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Abstract
We address the differentially private estimation of multiple quantiles (MQ) of a dataset, a key building

block in modern data analysis. We apply the recent non-smoothed Inverse Sensitivity (IS) mechanism
to this specific problem and establish that the resulting method is closely related to the current state-of-
the-art, the JointExp algorithm, sharing in particular the same computational complexity and a similar
efficiency. However, we demonstrate both theoretically and empirically that (non-smoothed) JointExp
suffers from an important lack of performance in the case of peaked distributions, with a potentially
catastrophic impact in the presence of atoms. While its smoothed version would allow to leverage
the performance guarantees of IS, it remains an open challenge to implement. As a proxy to fix the
problem we propose a simple and numerically efficient method called Heuristically Smoothed JointExp
(HSJointExp), which is endowed with performance guarantees for a broad class of distributions and
achieves results that are orders of magnitude better on problematic datasets.

Introduction
As more and more data is collected on individuals and as data science techniques become more powerful,
threats to privacy have multiplied and serious concerns have emerged [NS06, BDK07, FJR15, DN03, HSR+08,
LDM10, NS08, Swe00, WE18, Swe02]. Against this background, differential privacy [DR+14] has become
the gold standard in privacy protection. By introducing randomness at a level calibrated to the sensitivity
of a query [DMNS06], it enables the inference of global statistics on a dataset while bounding each sample’s
influence and ensuring that the presence or absence of an individual in the dataset cannot be deduced from
the result. In the last decade, research results have brought nice building blocks and composition theorems
[DMNS06, KOV15, DRS19, DDR20, ACG+16]. They paved the way for many applications in data analysis,
from basic statistics to advanced artificial intelligence algorithms. Notably, differential privacy is now used
in production by the US Census Bureau [Abo18], Google [EPK14], Apple [TVV+17] and Microsoft [DKY17]
among others.

In this paper, we focus on the problem of estimating one or many quantiles with privacy guarantees.
Beyond the interest that quantiles have in themselves, they are also important primitives in many advanced
applications in machine learning from synthetic data generation to decision tree training. Indeed, since
quantiles are a reasonable choice of bins for quantizing a cumulative distribution function, they are commonly
used in algorithms based on decision trees, such as Random Forests and Boosted Trees [CG16], where variables
are binned using quantiles before they are considered for a split. Besides, in most recent synthetic data
models, continuous features are binned to reduce the output space’s dimension (see [ZCP+17, MMS21]).

Several techniques have been proposed to solve the problem of private quantiles estimation. A naïve one is
to add Laplace noise to non-private quantile estimates [DMNS06]. It is straightforward and easy to compute
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but the amount of added noise is based on a pessimistic scenario that could not materialize simultaneously
for all quantiles. To reduce the variance of the estimates, a variant that uses smoothed sensitivity instead
of the worst case scenario was introduced [NRS07]. It has the drawback, however, of using approximate
differential privacy [DKM+06] instead of pure differential privacy which allows some catastrophic failures
with small probability. The current state of the art for single quantile estimation uses a fine tuned version
of the exponential mechanism that is called ExponentialQuantile [Smi11, MT07]. It is cheap to compute
and the recent theory of Inverse Sensitivity [AD20b] shows that a conceptually simple smoothing operation
allows levels of privacy that are quadratically better than the smoothed sensitivity approaches while sticking
to pure differential privacy, achieving near-instance optimality. As a result, it has been adopted by the main
DP-ready libraries [All, IBM] used in production. All the algorithms previously mentioned are designed
to estimate a single quantile from a dataset. Composition theorems make them usable for multiquantile
estimation by evaluating each quantile independently but with an increased privacy noise. Recent work by
Gillenwater, Joseph and Kulesza [GJK21] has presented a new algorithm JointExp that is the first to exploit
the non-decreasing constraint of quantiles at the core of its sampling procedure and has since become the
new state of the art. Our first main contribution is to formally show that JointExp is indeed deeply related
to the general principle of the Inverse Sensivity approach.

The accuracy of JointExp and ExponentialQuantiles has been empirically demonstrated on multiple real-
world datasets. Our second main contribution is to show that for highly concentrated datasets, the utility of
these mechanisms in fact decreases drastically. To fix this, our third contribution is to propose a new heuristic
tractable smoothing technique for those algorithms that vastly improves their utility on problematic datasets
without noticeable repercussions on non-degenerate distributions. Our technique differs from the general
smoothing trick for inverse sensitivity based mechanisms introduced by Asi and Duchi [AD20b, AD20a] in
the sense that it smoothes the data distribution rather than taking a maximum convolution of the density
over the output space resulting in a much better computational complexity and making it a viable solution
in high dimension.

The paper is organized as follows. In Section 1 we recall the needed background on differential privacy,
inverse sensitivity, and (private) multiquantile estimation. Section 2 is devoted to characterizing the inverse
sensitivity mechanism for private multiquantile estimation and showing its close connections with JointExp.
The failure of JointExp on atomic distributions, and its analysis, are discussed in Section 3. The proposed
algorithm HSJointExp is introduced in Section 4, where we also establish its privacy and consistency guar-
antees. Finally, Section 5 gathers the numerical experiments demonstrating the behavior of the proposed
algorithm and its comparison with the state of the art.

1 Background
We consider a dataset X = (X1, . . . , Xn) ∈ Xn, where X denotes our feature space and n ≥ 1 is the sample
size. The Hamming distance d(X,Y) between two datasets X,Y ∈ Xn is defined as the minimal number of
changes (i.e., substitutions of entries) required to transform X into a permutation of Y. Hence, d(X,Y) = 0
iff there exists a permutation σ on {1, . . . , n} such that ∀i ∈ {1, . . . , n} , Xi = Yσ(i). We say that X and
Y are neighbors (noted X ∼ Y) if d(X,Y) = 1, that is if there exist two permutations σ1, σ2 such that
∀i ∈ {1, . . . , n− 1} , Xσ1(i) = Yσ2(i). Note that d(X,Y) is the minimum length of a path on consecutive
neighbors linking X to Y.

1.1 Differential Privacy
Given a privacy budget ε > 0, a randomized algorithm A : Xn → O is called ε-differentially private (ε-DP,
see [DKM+06]) if for all pairs of datasets X,Y ∈ Xn and all measurable sets S ⊆ O,

X ∼ Y ⇒ P
(
A(X) ∈ S

)
≤ eε × P

(
A(Y

)
∈ S) .

