
HAL Id: hal-03572701
https://hal.science/hal-03572701v2

Submitted on 8 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Private Quantiles Estimation in the Presence of Atoms
Clément Lalanne, Clément Gastaud, Nicolas Grislain, Aurélien Garivier, Rémi

Gribonval

To cite this version:
Clément Lalanne, Clément Gastaud, Nicolas Grislain, Aurélien Garivier, Rémi Gribonval. Private
Quantiles Estimation in the Presence of Atoms. Information and Inference, 2023, �10.1093/ima-
iai/iaad030�. �hal-03572701v2�

https://hal.science/hal-03572701v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Private Quantiles Estimation in the Presence of Atoms

Clément Lalanne
LIP, Univ Lyon, EnsL, UCBL, CNRS, Inria, LYON Cedex 07 F-69342,France

clement.lalanne@ens-lyon.fr

Clément Gastaud
Sarus Technologies SAS, 128 rue la Boétie, 75008 Paris, France

Nicolas Grislain
Sarus Technologies SAS, 128 rue la Boétie, 75008 Paris, France

Aurélien Garivier
UMPA UMR 5669, Univ. Lyon, ENS de Lyon, 46 allée d’Italie,

Lyon cedex 07 F-69364, France

Rémi Gribonval
LIP, Univ Lyon, EnsL, UCBL, CNRS, Inria, LYON Cedex 07 F-69342,France

February 8, 2023

Abstract

We consider the differentially private estimation of multiple quantiles (MQ) of a distri-
bution from a dataset, a key building block in modern data analysis. We apply the recent
non-smoothed Inverse Sensitivity (IS) mechanism to this specific problem. We establish that
the resulting method is closely related to the recently published ad hoc algorithm JointExp. In
particular, they share the same computational complexity and a similar efficiency. We prove
the statistical consistency of these two algorithms for continuous distributions. Furthermore,
we demonstrate both theoretically and empirically that this method suffers from an important
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lack of performance in the case of peaked distributions, which can degrade up to a potentially
catastrophic impact in the presence of atoms. Its smoothed version (i.e. by applying a max
kernel to its output density) would solve this problem, but remains an open challenge to im-
plement. As a proxy, we propose a simple and numerically efficient method called Heuristically
Smoothed JointExp (HSJointExp), which is endowed with performance guarantees for a broad
class of distributions and achieves results that are orders of magnitude better on problematic
datasets.

1 Introduction
As more and more data is collected on individuals and data science techniques become more
powerful, threats to privacy have multiplied and serious concerns have emerged [31, 6, 21, 13,
23, 27, 32, 37, 41, 38]. Against this background, differential privacy (DP) [19] has become the
gold standard in privacy protection. By introducing randomness calibrated to the sensitivity
of a query [18], it enables the inference of global statistics on a dataset while bounding each
sample’s influence and ensuring that the presence or absence of an individual in the dataset
cannot be deduced from the result. In the last decade, research results have brought nice
building blocks and composition theorems [18, 25, 15, 14, 1]. They paved the way for many
applications in data analysis, from basic statistics to advanced artificial intelligence algorithms.
Notably, differential privacy is now used in production by the US Census Bureau [2], Google [20],
Apple [39] and Microsoft [12] among others.

In this paper, we focus on the problem of estimating one or many quantiles with privacy
guarantees. Beyond the interest that quantiles have in themselves, they are also important
primitives in many advanced applications in machine learning, from synthetic data generation
to decision tree training. Indeed, since quantiles are a reasonable choice of bins for quantizing a
cumulative distribution function, they are commonly used in algorithms based on decision trees,
such as Random Forests and Boosted Trees [11], where variables are binned using quantiles
before they are considered for a split. Besides, in many recent synthetic data models, continuous
features are binned to reduce the output space’s dimension (see [42, 29]).

Given a real random variable X of probability distribution PX , the cumulative distribution
function (CDF) of X (or PX), noted FX (or FPX ) is classically defined as FX(t) = PX(X ≤
t),∀t ∈ R . Its pseudo-inverse, the quantile function, F−1

X (or F−1
PX

) is defined as

F−1
X (p) = inf {t ∈ R|FX(t) ≥ p} , ∀p ∈ [0, 1] ,

with the convention inf ∅ = +∞. The quantity F−1
X (p) is the quantile of order p of the

distribution of X. Furthermore, when given a dataset (a collection of real numbers), the
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empirical quantile of order p of this dataset is the quantile of order p of its empirical distribution.
When privacy is not an issue, it is well known that the empirical quantiles of a dataset

of i.i.d. random variables are good estimators of the quantiles of the underlying distribution
[40]. There has been a lot of recent research on how to privately estimate multiple empirical
quantiles from a dataset with a privacy overhead as small as possible. This article builds on
this framework by considering private estimates of the empirical quantiles as estimators of the
quantiles of the true distribution.

Among several ways to privately estimate empirical quantiles, a naive one is to add Laplace
noise to non-private quantile estimates [18]. It is straightforward and easy to compute, but the
amount of added noise is based on a pessimistic scenario that cannot materialize simultaneously
for all quantiles. To reduce the variance of the estimates, a variant that uses so-called smoothed
sensitivity instead of the worst case scenario was introduced [33]. It has the drawback, however,
of using approximate differential privacy [16] instead of pure differential privacy, which allows
some catastrophic failures with small probability. The current state of the art for single quantile
estimation uses a fine-tuned version of the standard exponential mechanism for differential
privacy [30] that is called ExponentialQuantile [35]. It is cheap to compute and the recent
theory of Inverse Sensitivity [5] shows that a conceptually simple smoothing operation allows
levels of privacy that are quadratically better than those guaranteed for the smoothed sensitivity
approaches while sticking to pure differential privacy, achieving near-instance optimality (i.e.
with a risk comparable to the local minimax risk when the set of hypotheses is the set of
neighboring datasets). As a result, it has been adopted by the main DP-ready software libraries
[3, 24] used in production.

All the algorithms previously mentioned are designed to estimate a single quantile from a
dataset. Composition theorems make them usable for multiquantile estimation by evaluating
each quantile independently, but with an increased privacy noise. Recent work by [22] has
presented a new algorithm, JointExp, that was the first to exploit the non-decreasing constraint
of quantiles at the core of its sampling procedure and became the empirical state of the art
for a small period. Even more recent work [26] cleverly exploits the structure of quantiles by
computing them recursively / hierarchically on disjoint subsets of the dataset, which reduces
the privacy overhead in composition. It is the current empirical state of the art for estimating
many quantiles.

1.1 Contributions and organization of the paper
In this paper, we study the use of the Inverse Sensitivity mechanism [5, 4] in order to estimate
multiple empirical quantiles from a dataset, and their statistical properties as estimators of the
quantiles of the underlying distribution.
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In Section 2 we recall the needed background on differential privacy, Inverse Sensitivity,
and JointExp. Section 3 is devoted to characterizing the Inverse Sensitivity mechanism for
private multiquantile estimation. In particular, our first contribution is to obtain the precise
expression of the utility function of the Inverse Sensitivity mechanism for an arbitrary number
of empirical quantiles, which was previously known for a single quantile only. In particular, this
expression is quite similar to the utility function of JointExp [22], which was proposed as an
ad-hoc algorithm based on a heuristic. We draw the explicit link between the two algorithms.
Due to their similarities, the two algorithms are used interchangeably in most of the article.

It was noted by the authors of JointExp [22] that their algorithm struggles when the gaps
between the data points are too small, but without more details. Our next contribution is
to statistically quantify this empirical phenomenon by proving that JointExp/IS is in fact
inconsistent on atomic distributions. This result is presented in Section 4.

