
HAL Id: hal-03572536
https://hal.science/hal-03572536

Submitted on 14 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On Chip Rapid Control Prototyping for DC motor
Romain Delpoux, Lubin Kerhuel, Vincent Léchappé

To cite this version:
Romain Delpoux, Lubin Kerhuel, Vincent Léchappé. On Chip Rapid Control Prototyping for DC
motor. Journal sur l’enseignement des sciences et technologies de l’information et des systèmes, 2021,
20, �10.1051/j3ea/20210001�. �hal-03572536�

https://hal.science/hal-03572536
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

On Chip Rapid Control Prototyping
for DC motor

Romain Delpoux1, Lubin Kerhuel2 and Vincent Léchappé1

1R. Delpoux and V. Léchappé are with Univ Lyon, INSA Lyon,
ECL, Université Claude Bernard Lyon 1, CNRS, Ampère,

F-69621, Villeurbanne, France. surname.name@insa-lyon.fr
2L. Kerhuel is with Microchip Technology Inc, F-64100,

Bayonne, France. lubin.kerhuel@microchip.com

Abstract

This paper proposes a method for Rapid Control Prototyping (RCP)
targeting microcontrollers. The methodology relies on a Matlab/Simulink
interface which makes the target configuration and coding easier. De-
veloping low level embedded code is bypassed by a high-level imple-
mentation which is straightforward for control system engineers. This
article is intended for students, engineers or researchers looking to
validate the effectiveness of their control algorithms on industrial tar-
gets. The design procedure is illustrated by testing various speed and
current feedback loop on a DC motor.

keywords: DC motor, Rapid Control Prototyping (RCP), Matalb/Simulink,
Mplab device block for simulink, Embedded system, Microcontroller,
PI controller, Sliding Mode Controller.

1 INTRODUCTION

Digital controllers are increasingly present in industrial applications (auto-
motive, aeronautics, space, industry . . .). However, manufacturers seek so-
lutions to reduce global cost while maintaining good performances. For ex-
ample, one can replace a high precision mechanics for a pointing antenna

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article publié par EDP Sciences et disponible sur le site https://www.j3ea.org ou https://doi.org/10.1051/j3ea/20210001

http://publications.edpsciences.org/
https://www.j3ea.org
https://doi.org/10.1051/j3ea/20210001

with a simpler mechanical design but with an advanced control algorithm.
Control engineers are dedicated to design these advanced controllers in order
to guarantee that specifications are verified.

Developing embedded code for microcontrollers requires skills that are
out of scope of the curriculum of control system engineers which is typi-
cally limited to high level tools like Matlab®/Simulink® and RCP tools
like dSPACE® or Speedgoat. This task is often left to embedded system
engineers who are specialists of hardware architecture but have little knowl-
edge in control theory. According to some recent discussions with automotive
and aerospace specialists, there is a lack of engineers able to deal with the
full process from control design to hardware implementation. This observa-
tion is also confirmed by the increasing desire of students in control system
courses to learn how to implement algorithms directly on dedicated hard-
ware. Based on this assessment, it has been decided to propose a simple
and fast methodology for RCP based on the interface of a microcontroller
directly with Matlab/Simulink by taking advantage of the graphical interface
provided by the Microchip Technology MPLAB® device blocks for Simulink.
This is important to note that unlike some existing setup [1], the objective
is not to ‘hide’ and make totally transparent the code generation but on
the contrary to make it accessible in order to tackle the problems that arise
from this implementation. In addition to the teaching benefit, the second
objective is to fill the gap between convenient but expensive RCP platforms
and complex but cheaper microcontroller tools. The developed methodol-
ogy will speed up the implementation of advanced control algorithms on real
hardware by removing the phase of coding on the target (see Figure 1). A
dsPIC® Digital Signal Controllers (DSCs) and its dedicated MPLAB tool-
box for Simulink has been used for this article but other manufacturer DSCs
or Microcontroller Unit (MCU) may benefit this methodology whenever a
dedicated toolbox exists. The goal of the article is to illustrate a methodol-
ogy for real-time control regardless of the targeted architecture. For sake of
simplicity, the example is based on a familiar DC motor, however the meth-
ods and tools used (software and hardware) can be adapted to other types
of hardware. The proposed control algorithms are available online [2].

