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Abstract
Neuroscience is home to concepts and theories with roots in a variety of domains including
information theory, dynamical systems theory, and cognitive psychology. Not all of those can be
coherently linked, some concepts are incommensurable, and domain-specific language poses an
obstacle to integration. Still, conceptual integration is a form of understanding that provides
intuition and consolidation, without which progress remains unguided. This paper is concerned
with the integration of deterministic and stochastic processes within an information theoretic
framework, linking information entropy and free energy to mechanisms of emergent dynamics and
self-organization in brain networks. We identify basic properties of neuronal populations leading
to an equivariant matrix in a network, in which complex behaviors can naturally be represented
through structured flows on manifolds establishing the internal model relevant to theories of brain
function. We propose a neural mechanism for the generation of internal models from symmetry
breaking in the connectivity of brain networks. The emergent perspective illustrates how free
energy can be linked to internal models and how they arise from the neural substrate.

1. Introduction

Predictive coding is one of the most influential contemporary theories of brain function [1–3]. It is based on the
intuition, that the brain operates as a Bayesian inference system, which realizes an internal generative model
creating predictions about the outside world. These predictions are continuously compared against sensory
input, resulting in prediction errors and updating the internal model (see figure 1). The formulation of brain
function in terms of predictive coding is fascinating from the standpoint of theory as it addresses a plethora
of profound concepts in diverse fields. This provides the opportunity to link abstract notions such as dynam-
ics, deterministic and stochastic forces, emergence and self-organization [4–6], information, entropy, and free
energy [7, 8], stationarity, and many more, within an integrated framework. The integration across domains
supports the intuitive understanding of such complex abstractions, even though often, to maintain tractabil-
ity, not all aspects of the complexity of a given notion are equally captured. As an example, internal models
in predictive coding theories use simple models (for instance in decision making, the dynamics is reduced to
transitions), which are difficult to generalize to more complex behaviors. This approach is fully justified, when
the focus is left on the inference part of the process. Here we wish to do otherwise and actually emphasize the
neural basis of the internal model in terms of brain activations, as well as make the link to theories underlying
the emergence of complex behavior. Still, given the importance of information theoretic concepts, in particular
entropy and free energy, in predictive coding, this endeavor demands their integration with probability distri-
bution functions and the related deterministic and stochastic forces, present in contemporary brain network
models (see also [9–11] for related perspectives).

Free energy has been previously proposed by Karl Friston as a principle for brain function [12–14],
which formulates mathematically how adaptive, self-organized systems resist the natural (thermo-dynamical)
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Figure 1. Illustration of the process underlying the Bayesian brain hypothesis as described in the text. The generative model, on
the left, embodied in the internal neural dynamics, is updated through information exchange with the external world via
perception and action, depicted on the right side of the schematic of the Bayesian inference loop.

tendency to disorder. Over time, the free energy principle has grown out of an application of the free energy
concept used in the Helmholtz machine, to interpret cortical responses in the context of predictive coding,
and has gradually developed into a general principle for intelligent agency, also known as active inference
[15]. Both, the Bayesian inference process and the maximum information principle, can be effectively refor-
mulated as a problem of free energy minimization. While these notions of free energy are employed in two
related frameworks, they are not exactly identical. Ambiguity may arise from the fact that their general form
resembles that of the thermodynamic Helmholtz free energy, however, they follow from two distinct lines of
reasoning (see [15] for a detailed discussion). The first is what’s termed as ‘free energy from constraints’ and
correspond to the free energy that is minimized in the context of the maximum information principle, rep-
resenting a trade-off between deterministic constraints and stochastic forces [7]. It is this type of free energy
and its constraints, which are our principal consideration here. The other is what is referred to as ‘variational
free energy’ and concerns the Bayesian brain hypothesis. This notion of free energy arises through the refor-
mulation of Bayes’ rule as optimization problem that seeks a probability distribution that minimizes a relative
entropy (KL-divergence) representing an error of deviation from the exact Bayes’ posterior.

The deterministic constraints are expressed in terms of dynamics in the framework of structured flows
on manifolds (SFMs) [16, 17], which pertain to low-dimensional dynamical systems arising from networks
and are thus a prime candidate for the representation of internal models in brain theories. Correlations of
empirically accessible functions such as firing rates, energies, variance and many others contain the link of
both, free energy and SFMs, by the agency of probability distributions, which are shaped through the interplay
of deterministic and stochastic forces in the system. In his expositions on the meaning of entropy [18, 19],
Ilya Prigogine elaborates on the intimate relation of these forces. Here the concept of time goes beyond the
notion of repetition and degradation to that of constructive irreversibility, as embodied by a living system
perpetuating itself through entropy exchanges with the environment that it is embedded in. Biology is seen to
necessitate the inscription of time, as irreversibility, onto matter. In the context of neuroscience, this reminds
us of Ingvar’s postulate of the brain’s ability to simulate ‘memories of the future’ [20] through its temporally
polarized structures, the brain sustains and navigates experiences, of past, present and future, distributed across
its different areas.

While, the mathematical formulation for entropy appeared first in the context of classical thermodynamics,
relating macroscopic quantities such as heat, temperature and exchange of energy, the statistical mechanics that
followed formulated entropy as a function of logarithms of probabilities of the system to be in different possible
microscopic states. This latter functional form is identical to that of Shannon’s information entropy, in which
the probabilities that appear in the expression are those of variables taking on the different possible values (see
section 2.2). On a deeper level, as argued by Edwin T Jaynes in 1957, the two concepts of entropy are seen to be
synonymous as a measure of uncertainty represented by a probability distribution; in both cases the problem
is posed as one of prediction of a probability distribution subject to constraints of observables, and in which
the probability distribution which has maximum entropy is the only unbiased choice to be made [7].