Section 5 serves two purposes : we prove the consistency of JointExp/IS on continuous
distributions (i.e. with a continuous density w.r.t. Lebesgue measure). This is the first con-
sistency result of JointExp and is thus a big step towards the understanding of this algorithm.
Furthermore, we propose a new heuristic, tractable smoothing technique based on jittering for
JointExp/IS that vastly improves their utility on peaked distributions without noticeable reper-
cussions on non-degenerate distributions. In particular, this estimator is consistent on atomic
distributions. Our technique differs from the general smoothing trick for inverse sensitivity
based mechanisms introduced by [5, 4], a conceptual trick consisting in taking a maximum
convolution of the density over the output space, in the sense that our technique is a concrete
mechanism to smooth the data distribution. As such, our technique results in a much better
computational complexity making it a viable solution in high dimension. While similar tech-
niques have already been used in order to fix ill-posed problems (see [34, 28, 10]) when dealing
with peaked distributions, the motivations behind the addition of jitter here are fairly different
: it fixes an over-penalization of the exponential mechanism when dealing with concentrated
data.

Finally, Section 6 gathers the numerical experiments demonstrating the behavior of the
proposed algorithms.

2 Background
Considering datasets of the form X = (X1, . . . , Xn) ∈ Xn, where X denotes our feature space
and n ≥ 1 is the sample size, the Hamming distance d(X,Y) between two datasets X,Y ∈
Xn is defined as the minimal number of changes (i.e., substitutions of entries) required to
transform X into a permutation of Y. Hence, d(X,Y) = 0 i.f.f. there exists a permutation
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σ on {1, . . . , n} such that ∀i ∈ {1, . . . , n} , Xi = Yσ(i). We say that X and Y are neighbors
(noted X ∼ Y) if d(X,Y) = 1, that is if there exist two permutations σ1, σ2 such that
∀i ∈ {1, . . . , n− 1} , Xσ1(i) = Yσ2(i). Note that d(X,Y) is the minimum length of a path on
consecutive neighbors linking X to Y.

2.1 Differential Privacy
Given a privacy budget ε > 0, a randomized algorithm A : Xn → O is called ε-differentially
private (ε-DP, see [16]) if for all pairs of datasets X,Y ∈ Xn and all measurable sets S ⊆ O,

X ∼ Y ⇒ P
(
A(X) ∈ S

)
≤ eε × P

(
A(Y

)
∈ S) .

Differential privacy offers strong privacy protections by bounding the efficiency of any test
trying to distinguish two neighboring databases. A classical way to design ε-DP algorithms is
the Exponential Mechanism [30]. For a utility function u : Xn × O → R that measures the
relevance u(X, o) of the output o for the dataset X, the Exponential Mechanism E(α)

u defined
by u and with parameter α > 0 outputs a random variable on O with a density proportional
to eu(X,o)/α with respect to some reference measure on O. For example, when O is discrete,

P
(
E(α)
u (X) = o

)
=

eu(X,o)/α∑
o′∈O e

u(X,o′)/α
∀o ∈ O .

Defining the sensitivity of the utility function

∆u := sup
o∈O,X,Y∈Xn:X∼Y

|u(X, o)− u(Y, o)| ,

a classical result is that E(α)
u is ε-DP as soon as α ≥ 2∆u

ε [30]. All the algorithms presented in
this paper build on this mechanism.

2.2 The inverse sensitivity mechanism
When considering some deterministic function Q : Xn → O as the target of privatization, a
specific choice of utility function in the exponential mechanism, long known as folklore, was
proved to have remarkable optimality properties under certain assumptions [5]. The inverse
sensitivity function

uIS(X, o) := − inf
{
d(X,Y) s.t. Y ∈ Q−1(o)

}
is easily seen to have sensitivity ∆uIS = 1. The resulting ε-DP mechanism E(2/ε)

uIS (X) has then a
behavior that is quite intuitive: the likelihood of its output o decreases when Q−1(o) becomes
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further apart from X in the Hamming distance, which means that the probability of an output
decreases the more points have to be modified in the dataset for it to be a viable deterministic
output.

2.3 JointExp
Specifying the notations for the multiquantile estimation, given a < b ∈ R, let X = [a, b] be
the feature space and let O = [a, b]m↗ be the set of vectors of m increasing points in [a, b]
representing m quantiles. The hypothesis that the feature space is bounded is necessary to
the analysis and is reasonable for many applications. For applications where this is unrealistic,
solutions have been proposed at the expense of having an algorithm that has a small chance of
halting [17, 8]. Given a probability vector p = (p1, . . . , pm) ∈ (0, 1)m↗, the goal is to estimate
the empirical quantile function associated to p and defined as

Q : Xn → O
X 7→ (X(dnp1e), . . . , X(dnpme))

where X(i) denotes the i-th order statistics of X1, . . . , Xn. As a safety check, we assume that
∀j ∈ {1, . . . ,m − 1}, n(pj+1 − pj) ≥ 1 to ensure that no data point will be chosen twice as a
quantile representant. Note that given p, this condition can always be satisfied provided that
we have enough data, i.e., that n is large enough. For any X ∈ Xn, q ∈ O and p ∈ (0, 1)m,
we use the convention Xi≤0 = qi≤0 = a, Xi≥n+1 = qi≥m+1 = b, pi≤0 = 0 and pi≥m+1 = 1.
Finally, for the brevity of notation, vectors are interpreted when needed as the set containing
their components.

For reasons that will become clear later, we take the time to redefine the JointExp [22] (also
called ExponentialQuantile when m = 1) mechanism. It corresponds to a specific instantiation
of the exponential mechanism E(2/ε)

uJE (X) with

−uJE(X,q) :=
1

2

m+1∑
i=1

∣∣δJE(i,X,q)
∣∣ ,

(which is of sensitivity 1) where

δJE(i,X,q) := n(pi − pi−1)−# (X ∩ (qi−1, qi]) .

This mechanism works by penalizing the result whenever the number of data points in each
quantile interval (# (X ∩ (qi−1, qi])) deviates from what should be expected (n(pi − pi−1)).
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3 JointExp meets Inverse Sensitivity
At first glance, there is no connection between the theory of the Inverse Sensitivity and Joint-
Exp. The first one is born from the need to build a general mechanism that is endowed with
optimality properties [5, 4] for a broad class of problems, while the second comes from the idea
that good empirical quantiles should separate the data points proportionally. In the case of
the estimation of a single quantile (i.e. m = 1), it was observed [5] that the two algorithms are
similar. Our contribution in this section is to prove that, up to minor differences, this remains
true with an arbitrary number of quantiles. For this, we provide the precise expression of the
inverse sensitivity function for the multiquantile problem.

Deriving the expression of the inverse sensitivity for a dataset X and an output candidate
q boils down to answering the question: What is the minimal number of points from X that
need to be changed in order to obtain a vector that has q as its empirical quantiles? Theorem 1
solves this question for Lebesgue-almost-any q.

Theorem 1. For any X ∈ Xn and q ∈ ([a, b] \X)m↗ without collision,

−uIS(X,q) =
1

2

m+1∑
i=2

|δ(i,X,q)|+
m∑
i=2

1R+ (δ(i,X,q))

+
1

2
|δclosed(1,X,q)|+ 1R+ (δclosed(1,X,q))

with

δ(i,X,q) = # (X ∩ (qi−1, qi])− (dnpie − dnpi−1e)
δclosed(i,X,q) = # (X ∩ [qi−1, qi])− (dnpie − dnpi−1e) .

We postpone the proof to Appendix C.1 for brevity. The case when q has collisions or
shares some common points with the dataset is more difficult. Luckily, those cases can be
neglected when considering the sampling mechanism. Indeed, E(2/ε)

uIS (X) has a density that is
absolutely continuous w.r.t. Lebesgue measure, the expression of the resulting mechanism can
be further simplified (see Corollary 2) by modifying the density on outcomes of null Lebesgue
measure.

