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Abstract  9 

 10 
Horizontal connections in the primary visual cortex of carnivores, ungulates and primates 11 
organise on a near-regular lattice. Given the similar length-scale for the regularity found in 12 
cortical orientation maps, the currently accepted theoretical standpoint is that these maps are 13 
underpinned by a like-to-like connectivity rule: horizontal axons connect preferentially to 14 
neurons with similar preferred orientation. However, there is reason to doubt the rule’s 15 
explanatory power, since a growing number of quantitative studies show that the like-to-like 16 
connectivity preference and bias are mostly observed at short-range scale, are highly variable 17 
on a neuron-to-neuron level and also depend on the origin of the presynaptic neuron. Despite 18 
the wide availability of published data to this effect, the accepted model of visual processing has 19 
never been revised. We review three lines of independent evidence supporting a much-needed 20 
revision of the like-to-like connectivity rule, ranging from anatomy to population functional 21 
measures, to computational models and theoretical approaches. We advocate an alternative, 22 
distance-dependent connectivity rule that is consistent with new structural and functional 23 
evidence: from like-to-like bias at short horizontal distance to like-to-all at long horizontal 24 
distance. This generic rule accounts for the observed high heterogeneity in interactions 25 
between the orientation and retinotopic domains, that we argue is necessary to process non-26 
trivial stimuli in a task-dependent manner.  27 
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INTRODUCTION 28 

Retinotopy and orientation are two of the main features processed and topographically 29 
organized into maps in primary visual cortex (V1) of carnivores, ungulates and primates. 30 
Anatomical connections between neurons separated on the cortical sheet, through the so-called 31 
intrinsic, intra-cortical or horizontal axons have a crucial theoretical importance for 32 
understanding the computational operations that V1 can perform. Indeed, these axons connect 33 
different points in the retinotopic and orientation maps and thereby generate a set of possible 34 
topological interactions within a multidimensional representation of space, orientation and time. 35 
It is therefore critical to characterize structural horizontal interactions in order to understand their 36 
functional relevance. The vast majority of presynaptic contacts in cortex originate from neurons 37 
located in the same area as the postsynaptic target (>80% in macaque V1, (Markov et al. 2011), 38 
thus forming an intra-cortical network. In the primary visual cortex, the feedforward 39 
thalamocortical inputs drive the cortical network, which in turn strongly shapes the evoked 40 
response through major excitatory and inhibitory recurrent circuits within the column (Douglas et 41 
al. 1991), a canonical circuit that constitutes nearly ⅔ of intra-cortical connectivity (Markov et al 42 
2011). The rest of the intra-cortical network connects neurons in adjacent columns separated 43 
laterally over distances up to several millimeters, the so-called horizontal network. Early 44 
anatomical observations reported that the horizontal connectivity of carnivores, ungulates and 45 
primates is spatially distributed into regular clusters (Fig. 1A, (Braitenberg 1962; Fisken et al. 46 
1975; Creutzfeldt et al. 1977; Gilbert and Wiesel 1979; Rockland et al. 1982) forming a radially 47 
projecting pattern that resembles a daisy’s petals (Douglas and Martin 2004). Since orientation 48 
maps are also regular with comparable spatial frequency, the currently accepted theoretical 49 
standpoint is that these maps are underpinned by a like-to-like connectivity rule: cortical 50 
columns are connected by horizontal connections only if they share similar orientation 51 
preference (Fig. 1A), an hypothesis originally put forward by Mitchison & Crick (Mitchison and 52 
Crick 1982). Correlative studies, comparing bouton labelling with autoradiography, or with 53 
optical imaging maps, qualitatively supported the like-to-like rule (Gilbert and Wiesel 1989). 54 
Later quantitative anatomical combined with optical imaging studies confirmed the existence of 55 
an orientation preference bias (Fig. 1B, in the range of 1.5-2 times greater than chance, Bosking 56 
et al. 1997,  Kisvarday 1997; Schmidt et al. 1997; Malach et al., 1993, Rochefort et al., 2009), 57 
with high cell-to-cell variability. Probably due to its simplicity and its elegant topological 58 
implications, the highlighted iso-orientation biases have led to a general acceptation of the 59 
hypothesis of a simplified and unique like-to-like connectivity. One consequence is that 60 
theoretical and computational models have implemented it as a strict rule, not as a bias (e.g. 61 
(Bressloff et al. 2001; Raizada and Grossberg 2003; Rangan et al. 2005; Sarti et al. 2008; Baker 62 
and Cowan 2009; Kaschube et al 2010; Rubin et al. 2015; Carroll and Bressloff 2016). 63 
However, we believe such an over-simplified schema may impair the development of our 64 
theoretical understanding of the primary visual cortex function.  65 
 66 
Actually, there are reasons to doubt the explanatory power of a global and strict like-to-like 67 
connectivity rule. First, a growing number of quantitative studies show that there is a wide 68 
variety of connectivity biases (like-to-like bias, no bias, like-to-unlike bias) depending on cell 69 
type (Fig. 1C, excitatory vs inhibitory neurons, see Kisvárday et al. 1994; Buzás et al. 2001), 70 
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layer origin (Fig. 1D, no bias in layer 4 or layer 6, see Yousef et al. 1999; Karube and Kisvarday 71 
2010; Karube et al. 2017), and position in the orientation map (Yousef et al. 2001, iso-72 
orientation domain vs pinwheels). Second, the effect is mostly observed at short-range where 73 
most of the connectivity arises (<1-1.5mm), but connections can connect neurons over 74 
distances of a few millimeters. The rare analyses over larger cortical distances (more difficult 75 
because far fewer boutons are present) showed a global tendency for the iso-orientation bias to 76 
reduce with distance (Fig. 1E) due to wider selectivity or deviation from the iso-orientation bias, 77 
as observed in Buzás et al. (2006, fig8C), Kisvarday et al (1997, Fig9 - area 17) and Bosking et 78 
al (1997, Fig 5); however, see a counter example for area 18 in Kisvarday et al (1997, Fig10 – 79 
area 18). As a consequence, the effective functional selectivity of horizontal axons beyond the 80 
short-range distance is not very clear. Lastly, the functional impact of the structural organisation, 81 
as described by anatomy, is far from being trivial to predict. Indeed, any visual stimulation will 82 
activate a neuronal mass encompassing all layers, both excitatory and inhibitory neurons and at 83 
least a full hypercolumn composed of pinwheels and iso-orientation domains (see Fig1D in 84 
Chavane et al 2011). Furthermore, not only neurons with preferred orientation matching the 85 
orientation of the stimulus will be significantly activated, but a distribution of neurons with say, 86 
+/-15 deg around the stimulus orientation. The intra-cortical horizontal network triggered by this 87 
functionally activated neuronal mass will forcibly contact a diversity of orientation tuned neurons 88 
(ranging from an iso-orientation, Fig. 1F, to an omni-orientation interaction, Fig. 1G) with an 89 
overall net effect beyond short-range distance that is particularly difficult to predict. 90 
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 91 