This brief discourse on the meaning of entropy finds a theoretical framework in synergetics established
by Hermann Haken [4], which formally integrates the mathematical formalisms underlying the emergence of
dissipative structures in far-from-equilibrium systems. Nonlinearity and instability give rise to mechanisms
of emergence and complexity, whereas entropy and fluctuations lead to irreversibility and unpredictability.
The nature of such dynamics then leads naturally to evoking probabilistic concepts, which compensate for our
inability to precisely capture individual trajectories of the system. Synergetics has been the driver for translation
of these principles to other domains, in particular life sciences and neurosciences. Disentangling the duality of
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deterministic and stochastic influences, and elaborating on how it arises in the brain, sets the stage for what
we aim to achieve here. The goal of this exposition is to unpack these latter intricate relationships in order to
consolidate several seemingly disparate frameworks for the modeling of brain dynamics.

With the complementarity of these concepts in mind, and to facilitate accessibility to an audience of diverse
backgrounds with an interest in modeling macroscopic brain dynamics, we first step back and review some
relevant basic notions of probability and information theory.

2. Information theoretic framework for the brain—modeling system evolution

Edwin T Jaynes emphasized that the great conceptual advance of information theory lies in the insight that
there is an unambiguous quantity, the information entropy, which represents the ‘amount of uncertainty’
through a probability distribution, that intuitively reflects that a broad distribution represents more uncer-
tainty than a sharply peaked one, as well as satisfies all other conditions that make it consistent with this intu-
ition [7]. In absence of any information, the corresponding probability distribution is fully non-informative
and the entropy information vanishes. In presence of some deterministic constraints, such as measurements
of mean values of physical observables, Lagrange’s theory of first kind allows us to solve for the correspond-
ing probability distributions that maximize the information entropy under such constraints (or equivalently
minimizes the free energy [7, 12]). It is in this sense that entropic considerations precede the discussion of
deterministic influences and the maximum entropy distribution may be asserted by the fact that it respects
the consequences of all deterministic forces, but otherwise remains fully non-committal to other influences
such as missing information. When entropy is made the principal concepts, the relationships between relevant
quantities such as the free energy, probability distribution functions and SFMs are set up naturally, express-
ing themselves in the real world through correlations, physically accessible through measurement of functions
of the system’s state variables, and allowing in principle a systematic estimation of all the parameters in the
system.

2.1. Predictive coding and its modeling framework
Predictive coding is essentially based on three equations central to its discussion and associated concepts
[9, 12–14].

p(x, y) = p(y|x)p(x)

Q̇ = f (Q, k) + v

Z = h (Q) + w.

The first equation establishes a reduced form of the Bayesian theorem, expressed in terms of probability
distribution functions p, where p(x, y) is the joint probability of the two state variables x and y, and p(y|x) is the
conditional probability of the variable y given the state of the variable x. In the Bayesian framework, parameters
and state variables have a similar statue in the sense that they can each be described by distributions and enter
as arguments into the probability function p. For instance, the probability to jointly find states x and y for a
given parameter k is written as p(x, y|k), establishing the likelihood of obtaining a set of data x, y, given a set
of parameter values k, which have a prior distribution of p(k). The prior represents our knowledge about the
model and the initial values.

The second equation is known as the Langevin equation1 and establishes the generative model, in
which brain activations at the neural source level are represented by the N-dimensional state vector
Q = (x, y, . . .) ∈ RN , f (Q, k) are the deterministic influences expressed as an M-dimensional flow vector f
depending on the state Q and the parameter k or a set of multiple parameters {k}. v ∈ RN establishes the fluc-
tuating forces, typically assumed to be Gaussian white noise with 〈vi(t)vj(t

′
)〉 = cδijδ(t − t′), where δij is the

Kronecker-delta and δ(t − t′) the Dirac function. More general formulations of the influence of noise including
multiplicative or colored noise are possible and we here refer the reader to the relevant literature.

The third equation establishes the observer model and links the source activity Q(t) to the experimen-
tally accessible sensor signals Z(t) via the forward model h(Q) and measurement noise w. For electro-
encephalographic measurements, h is the gain matrix established by the Maxwell equations; for functional
magnetic resonance imaging measurements, h is given by the neurovascular coupling and the hemodynamic
Ballon–Windkessel model. In the present context, the observer model is of no concern, although it is of
immense importance in real world applications and plays often the role of a major contaminating factor in

1 A technically more precise form identifying the underlying calculus can be found for instance in [4]. The here assumed calculus is Ito.
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problems of model inversion and parameter estimation. We mention these engineering issues here for com-
pleteness, but will now for simplicity assume h to be the identity operation with zero measurement noise, thus
Z = Q.