A classical way to design ε-DP algorithms is the Exponential Mechanism [MT07]. For a utility function
u : Xn × O → R that measures the relevance u(X, o) of the output o for the dataset X, the Exponential
Mechanism E(α)

u defined by u and with parameter α > 0 outputs a random variable on O with a density
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proportional to eu(X,o)/α with respect to some reference measure on O. For example, when O is discrete,

P
(
E(α)
u (X) = o

)
=

eu(X,o)/α∑
o′∈O e

u(X,o′)/α
∀o ∈ O .

Defining the sensitivity of the utility function

∆u := sup
o∈O,X,Y∈Xn:X∼Y

|u(X, o)− u(Y, o)| ,

E(α)
u is ε-DP as soon as α ≥ 2∆u

ε [MT07].

1.2 The inverse sensitivity mechanism
When considering some deterministic function Q : Xn → O as the target of the estimation, a specific choice
of utility function in the exponential mechanism, long known as folklore, was proved to have remarkable
optimality properties under certain assumptions [AD20b]. The inverse sensitivity function

uIS(X, o) := − inf
{
d(X,Y) s.t. Y ∈ Q−1(o)

}
is easily seen to have sensitivity ∆uIS = 1. The resulting ε-DP mechanism E(2/ε)

uIS (X) has then a behavior
that is quite intuitive: the likelihood of its output o decreases when Q−1(o) becomes further apart from X
in the Hamming distance.

1.3 Private Multiquantile Estimation
In order to fix the notations for the multiquantile estimation, given a < b ∈ R, let X = [a, b] be the
feature space and let O = [a, b]m↗ be the set of vectors of m increasing points in [a, b] representing m
quantiles. The hypothesis that the feature space is bounded is necessary to the analysis and is reasonable for
many applications. For applications where this is unrealistic, solutions have been proposed at the expense
of having an algorithm that has a small chance of halting [DL09, BAM20]. Given a probability vector
p = (p1, . . . , pm) ∈ (0, 1)m↗, the goal is to estimate the empirical quantile function associated to p and
defined as

Q : Xn → O
X 7→ (X(dnp1e), . . . , X(dnpme))

where X(i) denotes the i-th order statistics ofX1, . . . , Xn. As a safety check, we assume that ∀j ∈ {1, . . . ,m−
1}, n(pj+1 − pj) ≥ 1 to ensure that no data point will be chosen twice as a quantile representant. Note that
given p this condition can always be satisfied provided that we have enough data, i.e., that n is large enough.
For any X ∈ Xn, q ∈ O and p ∈ (0, 1)m, we use the convention Xi≤0 = qi≤0 = a, Xi≥n+1 = qi≥m+1 = b,
pi≤0 = 0 and pi≥m+1 = 1. Finally, for brevity of notations, vectors are interpreted when needed as the set
containing their components.

The definition of JointExp, the state-of-the-art mechanism for multiquantile private estimation (also
called ExponentialQuantile when m = 1) corresponds [GJK21] to the exponential mechanism E(2/ε)

uJE (X) with

−uJE(X,q) :=
1

2

m+1∑
i=1

∣∣δJE(i,X,q)
∣∣ ,

(which is of sensitivity 1) where

δJE(i,X,q) := n(pi − pi−1)−# (X ∩ (qi−1, qi]) .

This mechanism works by penalizing the result whenever the number of data points in each quantile interval
(# (X ∩ (qi−1, qi])) deviates from what should be expected (n(pi − pi−1)).
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2 JointExp meets Inverse Sensitivity
To the best of our knowledge, the inverse sensitivity mechanism for the private estimation of multiple
quantiles has never been studied yet. We do so in the rest of this section.

Deriving the expression of the inverse sensitivity for a dataset X and an output candidate q boils down to
answering the question: What is the minimal number of points from X that need to be changed in order to
obtain a vector that has q as its empirical quantiles? Theorem 1 solves this question for Lebesgue-almost-any
q.

Theorem 1. For any X ∈ Xn and q ∈ ([a, b] \X)
m↗ without collision,

−uIS(X,q) =
1

2

m+1∑
i=2

|δ(i,X,q)|+
m∑
i=2

1R+
(δ(i,X,q))

+
1

2
|δclosed(1,X,q)|+ 1R+

(δclosed(1,X,q))

with

δ(i,X,q) = # (X ∩ (qi−1, qi])− (dnpie − dnpi−1e)
δclosed(i,X,q) = # (X ∩ [qi−1, qi])− (dnpie − dnpi−1e) .

We postpone the proof to subsection D.1 for brevity. The cases where q has collisions or shares some
common points with the dataset are more difficult. Luckily, those cases can be neglected when considering
the sampling mechanism. Indeed, E(2/ε)

uIS (X) has a density that is absolutely continuous w.r.t Lebesgue
measure, the expression of the resulting mechanism can be further simplified (see Corollary 1) by modifying
the density on outcomes of null Lebesgue measure.

Corollary 1. For any X ∈ Xn, E(2/ε)
uIS (X) has the same output distribution as E(2/ε)

ũIS
(X) where ∀X ∈ Xn,

∀q ∈ O,

−ũIS(X,q) =
1

2

m+1∑
i=1

|δ(i,X,q)|+
m∑
i=1

1R+
(δ(i,X,q)) .

Remark 1. We discuss the sampling from E(2/ε)
ũIS

(X) in Appendix A but our conclusion is that it can be
done by making some minor adjustments to the JointExp sampling algorithm and that in particular, the two
algorithms share the same complexity of O(nm log n+ nm2).

Remark 2. One can check that |ũIS(X,q)− uIS(X,q)| ≤ 2(m+ 1) and thus the distributions differ signifi-
cantly only on outcomes of high utility (when the number of misclassified points is of the order O(m)). The
bad outcomes are almost equally penalized and for this reason, we can expect the two algorithms to perform
almost identically when n is large enough. This is indeed confirmed by numerical examples as illustrated in
Section 5. As a consequence, we will mainly focus on JointExp for the rest of this article.

3 JointExp fails on atomic distributions
To the best of our knowledge, no theoretical utility guarantee for JointExp has been derived yet, and the
performance of this algorithm has only been demonstrated experimentally. Even if it outperforms by multiple
orders of magnitude previous techniques on many real life datasets [GJK21], we prove in this section that it
can also completely fail on some distributions (see Proposition 1). As illustrated in Section 5, JointExp is
indeed observed to be suboptimal on several real world datasets associated to peaked distributions, such as
the US Census Bureau "Dividends" and "Earnings" data.