Fig. 1: Illustration of different connectivity rules from literature and possible outcomes for 92 
functional activation. In A-E the local neuron (large on left) connects to neighbours in a radially 93 
approximated schema spanning outwards over three hypercolumns (where the same preference is 94 
encountered, as indicated by the vertical arrows). Colors indicate the orientation preference of neurons. 95 
(A) Strict like-to-like connectivity (extends to long distances). (B) Modulated like-to-like bias (extends to 96 
long distances). (C) Like-to-unlike bias as exhibited by inhibitory interneuron. (D) Like-to-all as exhibited 97 
by neurons in layer 4 and 6. E: Like-to-like bias that reduces with distance resulting in like-to-all at 98 
distances beyond adjacent hypercolumns. (F-G) Two extremes hypothesis for the net outcome of 99 
functionally driven connectivity rule at long-range distance. In response to a local oriented stimulus, all 100 
neurons that have a receptive field in overlap with the stimulus will be activated, for excitatory and 101 
inhibitory neurons, different lamina and positions in the orientation map. Such functional activation can 102 
lead either to a strict iso-orientation activation of neighboring neurons through the horizontal network (like-103 
to-like rule, F) or omni-orientation activation (like-to-all rule, G). 104 
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In this review, we present a body of recent evidence from anatomy, physiology and 105 
computational modeling, leading to the conclusion that horizontal interactions do not forcibly 106 
conform with a like-to-like orientation preference. In the last decade, structural (Hunt et al. 2011; 107 
Martin et al. 2014, see Kisvarday 2016 for review), and functional (Chavane et al. 2011; Huang 108 
et al. 2014) studies have shown that the rule is not valid for long-distance connections. Chavane 109 
et al (2011) proposed revisiting the connectivity rule as a function of horizontal distance: from 110 
like-to-like at short distance towards like-to-all and long distances (Fig. 1E; see discussion in 111 
(Alonso and Kremkow 2014a, b). In their computational modelling study, (Rankin and Chavane 112 
2017) show that this behavior is in fact to be expected based on the anatomical observations 113 
made by Buzas et al (2006). The functional implications of such evidence is further discussed in 114 
the framework of natural scenes analysis (Perrinet and Bednar 2015; Boutin et al. 2021). In light 115 
of converging evidence from a range of approaches, this review argues for a timely, in-depth 116 
revision of V1 horizontal connectivity rules. Revisiting this textbook mindset is an important 117 
prerequisite to better understand the relationship between structure and function in the visual 118 
cortex. 119 

NEW PHYSIOLOGICAL EVIDENCE 120 

Neuronal population activity measures 121 

Here, we review more recent evidence for versatile connectivity rules reported in different 122 
species and with different recording techniques. Importantly, one should keep in mind that long-123 
range horizontal axons only have a subthreshold influence on their postsynaptic targets 124 
(Bringuier et al. 1999). In order to study the selectivity of the postsynaptic target of these axons, 125 
it is therefore important to use methods that are sensitive to subthreshold membrane potential 126 
changes. Indeed, methods that only record spiking activity necessitate experimental protocols 127 
that co-activate the presynaptic source and postsynaptic target of the horizontal network, to 128 
study cross-correlation between neurons (Michalski et al. 1983; Ts’o et al. 1986; Schwarz and 129 
Bolz 1991; Das and Gilbert 1999). Under these conditions, it is hard to tease apart the direct 130 
effects of the horizontal axons rather than secondary activation of recurrent columnar circuits.  131 

In 2011, Chavane and collaborators used complementary recording tools that specifically record 132 
the subthreshold activity of a mesoscopic population (voltage-sensitive dye imaging, VSDI), and 133 
of individual neurons (intracellular recordings) in area 17 and 18 of the anesthetized cat. The 134 
first method allowed us to visualize and quantify the orientation selectivity of the laterally 135 
spreading activity evoked by a local stimulus (Jancke et al. 2004). The second method enabled 136 
a precise measurement of the impact of this subthreshold spread of activity on individual 137 
neurons. Using VSDI in the cat area 17 and 18, the authors showed that a local oriented 138 
stimulus evokes a spread of activity along the horizontal dimension, extending up to three mm 139 
laterally (see also (Bringuier et al. 1999; Reynaud et al. 2012; Muller et al. 2014, 2018). It is to 140 
be noted that the spread of activity did not show any patchiness, contrary to the anatomical 141 
observations. However, we believe that this is to be expected considering the large variability in 142 
the patches that will be activated from different neurons, varying as a function of a neuron’s 143 
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type, layer and position in the orientation map. As a consequence, and in sharp contrast to the 144 
extended horizontal activation, the orientation-selective component of this spread remains 145 
confined to the cortical feedforward imprint of the stimulus (Fig. 2A). The feedforward imprint 146 
being defined in Chavane et al (2011) as the population of neurons directly or partially activated 147 
by the feedforward stream. This effect was systematically observed in both areas 17 and 18 and 148 
quantified using complementary methods to quantify the decrease of the orientation selectivity 149 
with horizontal distance. Both at the level of orientation preference and orientation selective 150 
response, the bias towards like-to-like activation (and therefore functional connectivity) 151 
decreases exponentially with horizontal distance with a similar characteristic cortical space 152 
constant of about one mm or one hypercolumn (Fig. 2B). Importantly, this signifies, that, for a 153 
lateral radius of about 1.5 mm, the iso-orientation bias (Fig2B) was in the same range as that 154 
observed in the anatomy for similar lateral distance (Bosking et al. 1997, Kisvarday 1997; 155 
Schmidt et al. 1997; Malach et al., 1993, Rochefort et al., 2009). However, VSDI is a population 156 
measure of the subthreshold activation that pools activity from all neurons (excitatory and 157 
inhibitory), all compartments (dendrite, soma and axons) and mostly the upper layer (see 158 
Chemla et al 2017). Therefore, VSDI offers a unique population view of the functional activation 159 
but it is less precise than anatomical studies: it is for instance possible that the lack of overall 160 
bias comes from the mix of tuned and untuned subpopulations (see Kisvarday 2016 for further 161 
discussion). Chavane et al (2011) therefore used intracellular recordings to confirm the VSDI 162 
observations and further showed that this loss of orientation selectivity actually arises from the 163 
diversity of converging synaptic inputs originating from outside the classical RF (Fig. 2C). The 164 
conclusion from this work is that the lateral spread of cortical activity gradually loses its 165 
orientation iso-preference at a distance of around one hypercolumn and that there exists a 166 
range of strategies for different post-synaptic neurons.  167 

