k semantic segmentation perfor-
mance using Semantic FPN [38] and UperNet [74]
(in comparable settings). We do not include com-
parisons with other state-of-the-art models that are
pre-trained on larger datasets [44, 54, 83].

Backbone Semantic FPN UperNet

#params mIoU #params mIoU

ResNet18 [28] 15.5M 32.9 - -
PVT-Tiny [70] 17.0M 35.7M - -
XCiT-T12/16 8.4M 38.1 33.7M 41.5
XCiT-T12/8 8.4M 39.9 33.7 43.5
ResNet50 [28] 28.5M 36.7 66.5M 42.0
PVT-Small [70] 28.2M 39.8 - -
Swin-T [44] - - 59.9M 44.5
XCiT-S12/16 30.4M 43.9 52.4M 45.9
XCiT-S12/8 30.4M 44.2 52.3M 46.6
ResNet101 [28] 47.5M 38.8 85.5M 43.8
ResNeXt101-32 [75] 47.1M 39.7 - -
PVT-Medium [70] 48.0M 41.6 - -
Swin-S [44] - - 81.0M 47.6
XCiT-S24/16 51.8M 44.6 73.8M 46.9
XCiT-S24/8 51.8M 47.1 73.8M 48.1
ResNeXt101-64 [75] 86.4M 40.2 - -
PVT-Large [70] 65.1M 42.1 - -
Swin-B [44] - - 121.0M 48.1
XCiT-M24/16 90.8M 45.9 109.0M 47.6
XCiT-M24/8 90.8M 46.9 108.9M 48.4

4.2 Object detection and instance segmentation

Our XCiT models can efficiently process high-resolution images (see Figure 2). Additionally, XCiT
has a better adaptability to varying image resolutions compared to ViT models (see Figure 3). These
two properties make XCiT a good fit for dense prediction tasks including detection and segmentation.

We evalutate XCiT for object detection and instance segmentation using the COCO benchmark [42]
which consists of 118k training and 5k validation images including bounding boxes and mask labels
for 80 categories. We integrate XCiT as backbone in the Mask R-CNN [29] detector with FPN [43].
Since the XCiT architecture is inherently columnar, we make it FPN-compatible by extracting features
from different layers, e.g., layers 4, 6, 8, and 12 for XCiT-S12. All features have a constant stride of
8 or 16 based on the patch size, and the feature resolutions are adjusted to have strides of 4, 8, 16,
and 32, similar to ResNet-FPN backbones, where the downsampling is achieved by max pooling
and the upsampling is obtained using a single transposed convolution layer (see the supplementary
material for details). The model is trained for 36 epochs (3x schedule) using the AdamW optimizer
with learning rate of 10−4, 0.05 weight decay and 16 batch size. We adopt the multiscale training and
augmentation strategy of DETR [11]. Our implementation is based on the mmdetection library [13].

Results on COCO. In Table 5 we report object detection and instance segmentation results of four
variants of XCiT using 16×16 and 8×8 patches. We compare to ResNets [28] and concurrent efficient
vision transformers [44, 70, 81]. All models are trained using the 3x schedule after ImageNet-1k pre-
training. Note that other results with higher absolute numbers have been achieved when pre-training
on larger datasets [44] or with longer schedules [4], and are therefore not directly comparable to
the reported results. First, across all model sizes XCiT outperforms the convolutional ResNet [28]
and ResNeXt [75] by a large margin with either patch size. Second, we observe a similar increase
in accuracy compared to PVT [70] and ViL [81] backbones. Finally, XCiT provides a competitive
performance with Swin [44].2 For relatively small models, XCiT-S12/8 outperforms its Swin-T
counterpart with a decent margin. On the other hand, Swin-S provides slightly stronger results
compared to XCiT-S24/8. Utilizing smaller 8×8 patches leads to a consistent gain across all models.