In order to understand the origin of this weakness of JointExp, we analyse the density of the distribution
of its output. This density is constant on the “blocks”

(
[Xi1 , Xi1+1)× . . .× · · · × [Xim , Xim+1)

)
∩ [a, b]m↗ for

each i = (i1, . . . , im) ∈ O′ where

O′ = {i ∈ {0, . . . , n}m , i1 ≤ · · · ≤ im} .

4



The probability of the output of JointExp being in a given block is proportional to the volume of this block.
What can happen in practice is that even though a block is interesting in terms of utility level, its volume
can in fact be close to zero if the data points are close. The volume can even be zero in case of equality,
hence this block is never selected by the exponential mechanism. This phenomenon occurs particularly often
for data drawn from distributions with isolated atoms: asymptotically, the dataset will almost surely contain
collisions among the data points as n grows and JointExp will fail on the corresponding quantiles.

To formally capture this phenomenon, from now on X is supposed to be a collection of n i.i.d. samples
of a random variable X with distribution PX and with cumulative distribution function (CDF) FX .

Proposition 1. Suppose that there exist q ∈ (a, b) and η > 0 such that I := (q − η, q + η) ⊂ [a, b] satisfies
PX({q}) > 0 and PX(I \ {q}) = 0. Then there exist some probability vectors p such that

E
X,E(2/ε)uJE

(
||E(2/ε)

uJE
(X)− F−1

X (p)||22
)

= Ωn(1) , (1)

where we use the vector notation F−1
X (p) = (F−1

X (p1), . . . , F−1
X (pn)). Furthermore, the Lebesgue measure of

those problematic probability vectors is lower bounded by PX({q})m.

Ωn(1) refers to a quantity that is lower bounded by a positive constant when n varies. We postpone the
proof to subsection D.2 for brevity.

This result shows that for certain data distributions with isolated atoms, JointExp is not consistent, even
asymptotically. This behavior is all the more counter intuitive as one would think that on datasets with a lot
of collisions, very little noise would be needed to ensure privacy since the points are already indistinguishable.

Example 1. Consider the private estimation of the median (i.e. m = 1 quantile, and p = (1/2)) on
[a, b] = [−1, 1]. Since m = 1, JointExp coincides with ExponentialQuantile, and when all data points are
equal to 0 (i.e. PX = δ0) its output is uniformly distributed in [−1, 1] whatever the sample size n as long as
it is even.

It is worth noting that defavorable cases are not simply irrealistic corner cases. Indeed, many real-life
datasets show accumulation points and are continuous distributions with some Diracs at specific points. A
famous example is the revenue statistics of the US Census Bureau: many participants in surveys are not
qualified to have some categorie of revenue (too young or not investing in some assets) hence the presence
of accumulations at the zero value for these categories. In fact, any continuous variable that is censored,
conditional on some other variable or generated by mimetic agents tending to repeat exactly some values,
will show accumulation points where JointExp has great chances to fail.

4 Heuristic smoothing, with guarantees
The type of failure of JointExp highlighted in Section 3 may seem surprising given a) the strong connection
between JointExp and the Inverse Sensitivity established in Section 2; and b) existing performance guarantees
for smoothed Inverse Sensitivity mechanisms [AD20b, AD20a]. Indeed, while JointExp is not smoothed,
smoothing convolves the output distribution with a max kernel, increasing the volume of the maximum of
the distribution to circumvent the difficulties raised by isolated atoms. We discuss such an approach in
Appendix B and conclude that while it would increase the utility of the resulting mechanism, it would also
make it computationally intractable.

As a tractable alternative, we present in this section a heuristic algorithm based on noise addition prior
to the application of JointExp, and we show that this mechanism is endowed with privacy and consistency
guarantees.

4.1 Introducing the HSJointExp algorithm
Since JointExp has a density that is constant on the blocks

(
[Xi1 , Xi1+1)× . . .×· · ·× [Xim , Xim+1)

)
∩ [a, b]m↗

for i = (i1, . . . , im) ∈ O′, it fails when the blocks that have a great utility have a too small volume. By
adding noise to the data points, we ensure a minimal volume for the volume of the interesting regions while
only shifting the quantiles of the distribution by a small amount.
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Let w1, . . . , wn be i.i.d variables, and let

X̃ = (X1 + w1, . . . , Xn + wn) . (2)

The Heuristically Smoothed JointExp (HSJointExp) algorithm returns E(2/ε)
uJE (X̃), the output of the JointExp

on X̃.
Let us now discuss the choice of the distribution Pw of the (wi)

′s. Discrete noise distributions (for instance
Bernoulli noise scaled by some α > 0: w

α ∼ B( 1
2 )) may seem interesting because they lead to easily tuneable

data gaps. However, it often just creates new instances where JointExp fails. Indeed, adding discrete noise
to data distributions with accumulation points creates new accumulation points.

For this reason, we focus in the sequel on continuous noise distributions with a density denoted by πw.
The density πX̃ of the noisy data X̃ is hence given by the convolution formula

∀t ∈ R, πX̃(t) =

∫
πw(t− x)PX(dx) . (3)

A typical choice of noise discussed in the sequel is the uniform distribution on the interval [−α, α].
Before discussing the choice of the scale parameter α, we remark that HSJointExp consists of the addition

of i.i.d. noise prior to running JointExp. Its privacy guarantees are thus a direct consequence of the following
generic composition lemma. Its proof, which we did not find elsewhere, is in the supplementary material
(see subsection D.3).

Proposition 2. Let w be a random variable on Rn with probability distribution Pw that is invariant by
permutations of the components of the vector. If A is ε-DP on Xn, then X 7→ A(projXn(X + w)) is also
ε-DP.

The projection step proj onto the data space Xn is necessary because JointExp needs to know the range
of the data. Note that Xn could be replaced by any set of the form [a − δα,n, b + δα,n]n where δα,n is a
quantity that depends on α and n. So for instance, if the the noise follows a uniform distribution on the
interval [−α, α], projecting on [a − α, b + α]n (does nothing) and then running JointExp on [a − α, b + α]
ensures that no point will overflow.

4.2 Consistency of HSJointExp on constant data

0 +α−α−1 1−α/4 α/4

X̃(n/2)X̃(0) X̃(1) X̃(n−1) X̃(n)

× × × × ×
. . . . . .