In a more recent work, Huang et al (2014) provided similar and complementary results in a 168 
different species, V1 of the tree shrew, and using a different methodological approach. The 169 
authors used optical imaging of intrinsic signals to monitor the impact of intra-cortical 170 
optogenetic stimulation under various stimulation configurations. In particular, their results show 171 
that the optogenetic stimulation of excitatory neurons within a set of orientation domains in the 172 
cortex generated the same response amplitude for either iso- or orthogonal domain stimulation 173 
(Fig. 2D, E). The responses actually depended primarily on intra-cortical distance (similar to the 174 
results obtained via cross-correlation in (Das and Gilbert 1999). Using their innovative 175 
approach, the authors also tested stimulation along an axis in the retinotopic map, either 176 
collinear with the preferred orientation or orthogonal to it. The authors found no bias in either 177 
direction. Huang et al (2014) therefore provides independent and complementary evidence that 178 
the horizontal network, when probed with functional measures, does not show a bias for iso-179 
orientation preference in V1. It should be noted however that using optogenetic stimulation of 180 
excitatory neurons may drive complex dynamical activation of the cortex (Li et al 2019), mixing 181 
excitatory and inhibitory recruitment of the lateral network with different dynamics. Since the 182 
authors have used intrinsic optical imaging, they could not access to the dynamics of the lateral 183 
activation that would be averaged out in the observed activation maps (see Kisvarday 2016 for 184 
further discussion).     185 
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 186 
 187 

 188 
Fig. 2 : Probing for the orientation selectivity of the horizontal network with functional imaging. A-189 
C Taken from Chavane et al (2011) and D-E from Huang et al (2014). (A) Voltage-Sensitive Dye Imaging 190 
of the orientation selective response evoked by local oriented gratings, example from area 17 of an 191 
anesthetized cat. (Left) Polar orientation map averaged over the final 145 ms of the response (time 192 
stamps indicated above the frame). Color hue and brightness code respectively for the preferred 193 
orientation and the strength of the orientation tuning. Contours delineate the outer border of the cortical 194 
domain within which significant activation level (thin gray contour) or significant orientation selective 195 
response (thick white contour) are observed. (Right) Spatial extent of the activated area (gray) and of its 196 
orientation-selective component (black) as a function of time. Red line indicates the expected limit of the 197 
feedforward imprint, defined and estimated from Albus (1975) as the population of neurons directly or 198 
partially activated by the feedforward stream. Dotted red line indicates the retinotopic area of the stimulus 199 
representation. Inset: The spatial extent of the activation spread (gray) and the orientation-selective 200 
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activation (black) are shown in comparison with the expected limit of the feedforward imprint (red). (B) 201 
Population analysis over nine hemispheres [three in area 17 (o) and six in area 18 (+)] of the horizontal 202 
distance-dependent decrease of orientation selectivity. (Top) Iso-orientation bias as a function of the 203 
spatial eccentricity of the lateral spread. The first point corresponds to the area of the initial cortical 204 
activation. Exponential fit is shown in black. (Bottom) Decrease in condition-wise modulation depth with 205 
lateral propagation distance. (C) Visuotopic orientation polar map of an intracellular subthreshold 206 
response; Color hue and brightness code respectively for the preferred orientation and the strength of the 207 
orientation tuning. The white contours delineate the significant responsive regions when combining both 208 
amplitude and orientation selectivity criteria. Middle: averaged subthreshold responses to four different 209 
orientations (same color code) presented for particular locations (circle, triangle, and square); scale bars: 210 
50 ms and 1 mV; Right: normalized orientation-tuning curves, integrated within a fixed temporal window 211 
(shaded area of middle panel). The black circle indicates the spontaneous level for the depolarizing 212 
integral measure. (D) Three orientation maps measured with optical imaging of intrinsic signals (Huang et 213 
al 2014) with the extracellular recording site (white “+”). Optogenetic layout stimulation sites that were 214 
centered over orientation domains with the same orientation preference (blue solid hexagons) as the 215 
recording site (+), and stimulation sites that were centered over domains with the orthogonal preference 216 
(light blue dashed hexagons). Scale bars: 500 um (E) Extracellular responses to optogenetic stimulation 217 
of preferred domains (dark blue) and orthogonal domains (light blue) in the three example cases shown in 218 
D, and the average responses to stimulation of preferred or orthogonal domains across all cases 219 
examined (n = 10). 220 

Anatomical measures 221 

In a recent anatomical study, Martin et al (Martin et al. 2014) carefully re-evaluated the 222 
orientation bias of horizontal boutons from upper layer pyramidal neurons in cat area 17 using 223 
single cell intracellular labelling, optical imaging to reveal the orientation map, and advanced 224 
cluster-by-cluster analysis of synaptic boutons. In their analysis, Martin et al (2014) compared 225 
the distribution of the preferred orientations spanned by the neuron’s dendritic arbors (used to 226 
estimate the neuron’s preferred orientation) and the preferred orientation covered by axonal 227 
clusters of the neuron (Fig. 3A). In the example of Fig. 3A-B, the preferred orientation of the 228 
dendrite (red) matched the one of the local cluster (green) but not of the distal cluster (blue). 229 
Over 33 neurons, their results revealed a very large variability in the orientation selectivity of 230 
their distal clusters (colored in Fig. 3C), as estimated by their Similarity Index (1 corresponding 231 
to the same orientation preference distribution with respect to the neuron’s preferred orientation, 232 
0 to an orthogonal orientation preference). Their results demonstrated the existence of a very 233 
large variance of SI (0.13-0.96) out of all 51 clusters they observed over the 25 neurons. To test 234 
whether the clusters positions within the orientation maps occur by chance, the authors made a 235 
detailed bootstrap statistical analysis of all 51 clusters, taking into account the bias that is 236 
introduced by the orientation map layout, the cluster size and position relative to the soma. 237 
Using this analysis, they found that a quarter of their clusters (14/51 clusters recently updated to 238 
17/65, personal communication from Ruesch & Martin) were not positioned randomly in the 239 
map. Interestingly, only 9% (6/65) of these clusters (see their suppl Fig10l), had a significantly 240 
high SI, above the upper bound (hence iso-oriented), and 5% (3/65) below the lower bound 241 
(hence cross-oriented). In contrast 12% (8/65) were located in position of the orientation map 242 
unlikely to occur by chance while being neither iso nor cross-oriented with the labelled cell. As a 243 
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conclusion, only a weak minority of clusters (9%) are significantly tuned to iso-orientation from 244 
non-random position in the orientation map. Furthermore, as shown by Buzas et al (2006), this 245 
bias tends to decrease with lateral distance of the clusters, which is further in accordance with 246 
Chavane et al (2011). Finally, as observed in Huang et al (2014), Martin et al (2014) did not find 247 
any specific alignment of the cluster distributions in the retinotopic map that could favor collinear 248 
vs orthogonal interactions with the cell’s preferred orientation. At a more macroscopic level, 249 
diversity was also shown from animal to animal in tree shrew V1, specifically in the fine 250 
orientation/retinotopic arrangement of extracellular anatomical labelling (i.e. a population of 251 
neurons). In their detailed analysis (Hunt et al. 2011), showed that there is a diversity of co-252 
circular connectivity rules across animals, some showing a significant bias towards co-circular 253 
rules, some towards anti-circular rules, and others without biases. Thus, as stated by Martin et 254 
al (2014), the horizontal axons thus cannot be treated as an homogeneous network with a net 255 
iso-oriented bias, but rather should be described as strongly heterogeneous, an heterogeneity 256 
that may be a the core of its function (see also Kisvarday 2016). 257 
 258 
 259 
 260 