2We use report the results provided by the authors in their open-sourced code https://github.com/
SwinTransformer/Swin-Transformer-Object-Detection.
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4.3 Semantic segmentation

We further show transferability of our models with semantic segmentation experiments on the
ADE20k dataset [84], which consists of 20k training and 5k validation images with labels over 150
semantic categories. We integrate our backbones in two segmentation methods: Semantic FPN [38]
and UperNet [74]. We train for 80k and 160k iterations for Semantic FPN and UperNet respectively.
Following [44], the models are trained using batch size 16 and an AdamW optimizer with learning
rate of 6× 10−5 and 0.01 weight decay. We apply the same method of extracting FPN features as
explained in Section 4.2. We report the performance using the standard single scale protocol (without
multi-scale and flipping). Our implementation is based on the mmsegmentation library [16].

Results on ADE20k. We present the semantic segmentation performance using XCiT backbones
in Table 6. First, for Semantic FPN [38], XCiT provides a superior performance compared to
ResNet, ResNeXt and PVT backbones using either option of patch size. Second, compared to Swin
Transformers using the same UperNet decoder [74], XCiT with 8×8 patches consistently achieves
a higher mIoU for different models. XCiT with 16×16 patches provides a strong performance
especially for smaller models where XCiT-S12/16 outperforms Swin-T.

5 Conclusion

Contributions. We present an alternative to token self-attention which operates on the feature
dimension, eliminating the need for expensive computation of quadratic attention maps. We build
our XCiT models with the cross-covariance attention as its core component and demonstrate the
effectiveness and generality of our models on various computer vision tasks. In particular, it exhibits
a strong image classification performance on par with state-of-the-art transformer models while
similarly robust to changing image resolutions as convnets. XCiT is effective as a backbone for
dense prediction tasks, providing excellent performance on object detection, instance and semantic
segmentation. Finally, we showed that XCiT can be a strong backbone for self-supervised learning,
matching the state-of-the-art results with less compute. XCiT is a generic architecture that can readily
be deployed in other research domains where self-attention has shown success.

Limitations. Our models enable training with smaller patches and on higher-resolution images,
which leads to clear performance gains. However, for tasks like image classification this gain comes
at a cost of relatively high number of FLOPs. In order to address this issue, other components, like
FFN, could also be re-examined. Another point is that XCiT models seem to overfit more than their
CaiT counterparts, see Table 2. They are more similar to some convnets in that respect.
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XCiT: Cross-Covariance Image Transformers

Appendix

A Preliminary study on Vision Transformers (ViT)

In this appendix we report the results associated with our preliminary study on high-resolution
transformers. Most of the experiments were carried out on the ViT architecture [21] with DeiT
training [64], and intended to analyze different aspects of transformers when considering images with
varying resolution or high-resolution images specifically.

A.1 Impact of resolution versus patch size

 77

 78

 79

 80

 81

 82

 83

 160  192  224  256  288  320  384

Im
ag

en
et

-v
al

 t
o
p
.1

 a
cc

Image size

fix 16x16 tokens
fix patch size: 16x16

Variable patch size

Image Size 80 112 160 256 320 384

Patch Size 5 7 10 16 20 24

Top-1 78.2 79.7 80.5 80.7 80.9 80.7

Variable number of tokens

Image Size 160 224 256 288 320 384

# of tokens 100 196 256 324 400 576

Top-1 77.4 79.9 80.7 81.2 81.5 82.3

Figure A.1: Impact of input resolution on accuracy for DeiT-S. We consider different image resolutions, and
either (1) increase the patch size while keeping the number of tokens fixed; or (2) keep the patch size fixed and
use more tokens. Larger input images are beneficial if the number of tokens increases. The impact of a change
of a resolution for a constant number of patches (of varying size) is almost neutral. As one can observe, the main
driver of performance is the number of patches. The patch size has a limited impact on the accuracy, except
when considering very small ones. We have observed and confirmed similar trends with XCiT models.

A.2 Approximate attention models in ViT with DeiT training

In Table A.1, we report the results that we obtain by replacing the Multi-headed Self-attention
operation with efficient variants [30, 56, 69, 70] in the DeiT-S backbone. First, we can notice that
for all efficient self-attention choices there is a clear drop in performance compared to the Deit-S
baseline. The spatial reduction attention (SRA) proposed in PVT [70] has a significantly weaker
performance compared to the full-attention with a quadratic complexity that is more efficient than
full-attention by only a constant factor R2. Linformer [69] provides a better accuracy compared to
SRA, however, it is also clearly weaker than full-attention. Moreover, Linformer does not have the
flexibility of processing variable length sequences which limits its application in many computer
vision tasks. Efficient attention [56] provides a better trade-off than the aforementioned methods, with
improved accuracy and linear complexity. However, it has a 3.6% drop in performance compared to
full-attention. Finally, axial attention [30] provides the strongest performance among the efficient
attention variants we studied with a 1.5% drop in accuracy compared to the baseline. We observe a
saving in memory usage, but a drop in speed due to the separate row and column attention operations.
Our observations are consistent with [21].