δJE(1, X̃, x) ≤ n/4≥ n/4 points ≥ n/4 points

Figure 1: δJE(1, X̃, x) is bounded by n/4 for −α/4 ≤ x ≤ α/4 on the event G.

In order to give some insight on the general analysis of HSJointExp, and to explain the choice that we
suggest for the amplitude α of the noise, we start by discussing the simple setting of Example 1 where Xi ≡ 0

and JointExp is known to fail. We consider uniform noise with distribution dPw(w) =
1[−α,α](w)

2α dw, and
HSJointExp returns the output of ExponentialQuantile/JointExp with m = 1 on the noisy data X̃:

M := E(2/ε)
uJE

(X̃).

The true median of the dataset is 0, and we study the quadratic risk E(M2) of our mechanism. Denoting by
N(x, y) =

∑n
i=1 1[x,y)(0 + wi) the number of noisy points falling in the interval [x, y), we define the event

G :=
{
N(−α,−α/4) ≥ n/4

}
∩
{
N(α/4, α) ≥ n/4

}
.
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Since N(−α,−α/4)
L
= N(α/4, α) ∼ B(n, 3/8), by Hoeffding’s inequality the probability of G is a least

1 − 2 exp(−n/32). Moreover, on the event G, for every x ∈ [−α/4, α/4] one has N(−α, x) ≥ n/4 and
N(x, α) ≥ n/4; hence, the minimal number of sample points that need to be changed so as to reach a median
equal to x is at most δJE(1, X̃, x) =

∣∣n/2 − N(−1, x)
∣∣ ≤ n/4 (see Figure 1), and uJE(X̃, x) ≤ n/8. On

the other hand, for every x /∈ [−α, α], δJE(1, X̃, x) = n/2 and uJE(X̃, x) = n/4. Since the density of M at
x ∈ [−1, 1] is equal to exp

(
− uJE(X̃, x)ε/2

)
/
∫ 1

−1
exp

(
− uJE(X̃, t)ε/2

)
dt,

P
(
|M | > α

∣∣G) ≤ P
(
|M | > α

∣∣G)
P
(
|M | ≤ α/4

∣∣G)
≤ 2× e−nε/8

α/2× e−nε/16
=

4e−nε/16

α
.

Therefore,

E
(
M2
)
≤ 12

(
P(Ḡ) + P

(
|M | > α

∣∣G))+ α2 P
(
|M | ≤ α

∣∣G)
≤ e−n/32 +

4e−nε/16

α
+ α2 .

Choosing α = e−nε/48 yields
E
(
M2
)
≤ 5e−nε/24 + e−n/32 .

We conclude that, contrary to JointExp, HSJointExp is here consistent as soon as nε→∞, which is anyway
a necessary condition. Besides, the analysis provides a simple and generic way to tune the noise amplitude
α as a function of n and ε.

4.3 General Consistency of HSJointExp
The consistency of HSJointExp is established by making modifications to the density (via the noise) so that
we fall into the favorable cases of JointExp. The ideal cases where JointExp gives an estimator that converges
in probability are given by the following theorem.

Theorem 2. If X is a random variable with density πX w.r.t. Lebesgue measure that is piecewise continuous
and if there exists β > 0 such that πX > 0 and is continuous on ∪ni=1[F−1

X̃
(pi)− β, F−1

X̃
(pi) + β], then

P
(
||E(2/ε)

uJE
(X)− F−1

X (p)||∞ > β
)

= on(1) .

The proof that uses similar techniques as in subsection 4.2 is in subsection D.5. The reader can find an
expression of the upper bound on(1) that does not hide any problem parameter in the proof. This theorem
states that for data distributions with continuous densities, JointExp is consistent and this is to the best of
our knowledge the first general result stating the consistency of JointExp.

Back to our problem, the data distribution is not so regular. In particular, we are interested in the case
where it contains atoms. Following the method that we propose for HSJointExp, we add some independent
and identically distributed noise to the data points. We decompose the error on the estimation in two terms:
The error measuring the gap between the quantiles of PX and the ones of PX̃ and the error made by JointExp
on the estimation of the quantiles of PX̃. The first term can be controlled by the following general purpose
proposition which proof is postponed to subsection D.4.

Proposition 3. For any non-increasing f : R → [0, 1] such that ∀t ≥ 0,P(|w| > t) ≤ f(t), then for every
p ∈ (0, 1), for every t ≥ 0 such that 1− f(t) > 0,

F−1

X̃
(p) ≤ F−1

X

(
p

1− f(t)

)
+ t ,

sup
δ∈(0,p)

−F−1
−X

(
1− p+ δ

1− f(t)

)
− t ≤ F−1

X̃
(p) .
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For instance, when applied to some noise with distribution dPw(w) =
1[−α,α](w)

2α dw with t = α and
f(t) = 0, if FX is continuous and strictly increasing on a neighborhood of F−1

X (p), we can say that |F−1
X (p)−

F−1

X̃
(p) | ≤ α. The second error term can be controlled with Theorem 2 assuming that we fall into its

hypothesis. By adding some uniform noise in [−α, α], we then obtain the following result:

Theorem 3. If the distribution of X is a mixture of a finite number of Diracs in (a, b) and of a random
variable Y with a continuous density πY on [a, b] w.r.t. Lebesgue measure such that πY > 0 on [a, b] \ O
where O is a finite union of intervals and πY = 0 on O, then for any precision δ and Lebesgue-almost-any
probability vector p, there exist a noise level α > 0 such that the ε-DP estimator q based on HSJointExp
satisfies

||q− F−1
X (p)||∞ ≤ δ

with high probability (as n grows).

The proof is in subsection D.6. Theorem 3 states in particular that many distributions that satisfy the
hypothesis of Proposition 1 and on which JointExp is not consistent also satisfy the hypothesis of Theorem 3
and HSJointExp can thus achieve arbitrary levels of precision on them (provided n is large enough).

As highlighted by subsection 4.2, working on much stricter distribution classes can lead to numerically
tractable optimal levels of noise.