Corollary 2. For any X ∈ Xn, E(2/ε)
uIS (X) has the same output distribution as E(2/ε)

ũIS
(X) where

∀X ∈ Xn, ∀q ∈ O,

−ũIS(X,q) =
1

2

m+1∑
i=1

|δ(i,X,q)|+
m∑
i=1

1R+(δ(i,X,q)) .
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Remark 1. We discuss the sampling from E(2/ε)
ũIS

(X) in Appendix A but our conclusion is that
it can be done by making some minor adjustments to the JointExp sampling algorithm and that,
in particular, the two algorithms share the same complexity of O(nm log n+ nm2).

Remark 2. One can check that |ũIS(X,q)− uJE(X,q)| ≤ 2(m+ 1) and thus the distributions
differ significantly only on outcomes of high utility (when the number of misclassified points is
of the order O(m)). The bad outcomes are almost equally penalized and for this reason, we can
expect the two algorithms to perform almost identically when n is large enough. This is indeed
confirmed by numerical examples, as illustrated in Section 6. As a consequence, we will mainly
focus on JointExp for the rest of this article, all the results being applicable to IS as well (with
some minor tweaks).

4 JointExp fails on atomic distributions
To the best of our knowledge, no theoretical utility guarantee for JointExp has been derived yet,
and the performance of this algorithm has only been demonstrated experimentally. Even if it
outperforms by multiple orders of magnitude previous techniques on many real life datasets [22],
we prove in this section that it can also completely fail on some distributions (see Proposition 3).
As illustrated in Section 6, JointExp is indeed observed to be suboptimal on several real world
datasets associated to peaked distributions, such as the US Census Bureau "Dividends" and
"Earnings" data.

In order to understand the origin of this weakness of JointExp, we analyse the density of
the distribution of its output. This density is constant on the “blocks”

(
[Xi1 , Xi1+1)× . . .×· · ·×

[Xim , Xim+1)
)
∩[a, b]m↗ for each i = (i1, . . . , im) ∈ O′ whereO′ = {i ∈ {0, . . . , n}m , i1 ≤ · · · ≤ im}

.
The probability of the output of JointExp being in a given block is proportional to the

volume of this block. What can happen in practice is that even though a block is interesting
in terms of utility level, its volume can in fact be close to zero if the data points are close. The
volume can even be zero in case of equality, hence this block is never selected by the exponential
mechanism. This phenomenon occurs particularly often for data drawn from distributions with
isolated atoms: asymptotically, the dataset will almost surely contain collisions among the data
points as n grows and JointExp will fail on the corresponding quantiles.

To formally capture this phenomenon, from now on, X is supposed to be a collection of n
i.i.d. samples of a random variable X with distribution PX and with cumulative distribution
function (CDF) FX .

Proposition 3. Suppose that there exist q ∈ (a, b) and η > 0 such that I := (q−η, q+η) ⊂ [a, b]
satisfies PX({q}) > 0 and PX(I \ {q}) = 0. Then there exist some probability vectors p such
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that
E
X,E(2/ε)uJE

(
‖E(2/ε)

uJE
(X)− F−1

X (p)‖∞
)

= Ωn(1) , (4.1)

where we use the vector notation F−1
X (p) = (F−1

X (p1), . . . , F−1
X (pm)). Furthermore, the Lebesgue

measure of the set of problematic probability vectors is lower bounded by PX({q})m/(m!).

Ωn(1) refers to a quantity that is lower bounded by a positive constant when n grows. We
postpone the proof to Appendix C.2 for brevity.

This result shows that for certain data distributions with isolated atoms, JointExp is not
consistent, even asymptotically, on many instances of the estimation problem (i.e. not on
unrealistic corner cases). This behavior is all the more counterintuitive as one would think
that on datasets with a lot of collisions, very little noise would be needed to ensure privacy
since the points are already indistinguishable.

Example 1. Consider the private estimation of the median (i.e. m = 1 quantile, and p =
(1/2)) on [a, b] = [−1, 1]. Since m = 1, JointExp coincides with ExponentialQuantile, and
when all data points are equal to 0 (i.e. PX = δ0) its output is uniformly distributed in [−1, 1]
whatever the sample size n as long as it is even.

When considering estimation on real-world distributions, many real-life datasets show ac-
cumulation points and can be modeled as continuous distributions with some Diracs at specific
points. A famous example is the revenue statistics of the US Census Bureau: many participants
in surveys are not qualified to have some category of revenue (too young or not investing in
some assets) hence the presence of accumulations at the zero value for these categories. In
fact, any continuous variable that is censored, conditional on some other variable or generated
by mimetic agents tending to repeat exactly some values, will show accumulation points where
JointExp has great chances to fail.

5 Heuristic smoothing, with guarantees
The type of failure of JointExp highlighted in Section 4 may seem surprising given a) the
strong connection between JointExp and the Inverse Sensitivity established in Section 3; and
b) existing performance guarantees for smoothed Inverse Sensitivity mechanisms [5, 4]. Indeed,
while JointExp is not smoothed, smoothing convolves the output distribution with a max
kernel, increasing the volume of the maximum of the distribution to circumvent the difficulties
raised by isolated atoms. We discuss such an approach in Appendix B and conclude that while
it would increase the utility of the resulting mechanism, it would also make it computationally
intractable.
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As a tractable alternative, we present in this section a heuristic algorithm based on noise
addition prior to the application of JointExp, and we show that this mechanism is endowed with
privacy and consistency guarantees. Note that the exposed problems with atomic distribution
also occur for highly concentrated continuous distributions. Hence simpler and more naive
solutions such as multi-indices do not fix them.

Another possible solution would be to discretize the output space. However, the resulting
algorithm would have a complexity of O(f(m,n, δ) + 1/δm) where δ is the precision of the
discretization and f is some function. Since this is exponential in the number of quantiles, it
suffers from the curse of dimensionality, and we argue that jittering is a better alternative.

5.1 Introducing the HSJointExp algorithm
Since JointExp has a density that is constant on the blocks

(
[Xi1 , Xi1+1)×. . .×· · ·×[Xim , Xim+1)

)
∩ [a, b]m↗ for i = (i1, . . . , im) ∈ O′, it fails when the blocks that have a great utility (i.e. the
ones leading to interesting quantile candidates) have a volume that is too small. By adding
noise to the data points, we ensure a minimal volume for the blocks, and in particular for the
interesting regions, while only shifting the empirical quantiles of the dataset by a small amount.

Let w1, . . . , wn be i.i.d variables, and let

X̃ = (X1 + w1, . . . , Xn + wn) . (5.1)

The Heuristically Smoothed JointExp (HSJointExp) is defined as the algorithm that returns
E(2/ε)
uJE (X̃), the output of the JointExp on the noisy data X̃.
Let us now discuss the choice of the distribution Pw of the (wi)

′s. Discrete noise distributions
(for instance Bernoulli noise scaled by some α > 0: w

α ∼ B(1
2)) may seem interesting because

they lead to easily tuneable data gaps. However, this often just creates new instances where
JointExp fails. Indeed, adding discrete noise to data distributions with accumulation points
creates new accumulation points.

For this reason, we focus in the sequel on continuous noise distributions with a density
denoted by πw. The density πX̃ of the noisy data X̃ is hence given by the convolution formula,

∀t ∈ R, πX̃(t) =

∫
πw(t− x)PX(dx) . (5.2)

A typical choice of noise discussed in the sequel is the uniform distribution on the interval
[−α, α].