Predictive coding relates to a large field of research in behavioral neurosciences [21, 22], in particular eco-
logical psychology [23, 24] devoted to the scientific study of perception-action and dynamical systems. Here
James J Gibson stressed the importance of the environment [25], in particular, the perception of how the
environment of an organism affords various actions to the organism. This loop of perception-action closely
matches the loop of predictions from and update of the internal generative model in predictive coding. A
particular nuance emphasized in ecological psychology has been the ecologically available information—as
opposed to peripheral or internal sensations—leading to the emergence of the perception-action dynam-
ics. Scott Kelso and colleagues have made major contributions to the formalization of this framework and
developed experimental paradigms to test the dynamical properties of the internal models underlying the coor-
dination between the organism and the environment [26–28]. These paradigms were theoretically inspired by
Hermann Haken’s synergetics [4], which has been foundational for the theories of self-organization. It gen-
erated intense research efforts with a strong focus on transitions between states in perception and action,
including modeling [29–32] and systematic experimental testing in bimanual and multisensorimotor coordi-
nation [33–44]. The approaches were then generalized to larger range of paradigms [45–53] with the goal to
extract the principle features of the organism’s behavior in interaction with the environment [22]. This large
body of work generated substantial evidence for the benefit of dynamical descriptions of behavior, which can
be subsumed in the framework of SFMs for functional perception-action variables in behavior (see [48] for a
recent review) and the brain [54–56].

2.2. Maximum information principle
Our understanding of the deterministic and stochastic processes determining the discrete value xi of the
state variable x is captured by the computation of the corresponding probability distributions pi. Shannon
demonstrated the remarkable fact that there exists an information quantity H(p1, . . . , pn), which uniquely
measures the amount of uncertainty represented by these probability distributions [8]. In his original proof,
he showed that the requirement of three basic conditions, most notably the composition law linking events
and probabilities, leads naturally to the following expression

H(p1, . . . , pn) = −K
∑

i

pi ln pi,

where K is a positive constant. As the measure H corresponds directly to the expression for entropy in statistical
mechanics, it is referred to as information entropy [7]. Commonly the discussion of its properties evolves from
the perspective of specification of probabilities linked to the amount of information available to an observer.
Laplace’s principle of insufficient reason assigns equal probabilities to two events in absence of any distinguish-
ing information. This subjective school of thought regards probabilities as expressions of human ignorance,
expressing formally our expectation if an event occurs or not. Such thinking is fundamental to theory of predic-
tive coding and its interpretation of cognitive processes generated by the brain. The objective school of thought
is rooted in physics and regards probability as an objective property of the event, which can be, in principle,
always measured by frequency ratios of events in a random experiment. Here we wish to take an intermediate
position in this regard by investigating the deterministic and stochastic processes underlying predictive coding.
The reference to deterministic and stochastic forces typically pertains to the language of the objective school,
where the subsequent interpretation within the predictive coding framework is part of the subjective school.
The generative model in predictive coding represents both types of forces through the Langevin equation and
shapes the probability functions, which then provide us with access to this information through the empirical
measurement of a function 〈g(x)〉. The triangular brackets denote the expectation value

〈g(x)〉 =
∑

i

pig(xi).

These correlations of g(x), together with the normalization requirement,
∑

i pi = 1, express the constraints
provided by deterministic and stochastic influences, within which the information entropy has a maximum.
Any other assignment than the maximum of information entropy would introduce another deterministic bias
or arbitrary assumption, which by hypothesis we do not have. This insight is the essence of Edwin T Jaynes’
maximum information principle [7]. Consequently, we maximize the information entropy H under these
constraints by introducing Lagrange parametersλi in the usual way known from classical mechanics and obtain
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pi = exp

⎛
⎝−λ0 −

∑
j

λjgj(xi)

⎞
⎠ ,

where the expression for the probability distribution is generalized for multiple measured functions gj(xi) of
the event xi. The entropy S of this distribution is maximal and reads

Smax = λ0 +
∑

j

λj〈gj(x)〉.

The link between empirical measurements and the maximum information entropy is established by the
partition function Z (as in Zustandssumme)

Z(λ1 . . . λn) =
∑

i

exp

⎛
⎝−

∑
j

λjgj(xi)

⎞
⎠

and the relations

〈gj (x)〉 = − ∂

∂λj
ln Z

λ0 = ln Z.

The correlations captured by the empirical measurements 〈gj(x)〉 link through these equations to the sta-
tionary probability distribution functions and consequently to the generative model (aka deterministic forces)
expressed through the Langevin equation. In the following sections, we will provide explicit examples with
clear neuroscience relevance.

3. Emergence in self-organizing system—modeling system dynamics

While the above-mentioned frameworks of perception-action dynamics and predictive coding complemen-
tarily explain how brain and behavior are shaped through acting on and observing one’s environment and
self, the framework of SFMs provides a mechanistic picture of how the end result of those shaping processes
is embodied. SFMs provides a conceptualization of a spatiotemporal infrastructure in abstract phase space for
the constantly evolving internal generative model in the form of spontaneously emerging manifolds of coordi-
nated neural activity that the brain navigates as it experiences and acts on the world. We now briefly discuss the
underlying core dynamical systems concepts and the associated mathematical machinery for the investigation
of SFMs in the context of brain dynamics.