A.3 Training and testing with varying resolution

As discussed in the main manuscript, for several tasks it is important that the network is able to
handle images of varying resolutions. This is the case, for instance, for image segmentation, object
detection, or image retrieval where the objects of interest may have very different sizes. We present
an analysis of train/test resolution trade-off in Table A.2.
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Table A.1: ImageNet Top-1 accuracy of efficient self-attention variants (after 300 epochs of training).

Model Complexity Top-1

DeiT-S [64] O(N2) 79.9

SRA (Average Pool) [70] O(N2/R2) 73.5
SRA (Convolutional) [70] O(N2/R2) 74.0
Linformer (k=

√
n) [69] O(kN) 75.7

Efficient Transformer [56] O(N) 76.3
Axial [30] O(N

√
N) 78.4

Table A.2: Trade-off between train and test resolutions for DeiT. MS refers to multi-scale training, where
the models have seen images from different resolutions at training time.

Test / Train 160 224 256 288 320 MS
160 77.2 75.9 73.3 68.2 59.6 76.3
224 78.0 79.9 79.9 79.0 77.9 79.6
256 77.3 80.4 80.7 80.2 79.9 80.6
288 76.3 80.4 81.0 81.2 80.8 81.0
320 75.0 80.1 80.9 81.3 81.5 81.3

B Additional details of training and our architecture

B.1 Sinusoidal positional encoding

We adopt a sinusoidal positional encoding as proposed by Vaswani et al. [68] and adapted to the 2D
case by Carion et al. [11]. However we depart from this method in that we first produce this encoding
in an intermediate 64d space before projecting it to the working space of the transformers. More
precisely, in our implementation each of the x and y coordinates is encoded using 32 dimensions
corresponding to cosine and sine functions, with 16 different frequencies for each function. The
encoding of both coordinates are eventually concatenated to obtain a 64 dimension 2d positional
encoding. Finally, the 64 dimension positional encoding is linearly projected to the working dimension
of the model d.

B.2 Obtaining feature pyramid for dense prediction

For state-of-the-art detection and segmentation models, FPN is an important component which
provides features of multiple scales. We adapt XCiT to be compatible with FPN detection and
segmentation methods through a simple re-scaling of the features extracted from different layers.
In particular, for models with 12 layers, we extract features from the 4th, 6th, 8th and 12th layer
respectively. As for models with 24 layers, we extract features from the 8th, 12th, 16th and 24th layer.
Concerning the re-scaling of the features, the 4 feature levels are downsized by a ratio of 4, 8, 16
and 32 compared to the input image size. Feature downsizing is performed with max pooling and
upsampling is achieved using a single layer of transposed convolutions with kernel size k = 2 and
stride s = 2.

B.3 Hyper-parameters: LayerScale initialization and Stochastic Depth drop-rate

We list the stochastic depth dr and LayerScale initialization ε hyperparameters used by each of our
models in Table B.1.

C Pseudo-code

In Algorithm 1 we provide a PyTorch-style pseudo code of the Cross-covariance attention operation.
The pseudo code resembles the Timm library [72] implementation of token self-attention. We
show that XCA only requires few modifications, namely the `2 normalization, setting the learnable
temperature parameters and a transpose operation of the keys, queries and values.

II



Table B.1: Hyperparameters used for training our models, including the Stochastic depth drop rate dr and
LayerScale initialization ε.

Model Patch size dr ε

XCiT-N12 8 & 16 0.0 1.0
XCiT-T12 8 & 16 0.0 1.0
XCiT-T24 8 & 16 0.05 10−5

XCiT-S12 8 & 16 0.05 1.0
XCiT-S24 8 & 16 0.1 10−5

XCiT-M24 8 & 16 0.15 10−5

XCiT-L24 16 0.25 10−5

XCiT-L24 8 0.3 10−5

Algorithm 1 Pseudocode of XCA in a PyTorch-like style.