   261 
Fig. 3: Probing for the orientation selectivity of individual horizontal axons (from Martin et al 262 
2014). (A) Axon of an intracellular labelled neuron is displayed over the orientation map. Ellipses show 263 
clusters of boutons (not shown) for local and more distal positions. Dendritic tree (inset) was colour coded 264 
by the orientation value of their corresponding pixels (soma ¼ white dot). Scale bar, 0.5 mm. (B) Radial 265 
plots of the normalized number of boutons counted in each local (green) and distal clusters (blue) but also 266 
the dendrite (red) for each preferred orientation (coloured curves). The individual vectors forming these 267 
hemispheric plots were summed up to generate one sum-vector (bold vector). The length of this sum-268 
vector is termed as the ‘tuning’ of the dendrite or cluster. (C) Similarity Index (SI) values for individual 269 
clusters of 33 neurons sorted by normalized depth of soma. (Top) neurons (xaxis) can have clusters 270 
(colour coded by rank) with different SI (yaxis). The histogram on the right summarizes the SI across 271 
clusters of all neurons (grey=distal,black=local). Note the large variance within and across neurons. 272 
 273 
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COMPUTATIONAL MODEL LINKING STRUCTURE TO FUNCTION  274 

Population measures and anatomical data constrain connectivity in cortical space, however the 275 
link between known anatomical details and the resulting functional expression (in terms of 276 
neural activity) is not obvious. Computational models provide a means to explore this 277 
relationship directly. Modelling studies of V1 consider a range of connectivity rules, and these 278 
frequently allow for the shaping of connection strengths based on the difference of orientation 279 
preference between connected sites. Abstracted models of single hypercolumns implement 280 
cross-orientation interactions in local circuits that further tune selectivity derived from weakly 281 
tuned LGN inputs (Ben-Yishai et al. 1995). Similar mechanisms for orientation selectivity in V1 282 
have been explored in models with recurrent, lateral connections over short distances (between 283 
neighbouring hypercolumns in L4) (Somers et al. 1995; Kang et al. 2003; Chariker et al. 2016). 284 
Connections that extend over many mm of cortex (i.e. across multiple pinwheels) are 285 
considered in visual cortex modelling studies of contextual modulation (Rubin et al. 2015), 286 
motion illusions (Rangan et al. 2005), geometric visual patterns (Bressloff et al. 2001; Baker and 287 
Cowan 2009; Carroll and Bressloff 2016), travelling waves (Bressloff and Carroll 2015), and in a 288 
general setting (Raizada and Grossberg 2003). Whilst models do commonly feature a decay 289 
(e.g. exponential or Gaussian) in the strength of orientation-based connections with distance 290 
(Goldberg et al. 2004; Blumenfeld et al. 2006), the tuning strength is not distance dependent, 291 
rarely systematically investigated and not constrained by anatomical data. The function of 292 
patchy long-range connections has further been investigated in contexts not specific to 293 
orientation encoding (Voges et al. 2010; Voges and Perrinet 2012). In general, long-range 294 
connections feature a strong iso-orientation bias motivated by long-held assumptions that do not 295 
take into account the more recent functional and anatomical studies that motivate a modification 296 
of this rule.  297 

A common modelling choice for local excitation-inhibition connectivity is a so-called Mexican-hat 298 
with inhibition extending further than excitation (Marr and Hildreth 1980; Grossberg 1983; 299 
Somers et al. 1995; Bressloff et al. 2001). This choice is known to generate stable localised 300 
patterns of activity (rather than spatial unstable dynamics that spreads across cortex) (Laing 301 
and Troy 2003), however, excitatory connections in V1 can extend many mm further than the 302 
local inhibitory footprint. In general, models that also feature long-range excitation are used to 303 
study unbounded patterns of activity rather than localised responses to inputs (Bressloff et al. 304 
2001; Blumenfeld et al. 2006). (Rankin et al. 2014) extended the results of (Laing and Troy 305 
2003) to demonstrate that localised inputs can generate stable localised activity patterns (rather 306 
than spreading activity) with a connectivity rule (as suggested in (Buzás et al. 2001), and similar 307 
to Fig. 4A) that features long-range excitation, extending much further than the local inhibitory 308 
network. 309 

(Rankin and Chavane 2017) developed a planar spatial model of orientation-selective activation 310 
in V1 L2/3 with the aim of bridging between known anatomical constraints on the tuning of long-311 
range connections (Buzás et al. 2006) and the functional expression of laterally propagating 312 
activity driven by localised stimuli (Chavane et al. 2011). A neural field architecture with 313 
orientation-specific sub-populations provides a mesoscopic description of neural activity, ideal 314 
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for comparison with the temporal and spatial resolution in VSDI imaging experiments. A novel 315 
connectivity function was flexibly parametrized to investigate clustering of connections, their 316 
orientation bias and balance between excitation and inhibition. We adopted the non-orientation 317 
specific nature of local excitatory connections (Buzás et al. 2006) and inhibitory connections 318 
(Buzás et al. 2001); see also (Koch et al. 2016) for a discussion of orientation specificity of 319 
excitatory and inhibitory connections. Taking motivation from (Buzás et al. 2001), longer-range 320 
excitatory connections are proposed here to, although decaying with distance, form in rings at 321 
multiples of the hypercolumn separation L (Fig. 4A). This allows for the following important 322 
features to be captured: that excitatory connections 1) drop in number at a range of L/2, 2) have 323 
a peak at a range of L (and multiplies therefore) and 3) can extend several mm across cortex. 324 
Two parameters were tuned to agree with the available data from (Buzás et al. 2006), the width 325 
of peaks in number of excitatory connections (RW; two values shown in Fig. 4A) and their 326 
orientation bias (BR; illustrated in Fig. 4B-C).  327 

We found a significant overlap between the anatomically relevant parameter range and patterns 328 
of cortical activation consistent with imaging experiments (Chavane et al. 2011). Hence, this 329 
computational approach allowed us to reconcile the imaging results with the reported level of 330 
orientation bias from anatomical studies. Specifically, (Chavane et al. 2011) found a sharp 331 
decay of orientation selective activation at the stimulus retinotopic footprint border, resulting in 332 
peripheral activation that was not orientation selective. Our results demonstrate that this sharp 333 
decay is contingent on three factors: the diffuse clustering of long-range connections, the 334 
intermediate range (consistent with anatomy) of their orientation bias and sufficient balance 335 
between excitation and inhibition. It is worth noting that orientation-biased long-range 336 
connections can recruit a local non-orientation-biased network at the target, resulting in non-337 
orientation specific activation (Huang et al. 2014). The modelling work illustrates that the 338 
observed levels of orientation bias in anatomical studies actually predict long-range activation 339 
beyond the retinotopic stimulus footprint with a sharply decaying orientation selectivity profile. 340 