3.1. Time-scales separation
Emergence in self-organizing systems requires the change of stability of some typically low-dimensional attrac-
tor. The system under consideration is nonlinear and high dimensional with N degrees of freedom. In the
space spanned by these degrees of freedom, each point is a state vector and represents a potential state of the
full system. As time evolves, the state of the system changes and thus traces out a trajectory in state space.
The rules that the system follows can be understood as forces that cause the changes of the state vector and
define a flow. In order to allow this system to generate low-dimensional behavior, that is, M dimensions with
M �N, there must be a mechanism in place that is capable of directing the trajectories in the high-dimensional
space toward the lower M-dimensional sub-space. Mathematically, this translates into two flow components
that are associated with different time scales: first, the low-dimensional attractor space contains a manifold M,
which attracts all trajectories on a fast time scale; second, on the manifold a structured flow F(.) prescribes
the dynamics on a slow time scale, where here slow is relative to the collapse of the fast dynamics toward and
onto the attracting manifold, as illustrated in figure 2. For compactness and clarity, imagine that the state
of the system is described by the N-dimensional state vector Q(t) at any given moment in time t. Then we
split the full set of state variables into the components q and s, where the state variables in q define the M task-
specific variables linked to emergent behavior in a low-dimensional subspace (the functional network) and the
N − M variables of s define the remaining recruited degrees of freedom. Naturally, N is much greater than M
and the manifold in the subspace of the variables q has to satisfy certain constraints to be locally stable, in
which case all the dynamics is attracted thereto.

3.2. Synergetics
We briefly outline some of the concepts of synergetics first, which will contextualize and aid in better under-
standing the concepts of SFM. Synergetics is the theory of self-organized pattern formation in open systems
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Figure 2. Emergence in a self-organizing dynamical system. External input drives the system out of equilibrium controlled by a
control parameter k. Nonlinear interactions in the system lead to the emergence of few macroscopic patterns (order parameters)
at critical values of the control parameter. The remaining degrees of freedom are enslaved and follow the evolution of the order
parameters.

(i.e., those that are in contact with the environment through matter, energy, and/or information fluxes) far
from thermo-equilibrium that are composed of numerously weakly interacting microscopic elements [4]. Due
to the interaction among the microscopic elements, such systems may become organized in spatially as well as
temporally ordered patterns that are typically macroscopic in nature and can be described by a limited num-
ber of so-called order parameters (or collective variables). Spontaneous switching of brain activity patterns
(i.e., non-equilibrium phase transitions) occurs as one macroscopic pattern losses stability while another sta-
ble pattern takes hold. The stability of a system’s state (or phase) implies that, if perturbed away from it, the
system will tend to return to that state. When stability is lost, the system will instead tend to move away from
that state and rather switch to another stable state. Close to such points of (macroscopic) instability the time to
return increases tremendously. As a result, the macroscopic state evolves rather slowly in response to perturba-
tion, whereas the underlying microscopic components maintain their individual time scale. Consequently, the
time scales of their dynamics differ tremendously (time-scales separation). From the perspective of the slowly
evolving macroscopic state, the microscopic components change so quickly that they can adapt instantaneously
to macroscopic changes. Thus, even though the macroscopic patterns are generated by the subsystems, the for-
mer, metaphorically, enslaves the latter [4]. Ordered states can always be described by a very few variables (at
least in the close vicinity of a bifurcation) and consequently, the state of the originally high-dimensional system
can be summarized by a few or even a single collective variable, the order parameter(s). The order parameters
then span the workspace. The circular relationship between the enslaving order parameters and the enslaved
microscopic components, which generate the order parameters, is sometimes referred to as circular causality,
which effectively allows for a low-dimensional description of the dynamical properties of the system [57]. The
notion of circular causality and the emergence of low-dimensional dynamics in self-organizing systems are at
the heart of Hermann Haken’s synergetics [4].

The mathematical formalism of synergetics can be briefly sketched as follows. An N-dimensional state
vector Q(t) ∈ RN is defined as a function of time and comprises all state variables of the system. The evolution
of the state vector is captured by a nonlinear ordinary differential equation:

Q̇ = F(Q, {k}) + υ(t), (1)

where F is a nonlinear function capturing all possible interactions and {k} is the set of control parameters,
which control the state of the system and are time-independent. The nonlinear evolution equation includes
the influence of noise υ(t), which shall be considered later, but not here. The state vector and its evolution
equations can also be extended to incorporate spatial dependence of the state variables, but it suffices here to
consider only spatially discrete systems. For a detailed mathematical treatment see Haken (1983).
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Figure 3. Synergetics and SFMs. In self-organization emerging patterns are constrained to low-dimensional manifolds such as a
spherical surface. Criticality in synergetics arises when the flow changes its topology locally (left, rectangular area). Criticality in
SFMs is non-local and arises when the flow of the entire manifold is zero.

The entry point to self-organization and emergence in synergetics is the qualitative change (state transi-
tions) of states of the system on the macroscopic level. A given state typically corresponds to a (stationary)
fixed point Q0 or periodic (limit) cycle in state space (see figure 2) and synergetics aims at describing the flow
in its local vicinity in state space (figure 3).

The deviation ε(t) from the steady state Q0 is Q(t) = Q0 + ε(t) and its time evolution can be approximated
by a Taylor expansion of F around the steady state Q0

Q̇ = F(Q, {k}) = F(Q0, {k}) + L(Q0, {k})ε+ A(Q0, {k})ε : ε+ · · · ,

where L(Q0, {k}) and A(Q0, {k}) are the first and second order terms of the Taylor expansion. As the control
parameters {k} are varied, the system is guided through parameter space and will encounter parameter con-
figurations, for which bifurcations occur, leading to the change of stability of the current state and a major
reorganisation of the system on the macroscopic level. The bifurcation point defines the working point k0 and
hence a second local constraint, this time in parameter space, next to the working point Q0 in state space.
Under these local conditions, at least one of the eigenvalues λ0 of the Jacobian L(Q0, {k0}) becomes zero2

and allows the application of the local center manifold theorem. It states that a small subset of new vari-
ables q(t) ∈ RM , M � N, the order parameters, arises, which dominate the system dynamics and enslave the
remaining variables s(t) ∈ RN−M by means of time scale separation, where the order parameters q(t) are slow
and the enslaved variables s(t) are fast. In the jargon of synergetics, enslaving means that the intrinsic dynamics
of the variables s(t) can be adiabatically eliminated and its long term evolution is expressed as a function of the
order parameters, that is s(t) = s(q(t)). This leads then to the reduced description of the emergent dynamics
as

q̇ = λ0q + P
(
q, s

(
q
)

, {k0} , Q0

)
, q(t) ∈ RM , M � N

s(t) = s(q(t)), s(t) ∈ RN−M ,

where P is a nonlinear function parametrized by {k0} , Q0 and can be analytically computed from F by use of
the decomposition into order parameters and enslaved variables.