# self.qkv: nn.Linear(dim, dim * 3, bias=qkv_bias)
# self.temp: nn.Parameter(torch.ones(num_headss, 1, 1))

def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
qkv = qkv.permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # split into query, key and value

q = q.transpose(-2, -1)
k = k.transpose(-2, -1) # Transpose to shape (B, h, C, N)
v = v.transpose(-2, -1)

q = F.normalize(q, dim=-1, p=2) # L2 Normalization across the token dimension
k = F.normalize(k, dim=-1, p=2)

attn = (k @ q.transpose(-2, -1)) # Computing the block diagonal cross-covariance matrix
attn = attn * self.temp # Adjusting the activations scale with temperature parameter
attn = attn.softmax(dim=-1) # d x d attention map

x = attn @ v # Apply attention to mix channels per token
x = x.permute(0, 3, 1, 2).reshape(B, N, C)
x = self.proj(x)
return x

D Additional results

D.1 More XCiT models

We present additional results for our XCiT models in Table D.1. We include performance of 384×384
images using a 16×16 patch size as well as results for images with 224×224 resolution using patch
size of 8×8.

Table D.1: ImageNet-1k top-1 accuracy of XCiT for additional combinations of image and patch sizes.

Models Depth d #Blocks params 16× 16 patches 8× 8 patches

GFLOPs @224 @224Υ @384↑ GFLOPs @224 @224Υ @384↑
XCiT-N12 12 128 4 3M 0.5 69.9 72.2 75.4 2.1 73.8 76.3 77.8
XCiT-T12 12 192 4 7M 1.2 77.1 78.6 80.9 4.8 79.7 81.2 82.4
XCiT-T24 24 192 4 12M 2.3 79.4 80.4 82.6 9.2 81.9 82.6 83.7
XCiT-S12 12 384 8 26M 4.8 82.0 83.3 84.7 18.9 83.4 84.2 85.1
XCiT-S-24 24 384 8 48M 9.1 82.6 83.9 85.1 36.0 83.9 84.9 85.6
XCiT-M24 24 512 8 84M 16.2 82.7 84.3 85.4 63.9 83.7 85.1 85.8
XCiT-L24 24 768 16 189M 36.1 82.9 84.9 85.8 142.2 84.4 85.4 86.0

D.2 Transfer learning

In order to further demonstrate the flexibility and generality of our models, we report transfer learning
experiments in Table D.2 for models that have been pre-trained using ImageNet-1k and finetuned
for other datasets including CIFAR-10, CIFAR-100 [40], Flowers-102 [47], Stanford Cars [39] and
iNaturalist [31]. We observe that the XCiT models provide competitive performance when compared
to strong baselines like ViT-B, ViT-L, DeiT-B and EfficientNet-B7.
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Table D.2: Evaluation on transfer learning.

Architecture CIFAR10 CIFAR100 Flowers102 Cars iNat18 iNat19
EfficientNet-B7 [58] 98.9 91.7 98.8 94.7 _ _

ViT-B/16 [21] 98.1 87.1 89.5 _ _ _
ViT-L/16 [21] 97.9 86.4 89.7 _ _ _

Deit-B/16 [64] Υ 99.1 91.3 98.8 92.9 73.7 78.4

XCiT-S24/16 Υ 99.1 91.2 97.4 92.8 68.8 76.1
XCiT-M24/16 Υ 99.1 91.4 98.2 93.4 72.6 78.1
XCiT-L24/16 Υ 99.1 91.3 98.3 93.7 75.6 79.3

D.3 Image retrieval

Context of this study. Vision-based retrieval tasks such as landmark or particular object retrieval
have been dominated in the last years by methods extracting features from high-resolution images.
Traditionally, the image description was obtained as the aggregation of local descriptors, like in
VLAD [36]. Most of the modern methods now rely on convolutional neural networks [6, 24, 60].
In a recent paper, El-Nouby et al. [22] show promising results with vision transformers, however
they also underline the inherent scalability limitation associated with the fact that ViT models do not
scale well with image resolution. Therefore, it cannot compete with convolutional neural networks
whose performance readily improve with higher resolution images. Our XCiT models do not suffer
from this limitation: our models scale linearly with the number of pixels, like convnets, and therefore
makes it possible to use off-the-shelf methods initially developed for retrieval with high-resolution
images.