The model offers further insights into the mechanistic value of excitatory-inhibitory balance, and 341 
of intermediate levels of orientation bias in long-range connections. Long-range excitatory 342 
connections (reaching much further than the lateral inhibitory profile) could easily lead to 343 
destabilization of activity generated by localised visual stimuli. Our model was used to show that 344 
if the orientation bias of lateral connections is excessively strong, or if inhibition is particularly 345 
weak, the network operates close to an instability leading to unbounded cortical activation. This 346 
provides another line of evidence in favour of distance-decaying orientation bias in lateral 347 
connections. Diversity of long-range connections increasing with distance (i.e. decreasing 348 
orientation bias with distance) reflects a potential need to activate a broader range of 349 
orientations as we move further from a local stimulus with a specific orientation. Furthermore, 350 
the fact that, under particular circumstances, the preferred orientation of the horizontal 351 
propagation may be at odds with the underlying orientation preference map could unravel some 352 
new unexpected computational capacities of the horizontal network, which may be present in 353 
visual areas beyond V1. For instance, the ability to link information across position and 354 
orientation for non co-circular filters, which is important for processing objects with sharp angles. 355 
In line with this hypothesis, (Chavane et al. 2011) showed that the spread of orientation 356 
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selective activity is not fixed but can increase with increasing spatial summation generated by 357 
annular stimuli. 358 
 359 

 360 
 361 
Fig. 4: Neural field model to reconcile structure with function in primary visual cortex. Definition of 362 
model connectivity with anatomical constraints (A-C) and illustration of model behaviour with operating 363 
region in agreement with functional characteristics (D-F). (A) Radial connectivity profile for inhibition 364 
(Gaussian decay) and excitation (locally Gaussian decay, longer range connections peak in number at 365 
distance L and multiples thereof). Ring width (RW) of peaks in excitatory connections illustrated for two 366 
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values. (B) Example of local preference map and resulting lateral connectivity for two values of the 367 
orientation bias of recurrent connections (BR). (C) Orientation tuning for each panel in B above (circles) 368 
with tuning parameter k from a best-fit von-Mises distribution (solid lines). Orientations are evenly 369 
represented in the global map but strongly biased at around -60o for the local excitatory component (local 370 
map). The orientation bias of lateral connections increases to around k=1 for BR>0.5 (similar values 371 
reported in (Buzás et al. 2006)). (D) Model simulation snapshot at 600ms showing the orientation-372 
selective component within a thin white contour, confined to the feedforward footprint FFF of the stimulus 373 
in red; the much broader non-orientation-specific activity falls within a grey contour extending beyond the 374 
plot limits. (E) Time history of the area within the non-orientation-specific contour and the orientation-375 
selective contour. (F) Colour map across range of RW and BR values showing the selective area as in D 376 
normalised by FFF. Within the red contour the selective activation is constrained to the FFF. White 377 
contours show the anatomically constrained range for the connectivity parameters RW and BR where 378 
k=0.7-1.2. In the green region other constraints on the correct orientation and the radial decay rate of 379 
orientation selectivity are also satisfied (details in (Rankin and Chavane 2017)). 380 
 381 

FUNCTIONAL ADVANTAGES OF SUCH AN ORGANIZATION 382 

The insights we have reviewed at the physiological and modeling levels support a range of 383 
novel hypotheses for the organization of long-range lateral connectivity in the primary visual 384 
cortex. A functional approach, asking "why should neurons in V1 be connected laterally?" 385 
provides a complementary perspective. Indeed, a major argument is that the structure of V1 386 
should fulfill its function and implement principles of perceptual organization, such as the 387 
principle of good continuation to bring a countour’s constituent edges together into a unified 388 
global percept (Wertheimer 1923). How might these principles connect knowledge across 389 
anatomy, physiology, theory, and modeling? 390 
 391 

Principles of perceptual organization in natural images 392 

 393 
A major constraint for neurons in the primary visual cortex is that information is encoded locally 394 
in their activity and must be integrated globally across the visual field. Surprisingly, perceptual 395 
principles organizing the different fragments of an image can be directly extracted by analyzing 396 
a database of natural images. One such principle is that pairs of edges in natural images are 397 
most likely organized along aligned contours, and more generally on a common circle (Sigman 398 
et al. 2001); the authors extracted edges from natural images and estimated the orientation of 399 
each edge. For each pair of active edges, they showed that the angle of maximum interaction 400 
corresponds to a configuration for which they are close to co-circular. This long-range 401 
correlation is a marker of the structure of natural images and may provide strong prior 402 
knowledge for the perceptual organization of low-level features. 403 
 404 
Such a structural prior can be described as a form of "association field" extending the concept of 405 
a neural receptive field to long-range local interactions. The seminal paper by Field (Field et al. 406 
1993) defines the association field as the set of local oriented elements (edges) in the visual 407 
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field that facilitates the detection of a central oriented target. They showed that the association 408 
field obeyed a co-circular rule. In other words, if a common circle can pass through the central 409 
target and the peripheral element, they will facilitate each other’s detection, and generate 410 
suppression otherwise. This association field is invariant to translations or rotations. It extends 411 
the prior of collinearity (like-to-like) or co-circularity (Sigman et al. 2001) to a more generic 412 
description of all possible co-occurrences. In particular, by exploring the interactions of edge 413 
pairs, they showed that these association fields explain the detection of paths embedded within 414 
a field of randomly oriented edges. The association field can then be understood in light of the 415 
computer vision problem of curve tracing. Parent and Zucker (1989) described it as a diffusion 416 
process over the tangent field of oriented edges, thus suggesting a principled and biologically 417 
realistic framework for association fields using long-range interactions. 418 
 419 
This principle can be extended to explain psychophysical experiments in humans. Geisler et al. 420 
(2001) took a similar approach by reporting the full statistics of natural image edge co-421 
occurrences. This yields a valuable model for the statistics of neighboring edges. First, the 422 
edges are organized into parallel textures favoring parallel edges, and second, there is a bias 423 
for co-circular edges (see Fig. 5A). Using a Bayesian approach, the authors derived a clustering 424 
scheme for chaining edges into contours that was confirmed by psychophysical experiments. 425 
This approach was later extended to the high-level cognitive problem of image categorization 426 
(Perrinet and Bednar 2015). The authors showed that using supervised learning, one could 427 
derive a scheme using the association field in that image to categorize whether it contains an 428 
animal. This simple model achieved similar performance to humans and to a deep hierarchical 429 
model (Serre et al. 2007). Surprisingly, the model made similar errors to humans. This illustrates 430 
first that association fields can be used to both group edges based on different tasks or to 431 
categorize images. This also shows that for the association field reflecting the statistics of edge 432 
co-occurrences in natural images, different datasets may lead to different association field 433 
structures (see Fig. 5A). As a consequence, it seems relevant at behavioral and ethological 434 
levels that mechanisms exist to tease apart the slight differences between the co-occurrence 435 
patterns present in different images, for instance the surprising patterns of a perfect co-436 
circularity, or that of a pair of rare but informative orthogonal edges forming a T-junction. This 437 
would then explain part of the variability in the association fields which can be involved in visual 438 
integration processes. 439 
 440 