4.4 Privacy Amplification of HSJointExp
One would think that adding noise to the data does not only preserve the privacy guarantees of the original
mechanism (as stated by Proposition 2) but actually makes it more private. In order to evaluate the actual
privacy of our mechanism, we investigate its privacy loss:

L(X,Y,q) :=
dP/dq

(
E(2/ε)
uJE (X̃) = q

)
dP/dq

(
E(2/ε)
uJE (Ỹ) = q

)
for Y ∼ X and q ∈ O where dP/dq

(
E(2/ε)
uJE (X̃) = q

)
refers to the value of the density of HSJointExp applied

to X at q. For a given dataset X, we define εeff := supX∼Y supq log (L(X,Y,q)) the effective difficulty of
distinguishing X from any of its neighbors. We always have that εeff ≤ ε but we would like to measure the
difference between the two and its dependence on the noise level. The theoretical study of such is out of
the scope of this article and is left as future work. However, we conduct a numerical analysis of such in
Section 5.

5 Numerical results
This section presents the behavior of HSJointExp on real world datasets. subsection 5.2 discusses its numer-
ical utility and subsection 5.3 its privacy.

5.1 Datasets
The experiments are conducted on four datasets. Pages and Ratings (see Figure 2) are subsampled from
a collection of ratings and of pages of books from the Goodreads-Books dataset [Sou]. Gillenwater, Joseph
and Kulesza [GJK21] used the same ones as numerical evidences of the performances of JointExp. Earnings
(resp. Dividends) are subsampled from the family earnings (resp. from the family earnings from dividends)
entries from the 2021 Census [Bur].

Pages and Ratings: Due to the relatively smooth distributions. JointExp performed well on those
datasets in its original paper [GJK21] and we expect HSJointExp to perform identically good on them.

Dividends and Earnings: With accumulation points at 0, we envision JointExp to be the suboptimal.
Comparatively, HSJointExp should perform much better on those datasets.
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Figure 2: Datasets used for experiments

5.2 Measuring the utility:
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and the range of the data. Vertical bars indicate the level of noise that we recommend. Horizontal bars

indicate the L2 scores that achieved respectively JointExp and the Inverse Sensitivity mechanism
(indistinguishable on some plots).

Figure 3: Dependence to the smoothing level of the private estimators, ε = 1.

Figure 3 represents the utility of HSJointExp for different noise structures, different levels of noise and
different m’s. The horizontal bars represent the scores of JointExp and of the Inverse Sensitivity mechanism.
The first striking fact is how close JointExp and IS perform, confirming our allegations. The scores of
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JointExp will serve as reference to compare our heuristically smoothed variants to.

Limit behaviors: When the standard deviation of the noise tends to 0, the performances of HSJointExp
and of JointExp match. In this scenario, the noisy points converge to their original place. On the other
hand, when the noise level exceeds a certain threshold, the performances degrade quickly. Indeed, the order
statistics of the noisy dataset has lost all significance.

About the structure of the noise: In our analysis we focused mainly on uniform noise but as we can
see experimentally, the structure of the noise does not make any substantial difference.

On Pages and Ratings: JointExp already performed well because the datasets did not really have any
accumulation point. As long as the noise is not unreasonably high, HSJointExp performs equally good.

On Earnings and Dividends: The concentration of the data forces JointExp to be suboptimal. Indeed,
experiments show that HSJointExp gives results that are orders of magnitude better for certain values of
the noise.

Tuning the noise: We generalize the optimal value of noise that we found in subsection 4.2 to give an
heuristic on the general choice of σ the standard deviation of the noise. In Figure 3, the vertical bars
represent σ = (b − a) min

{
10−2, e

− nε
20
√
m

}
which seems to be a decent choice for the noise level. We added

the scaling in (b− a) and we replaced ε by ε/
√
m as if each each quantile was to be estimated independently

by a strong composition theorem. The term 10−2 is just here to make sure that the points are not shifted
extensively and serves as a safety check.

Dependency on ε: Since the estimation of quantiles is mainly used as a subroutine, we conducted some
experiments to see if our observations still hold for smaller values of ε (in order to be used with composition
theorems). We present the results in Figure 5 for ε = 0.5 and Figure 6 for ε = 0.1 both in Appendix C. The
improvements of HSJointExp over regular JointExp are still present even though they are less noticeable
due to higher privacy noise. The heuristic for the noise calibration also seems to work.

5.3 Privacy Amplification
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Figure 4: Evolution of εeff for the median estimation

In Figure 4 we numerically estimate εeff in the following setup: For each or the the datasets (noted X),
we estimate the median using HSJointExp with Laplace noise tuned with ε = 1. We estimate L(X,Y,q) for
any Y ∼ X by discretizing the search space of Y and by Monte Carlo averaging to integrate with respect to
the noise.

The variance of the resulting εeff is high but we can see two regimes: For low values of the noise, the
privacy of the mechanism is unchanged. For high values of noise on the other hand, εeff < ε and differentiating
the datasets from their neighbors is harder.
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By crossing the results with Figure 3 however, it seems that the privacy amplification only occurs for
values of the noise for which the utility of HSJointExp is already degraded compared to regular JointExp.
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A Sampling from the inverse sensitivity mechanism
In this subsection we explain how to sample exactly from the inverse sensitivity mechanism for multiple
quantiles in polynomial time and memory. It is essentially an adaptation from the JointExp algorithm and
hence we will use the same notations when possible. For simplicity, X is assumed to be sorted.

The sampling density of E(2/ε)
ũIS

(X) is constant on sets
(
[Xi1 , Xi1+1)× . . .× · · · × [Xim , Xim+1)

)
∩ [a, b]m↗

for i = (i1, . . . , im) ∈ O′ where

O′ = {i ∈ {0, . . . , n}m , 0 ≤ i1 ≤ · · · ≤ im ≤ m} .

Hence, a finite sampling algorithm for E(2/ε)
uIS (X) is to:

• sample i = (i1, . . . , im) ∈ O′ under PO′ ;

• sample q′j uniformly in [Xij , Xij+1), independently for all j in {1 . . .m};

• output (q′j)j∈{1...m} sorted by increasing order;

with the probability PO′ defined on O′ as

PO′(i) ∝
1

γ(i)
Πm+1
j=1 φ(ij−1, ij , j)Π

m
j=1τ(ij) (4)

where, if we denote by counti(i) the number of occurences of integer i in the ordered tuple i,