Before discussing the choice of the scale parameter α, we remark that HSJointExp consists
of the addition of i.i.d. noise prior to running JointExp. Its privacy guarantees are thus a
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direct consequence of the following generic composition lemma. Its proof, which we did not
find elsewhere, is in the supplementary material (see Appendix C.3).

Proposition 4. Let w be a random variable on Rn with probability distribution Pw that is
invariant by permutations of the components of the vector. If A is ε-DP on Xn, then X 7→
A(projXn(X + w)) is also ε-DP.

The projection step proj onto the data space Xn is necessary because JointExp needs to
know the range of the data. Note that Xn could be replaced by any set of the form [a−δα,n, b+
δα,n]n where δα,n is a quantity that depends on α and n. So for instance, if the noise follows a
uniform distribution on the interval [−α, α], projecting on [a − α, b + α]n (does nothing) and
then running JointExp on [a− α, b+ α] ensures that no point will overflow.

5.2 Consistency of HSJointExp on constant data

0 +α−α−1 1−α/4 α/4

X̃(n/2)X̃(0) X̃(1) X̃(n−1) X̃(n)

× × × × ×
. . . . . .

δJE(1, X̃, x) ≤ n/4≥ n/4 points ≥ n/4 points

Figure 1: δJE(1, X̃, x) is bounded by n/4 for −α/4 ≤ x ≤ α/4 on the event G.

In order to give some insight on the general analysis of HSJointExp, and to explain the
choice that we suggest for the amplitude α of the noise, we start by discussing the simple set-
ting of Example 1 where Xi ≡ 0 and JointExp is known to fail. We consider uniform noise with
distribution dPw(w) =

1[−α,α](w)

2α dw, and HSJointExp returns the output of ExponentialQuan-
tile/JointExp with m = 1 on the noisy data X̃:

M := E(2/ε)
uJE

(X̃).

The true median of the dataset is 0, and we study the quadratic risk E(M2) of our mechanism.
Note that the classical way of analyzing exponential mechanisms is to use the utility bounds
found in [30]. However, here we do not have the required level of control on the normalization
factor. We hence go for a more direct way of controlling the output distribution. Denoting by
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N(x, y) =
∑n

i=1 1[x,y)(0+wi) the number of noisy points falling in the interval [x, y), we define
the event

G :=
{
N(−α,−α/4) ≥ n/4

}
∩
{
N(α/4, α) ≥ n/4

}
.

Since N(−α,−α/4)
L
= N(α/4, α) ∼ B(n, 3/8), by Hoeffding’s inequality, the probability of

G is a least 1 − 2 exp(−n/32). Moreover, on the event G, for every x ∈ [−α/4, α/4] one
has N(−α, x) ≥ n/4 and N(x, α) ≥ n/4; hence, the minimal number of sample points that
need to be changed so as to reach a median equal to x is at most δJE(1, X̃, x) =

∣∣n/2 −
N(−1, x)

∣∣ ≤ n/4 (see Figure 1), and uJE(X̃, x) ≤ n/8. On the other hand, for every x /∈ [−α, α],
δJE(1, X̃, x) = n/2 and uJE(X̃, x) = n/4. Since the density of M at x ∈ [−1, 1] is equal to
exp

(
− uJE(X̃, x)ε/2

)
/∫ 1

−1 exp
(
− uJE(X̃, t)ε/2

)
dt,

P
(
|M | > α

∣∣G) ≤ P
(
|M | > α

∣∣G)
P
(
|M | ≤ α/4

∣∣G)
≤ 2× e−nε/8

α/2× e−nε/16
=

4e−nε/16

α
.

Therefore,

E
(
M2
)
≤ 12

(
P(Ḡ) + P

(
|M | > α

∣∣G))+ α2 P
(
|M | ≤ α

∣∣G)
≤ e−n/32 +

4e−nε/16

α
+ α2 .

Choosing α = e−nε/48 yields

E
(
M2
)
≤ 5e−nε/24 + e−n/32 .

We conclude that, contrary to JointExp, HSJointExp is here consistent as soon as nε → ∞,
which is anyway a necessary condition. Besides, the analysis provides a simple and generic way
to tune the noise amplitude α as a function of n and ε.

5.3 General Consistency of HSJointExp
For multiquantile estimation, JoitExp/IS is not endowed with any satisfying statistical utility
bounds. We start by proving their consistency in the favorable case of continuous distributions
(see Theorem 5). We then leverage this result in order to prove the consistency of HSJointExp
on a larger class of distributions. Indeed, the consistency of HSJointExp is established by
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making modifications to the density (via the noise) so that we fall into the favorable cases of
JointExp.

Theorem 5. If X is a random variable with density πX w.r.t. Lebesgue measure that is
piecewise continuous and if there exists β > 0 such that πX > 0 and is continuous on
∪ni=1[F−1

X̃
(pi)− β, F−1

X̃
(pi) + β], then

P
(
‖E(2/ε)

uJE
(X)− F−1

X (p)‖∞ > β
)

= on(1) .

The proof that uses similar techniques as in Section 5.2 is in Appendix C.5. The reader can
find an expression of the upper bound on(1) that does not hide any problem parameter in the
proof. This theorem states that for data distributions with continuous densities, JointExp is
consistent and this is to the best of our knowledge the first general result stating the consistency
of JointExp.

Back to our problem, the data distribution is not so regular. In particular, we are interested
in the case where it contains atoms. Following the method that we propose for HSJointExp,
we add some independent and identically distributed noise to the data points. We decompose
the error on the estimation in two terms: The error measuring the gap between the quantiles
of PX and the ones of PX̃ and the error made by JointExp on the estimation of the quantiles of
PX̃. The first term can be controlled by the following general purpose proposition which proof
is postponed to Appendix C.4.

Proposition 6. For any non-increasing f : R → [0, 1] such that ∀t ≥ 0,P(|w| > t) ≤ f(t),
then for every p ∈ (0, 1), for every t ≥ 0 such that 1− f(t) > 0,

F−1
X̃

(p) ≤ F−1
X

(
p

1− f(t)

)
+ t ,

sup
δ∈(0,p)

−F−1
−X

(
1− p+ δ

1− f(t)

)
− t ≤ F−1

X̃
(p) .

For instance, when applied to some noise with distribution dPw(w) =
1[−α,α](w)

2α dw with
t = α and f(t) = 0, if FX is continuous and strictly increasing on a neighborhood of F−1

X (p),
we can say that |F−1

X (p) − F−1
X̃

(p) | ≤ α. The second error term can be controlled with
Theorem 5 assuming that we fall into its hypothesis. By adding some uniform noise in [−α, α],
we then obtain the following result:

Theorem 7. If the distribution of X is a mixture of a finite number of Diracs in (a, b) and
of a random variable Y with a continuous density πY on [a, b] w.r.t. Lebesgue’s measure such

13



that πY > 0 on [a, b] \ O where O is a finite union of intervals and πY = 0 on O, then for any
precision δ and Lebesgue-almost-any probability vector p, there exist a noise level α > 0 such
that the ε-DP estimator q based on HSJointExp satisfies

‖q− F−1
X (p)‖∞ ≤ δ

with high probability (as n grows).

The proof is in Appendix C.6. Theorem 7 states in particular that many distributions that
satisfy the hypothesis of Proposition 3 and on which JointExp is not consistent also satisfy
the hypothesis of Theorem 7 and HSJointExp can thus achieve arbitrary levels of precision on
them (provided n is large enough).

As highlighted by Section 5.2, working on much stricter distribution classes can lead to
numerically tractable optimal levels of noise.