How do these principles translate to the cortical space? 441 

 442 
As Geisler (2001) states, "the obvious hypothesis for the local grouping is a neural population 443 
with the receptive field structure matched to the edge co-occurrence statistics". Yet, the 444 
emergence of receptive field properties is a combination of anatomy and the dynamics of 445 
individual neurons. Can we link the statistics of natural images to the structure of processing in 446 
the primary visual cortex? 447 
 448 
Olshausen and Field (1996) set out to show how the structure of V1 microcolumns can optimize 449 
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the efficiency of the neural representation for natural images. Hyvärinen and Hoyer (2001) 450 
extended this to include a regularization of the representation with cortical topography. 451 
Franciosini et al (2021) recently developed a biologically realistic, two-layered V1 sparse 452 
predictive coding model including pooling mechanisms to impose a neighborhood prior in 453 
cortical space, which includes by construction the possibility of representing as channels in each 454 
layer a variety of interaction patterns. Similarly, complex cells and topographic maps emerge, 455 
demonstrating the transfer of cortical connectivity in V1 to perceptual grouping principles. More 456 
surprisingly, depending on the density of neurons, different structures emerge to optimize cost 457 
efficiency: in addition to mammalian-specific features (such as topographical maps), a rodent-458 
specific salt-and-pepper map emerges for models with a lower cell density. Interestingly, by 459 
focusing on this multi-channel convolutional architecture, the second layer showed a diversity of 460 
connectivities across channels, suggesting that differing anatomical constraints may induce 461 
different patterns of long-range lateral interactions. 462 
 463 
A multi-layer sparse predictive coding model (Boutin et al 2020) allows for the influence of an 464 
extrastriate cortical area such as V2 on to V1 to be modelled. The activity in the layers of this 465 
model emerge from the recurrent interactions between neurons within and across layers (rather 466 
than a feed-forward pass as in convolutional networks). Convergence to an efficient 467 
representation of edge filters and interaction maps (resembling association fields) emerges after 468 
several processing iterations. However, training on different natural image datasets can produce 469 
different interaction maps, in accordance with Perrinet and Bednar (2015). For example, training 470 
on images of human faces generated features resembling mouths or eyes, resulting in more 471 
sparse and longer range interactions. This suggests that instead of a simple similarity rule, 472 
lateral interactions between neurons reflect the variety of feature dependencies attached to the 473 
respective neurons. In addition, similarly to physiological observations (Gilbert and Li, 2013) we 474 
observed that the interaction becomes sharper with stronger feedback (see Fig. 5B), which 475 
proves a synergy between the different pieces of information encoded by the network, as 476 
illustrated by improved performance for denoising natural images. 477 

 478 

 479 
Fig. 5: Function and diversity of Association Fields. (A) Following the work of (Geisler et al. 2001), one 480 
could derive the association field from the statistics of natural images. This involves extracting edges from 481 
images (red segments) and computing for each pair the difference of angle 𝜃and the relative azimuth 𝜙 of 482 
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one edge compared to the other. This allows to quantify the association field as the histogram, relative to 483 
a reference edge placed in the middle, for the most likely difference of angle - showing a prominent 484 
preference for parallel textures (top) or the relative azimuth, showing a prior for co-circular co-occurrences 485 
(bottom). The association field may vary for different databases with an excess of co-circularity in images 486 
containing animals, illustrating the variety of statistics faced by the visual system (Perrinet and Bednar 487 
2015; modified with permission CC-BY). (B) Boutin et al (2020) describes a biologically realistic multi-488 
layer model of the visual cortex. The model is shown natural images and is optimized to represent images 489 
in the most efficient way. Edge-like filters emerge (see an example in the inset) and we show here the 490 
interaction of this edge with other edges outside the range of its classical receptive field. This pattern 491 
shows a large facilitatory (green) or inhibitory (purple) effect relative to a model without feed-back. This 492 
functional modulation of the association field shows the importance of the activity in the whole network 493 
and we have further shown its shape could widely vary within the network and for different types of 494 
images, such as images of faces (Boutin et al 2020; modified with permission CC-BY). 495 

Function and dynamics of long-range lateral interactions 496 

Overall, these theoretical models propose, as an alternative to the like-to-like structure, that 497 
there should be a wide variety of long-range lateral interaction patterns. It should be noted that 498 
most of the models described above deal with static natural images, whereas the visual world is 499 
characterized by a wealth of different dynamic scales, which raises the question of the role of 500 
neural dynamics in long-range lateral interactions. 501 
 502 
If one imagines an edge moving in a direction parallel to its orientation, we can infer that we are 503 
following the tangent to a continuous contour. On the contrary, if the orientation of the edge is 504 
perpendicular to its direction, it is more likely that we are seeing a moving bar. This simple 505 
prototypical example shows that depending on the local intrinsic context, the optimal integration 506 
rule may change, as evidenced by intracellular recordings (Gerard-Mercier et al. 2016). If these 507 
interactions can be implemented via different contextual cues such as recurrent or feedback 508 
connections, it is also possible that the multidimensional representation of information on the 509 
cortical surface is much more than a simple topographical orientation map. 510 
 511 
In addition, there is physiological evidence that association maps can be dynamically influenced 512 
by the task at hand. In (McManus et al. 2011), using a delayed-to-sample matching task, the 513 
authors trained monkeys to detect different patterns: a circle, a wiggle, or a line, which were 514 
embedded in a grid display of randomly oriented edges similar to that of (Field et al. 1993). They 515 
found that depending on the pattern being searched, the recorded association field adapted to 516 
preferentially exploit collinearities (for lines) or co-circularities (for circles). Such a differential 517 
processing raises an implementation problem for the unsupervised schemes described above. 518 
This problem could be solved in a supervised learning scheme (Perrinet and Bednar 2015) but 519 
raises the question of how this supervised credit is assigned in V1. A similar problem is inherent 520 
in the backpropagation rule in generic deep learning paradigms which can be solved in a 521 
predictive coding framework (Boutin et al. 2021). 522 
 523 
Lastly, the anatomical connectivity may be patchy for different functions than just connecting 524 
like-to-like orientation patches. Indeed, patchy connections likely play an important role in 525 
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combining information from multiple visual cues beyond orientation, including context (Martin et 526 
al 2017). Indeed, modelling work has shown that patch-based connectivity increases the 527 
versatility of the dynamic repertoire of neural states (Voges et al, 2010). That work compared 528 
networks of realistic conductance-based neurons with a range of connectivity rules. These rules 529 
had different complexities, from a completely random connectivity, to a neighborhood-based 530 
local connectivity, and more interestingly, clustered networks including a patch-based 531 
connectivity rule. This was extended in a further modelling work (Voges and Perrinet, 2012) to 532 
include a comparison between a pure random patch-based connectivity and partially 533 
overlapping patches.  As noted in (Kisvárday 2016), these patch-based connectivity rules were 534 
sufficient to induce a large dynamic repertoire such as rhythms or travelling waves and was for 535 
instance characterized by enhanced variety in the shape of the power spectrum of population 536 
activity. In particular, such a range of dynamic behaviours is much richer when compared to 537 
those obtained with a random or local connectivity rule. Patchy connectivity rules introduce a 538 
heterogeneity in the lateral connections, which seems essential for building up an efficient 539 
population code (Martin et al 2014). In particular, this would allow the propagation of 540 
combinations of contextual cues which would reflect the richness of visual information in natural 541 
scenes.   542 
 543 
To conclude this section, the function studied in these theoretical models hints at a solution 544 
using a superposition of different long-range connectivity profiles. The diversity of patterns and 545 
their adaptability to the task or statistics should overall improve processing efficiency in the 546 
primary visual cortex. Yet there remain open questions regarding the richness of these like-to-all 547 
patterns. Theories suggest potential strategies for addressing these open questions explicitly in 548 
neurophysiology, for example by synthesizing optimally responsive, model-driven dynamic 549 
stimuli (Walker et al. 2019). 550 