D.3.1 Datasets and evaluation measure

In each benchmark, a set of query images is searched in a database of images and the performance is
measured as the mean average precision.

The Holidays [35] dataset contains images of 500 different objects or scenes. We use the version of
the dataset where the orientation of images (portrait or landscape) has been corrected. Oxford [49] is
a dataset of building images, which corresponds to famous landmark in Oxford.

Table D.3: The basic statistics on the image retrieval datasets.

number of images nb of instances
Dataset database queries

Holidays 1491 500 500
R-Oxford 4993 70 26

We use the revisited version of the Oxford benchmark [51], which breaks down the evaluation into
easy, medium and hard categories. We report results on the "medium" and "hard" settings, as we
observed that the ordering of techniques does not change under the easy measures.

D.3.2 Image representation: global and local description with XCiT

We consider three existing methods to extract an image vector representations from the pre-trained
XCiT models. Note that to the best of our knowledge, for the first time we extract local features from
the output layer of a transformer layer, and treat them as patches fed to traditional state-of-the-art
methods based on matching local descriptors or CNN.

CLS token. Similar to El-Nouby et al. [22] with ViT, we use the final vector as the image descriptor.
In this context, the introduction of class-attention layers can be regarded as a way to learn the
aggregation method.
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Table D.4: Instance retrieval experiments. The default resolution is 768. The default class token size is 128
dimensions. The "local descriptor" representation extracted from the activations is in 128 dimensions. To our
knowledge the state of the art with ResNet-50 on Holidays with Imagenet pre-training only is the Multigrain
method [6], which achieves mAP=92.5%. Here we compare against this method under the same training setting,
i.e., off-the-shelf network pre-trained on ImageNet-1k only and with the same training procedure and resolution.
We refer the reader to Tolias et al. [61] for the state of the art on R-Oxford, which involves some training on the
target domain with images depicting building and fine-tuning at the target resolution.

Base model parameters R-Oxford5k (mAP) Holidays (mAP)

Medium Hard

XCiT– class token
XCiT-S12/16 30.1 8.7 86.0
XCiT-S12/8 33.2 12.1 86.4

XCiT-S12/16 resolution 224 12.7 2.4 71.5
XCiT-S12/16 resolution 384 20.1 4.6 83.4
XCiT-S12/16 resolution 512 26.6 5.8 84.6
XCiT-S12/16 resolution 768 30.1 8.7 86.0
XCiT-S12/16 resolution 1024 30.3 11.2 86.3

XCiT-S12/16 self-supervised DINO 35.1 11.9 87.3
XCiT-S12/8 self-supervised DINO 30.9 7.9 88.3

XCiT– VLAD
XCiT-S12/16 k=256 36.6 11.6 89.9
XCiT-S12/16 k=1024 40.0 13.0 90.7

XCiT– ASMK
XCiT-S12/8 k=1024 36.5 9.4 90.4
XCiT-S12/8 k=65536 42.0 12.9 92.3
XCiT-S12/16 k=1024 35.2 11.5 90.4
XCiT-S12/16 k=65536 40.0 15.0 92.0

ResNet-50 – ASMK
ResNet50 k=1024 41.6 14.6 86.0
ResNet50 k=65536 41.9 14.5 87.9
Multigrain-resNet50 k=1024 32.9 9.4 87.9

VLAD. We treat the patches before the class-attention layers as individual local descriptors, and
aggregate them into a higher-dimensional vector by employing the Vector of locally aggregated
Descriptors [36].

ASMK. We also apply the aggregated selective match kernel from Tolias et al. [59]. This method
was originally introduced for local descriptors, but got adapted to convolutional networks. To the best
of our knowledge this is the state of the art on several benchmarks [61].

For all these methods, we use the models presented in our main paper, starting from the version
fine-tuned at resolution 384×384. By default the resolution is 768. This is comparable to the choice
adopted in the literature for ResNet (e.g., 800 in the work by Berman et al. [6]).