∀i ∈ O′, γ(i) = Πm
i=0counti(i)! ,

∀i ∈ {0, . . . ,m}, τ(i) = Xi+1 −Xi ,

and for 0 ≤ i, i′ ≤ m and 1 ≤ j ≤ m+ 1,

φ(i, i′, j) =


0, if i′ < i

e−
ε
2 ( 1

2 |δ̂(i,i
′,m+1)|), if j = m+ 1

e−
ε
2 ( 1

2 |δ̂(i,i
′,j)|)+1R+

(δ̂(i,i′,j)), otherwise

with δ̂(i, i′, j) = i′ − i− (dnpje − dnpj−1e).
Since O′ has a finite cardinality bounded by (n + 1)m, it is possible to compute the probability of all

the elements in that space and to sample this way. However, the fact that this complexity is exponential
in m makes it unusable in practice. Gillenwater, Joseph and Kulesza [GJK21] present an algorithm that
allows to sample from any distribution that factorizes in an analog form of (4) that has a complexity (both
in time and space) of O(n2m+m2n). Furthermore, if the function φ(i, i′, j) can be rewritten as φ′(i′ − i, j)
(which is the case in our problem), the complexity becomes O(mn log n+m2n). Overall, in order to sample
efficiently from the inverse sensitivity mechanism, one can use Algorithm 1 proposed by Gillenwater, Joseph
and Kulesza [GJK21] by taking great care of using a sensitivity of 1 (instead of 2) and by replacing the
function φ by the one used in this article.

B Inverse sensitivity smoothing [AD20b]

B.1 General principle
When the output space O is a subset of a Euclidean space, the theory of Inverse Sensitivity comes with a a
smoothing operation with some parameter ρ > 0. The utility function uIS can be replaced with

uρIS(X, o) = sup
o′∈O:||o−o′||2≤ρ

uIS(X, o′) .

It is easy to see that this new utility function has sensitivity ∆uρIS = 1. Contrary to the non smoothed
inverse sensitivity mechanism which only comes with guarantees for finite output spaces O, this smoothed
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version gives more general results that only rely on a few mathematical tools. Using the notion of modulus
of continuity of the target function Q, defined as

ωQ(X, k) = sup
X′∈Xn:d(X,X′)≤k

{
||Q(X)−Q(X′)||2

}
,

and the corresponding image

WQ(X, k) = {Q(X′)−Q(X) : d(X,X′) ≤ k} ,

one can bound the estimation error [AD20a] assuming that diam2(Q(Xn)) ≤ D: for 1 ≤ k ≤ n

P
(
||E(2/ε)

uρIS
(X)−Q(X)||2 ≥ ωQ(X, k) + ρ

)
≤ e−kε/2

(
D
ρ

)m
with m the ambient space dimension (i.e., O ⊂ Rm). The original authors consider a smoothing parameter
ρ = 1/nr for some r > 0 and k of the order of (4rm log n)/ε, which yields an estimation error bounded with
high probability by the modulus of continuity: With high probability

||E(2/ε)

u
1/nr

IS
(X)−X||2 ≤ O (ωQ(X, (4rm log n)/ε) + 1/nr) . (5)

This theory also provides an optimality result. Under the rather strong hypothesis that there exists a uniform
c > 0 such that for all 1 ≤ k ≤ n and X ∈ Xn,

WQ(X, k) ⊇ c.ωQ(X, k).Bm2 (6)

where Bm2 is the l2 ball in Rm, the best ε-DP algorithm roughly behaves the same way in a local minimax
sense up to a logarithmic factor [AD20a]:

inf
A∈Aε

sup
X′:d(X,X′)≤m/ε

E(||A(X′)−Q(X′)||2)

≥ Ω(ωQ(X,m/ε))

where Aε is the class of ε-DP algorithms.

B.2 For the multiquantile problem
The problem of sampling: The hypothesis of Theorem 1 restrict our ability to compute the inverse
sensitivity of quantile candidates without collisions and that do not overlap with any of the data intervals.
Computing the supremum in the definition of the smoothed inverse sensitivity would not only require to
handle those cases but also to have an algorithm faster than looking at all the possibilities. We did not
manage to overcome that difficulty hence the reason for our heuristic smoothing (see Section 4).

Behavior of the modulus of continuity: The modulus of continuity measures the maximal variation
of a function on a ball for Hamming distance k. Here we derive a majoration for the multiquantile problem.
Assuming that X ∈ Xn is sorted, by moving a single point (k = 1) of X, two behaviors can happen: Either
it exactly matches one of the quantiles, and the corresponding estimate can then vary continuously in the
interval between the data point below and the data point above; or it did not match any quantile but it
can still shift the entire ordered statistics by one data point. This bounds the values of the function Q at
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Hamming distance 1 of X (i.e., WQ(X, 1)):

WQ(X, 1) +Q(X) ⊆
m⋃
i=1

{
X[dnp1e−1:dnp1e+1]

× . . .
×X[dnpi−1e−1:dnpi−1e+1]

× [Xdnpie−1, Xdnpie+1]

×X[dnpi+1e−1:dnpi+1e+1]

× . . .

×X[dnpme−1:dnpme+1]

}
where we use the notation from computer science X[i:j] = (Xi, . . . , Xj). When k ≥ 1 points are moving, the
same mechanics arise where the ordered statistics is shifted by at most k points and where we have at most
k degrees of freedom. This yields an analog majoration with k intervals in each cartesian product:

WQ(X, k) +Q(X) ⊆
⋃

1≤i1≤···≤ik≤m

m⊗
j=1

I(X, j, i, k) , (7)

where, if we note i = (i1, . . . , ik),

I(X, j, i, k) =

{
[Xdnpje−k, Xdnpje+k], if j ∈ i

X[dnpje−k:dnpje+k], if j /∈ i
.

Using (7), the modulus of continuity is bounded as

ωQ(X, k) ≤

√√√√ m∑
i=1

(
Xdnpie+k −Xdnpie−k

)2
. (8)

Hence, when the dataset X has many points close to its empirical quantiles, the modulus of continuity
ωQ(X, k) should not grow too fast in k.

Convergence with high probability : The concentration bound (i.e., Equation (5)) along with the
upper bound on the modulus of continuity (i.e., Equation (8)) gives that, with high probability

||E(2/ε)

u
1/nr

IS
(X)−O(X)||2 ≤ O

√√√√ m∑
i=1

(
Xdnpie+δ −Xdnpie−δ

)2
+

1

nr

 ,

where δ = d(4rm log n)/εe. Hence, whenever the dataset has many points in the neighborhood of the empir-
ical quantiles, we can expect the smoothed inverse sensitivity mechanism for multiquantile (i.e., E(2/ε)

u
1/nr

IS
(X))

to perform well. This will typically be the case when the data distribution has a Dirac on a quantile whose
mass accounts for more than 4rm logn

nε or when the data distribution has a density that is strictly positive on
a neighborhood of its quantiles and δ is not too large.