3.3. Structured flows on manifolds arising from symmetry breaking
Although synergetics is conceptually not limited to local working points in state space, practically this has
always been the case. In biology this has placed an enormous limitation on the utility of the synergetic frame-
work, as the exploration of the flow in state space appears to be a fundamental activity of the organism. To
this end, symmetry offers itself as another guiding principle to define the working point in parameter space
[9, 16], with the objective to overcome the limitation of confinement to local regions in state space. Dynam-
ical systems with symmetries are called equivariant dynamical systems [59–62], for which group theoretical
methods provide a natural language [59, 60]. To demonstrate this, let us consider equation (1) with the state
variables formally expressed in q(t) ∈ RM , M � N rather than Q(t) ∈ RN , for reasons. We return to this point

2 Positive and negative eigenvalues of the Jacobian are associated with exponentially expanding and contracting flows along local unstable
and stable manifolds, respectively, transverse to the center manifold which is associated with the eigenvalues on the imaginary axis [58].
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Figure 4. Illustration of a structured flow on circular manifold. Top: the two nullclines for zero-flow in x and in y direction
overlap due to full symmetry of the two subsystems. The circular manifold is composed of stable fixed points. Bottom: symmetry
breaking, for instance via a coupling between x and y, moves the two nullclines apart and creates a narrow channel of structured
flow on the manifold comprising one stable and one unstable fixed point.

at the end of section 4.2. Further, for simplicity, let us consider only one control parameter k. Let then Γ be a
group acting on its solutions. The equation is said to be Γ-equivariant if F commutes with the group action of
Γ, that is F(γ · q) = γ̂ · F(q) for all γ ∈ Γ. This symmetry shall exist for a critical control parameter value k0.
An important consequence of Γ-equivariance is that if a solution q(t) solves the ordinary differential equation,
then so does γ · q(t) for all γ ∈ Γ. If the symmetry is continuous, that is γ · q = q + δq, then the corresponding
group is a Lie group, whose elements have the topology of an M-dimensional smooth manifold M in state space
and whose group operation is a smooth function of the elements. Then the stationary solutions of equation (1)
span a smooth manifold M, which is defined by

q̇ = F(γ · q0) = F(q0 + δq) = γ̂ · F(q0) = 0

allowing a continuous displacement δq along the manifold. In the case of symmetry breaking, k = k0 + μ,
where μ is small, the solutions of the system can be approximated by perturbations of the fully symmetric
solution

q̇ = F(q, {k}) = F(q0, k0)︸ ︷︷ ︸
=0

+
∂F

∂q
(q, k)

∣∣∣∣
q0,k0︸ ︷︷ ︸

M

· (q − q0) +
∂F

∂k
(q, k)

∣∣∣∣
q0,k0︸ ︷︷ ︸

N

· (k − k0)︸ ︷︷ ︸
μ

+ · · · ,

where M is the smooth invariant manifold of stationary solutions. A zero eigenvalue is associated with the
tangent space to M which establishes a time scale hierarchy to the other degrees of freedom as is typically known
from synergetics. For full symmetry, k = k0, all points on the manifold are stable fixed points if M is stable.
For small symmetry breaking, μ � 1, a slow flow emerges along the manifold, which is slow as compared to
the fast dynamics orthogonal to the manifold. These two cases are illustrated in figure 4 for a circular manifold
M : 0 = 1 − x2 − y2.

The structure of the flow on the manifold is entirely determined by the symmetry breaking through k in N.
In the neuroscience context, e.g. in large-scale brain network models, such a symmetry breaking result from
variations in the connectivity between brain regions or the local properties of the individual regions. There
is no associated immense dimension reduction as we know it from the traditional framework in synergetics,
causing a compression from N to M dimensions for the order parameters q(t) ∈ RM , M � N. Rather the
symmetry is obliged to be defined within a subspace spanned q(t) ∈ RM , M � N, which then is completed
by the remaining N − M variables s(t) ∈ RN−M as in the traditional synergetic framework. Assuming that
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these variables are not passing through an instability at the critical point, k = k0, then they can be adiabatically
eliminated via enslaving in the usual way and their dynamics is expressed as a function of the order parameters
q(t). The difference between the traditional synergetic framework and SFMs is that in the former, the full
N-dimensional system is considered allowing the full dimension reduction naturally, whereas in the latter the
added constraint needs to be assumed or imposed. These considerations lead us to the following form of system
equations:

q̇ = M
(
q, s, {k0} , Q0

)
· (q − q0) + μN

(
q, s, {k0} , Q0

)
s(t) = s(q(t)),

where q(t) ∈ RM , M � N, and s(t) ∈ RN−M. This set of equations established the basic mathematical frame-
work expressed by SFMs, in which we will develop the basic network equations next.