DISCUSSION 551 

In this review, we have documented convergent evidence from physiology, anatomy and 552 
computational models that the orientation selectivity of horizontal network connectivity in the 553 
primary visual cortex of carnivores, ungulates and primates is more versatile than initially 554 
proposed, leading to the necessity to revisit the like-to-like connectivity rule (Mitchison & Crick 555 
1982) still dominant today. At the anatomical level, there seems to be a diversity of connection 556 
rules between presynaptic source and postsynaptic target. At the individual cell level, 557 
anatomical studies have shown that the rule changes as a function of cell type (excitatory vs 558 
inhibitory) and layer/map locations (Yousef et al. 2001, Kisvárday et al. 1994; Buzás et al. 2001, 559 
Yousef et al. 1999; Karube and Kisvarday 2010; Karube et al. 2017). Within one presynaptic 560 
origin, a large diversity exists with only moderate bias  in the range of 1.5-2 times greater than 561 
chance (Bosking et al. 1997, Kisvarday 1997; Schmidt et al. 1997; Malach et al., 1993, 562 
Rochefort et al., 2009), More recent work by Martin et al (2014) on the upper layer pyramidal 563 
neurons of the cat V1 with a cluster-by-cluster analysis of horizontal boutons has shown the 564 
existence of a very large diversity from like-to-like, like-to-any, like-to-all and like-to-unlike 565 
connectivity rules. Altogether no net significative bias towards one of these rules could be 566 
observed in their bootstrap statistical analysis. Taken together, these anatomical results show 567 
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that there is diversity in the connectivity rules both within and between neuronal types and 568 
locations (see Kisvarday 2016 for an extensive review). At a more macroscopic level, it is 569 
interesting to note that Hunt et al (2011) also observed that the co-circularity rule is different 570 
from animal to animal.  571 
 572 
When probed with functional measures of neuronal activity, in response to a local visual 573 
stimulus using techniques sensitive to subthreshold membrane potential fluctuations (Chavane 574 
et al 2011) or an optogenetic activation of specific orientation columns (Huang et al 2014), the 575 
diversity revealed in anatomical studies leads to the absence of net bias towards like-to-like 576 
interactions along the horizontal network (see Alonso & Kremkow 2014), but also the absence 577 
of patchy activation of the horizontal spread of activation. Importantly, VSDI measures 578 
demonstrate a clear exponential decay of the like-to-like connectivity bias with horizontal 579 
distance, an effect also observed in anatomy (Buzas et al 2006, Martin et al 2014). At short-580 
range distances, similar iso-orientation biases, as reported in anatomical studies, were 581 
observed. However, after the equivalent of one hypercolumn, no significant bias could be 582 
observed (Chavane et al 2011).  583 
 584 
All these papers therefore demonstrate the existence of a connectivity rule that links neurons in 585 
the primary visual cortex depending on their preferred orientation, neuronal type and position 586 
(layer and orientation map) and intra-cortical distance. This multidimensional connectivity rule is 587 
also subject to large diversity not just from neuron to neuron but also from animal to animal. Due 588 
to the difficulty in making predictions from this complex pattern, it is necessary to use 589 
computational approaches to probe for the expected functional behavior of such a network. In 590 
Rankin & Chavane (2017), we developed a neural-field model and demonstrated that the 591 
functional results observed in Chavane et al (2011) are indeed the expected mesoscopic 592 
behavior of such a network when its connectivity is constrained to match the orientation bias of 593 
connections from anatomy (Buzás et al. 2006), thus demonstrating that the functional 594 
observations are to be expected given our understanding of anatomical characteristics. 595 
 596 
In this review, we wish to update the accepted like-to-like connectivity rule widely assumed as 597 
the building block for connecting a local neuronal network from one position in the visual field to 598 
its postsynaptic targets. The connectivity rule should be revised to a distance-dependent 599 
formulation: from like-to-like bias at short horizontal distance to like-to-all at long 600 
horizontal distance (Fig. 1E). The space constant of the decrease of the like-to-like bias is 601 
about one hypercolumn distance. Functionally we can speculate that this translates to an iso-602 
orientation bias for neurons with overlapping receptive fields and no net bias for neurons with 603 
non-overlapping receptive fields.  604 
 605 
This may be at odds with the well-documented association field schema and co-circularity rules 606 
observed in natural scenes (Sigman et al. 2001, Geisler et al. 2001). However, it is important to 607 
differentiate the basic connectivity building block, that specifies unidirectional rules from a 608 
presynaptic region to a postsynaptic target, from lateral interactions, that are evoked by more 609 
complex stimuli that co-activate both presynaptic and postsynaptic regions (e.g., as in cross-610 
correlation studies). The like-to-all long-distance connectivity rule can be seen as generic and 611 
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allows for a variety of interactions in the orientation and spatial domain. Importantly, this is 612 
possible if we take into account the large local diversity observed at neuronal level (Chavane et 613 
al 2011, Martin et al 2014, see also Monier et al 2003). Our proposition here is that such a rule 614 
could account for a wealth of interaction rules depending on the stimulus and/or the task. For 615 
instance, this would allow to account for the interactions necessary to process orientation 616 
discontinuities such as junctions or corners. Neurons in V1 have indeed been reported to be 617 
sensitive to orientation discontinuities, independent to the absolute orientation of the stimulus -618 
set (Sillito et al. 1995, Jones et al 2001). This result could not be explained solely by iso-619 
oriented lateral interactions. Such diversities could also contribute in shaping the orientation 620 
tuning of neurons away from primary orientation preference (i.e. horizontal and vertical 621 
orientations, Vidyasagar & Eysel 2015). More generally, using natural, stationary scenes and/or 622 
contour integration tasks may indeed favor association field interactions. However, depending 623 
on the type of natural images, Perrinet & Bednar (2015) have shown that these interactions may 624 
already differ significantly (see also Boutin et al. 2021). Moreover, dynamic non-stationary visual 625 
stimuli, such as a simple moving object, and tasks that rely on motion integration for instance, 626 
could lead to different associative rules for motion (Gerard-Mercier et al. 2016). In the case of 627 