5.4 Privacy Amplification of HSJointExp
A final property that we would like to explore is the possible amplification of privacy of HSJoin-
tExp. Indeed, adding Laplace or Gaussian noise to bounded quantities is a common way to
make them private [18]. Furthermore, it is well known that some preprocessing steps (prior to
the application of an already private mechanism) increase the provable privacy of the overall
mechanism. This is for instance the case with subsampling [7]. Consequently, one would think
that adding noise to the data does not only preserve the privacy guarantees of the original
mechanism (as stated by Proposition 4), but has reasonable chances to make it more private.
In order to evaluate the actual privacy of our mechanism, we investigate its privacy loss:

L(X,Y,q) :=
dP/dq

(
E(2/ε)
uJE (X̃) = q

)
dP/dq

(
E(2/ε)
uJE (Ỹ) = q

)
forY ∼ X and q ∈ O where dP/dq

(
E(2/ε)
uJE (X̃) = q

)
refers to the value of the density of HSJoin-

tExp applied to X at q. For a given dataset X, we define εeff := supX∼Y supq log (L(X,Y,q))
the effective difficulty of distinguishing X from any of its neighbors. We always have that
εeff ≤ ε but we would like to measure the difference between the two and its dependence on
the noise level. The theoretical study of such is out of the scope of this article and is left for
future work, but we conduct a numerical analysis in Section 6.
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6 Numerical Results
This section presents the behaviors of JointExp, the Inverse Sensitivity mechanism and HSJoin-
tExp on synthetic and on on real-world distributions. In particular, 6.1 is devoted to the
presentation of the distributions of interest. Section 6.2 numerically studies the performance
of the algorithms on the above-mentioned distributions. And finally, Section 6.3 looks at the
possible numerical gain of privacy resulting of the noise addition.

6.1 Distributions
We claimed that HSJointExp has a huge advantage over regular JointExp in the case of distri-
butions with isolated atoms. In order to test it numerically, we propose to do so with synthetic
data in the first place. Indeed, in allows us to tune various interesting quantities. For real
world distributions, it is harder to identify which ones satisfy the condition of having isolated
atoms. We propose to evaluate the performance of the algorithms by identifying a real-wold
distribution with the empirical distribution of a real-world dataset. The concentration of this
dataset (i.e. how peaked its histogram is) is then the decisive criterion: The more concentrated
it is, the more suboptimal JointExp/IS is expected to be compared to the smoothed variants.

Mixed distributions (synthetic). For p ∈ [0, 1] and δ ∈ [0, 1/2], we define the Mixed
distribution of parameters (p, δ) as the distribution with support in [0, 1/2− δ]∪{1/2}∪ [1/2+
δ, 1] such that if a random variable X follows this distribution, we have P(X = 1/2) = p, P(X ∈
[0, 1/2 − δ]) = P(X ∈ [1/2 + δ, 1]), and conditionally to the event (X ∈ [0, 1/2 − δ]) or to the
event (X ∈ [1/2+δ, 1]), X is uniform. In particular, the mixed distribution of parameters (0, 0)
is the uniform distribution on [0, 1]. In order to better visualize such distributions, sampled
histograms are represented in Figure 2. The parameters ε and δ allow tuning, respectively,
the probability of the atom and its isolation. The bigger they are, the more HSJointExp is
expected to outperform the non-smoothed variants.

Pages and Ratings (real-world). The distributions that we call Pages and Ratings
correspond to the empirical distributions of a collection of ratings and of number of pages of
books from the Goodreads-Books dataset [36]. Gillenwater et al. [22] used the same datasets as
numerical evidences of the performance of JointExp for estimating empirical quantiles. Again,
sampled histograms are represented in Figure 2. The distributions look relatively smooth (i.e.
not too peaked and with a relatively small support), and as a result, we can expect the gap
between JointExp/IS and HSJointExp to be negligible.
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Histograms representing n = 107 data points sampled from the original distributions and binned
in 50 bins. Note that for Pages, Earnings and Dividends, the vertical axis is in log10-scale.

Figure 2: Distributions used for experiments

Earnings and Dividends (real-world). The distributions that we call Earnings and
Dividends correspond respectively to the personal incomes and personal incomes from dividends
categories of the US 2021 Census [9]. Again, sampled histograms are represented in Figure 2.
We can notice that contrary to the previous two real-world distributions, these two are much
more concentrated. For Earnings, the concentration is due to the existence of categories of
extremely high revenues. As a consequence, the support of the distribution is necessary big,
and the algorithms that seek for privately estimating the quantiles have little information about
the localization of the data points. On the other hand, the vast majority of people declare
revenues inferior to 500000 dollars, resulting in the high concentration of the distribution close
to 0. For Dividends, the support is smaller, but since a big part of the population simply does
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q̂ is the private estimator, and E is estimated by Monte-Carlo averaging over 50 runs. For
HSJointExp Uniform and Gaussian, the optimal noise level on a discretization of log10-resolution 2

of [10−10, 104] is selected. Note that both axis are in log10-scale.

Figure 3: Error of the estimators as a function of n

not have any revenues from dividends, the distribution shows an accumulation point at 0. With
both distributions, we expect the smoothing operation to vastly improve the performance of
JointExp/IS.
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6.2 Numerical Performance
Figure 3 and Figure 4 Compare the performance of JointExp, the Inverse Sensitivity mechanism
and two variants of HSJointExp with uniform and Gaussian noise structure respectively on the
distributions presented in Figure 2.

Complements on HSJointExp Uniform and Gaussian. The mechanism that we
call HSJointExp Uniform is the application of JointExp post addition of centered uniform
noise. If [a, b] was our estimate of the support of the distribution, we apply JointExp on
[a − σ

√
3, b + σ

√
3] where σ is the standard deviation of the noise. In HSJointExp Gaussian,

the centered uniform noise is replaced by centered Gaussian noise. The support of the resulting
distribution is now infinite, and the projection step is therefore mandatory. We chose to project
the data points in [a − 5σ, b + 5σ] where σ is the standard deviation of the noise in order to
make sure that most of the points will remain untouched by the projection step.

Analyzing the results of Figure 3. The first important fact to notice is the similar
performance of JointExp and the Inverse Sensitivity mechanism, confirming the theoretical
results of Section 3. The second is the similar performance of HSJointExp Uniform and Gaus-
sian, showing that the structure of the noise, given that it is regular enough, is not of critical
importance. Finally, and probably the most important, we can compare the performance of
JointExp/IS and of HSJointExp. On Mixed(0, 0) (i.e. the uniform distribution on [0, 1]), Rat-
ings and Pages, the two algorithms perform identically. This is what we expected given the
smoothness of the distributions. On more concentrated distributions like Earnings and Divi-
dends on the other hand, we see that HSJointExp vastly improves the performance of Joint-
Exp, sometimes by multiple orders of magnitude. Finally, Mixed(0.1, 0.05), Mixed(0.2, 0.1) and
Mixed(0.5, 0.25) demonstrate that the more isolated and probable the atoms of the distribution
are, the more suboptimal JointExp is compared to the smoothed variants.

Analyzing the results of Figure 4. Figure 4 shows the same results as Figure 3 but
with an emphasis on the dependence on the noise level. For instance, we can see that when
the smoothing operation allows for better performance, it is often the case for a large range
of smoothing levels. Finally, we can numerically observe two limit behaviors that are quite
intuitive : When the noise level tends to 0, HSJointExp performs as JointExp. Indeed, in this
case, the smoothing trick has almost no effect on the distribution. When the noise level tends to
+∞ on the other hand, the performance of HSJointExp is terrible. This is also quite intuitive,
since the smoothed distribution has lost almost all correlation with the original distribution.
For all these reasons, we recommend tuning the noise as in the extreme case of the Dirac (see
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Figure 4: Dependence on the smoothing level

Section 5.2) since this value is small enough to not fall in the regime where the performance
are degraded by the smoothing, but it still greatly improves the performance on degenerated
distributions.
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6.3 Privacy Amplification
In Figure 5 we numerically estimate εeff in the following setup: For each of the datasets (noted
X), we estimate the median using HSJointExp with Laplace noise tuned with ε = 1. We
estimate L(X,Y,q) for any Y ∼ X by discretizing the search space of Y and by Monte Carlo
averaging to integrate with respect to the noise.
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Figure 5: Evolution of εeff for the median estimation

The variance of the resulting εeff is high, but we can see two regimes: For low values of the
noise, the privacy of the mechanism is unchanged. For high values of noise, on the other hand,
εeff < ε and differentiating the datasets from their neighbors is harder.