4. Equivariant dynamics in the brain

The precedent discussion of emerging SFMs is a general one pertaining to all dynamical systems in nature
satisfying the constraints. This section makes the link to dynamical systems relevant to neuroscience with
the goal to illustrate how SFMs naturally emerge from basic neuroscience networks and create probability
distributions in state space.

4.1. Neural mass models show basic 2D dynamics
Neural mass models are reduced mathematical representations of the collective activity of neurons. They are
typically derived from a population of neurons, which are represented by coupled point neuron models. Under
assumptions about the statistics of the distribution of action potentials and/or coupling between neurons,
mean field theory is applied to derive equations of collective variables, capturing the evolution of mean, vari-
ance and higher statistical momenta of the population. Notable examples include the Brunel Wang model
assuming Poisson distributed spikes [63], Zerlaut et al model using master equation and transfer function
formalisms [64], and the Stefanescu–Jirsa model [65, 66] exploiting the heterogeneity of neuronal parame-
ters leading to synchronized clusters of neurons. The mean field derivation of Montbrio et al is particularly
attractive from the theoretical perspective [67], because it is exact under the assumption of Lorentzian ansatz.
It derives two collective state variables, the mean firing rate r and the mean neuronal membrane potential V .
The corresponding phase flows are plotted in figure 5(A), the equations in figure 5(B). These and all other
neural mass models have in common that they reduce the mean field dynamics to a low-dimensional repre-
sentation, often in 2 dimensions. The neural mass dynamics typically comprises a down state corresponding to
a low firing rate, an upstate corresponding to a high firing rate, and the capacity to show oscillatory dynamics
prevalently in the upstate. Ignoring the oscillatory dynamics for the time being, we can conceptually reduce
the co-existing up and down states and their stability changes via bifurcations to the phaseflow of a single vari-
able, x, as illustrated in figure 5(C). Here the phase flow is reduced to the separation of the two stable states,
which may lose stability via saddle-node bifurcations under the change of an external control parameter k. This
model is mathematically identical to Wong–Wang model, which was derived under adiabatic approximation
from the Brunel Wang model. We wish to emphasize that this representation is not specific to the Brunel Wang
neural mass model, but captures the essential dynamic features of all neural mass models, that is co-existence
of a low- and high-firing state for a range of intermediate control parameter values, loss of the low/high-firing
state via bifurcations at high/low values of the control parameter. For these reasons we here use this reduced
neural mass as the basic building block of the equivariant brain network model in the next section.

4.2. Derivation of the equivariant matrix
Symmetry breaking in a network composed of bistable neural masses naturally leads to the creation of SFMs
[16]. This can be understood as follows. Let us first consider an intuitive toy network of two nodes with state
variables x and y. The underlying equations read

ẋ = f (x, k) + v = x(1 − x2) + k + v

ẏ = f
(
y, k

)
+ v = y(1 − y2) + k + v

and form a system of coupled neural mass models, where k is the local excitability and v the noise, following
the notation of equation (1). Figure 6 shows the phase flow in state space for this situation, illustrating four
stable fixed points, one unstable fixed point and four saddle points. The red and the green lines identify the
nullclines. The above equations can now be formally rewritten as
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Figure 5. Reduction of neural mass models to a basic one-dimensional form. (A) Two-dimensional Montbrio et al model for
various input strengths. (B) Composition of Montbrio et al neural mass model. (C) Reduced one-dimensional neural mass model.

ẋ = fx
(
x, y, G, k

)
+ v = x(1 − x2 − y2) + Gy2x + k + v

ẏ = fy
(
x, y, G, k

)
+ v = y(1 − x2 − y2) + Gx2y + k + v,

where the first term on the rhs represents the same circular invariant manifold as seen in the previous
section 3.3. For G = 1, these equations are identical to the uncoupled system. As G varies from 1 to 0, the null-
clines change their form continuously from infinity (straight lines) through elliptic to a closed circular shape
(see figure 6). G acts as a second control parameter quantifying the degree of mutual connectivity, ranging
from fully disconnected (G = 1) to all-to-all coupling (G = 0) topology. For a highly interconnected network,
that is G ≈ 0, these intermediate values constrain the phase flow on a closed manifold, centered around the
origin, creating a symmetric flow and time scale separation. If other forms of symmetry breaking are intro-
duced, such as regional variance of k or asymmetric connections, then this provides a means of systematically
controlling the flow on the manifold.

Extending this network to three network nodes, the equations read

ẋ = f
(
x, y, z, G, k

)
+ v = x(1 − x2 − y2 − z2) + G(y2 + z2)x + k + v

ẏ = f
(
x, y, z, G, k

)
+ v = y(1 − x2 − y2 − z2) + G(x2 + z2)y + k + v

ż = f
(
x, y, z, G, k

)
+ v = y(1 − x2 − y2 − z2) + G(x2 + y2)z + k + v,

where the corresponding phase flow is plotted for G = 0 in state space shown in figure 7. This situation cor-
responds to the unconnected network nodes as in the previous example. Again, the origin is an unstable fixed
point, located symmetrically within a cube comprising 1 unstable fixed point, 8 stable fixed points, separated
by 12 saddle points, that are aligned along the nullclines defining the edges of the cube (see figure 7). As con-
nectivity is being established between the three nodes, G reduces to smaller values toward the fully connected
network with G = 0. For the latter, the invariant manifold is a 2-sphere, centered at the origin with radius 1
and zero flow.