integrating information along a coherent path for instance, visual information should be 628 
transported in the direction of motion (Perrinet and Masson, 2012) that can be in the cross-629 
orientation dimension.  630 
 631 
Importantly, co-circularity rules that link orientation and position with respect to a central 632 
oriented feature, are not found in the anatomy (Martin et al 2014, Hunt et al 2011), nor where 633 
they found by Huang et al (2014) using optogenetic stimulation of pattern in the horizontal 634 
network. This further supports a dynamic, context-dependent emergence of specific rules, such 635 
as co-circularity for contour integration in natural images, through higher-order network 636 
interactions. In that respect, Chavane et al (2011) observed that increasing the spatial 637 
summation of the stimulus increases the propagation of iso-orientation activity, even if the basic 638 
connectivity profile was shown to be not selective to orientation at long-range. This means that 639 
from a basic unselective building block, selective interaction can occur (for a proposition of 640 
possible mechanisms see Chavane et al (2011)). This effect could result from the fact that 641 
inhibitory neurons tend to make more horizontal connections with neurons with different 642 
orientation preference than excitatory neurons (Kisvárday et al. 1994; Buzás et al. 2001). 643 
Increasing spatial summation could change the orientation-dependence of the 644 
excitatory/inhibitory balance and lead to the emergence of tuned activity at longer distance. 645 
More generally, the emergence of new selectivity depending on the stimulation pattern (or the 646 
task) is rendered possible by the existence of local diversity of orientation selective connections 647 
at neuronal level (Monier et al. 2003; Chavane et al. 2011; Martin et al. 2014). Therefore, 648 
different stimulation patterns will lead to activation of different recurrent subnetworks and the 649 
emergence of a variety of selectivity characteristics. It is indeed now well documented that non-650 
trivial, paradoxical effects, can arise from recurrent balanced networks (Tsodyks et al. 1997; 651 
Ozeki et al. 2009; Pattadkal et al. 2018). In our model, we indeed observed that manipulating 652 
the balance between excitation and inhibition (i.e. reducing inhibition strength), predicts the 653 
emergence of spurious orientation selective activation through long-range lateral connections 654 
(Rankin & Chavane 2017).  655 
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 656 
Given the non-trivial effects that can arise with more complex stimuli, a number of avenues 657 
remain open to build on theoretical and modelling work. The model developed in (Rankin and 658 
Chavane 2017) could also be used to investigate selective recruitment and spatial summation in 659 
regions between localized oriented stimuli (Chavane et al. 2011; Huang et al. 2014). Indeed, 660 
increasing spatial summation increases the slope of selectivity decay at the stimulus boundary, 661 
whilst selective propagation reaches further across cortex, a property easily explored in the 662 
model by a more diverse class of localised stimuli. More generally, the model could be used to 663 
make predictions to decipher the selective functional connectivity rules that link position and 664 
orientation in cortical space. Importantly, it could also be extended to differentiate inhibitory cell 665 
subclasses as reported in (Buzás et al. 2001). As such it could generate functional predictions 666 
on e.g. the role of long-range basket cell connections that preferentially target cross 667 
orientations. Extending the framework further, a feature space including spatial frequency (SF) 668 
could be used to investigate lateral connections in light of recent work on interactions between 669 
orientation and spatial frequency maps (Romagnoni et al. 2015; Ribot et al. 2016). 670 
 671 
In this review, we mostly focus on revisiting the connectivity rule of intra-cortical horizontal 672 
networks. However, it is important to consider that such connectivity patterns can also be 673 
influenced by feedback from higher cortical areas that provides a more diffuse and divergent 674 
input to the primary visual cortex (Salin et al., 1989, 1992). Anatomical studies in the cat, 675 
suggest that area 17 and area 18 cells are preferentially connected when they share similar 676 
preferred orientations (Gilbert and Wiesel, 1989). In the monkey, feedback from higher areas 677 
(V2 and V3) to V1 show variable level of patchiness (Stettler et al 2001; Angelucci et al 2002), 678 
unselective to orientation (Stettler et al 2001). In the cat, electrophysiological and inactivation 679 
studies of various downstream areas seems rather to influence only response amplitude or 680 
tuning width of neurons in area 17 of the cat (Martinez-Conde et al., 1999, Wang et al., 2000, 681 
2007; Huang et al., 2004; Liang et  al., 2007; Shen et  al., 2008, Huang et al., 2007, Galuske 682 
et  al., 2002; Shen et  al., 2006). However, it is important to consider that feedback will interact 683 
with horizontal network as demonstrated in monkey visual cortex, with either specific 684 
interactions as suggested by CD Gilbert (Gilbert & Li 2013 for review), or contributing to center-685 
surround processing (Hupé et al 1998, Roberts et al (2007) Poort et al 2012, Nurminen et al 686 
2018). 687 
 688 
In conclusion, we believe that there are enough arguments today to accept a change of 689 
connectivity rules for horizontal axons in V1, that is consistent with both new structural and new 690 
functional evidence. It remains to be established how this complex multidimensional rule 691 
(orientation x distance x neuron type x neuron location) is put into play out under different 692 
stimulus and task configurations. It would be important to understand what is the minimal 693 
stimulus design that can trigger particular tuned interactions for various spatial positions and 694 
whether it involves precisely the same neurons in the network. To test predictions that can arise 695 
from theoretical and computational approaches, new experimental tools to visualize large 696 
massive neural networks at neuronal level and sensitive to membrane potential fluctuations will 697 
be needed. Recent neuro-technological advances in awake animals, such as all-optical tools to 698 
measure and control a large set of neurons (Ju et al. 2018, Zhang et al. 2018), and the 699 
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development of new genetically-encoded voltage indicators that allow simultaneous two-photon 700 
microscopy subthreshold activity recording from many cells (Villette et al. 2019), provide the 701 
ideal experimental setting to probe the complex and dynamic network interactions underlying 702 
stimulus and task-dependent processing.  703 
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