By crossing the results with Figure 4 however, it seems that the privacy amplification only
occurs for values of the noise for which the utility of HSJointExp is already degraded compared
to regular JointExp.

7 Conclusion
We highlight the connections between the general inverse sensitivity mechanism applied to the
private estimation of multiple empirical quantiles and the recently published ad-hoc algorithm
JointExp [22]. We prove the consistency of this algorithm when used as a statistical estimator of
the statistical quantiles of the underlying distribution for smooth enough distributions. These
results are key to the understanding of JointExp, which wasn’t endowed with any theoretical
utility results before despite a excellent numerical behavior. Furthermore, we demonstrate that
isolated atoms in the distribution cause JointExp to be inconsistent, and propose a numerically
tractable fix that solves this issue. The numerical experiments on both real-world and synthetic
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distributions backup the theoretical claims of this article, and support our suggestion to use
our variant instead of JointExp in practice.

Very recently, a new approach was proposed by Kaplan et al. in [26]: they present an
algorithm that experimentally beats JointExp when the number of empirical quantiles of a
dataset is high. Determining under what conditions and in what circumstances this empirical
gap reflects in terms of statistical utility is left as future work.
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A Sampling from the inverse sensitivity mechanism
In this subsection, we explain how to sample exactly from the inverse sensitivity mechanism
for multiple quantiles in polynomial time and memory. It is essentially an adaptation from the
JointExp algorithm, and hence we will use the same notations when possible. For simplicity,
X is assumed to be sorted.

The sampling density of E(2/ε)
ũIS

(X) is constant on sets
(
[Xi1 , Xi1+1)×. . .×· · ·×[Xim , Xim+1)

)
∩

[a, b]m↗ for i = (i1, . . . , im) ∈ O′ where

O′ = {i ∈ {0, . . . , n}m , 0 ≤ i1 ≤ · · · ≤ im ≤ m} .

Hence, a finite sampling algorithm for E(2/ε)
uIS (X) is to:

• sample i = (i1, . . . , im) ∈ O′ under PO′ ;
• sample q′j uniformly in [Xij , Xij+1), independently for all j in {1 . . .m};
• output (q′j)j∈{1...m} sorted by increasing order;

with the probability PO′ defined on O′ as

PO′(i) ∝
1

γ(i)
Πm+1
j=1 φ(ij−1, ij , j)Π

m
j=1τ(ij) (A.1)

where, if we denote by counti(i) the number of occurrences of integer i in the ordered tuple i,

∀i ∈ O′, γ(i) = Πm
i=0counti(i)! ,

∀i ∈ {0, . . . ,m}, τ(i) = Xi+1 −Xi ,

and for 0 ≤ i, i′ ≤ m and 1 ≤ j ≤ m+ 1,

φ(i, i′, j) =


0, if i′ < i

e−
ε
2( 1

2
|δ̂(i,i′,m+1)|), if j = m+ 1

e−
ε
2( 1

2
|δ̂(i,i′,j)|)+1R+

(δ̂(i,i′,j)), otherwise

with δ̂(i, i′, j) = i′ − i− (dnpje − dnpj−1e).
SinceO′ has a finite cardinality bounded by (n+1)m, it is possible to compute the probability

of all the elements in that space and to sample this way. However, the fact that this complexity
is exponential in m makes it unusable in practice. [22] present an algorithm that allows to
sample from any distribution that factorizes in an analog form of (A.1) that has a complexity
(both in time and space) of O(n2m + m2n). Furthermore, if the function φ(i, i′, j) can be
rewritten as φ′(i′−i, j) (which is the case in our problem), the complexity becomes O(mn log n+
m2n). Overall, in order to sample efficiently from the inverse sensitivity mechanism, one can
use Algorithm 1 proposed by [22] by taking great care of using a sensitivity of 1 (instead of 2)
and by replacing the function φ by the one used in this article.
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B Inverse sensitivity smoothing [5]

B.1 General principle
When the output space O is a subset of a Euclidean space, the theory of Inverse Sensitivity
comes with a smoothing operation with some parameter ρ > 0. The utility function uIS can
be replaced with

uρIS(X, o) = sup
o′∈O:‖o−o′‖2≤ρ

uIS(X, o′) .

It is easy to see that this new utility function has sensitivity ∆uρIS = 1. Contrary to the non-
smoothed inverse sensitivity mechanism which only comes with guarantees for finite output
spaces O, this smoothed version gives more general results that only rely on a few mathematical
tools. Using the notion of modulus of continuity of the target function Q, defined as

ωQ(X, k) = sup
X′∈Xn:d(X,X′)≤k

{
‖Q(X)−Q(X′)‖2

}
,

and the corresponding image

WQ(X, k) = {Q(X′)−Q(X) : d(X,X′) ≤ k} ,

one can bound the estimation error [4] assuming that diam2(Q(Xn)) ≤ D: for 1 ≤ k ≤ n

P
(
‖E(2/ε)

uρIS
(X)−Q(X)‖2 ≥ ωQ(X, k) + ρ

)
≤ e−kε/2

(
D
ρ

)m
withm the ambient space dimension (i.e., O ⊂ Rm). The original authors consider a smoothing
parameter ρ = 1/nr for some r > 0 and k of the order of (4rm log n)/ε, which yields an
estimation error bounded with high probability by the modulus of continuity: With high
probability

‖E(2/ε)

u
1/nr

IS

(X)−X‖2 ≤ O (ωQ(X, (4rm log n)/ε) + 1/nr) . (B.1)

This theory also provides an optimality result. Under the rather strong hypothesis that there
exists a uniform c > 0 such that for all 1 ≤ k ≤ n and X ∈ Xn,

WQ(X, k) ⊇ c.ωQ(X, k).Bm2 (B.2)

where Bm2 is the l2 ball in Rm, the best ε-DP algorithm roughly behaves the same way in a
local minimax sense up to a logarithmic factor [4]:
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inf
A∈Aε

sup
X′:d(X,X′)≤m/ε

E(‖A(X′)−Q(X′)‖2)

≥ Ω(ωQ(X,m/ε))

where Aε is the class of ε-DP algorithms.

B.2 For the multiquantile problem
The problem of sampling: The hypothesis of Theorem 1 restrict our ability to compute
the inverse sensitivity of quantile candidates without collisions and that do not overlap with
any of the data intervals. Computing the supremum in the definition of the smoothed inverse
sensitivity would not only require to handle those cases, but also to have an algorithm faster
than looking at all the possibilities. We did not manage to overcome that difficulty hence the
reason for our heuristic smoothing (see Section 5).