D.3.3 Experimental setting: Image retrieval with models pretrained on ImageNet-1k only

We only consider models pre-trained on Imagenet-1k. Note that the literature reports significant
improvement when learning or fine-tuning networks [52, 61] on specialized datasets (e.g., of buildings
for Oxford5k). We consider only XCiT-S12 models, since they have a number of parameters
comparable to that of ResNet-50. We report the results in Table D.4.

Scaling resolution. As expected increasing the resolution with XCiT improves the performance
steadily up to resolution 768. This shows that our models are very tolerant to resolution changes
considering that they have been fine-tuned at resolution 384. The performance starts to saturates at
resolution 1024, which led us to keep 784 as the pivot resolution.
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Self-supervision. The networks XCiT pre-trained with self-supervision achieve a comparatively
better performance than their supervised counterpart on Holidays, however, we have the opposite
observation for R-Oxford.

Impact of image description. We adopt the class-token as the descriptor, and in our experiments
we verified that this aggregation method is better than average and GeM pooling [8, 52]. In Table D.4
one can see there is a large benefit in employing a patch based method along with our XCiT
transformers: XCiT-VLAD performs significantly better than the CLS token, likely thanks to the
higher dimensionality. This is further magnified with AMSK, where we obtain results approaching the
absolute state of the art on Holidays, despite a sub-optimal training setting for image retrieval. This is
interesting since our method has not been fine-tuned for retrieval tasks, and has not been adapted
in any significant way beyond applying off-the-shelf aggregation techniques. A direct comparison
with ResNet-50 shows that our XCiT method obtains competitive results in this comparable setting,
slightly below the ResNet-50 on R-Oxford but significantly better on Holidays.

D.4 Runtime and memory usage

We present the peak memory usage as well as the throughput of multiple models including full-
attention and efficient vision transformers in Table D.5. Additionally, in Figure D.1 we plot the
processing speed represented as millisecond per image as a function of image resolution for various
models. We can observe that XCiT provides a strong trade-off, possessing the best scalability in
terms of peak memory, even when compared to ResNet-50. Additionally, the processing time scales
linearly with respect to resolution, with only ResNet-50 providing a better trade-off on that front.
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Figure D.1: Throughput in millisecond per image during inference of multiple models. Our XCiT-S12/16
model provides a speed up for images with higher resolution compared to existing vision transformers, especially
the ones with quadratic complexity like DeiT and CaiT.

Table D.5: Inference throughput and peak GPU memory usage for our XCiT small model compared to other
models of comparable size that include token self-attention. All models tested using batch size of 64 on a V100
GPU with 32GB memory.

Model #params ImNet Image Resolution

(×106) Top-1 2242 3842 5122 10242

@224 im/sec mem (MB) im/sec mem (MB) im/sec mem (MB) im/sec mem (MB)

ResNet-50 25 79.0 1171 772 434 2078 245 3618 61 14178

DeiT-S 22 79.9 974 433 263 1580 116 4020 N/A OOM
CaiT-S12 26 80.8 671 577 108 2581 38 7117 N/A OOM
PVT-Small 25 79.8 777 1266 256 3142 134 5354 N/A OOM
Swin-T 29 81.3 704 1386 220 3890 120 6873 29 26915
XCiT-S12/16 26 82.0 781 731 266 1372 151 2128 37 7312
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D.5 Query and key magnitude visualizations

‖Q̂‖ ‖K̂‖

Figure D.2: Visualization of the queries Q̂ and keys K̂ norm across the feature dimension. We empirically
observe that magnitude of patch embeddings in the queries and keys correlates with the saliency of their
corresponding region in the image.

Our XCA operation relies on the cross-covariance matrix of the queries Q̂ and keys K̂ which are `2
normalized across the patch dimension. Therefore, each element in the d × d matrix represents a
cosine similarity whose value is strongly influenced by the magnitude of each patch. In Figure D.2
we visualize the magnitude of patch embeddings in the queries and keys matrices. We observe that
patch embeddings with higher magnitude corresponds to more salient regions in the image, providing
interpretable visualization of which regions in the image contribute more in the cross-covariance
attention.
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