This situation can be formally generalized to a network composed of N basic units

ẋi = f
(
xi, xj, G, ki

)
+ vi = xi

⎛
⎝1 −

N∑
j=1

xj
2

⎞
⎠+ G

N∑
j	=i

cijxj
2xi + ki + vi.
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Figure 6. Flow in state space of two nodes under changes of the coupling parameter G. From top left in the sense of the clock:
G = 0, 0.25, 0.75, 1.

The network establishes an equivariant matrix in N-dimensional state space, in which for the absence of
any coupling, 2N stable fixed points exist, separated by the same number of unstable fixed points, all centered
around the origin. As connections are established, the system’s phase flow is more and more constrained to
the proximity of the (N − 1)-sphere SN−1 = {x ∈ RN : ‖x‖ = 1}, which is the manifold M as discussed in
section 2.2 and composed entirely of stable fixed points for G = 0, cij = 1 ∀ i, j, in full analogy to the 2 and 3
dimensional cases. In case of more elaborate symmetry breaking, for instance through the introduction of a
connectome, here cij 	= 1, or variation in regional excitability ki and local noise vi, a large range of structured
flows can be established on this manifold.

Connectome based network modeling has been performed extensively for resting state activity [68–75],
but no rigorous theoretical perspective has yet been offered beyond descriptive statistics (such as functional
connectivity, functional connectivity dynamics, multiscale entropy) and hypothesized mechanisms (subcriti-
cality, stochastic resonance). The symmetry breaking of the equivariant matrix through the connectome adds
an attractive alternative explanation. However, it still lacks an important explanatory argument, as there is no
substantial dimension reduction provided by the symmetry breaking of the equivariant matrix. The invari-
ant manifold remains N − 1 dimensional. As discussed in section 3.3 in general, and now here specifically
for neuroscience, it poses questions in terms of how such a dimension reduction of the variables Q(t) in
N-dimensional space to variables q(t) in M-dimensional space can be accomplished, as M should be much
smaller than N.

The following is a possible realisation. In more realistic neuroscience models, the fixed points will not be
identical. Generally the down state is more stable than the upstate. Although such differences will inevitably
introduce gradients into the flow of the network, it will not suffice to reduce the low-dimensional manifolds
that are required for task-specific processes and are known to exist in the human brain activity. Discussions
in the literature evoke the possibility of decorrelation as an important mechanism for information processing
[76–78] and may here be realized by oscillations in the upstate. Decoupling via frequency separation or averag-
ing is a well known mechanism in dynamical system theory (e.g. rotating wave approximation) and exploited
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Figure 7. Flow in a network of three uncoupled nodes. A 3 three-dimensional cube spans an equivariant matrix with 1 unstable
fixed point in the center (green), 8 stable fixed points (red) and 12 saddle points (green). Upper and lower figure show the same
situation with different degrees of detail.

in large-scale brain networks for the organization of synchrony [79] and cross-frequency coupling [80]. Such
capacity for oscillatory behavior is an excellent candidate for the purpose of disconnecting an equivariant M-
dimensional manifold from its N − M-dimensional complementary subspace with M � N, offering a clear
path forward for future scientific investigation.

4.3. Derivation of the probability distribution function and the free energy
The free energy can be seen to mirror the evolution of structured flows on the manifold created by the deter-
ministic features present in the system. In the context of the large scale brain network models, we demonstrated
that the symmetry breaking via the connectome qualifies as a candidate mechanism underlying the emergence
of these features, thereby establishing the link to biophysical processes such as Hebbian learning and other
plasticity mechanisms. The system is then entropically driven by stochastic fluctuations exploring the man-
ifold. Each point on the manifold is associated with a probability distribution. As a limit case in absence of
stochastic forces, these distributions are sharply peaked approximating delta-functions and the structured flow
is fully deterministic [16]. The link between these deterministic and stochastic influences is the Fokker–Planck
equation, which prescribes the temporal evolution of the probability distribution functions [4]. By restricting
our attention to the prediction of its stationary properties, the interpretation of the statistical properties is
rendered time independent, and we can refer to states, otherwise the interpretation of the state of the system
at time t is to be carried out on the basis of measurements performed at time t only.

We wish to illustrate this along a two examples. The first example pertains to the situation previously dis-
cussed in section 4.1, in which two nodes were coupled. Let us place the initial focus on only one of the two
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stable fixed points. We linearize its flow and obtain the following expression

ẋ = f1(x, y) = −x + 2βy + v = −∂V

∂x
+ v

ẏ = f2(x, y) = −(y − y0) + 2βx + v = −∂V

∂y
+ v,

where V(x, y) is the potential, v the noise, y0 a deplacement and β the coupling strength. The determin-
istic and stochastic influences express themselves in the experimentally accessible correlations, establishing
the constraints that need to be satisfied when constructing the probability distribution function p(x, y). The
expectation value of a function g(x, y) is 〈g(x, y)〉 which can be widely represented by the statistical momenta
〈x〉, 〈y〉, 〈x2〉, 〈y2〉, 〈xy〉, . . . . The stationary probability distribution function

p(x, y) = Ne−2V(x,y)/Q

is the time independent solution to the Fokker–Planck equation3

ṗ +
∑

i

∂

∂xi

(
fi(x, y) − 1

2
Q
∑

i

∂p

∂xi

)
= 0,

where x1 = x and x2 = y, and N is the normalization constant. It can be expressed by the ansatz

p(x, y) = exp(λ0 + λ1x2 + λ2x + λ3xy + λ4y + λ5y2),

where all the Lagrange multipliers λi can be estimated explicitly in the usual way from the experimentally
accessible correlations 〈g(x, y)〉 and the normalization condition

∫∞
−∞ p(x, y)dx dy = 1. Without limiting the

generality, we can write the above for simplicity assuming λ1 = −1,λ2 = 0 and λ3 = −2β,λ4 = 2y0,λ5 = −1
and obtain

p(x, y) = C exp(−x2 + 2βxy + 2y0y − y2).