Behavior of the modulus of continuity: The modulus of continuity measures the
maximal variation of a function on a ball for Hamming distance k. Here we derive a majoration
for the multiquantile problem. Assuming that X ∈ Xn is sorted, by moving a single point
(k = 1) of X, two behaviors can happen: Either it exactly matches one of the quantiles, and
the corresponding estimate can then vary continuously in the interval between the data point
below and the data point above; or it did not match any quantile, but it can still shift the entire
ordered statistics by one data point. This bounds the values of the function Q at Hamming
distance 1 of X (i.e., WQ(X, 1)):

WQ(X, 1) +Q(X) ⊆
m⋃
i=1

{
X[dnp1e−1:dnp1e+1]

× . . .
×X[dnpi−1e−1:dnpi−1e+1]

× [Xdnpie−1, Xdnpie+1]

×X[dnpi+1e−1:dnpi+1e+1]

× . . .

×X[dnpme−1:dnpme+1]

}
where we use the notation from computer science X[i:j] = (Xi, . . . , Xj). When k ≥ 1 points are
moving, the same mechanics arise where the ordered statistics is shifted by at most k points

28



and where we have at most k degrees of freedom. This yields an analog majoration with k
intervals in each cartesian product:

WQ(X, k) +Q(X) ⊆
⋃

1≤i1≤···≤ik≤m

m⊗
j=1

I(X, j, i, k) , (B.3)

where, if we note i = (i1, . . . , ik),

I(X, j, i, k) =

{
[Xdnpje−k, Xdnpje+k], if j ∈ i

X[dnpje−k:dnpje+k], if j /∈ i
.

Using (B.3), the modulus of continuity is bounded as

ωQ(X, k) ≤

√√√√ m∑
i=1

(
Xdnpie+k −Xdnpie−k

)2
. (B.4)

Hence, when the dataset X has many points close to its empirical quantiles, the modulus of
continuity ωQ(X, k) should not grow too fast in k.

Convergence with high probability : The concentration bound (i.e., Equation (B.1))
along with the upper bound on the modulus of continuity (i.e., Equation (B.4)) gives that,
with high probability

‖E(2/ε)

u
1/nr

IS

(X)−O(X)‖2 ≤ O

√√√√ m∑
i=1

(
Xdnpie+δ −Xdnpie−δ

)2
+

1

nr

 ,

where δ = d(4rm log n)/εe. Hence, whenever the dataset has many points in the neighbor-
hood of the empirical quantiles, we can expect the smoothed inverse sensitivity mechanism for
multiquantile (i.e., E(2/ε)

u
1/nr

IS

(X)) to perform well. This will typically be the case when the data

distribution has a Dirac on a quantile whose mass accounts for more than 4rm logn
nε or when the

data distribution has a density that is strictly positive on a neighborhood of its quantiles and
δ is not too large.

Local minimax bound In (B.3), the inner term
⊗m

j=1 I(X, j, i, k) has null Lebesgue
measure if k < m. Indeed, in this case, at least one factor in the product is countable. As a
consequence, denoting λ the Lebesgue measure,

k < m⇒ λ(WQ(X, k)) = 0.
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Hence, WQ does not satisfy the uniform condition expressed in (B.2) and the local minimax
bound falls. The only setup where this bound holds is in the case of single quantile estimation
(i.e., m = 1). As a consequence, we may not expect the optimality of the smoothed inverse
sensitivity mechanism for multiquantile in the class of ε-DP algorithm. We included this
negative result for the sake of exploring the theory of inverse sensitivity as a whole. It shows that
even if a sampling procedure for the smoothed inverse sensitivity mechanism for multiquantile
was to be found, finding an optimal sampling algorithm for private multiple quantiles is still
an open question.

C Omitted proofs

C.1 Proof of Theorem 1
If Y ∈ Q−1(q) then:

• Each "bin" has the right number of points: δ(i,Y,q) = 0, i ∈ {2 . . .m+ 1}, and
δclosed(1,Y,q) = 0.

• Every point of q appears in Y: q ⊆ Y.
Then we can understand the modifications that have to be made to X in order to obtain a
Y ∈ Q−1(q). For the first condition, some points have to be moved from bins in excess to bins
in deficit. This procedure accounts for

∑m+1
i=2 δ(i,X,q)+ + δclosed(1,X,q)+ operations which

can be reformulated as 1
2

∑m+1
i=2 |δ(i,X,q)| + 1

2 |δclosed(1,X,q)|. For the second condition, we
have to make sure that for all i, qi belongs to the dataset. For a bin in strict deficit, at least
a point has to be added to it due to the first condition. Hence, we can make sure to add the
associated quantile at no extra cost. For a bin in excess on the other hand, since by hypothesis
q ∩X = ∅, a point in the bin will have to be replaced by the associated quantile at an extra
cost of 1. In the end, we find the desired result.

C.2 Proof of Proposition 3
Since PX({q}) > 0 and PX(I \ {q}) = 0, there exists a nonempty interval A of [0, 1] such that
{q} = F−1

X (A) with λ(A) ≥ PX({q}), λ referring to Lebesgue measure. Let us prove that any
p with at least one component in A satisfies (4.1). For this, assume that p has its ith entry
pi in A. Due to the structure of PX , PX(X ∩ (I \ {q}) 6= ∅) = 0, hence almost surely it holds
that for every j we have either |Xj − q| ≥ η > 0 or |Xj − q| = 0. Remember that the output
density is a mixture of uniforms on the sets

(
[Xi1 , Xi1+1)× . . .× · · · × [Xim , Xim+1)

)
∩ [a, b]m↗

for i = (i1, . . . , im) ∈ O′. If the ith component of the output qi was to be sampled from a data
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interval that doesn’t admit q in its closure, then ‖q− F−1
X (p)‖∞ ≥ η. If on the other hand qi

was to be sampled from a data interval that does admit q in its closure, then it belongs to an
interval [Xk, Xk+1) for some k such that q ∈ [Xk, Xk+1] and Xk+1 −Xk ≥ η. Conditionally to
the fact that there arem′ ≤ m other quantiles that are sampled from [Xk, Xk+1], the conditional
expectation of ‖q − F−1

X (p)‖∞ can be lower by a (strictly) positive functional (f(η,m′)) of η
and m′ (because the corresponding slice of the output is uniform on [Xk, Xk+1]m

′ ↗. This
shows that the risk can be lower bounded by a quantity in Conv{η, f(η, 1), . . . , f(η,m)} which
is then bigger than min{η, f(η, 1), . . . , f(η,m)} which is positive.

C.3 Proof of Proposition 4
Let A be a ε-DP algorithm on Xn, X,X′ ∈ Xn such that X ∼ X′. Then, for every w ∈
Rn, projXn(X + w) ∼ projXn(X′ + σ(w)) for a specific permutation of the components σ. For
each measurable set S ⊆ O we get

P(A(projXn(X + w)) ∈ S)

=

∫
Rn

PA(A(projXn(X + w)) ∈ S)Pw(dw)

≤ eε
∫

Rn
PA(A(projXn(X′ + σ(w))) ∈ S)Pw(dσ(w))

= eε
∫

Rn
PA(A(projXn(X′ + w)) ∈ S)Pw(dw)

= eεP(A(projXn(X′ + w)) ∈ S)

which completes the proof.
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C.4 Proof of Proposition 6
Let t ≥ 0 such that 1− f(t) > 0,

P

(
X + w ≤ F−1

X

(
p

1− f(t)

)
+ t

)
≥ P

(
X + w ≤ F−1

X

(
p

1− f(t)

)
+ t, |w| ≤ t

)
≥ P

(
X ≤ F−1

X

(
p

1− f(t)

)
, |w| ≤ t

)
≥ P

(
X ≤ F−1

X

(
p

1− f(t)

))
P (|w| ≤ t)

≥ p

1− f(t)
(1− f(t)) ≥ p .

So, F−1
X̃

(p) ≤ F−1
X

(
p

1−f(t)

)
+ t. Let δ ∈ (0, p), the same arguments give

P

(
X + w ≤ −F−1

−X

(
1− p+ δ

1− f(t)

)
− t
)
≤ p− δ < p

which allows concluding with the desired result.