Local minimax bound In (7), the inner term
⊗m

j=1 I(X, j, i, k) has null Lebesgue measure if k < m.
Indeed, in this case, at least one factor in the product is countable. As a consequence, denoting λ the
Lebesgue measure,

k < m⇒ λ(WQ(X, k)) = 0.

Hence WQ does not satisfy the uniform condition expressed in (6) and the local minimax bound falls. The
only setup where this bound holds is in the case of single quantile estimation (i.e., m = 1). As a consequence,
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we may not expect the optimality of the smoothed inverse sensitivity mechanism for multiquantile in the class
of ε-DP algorithm. We included this negative result for the sake of exploring the theory of inverse sensitivity
as a whole. It shows that even if a sampling procedure for the smoothed inverse sensitivity mechanism for
multiquantile was to be found, finding an optimal sampling algorithm for private multiple quantiles is still
an open question.

C More numerical results
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Figure 5: Dependence to the smoothing level of the private estimators, ε = 0.5.

D Omitted proofs

D.1 Proof of Theorem 1
If Y ∈ Q−1(q) then:

• each "bin" has the right number of points: δ(i,Y,q) = 0, i ∈ {2 . . .m+ 1}, and δclosed(1,Y,q) = 0.

• every point of q appears in Y: q ⊆ Y.
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(indistinguishable on some plots).

Figure 6: Dependence to the smoothing level of the private estimators, ε = 0.1.

Then we can understand the modifications that have to be made to X in order to obtain a Y ∈ Q−1(q). For
the first condition, some points have to be moved from bins in excess to bins in deficit. This procedure ac-
counts for

∑m+1
i=2 δ(i,X,q)++δclosed(1,X,q)+ operations which can be reformulated as 1

2

∑m+1
i=2 |δ(i,X,q)|+

1
2 |δclosed(1,X,q)|. For the second condition, we have to make sure that for all i, qi belongs to the dataset.
For a bin in strict deficit, at least a point has to be added to it due to the first condition. Hence, we can
make sure to add the associated quantile at no extra cost. For a bin in excess on the other hand, since by
hypothesis q ∩X = ∅, a point in the bin will have to be be replaced by the associated quantile at an extra
cost of 1. In the end, we find the desired result.

D.2 Proof of Proposition 1
Since PX({q}) > 0 and PX(I \ {q}) = 0, there exists a nonempty interval A of [0, 1] such that {q} = F−1

X (A)
with λ(A) ≥ PX({q}), λ refering to Lebesgue measure. Let us prove that any p with at least one component in
A satisfies (1). For this, assume that p has its ith entry pi in A. Due to the structure of PX , PX(X∩(I\{q}) 6=
∅) = 0, hence almost surely it holds that for every j we have either |Xj−q| ≥ η > 0 or |Xj−q| = 0. Remember
that the output density is a mixture of uniforms on the sets

(
[Xi1 , Xi1+1)× . . .×· · ·× [Xim , Xim+1)

)
∩ [a, b]m↗

for i = (i1, . . . , im) ∈ O′. If the ith component of the output qi was to be sampled from a data interval that
doesn’t admit q in its closure, then ||q− F−1

X (p)||22 ≥ η2. If on the other hand qi was to be sampled from a
data interval that does admit q in its closure, then it belongs to an interval [Xk, Xk+1) for some k such that
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q ∈ [Xk, Xk+1] and Xk+1−Xk ≥ η. Conditionally to the fact that there are m′ ≤ m other quantiles that are
sampled from [Xk, Xk+1], the conditional expectation of ||q−F−1

X (p)||22 can be lower by a (strictly) positive
functional (f(η,m′)) of η andm′ (because the corresponding slice of the output is uniform on [Xk, Xk+1]m

′ ↗.
This shows that the risk can be lower bounded by a quantity in Span{η2, f(η, 1), . . . , f(η,m)} which is then
bigger than min{η2, f(η, 1), . . . , f(η,m)} which is positive.

D.3 Proof of Proposition 2
Let A be a ε-DP algorithm on Xn, X,X′ ∈ Xn such that X ∼ X′. Then, for every w ∈ Rn, projXn(X+w) ∼
projXn(X′ + σ(w)) for a specific permutation of the components σ. For each measurable set S ⊆ O we get

P(A(projXn(X + w)) ∈ S)

=

∫
Rn

PA(A(projXn(X + w)) ∈ S)Pw(dw)

≤ eε
∫

Rn
PA(A(projXn(X′ + σ(w))) ∈ S)Pw(dσ(w))

= eε
∫

Rn
PA(A(projXn(X′ + w)) ∈ S)Pw(dw)

= eεP(A(projXn(X′ + w)) ∈ S)

which completes the proof.

D.4 Proof of Proposition 3
Let t ≥ 0 such that 1− f(t) > 0,

P

(
X + w ≤ F−1

X

(
p

1− f(t)

)
+ t

)
≥ P

(
X + w ≤ F−1

X

(
p

1− f(t)

)
+ t, |w| ≤ t

)
≥ P

(
X ≤ F−1

X

(
p

1− f(t)

)
, |w| ≤ t

)
≥ P

(
X ≤ F−1

X

(
p

1− f(t)

))
P (|w| ≤ t)

≥ p

1− f(t)
(1− f(t)) ≥ p .

So, F−1

X̃
(p) ≤ F−1

X

(
p

1−f(t)

)
+ t. Let δ ∈ (0, p), the same arguments give

P

(
X + w ≤ −F−1

−X

(
1− p+ δ

1− f(t)

)
− t
)
≤ p− δ < p

which allows to conclude with the desired result.

D.5 Proof of Theorem 2
Lemma 1. Let X̃ be a real random variable with density πX̃ and p ∈ (0, 1). We suppose that πX̃ ≥ πmin > 0

on an open neighborhood N of F−1

X̃
(p). If we have access to X̃ = (X̃1, . . . , X̃n) i.i.d. realisations of X̃ then

for every γ > 0,

[F−1

X̃
(p)− γ, F−1

X̃
(p) + γ] ⊂ N =⇒ P

(∣∣∣F−1

X̃
(p)− X̃(np)

∣∣∣ > γ
)
≤ e
−n

(
γ2π2

min
2(1−p)

)
+ e
−n

(
γ2π2

min
2p

)
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Proof. Let γ > 0 such that [F−1

X̃
(p)− γ, F−1

X̃
(p) + γ] ⊂ N . Let us define

N =

n∑
i=1

1(F−1

X̃
(p)+γ,+∞)(X̃i) .