The normalization factor is obtained from the term with λ0. This joint probability distribution function
can be formally rewritten to reflect the Bayes theorem and link back to our initial discussion, that is

p(x, y) = p(x|y)p(y) = Nx exp(−(x − βy)2/Q)Ny exp(−((1 − β2)y2 + 2y0y − y2
0)/Q),

where Nx, Ny are the normalization constants of p(x|y), p(y). If the two nodes are independent, then naturally
the momenta factorize 〈xy〉 = 〈x〉〈y〉 and the deterministic coupling β = 0. The conditional probability p(x|y)
becomes independent of y, that is p(x|y) = p(x), and both p(x) and p(y) are fully Gaussian. The expression
F = (x − βy)2/Q is the free energy and intuitively captures the interaction between the nodes as a deformation
of the stationary probability density as illustrated in figure 8.

The second illustrative example comprises the equivariant matrix in section 4.2. For simplicity, we restrain
the discussion again to two nodes. Following the same mathematical steps as in the previous example, the
potential function for the coupled nodes reads

V(x, y) = −1

2
y2 +

1

4
y4 − 2ky − 1

2
x2 +

1

4
x4 − 2kx +

1

2
βx2y2,

where β = G − 1 is the coupling strength, with β = 0 for no coupling. With the same arguments as before,
we can now write the stationary probability function as p(x, y) = p(x|y)p(y) with

p(y) = Ny exp

(
−
(
−1

2
y4 + y2 + 4ky

)
/Q

)

p(x|y) = Nx exp

(
−
(
−1

2
x4 + x2 + 4kx − βx2y2

)
/Q

)
.

In full analogy, the free energy is explicitly given by F = (− 1
2 x4 + x2 + 4kx − βx2y2)/Q and provides an

illustrative example of Friston’s free energy principle, where the essential deterministic and stochastic features
of the correlations between x and y are captured via the interaction term with β. For β = 0 the two nodes are

3 Note that there exist generalizations of the formalism to nonlinear Fokker–Planck equations addressing complex behaviors like
anomalous diffusion. This leads to a free energy-like functional related to non-extensive (Tsallis) entropy functions, e.g., see [81].
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Figure 8. Probability distributions around a stable fixed point in a two-dimensional network of linearly coupled identical nodes
with coupling strength β = 1 − G. Top: β = 0. Bottom: β = 0.5.

statistically independent and display each a bimodal distribution illustrated in figure 9. Each individual fixed
point can be locally approximated by a Gaussian, which can be analytically derived by a Taylor expansion of
the full probability density function around the fixed point. As the coupling strength β increases toward 1,
the stationary probability distribution changes its shape approaching the circular manifold and structuring
its flow on the manifold. Distributions for various β values are plotted in figure 9. Here the structured flow
comprises the four stable and four unstable fixed points.

5. Final thoughts and conclusions

If we accept the concept of entropy and information as discussed here as the first basic primitive, then what
follows naturally from the information theoretic framework, in light of our intuitive understanding of entropy
as uncertainty, is the fundamental organization of deterministic and stochastic influences expressed in the
shape variations of probability distribution functions. This consequence applies to all systems in nature and
not just the brain, which is why Hermann Haken often referred to this as the second foundation of synergetics
[4].

Narrowed down to the forces present in brain networks, we linked basic properties of neural masses and
networks to the emergence of invariant manifolds in state space, which are the carrier of structured flows
known from behavioral neurosciences, in particular ecological psychology and coordination dynamics. The
SFMs represent the internal model in predictive coding. This link to behavior is important as it has been reg-
ularly called upon to guide research in neuroscience to make it ecologically meaningful. When computing the
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Figure 9. Potential and stationary probability distribution functions in an equivariant network of two nodes. The coupling
strength is varied from left to right strength β = 1 − G = 0, 0.75, 1. Top row: potential. Bottom row: probability distributions.

probability distribution functions explicitly, the free energy appears naturally expressed by the structured flow
on the manifold, which in turn is generated by the couplings between the network nodes. During the process of
active inference, the brain adjusts these couplings to change the corresponding SFMs (aka the internal model).

Let us bear in mind that these couplings (or more precisely: the coupling parameters) are target for varia-
tion under the minimization of free energy in predictive coding on the one hand side, and responsible for the
realization of task specific functional architectures in behavior on the other hand side. Unlike the free energy
principle which addresses the mechanism of ‘how’ the network evolves in terms of connectivity and param-
eters, SFMs instead address the ‘what’—‘that is, what are the constraints upon the network that need to be
satisfied to enable the emergence of a particular flow and manifold’ [16]. As such, entropy and free energy can
be evoked to explain the evolution of the processes through learning and development, but can also be seen to
be at play on the shorter timescales of cognitive performance. Accordingly, the flows on the low-dimensional
task-specific manifolds capture, in abstract state space, the mechanistic manifestation of entropy as con-
structive irreversibility in the brain, and thus, serve as a principal enabling link between neural activity and
behavior.
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