C.5 Proof of Theorem 5
Lemma 1. Let X̃ be a real random variable with density πX̃ and p ∈ (0, 1). We suppose that
πX̃ ≥ πmin > 0 on an open neighborhood N of F−1

X̃
(p). If we have access to X̃ = (X̃1, . . . , X̃n)

i.i.d. realisations of X̃ then for every γ > 0, if n ≥ 2
γπmin

,

[F−1
X̃

(p)− γ, F−1
X̃

(p) + γ] ⊂ N =⇒ P
(∣∣∣F−1

X̃
(p)− X̃(dnpe)

∣∣∣ > γ
)
≤ e
−n

(
γ2π2min
8(1−p)

)
+ e
−n

(
γ2π2min

8p

)

Proof. Let γ > 0 such that [F−1
X̃

(p)− γ, F−1
X̃

(p) + γ] ⊂ N . Let us define

N =
n∑
i=1

1(F−1

X̃
(p)+γ,+∞)(X̃i) .
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N is a sum of n independent Bernoulli random variable with probabilities of success lower than
η = 1− p− γπmin. If X̃(dnpe) > F−1

X̃
(p) + γ, then N ≥ n(1− p). So,

P
(
X̃(dnpe) > F−1

X̃
(p) + γ

)
≤ P (N ≥ n(1− p)− 1)

= P

(
N ≥ nη

(
1 +

γπmin

η
− 1

nη

))
≤ e−nη

(
γπmin
η
− 1
nη

)2
/
(

2+
γπmin
η
− 1
nη

)
where line 3 is deduced from line 2 by a multiplicative Chernoff bounds. If we further impose
that n ≥ 2

γπmin
,

P
(
X̃(dnpe) > F−1

X̃
(p) + γ

)
≤ e−

nη
4

(
γπmin
η

)2
/
(

2+
γπmin
η

)

≤ e
−n

4

(
γ2π2min

2(1−p)−γπmin

)
≤ e
−n

(
γ2π2min
8(1−p)

)

Looking at the event
(
X̃(np) < F−1

X̃
(p)− γ

)
and a union bound give the expected result.

Lemma 2. Let X̃ be a real random variable with density πX̃ and p ∈ (0, 1). We suppose that
πmax ≥ πX̃ ≥ πmin > 0 on an interval I of R. If we note N =

∑n
i=1 1I(X̃i) the number of

points that fall in I, we have

P (N ≥ 2nλ(I)πmax) ≤ e−
nλ(I)πmax

3 ,

P

(
N ≤ 1

2
nλ(I)πmin

)
≤ e−

nλ(I)πmin
8 .

.

Proof. This is a simple application of multiplicative Chernoff bounds to the sum N of indepen-
dent Bernoulli random variables.

Let 0 < γ < β such that πX̃ > 0 on O := ∪ni=1[F−1
X̃

(pi) − β, F−1
X̃

(pi) + β]. We note
πmin = infO πX̃ and πmax = supO πX̃ . We also define the following events:

A : ∀i,
∣∣∣X̃(dnpie) − F

−1
X̃

(pi)
∣∣∣ ≤ γ ,

B : ∀i,#(X̃ ∩ [F−1
X̃

(pi) + γ, F−1
X̃

(pi) + β]) ≥ 1

2
n(β − γ)πmin and

#(X̃ ∩ [F−1
X̃

(pi)− β, F−1
X̃

(pi)− γ]) ≥ 1

2
n(β − γ)πmin ,
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C : ∀i,#(X̃ ∩ [F−1
X̃

(pi)− γ, F−1
X̃

(pi) + γ]) ≤ 2n2γπmax .

Then we can compute,

P
(
‖E(2/ε)

uJE (X̃)− F−1
X̃

(p)‖∞ > β|A,B,C
)

P
(
‖E(2/ε)

uJE (X̃)− F−1
X̃

(p)‖∞ ≤ β|A,B,C
) ≤ P

(
‖E(2/ε)

uJE (X̃)− F−1
X̃

(p)‖∞ > β|A,B,C
)

P
(
‖E(2/ε)

uJE (X̃)− F−1
X̃

(p)‖∞ ≤ γ|A,B,C
)

Conditionally to A and B, −uJE(X̃, E(2/ε)
uJE (X̃)) ≤ 1

2

(
1
2n(β − γ)πmin

)
=⇒ ‖E(2/ε)

uJE (X̃) −
F−1
X̃

(p)‖∞ ≤ β. Furthermore, conditionally to A and C, ‖E(2/ε)
uJE (X̃) − F−1

X̃
(p)‖∞ ≤ γ =⇒

−uJE(X̃, E(2/ε)
uJE (X̃)) ≤ 1

2 (4(m+ 1)nγπmax). So,

P
(
‖E(2/ε)

uJE (X̃)− F−1
X̃

(p)‖∞ > β|A,B,C
)

P
(
‖E(2/ε)

uJE (X̃)− F−1
X̃

(p)‖∞ ≤ γ|A,B,C
) ≤ (b− a)m

(2γ)m/m!
e
− ε

4

(
(β−α)πmin

2
−4(m+1)γπmax

)
n

and by fixing γ = βπmin
16(m+1)πmax+2πmin

we end up with

P
(
‖E(2/ε)

uJE (X̃)− F−1
X̃

(p)‖∞ > β|A,B,C
)

P
(
‖E(2/ε)

uJE (X̃)− F−1
X̃

(p)‖∞ ≤ β|A,B,C
)

≤ 2m(b− a)mm!

βm

(
4(m+ 1)πmax + πmin/2

πmin

)m
e−

εβπmin
16

n .

We can use Lemma 1, Lemma 2 and union bounds to obtain the following for n big enough:

P
(
‖E(2/ε)

uJE
(X̃)− F−1

X̃
(p)‖∞ > β

)
≤ P

(
‖E(2/ε)

uJE
(X̃)− F−1

X̃
(p)‖∞ > β|A,B,C

)
+ P(Ac) + P(Bc) + P(Cc)

≤ 2m(b− a)mm!

βm

(
4(m+ 1)πmax + πmin/2

πmin

)m
e−

εβπmin
16

n

+
m∑
i=1

e
−n

(
β2π4min

8(1−pi)(16(m+1)πmax+2πmin)2

)
+

m∑
i=1

e
−n

(
β2π4min

8pi(16(m+1)πmax+2πmin)2

)

+me
−n βπminπmax

24(m+1)πmax+3πmin + 2me
−nπmin

8

(
β− βπmin

16(m+1)πmax+2πmin

)
.
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C.6 Proof of Theorem 7
We tune the noise w to have density dPw(w) =

1[−δ/2,δ/2](w)

δ dw. Under the hypothesis, F−1
X has

a finite number of discontinuity points. We can apply Proposition 6 with t = δ/2 and f(t) = 0
to get that for Lebesgue-almost-any p,

‖F−1
X̃

(p)− F−1
X (p)‖∞ ≤ δ/2 .

In order to conclude, we can describe the density πX̃ of the noisy random variable. It is
piecewise continuous on [a, b], πX̃ > 0 on [a, b] \ O′ where O′ is a finite union of intervals and
πX̃ = 0 on O′. Consequently, there only are a finite number of p’s in (0, 1) such that it is
not possible to find a β > 0 such that πX̃ > 0 on [F−1

X̃
(p) − β, F−1

X̃
(p) + β] and where πX̃ is

continuous on that interval. Any p that has no such p as any of its components qualifies and
we can apply Theorem 5 to get that

‖q− F−1
X̃

(p)‖∞ ≤ δ/2

with high probability. We get the result by the triangle inequality.
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