N is a sum of n independent Bernoulli random variable with probabilities of success lower than η = 1− p−
γπmin. If X̃(np) > F−1

X̃
(p) + γ, then N ≥ n(1− p). So,

P
(
X̃(np) > F−1

X̃
(p) + γ

)
≤ P (N ≥ n(1− p))

= P

(
N ≥ nη

(
1 +

γπmin

η

))
≤ e−nη(

γπmin
η )

2
/(2+

γπmin
η ) ≤ e

−n
(

γ2π2
min

2(1−p)−γπmin

)
≤ e
−n

(
γ2π2

min
2(1−p)

)

where line 3 is deduced from line 2 by a multiplicative Chernoff bounds. Looking at the event
(
X̃(np) < F−1

X̃
(p)− γ

)
and a union bound give the expected result.

Lemma 2. Let X̃ be a real random variable with density πX̃ and p ∈ (0, 1). We suppose that πmax ≥ πX̃ ≥
πmin > 0 on an interval I of R. If we note N =

∑n
i=1 1I(X̃i) the number of points that fall in I, we have

P (N ≥ 2nλ(I)πmax) ≤ e−
nλ(I)πmax

3 ,

P

(
N ≤ 1

2
nλ(I)πmin

)
≤ e−

nλ(I)πmin
8 .

.

Proof. This is a simple application of multiplicative Chernoff bounds to the sum N of independent Bernoulli
random variables.

Let 0 < γ < β such that πX̃ > 0 on O := ∪ni=1[F−1

X̃
(pi)− β, F−1

X̃
(pi) + β]. We note πmin = infO πX̃ and

πmax = supO πX̃ . We also define the following events:

A : ∀i,
∣∣∣X̃(npi) − F

−1

X̃
(pi)

∣∣∣ ≤ γ ,
B : ∀i,#(X̃∩[F−1

X̃
(pi)+γ, F

−1

X̃
(pi)+β]) ≥ 1

2
n(β−γ)πmin and #(X̃∩[F−1

X̃
(pi)−β, F−1

X̃
(pi)−γ]) ≥ 1

2
n(β−γ)πmin ,

C : ∀i,#(X̃ ∩ [F−1

X̃
(pi)− γ, F−1

X̃
(pi) + γ]) ≤ 2n2γπmax .

Then we can compute,

P
(
||E(2/ε)

uJE (X̃)− F−1

X̃
(p)||∞ > β|A,B,C

)
P
(
||E(2/ε)

uJE (X̃)− F−1

X̃
(p)||∞ ≤ β|A,B,C

) ≤ P
(
||E(2/ε)

uJE (X̃)− F−1

X̃
(p)||∞ > β|A,B,C

)
P
(
||E(2/ε)

uJE (X̃)− F−1

X̃
(p)||∞ ≤ γ|A,B,C

)
Conditionally to A and B, −uJE(X̃, E(2/ε)

uJE (X̃)) ≤ 1
2

(
1
2n(β − γ)πmin

)
=⇒ ||E(2/ε)

uJE (X̃) − F−1

X̃
(p)||∞ ≤

β. Furthermore, conditionally to A and C, ||E(2/ε)
uJE (X̃) − F−1

X̃
(p)||∞ ≤ γ =⇒ −uJE(X̃, E(2/ε)

uJE (X̃)) ≤
1
2 (4(m+ 1)nγπmax). So,

P
(
||E(2/ε)

uJE (X̃)− F−1

X̃
(p)||∞ > β|A,B,C

)
P
(
||E(2/ε)

uJE (X̃)− F−1

X̃
(p)||∞ ≤ γ|A,B,C

) ≤ (b− a)m

(2γ)m/m!
e
− ε4

(
(β−α)πmin

2 −4(m+1)γπmax

)
n
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and by fixing γ = βπmin
16(m+1)πmax+2πmin

we end up with

P
(
||E(2/ε)

uJE (X̃)− F−1

X̃
(p)||∞ > β|A,B,C

)
P
(
||E(2/ε)

uJE (X̃)− F−1

X̃
(p)||∞ ≤ β|A,B,C

) ≤ 2m(b− a)mm!

βm

(
4(m+ 1)πmax + πmin/2

πmin

)m
e−

εβπmin
16 n .

We can use Lemma 1, Lemma 2 and union bounds to obtain the following:

P
(
||E(2/ε)

uJE
(X̃)− F−1

X̃
(p)||∞ > β

)
≤ P

(
||E(2/ε)

uJE
(X̃)− F−1

X̃
(p)||∞ > β|A,B,C

)
+ P(Ac) + P(Bc) + P(Cc)

≤ 2m(b− a)mm!

βm

(
4(m+ 1)πmax + πmin/2

πmin

)m
e−

εβπmin
16 n

+

m∑
i=1

e
−n

(
β2π4

min
2(1−pi)(162(m+1)2π2

max+4π2
min)

)
+

m∑
i=1

e
−n

(
β2π4

min
2pi(162(m+1)2π2

max+4π2
min)

)

+me
−n βπminπmax

24(m+1)πmax+3πmin + 2me
−nπmin

8

(
β− βπmin

16(m+1)πmax+2πmin

)
.

D.6 Proof of Theorem 3
We tune the noise w to have density dPw(w) =

1[−δ/2,δ/2](w)

δ dw. Under the hypothesis, F−1
X has a finite

number of discontinuity points. We can apply Proposition 3 with t = δ/2 and f(t) = 0 to get that for
Lebesgue-almost-any p,

‖F−1

X̃
(p)− F−1

X (p)‖∞ ≤ δ/2 .

In order to conclude, we can describe the density πX̃ of the noisy random variable. It is piecewise continuous
on [a, b], πX̃ > 0 on [a, b] \ O′ where O′ is a finite union of intervals and πX̃ = 0 on O′. Consequently, there
only are a finite number of p’s in (0, 1) such that it is not possible to find a β > 0 such that πX̃ > 0 on
[F−1

X̃
(p)− β, F−1

X̃
(p) + β] and where πX̃ is continuous on that interval. Any p that has no such p as any of

its components qualifies and we can apply Theorem 2 to get that

‖q− F−1

X̃
(p)‖∞ ≤ δ/2

with high probability. We get the result by the triangle inequality.
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