Many works in the literature present RCP solutions, however, they are
usually aimed at control teaching on a dedicated board or platform, and do
not propose a flexible solution that allows a deep analysis of the implementa-
tion problems: [3] (with Lego Mindstorms NXT), [4], [5] (with Arduino), [1]
(with a Digital Signal Processing (DSP) system), [6] (16 bit microcontroller).

target
implementation

Experimental
test on target

Experimental
test with RCP

Simulation

Control
design

specifications
validation

specifications
validation

specifications
validation

yes

yes

yes

no

no

no

Experimental
test with RCP
on target

Simulation

Control
design

specifications
validation

specifications
validation

yes

yes

no

no

Standard design process Faster design process

Figure 1: Control design steps

Some other works on RCP are dedicated to research purposes but they are
usually focused on illustrating the efficiency of the control algorithm than
providing a handy interface to analyse in detail the technical issues related
to hardware coding : [7] (dsPIC DSCs), [8] (RTAI-Lab).

The contributions of the proposed method is twofold i) it speeds up the
control design process by using a graphical interface that makes the configu-
ration as easy as a dSPACE or Speedgoat RCP system, but with the major
difference that it targets microcontrollers which can be embedded in custom
boards ii) it smooths the learning curve for students in control system course
by providing a handy interface that offers a way to gradually introduce some
implementation issues (data acquisition, discretization, fixed-point conver-
sion, Pulse Width Modulation (PWM) generation,...).

The paper is organized as follows. The DC motor model and its exper-
imental validation are presented in Sections 2 and 3 respectively. Section
4 explains the design of the control algorithms and shows the experimental
results. Some hardware related considerations are exposed in Section 5 and
finally conclusions are drawn in Section 6.

List of acronyms

ADC Analog Digital Converter

DSP Digital Signal Processing

EMF Electro-Motive Force

LSB Least Significant Bit

MCU Microcontroller Unit

DSCs Digital Signal Controllers

PIM Plug In Module

PWM Pulse Width Modulation

QEI Quadrature Encoder Interface

RCP Rapid Control Prototyping

SMC Sliding Mode Controller

STA Super Twisting Algorithm

2 Study case introduction: DC motor

The methodology is illustrated by using a DC motor. It represents a complete
example where control algorithm are easy to understand. The motor used
is a Pravalux Brushed DC Motor (90 W, 24 V dc, 3000 rpm). The motor
parameters and variables are given in Table 1.

Figure 2: DC motor schematic

Table 1: List of variables and parameters.
Variables Values Units

i(t) : current [−4.4 4.4] A
v(t) : voltage [−12 12] V
e(t) : back EMF V
R : Resistance 1.22 Ω
L : Inductance 2.7× 10−3 H
Kφ : back EMF Constant 0.061 V.s/rad

Tm(t) : Motor Torque N.m
ω(t) : Angular velocity [−300 300] rad.s−1

f : friction torque 1.1× 10−4 N.m.s.rad−1

J : Moment of inertia 2.2× 10−4 kg.m2

2.1 DC motor description

From Kirchhoff’s voltage law, one has

L
di(t)

dt
= v(t)−Ri(t)− e(t). (1)

By Newton’s law, one gets

J
dω(t)

dt
=
∑

T (t) = Tm(t)− fω(t) (2)

where T (t) is the total torque applied on the rotor. The back Electro-Motive
Force (EMF) is proportional to the speed

e(t) = Keω(t)

with Ke the electromotive constant (V.rad−1.s). The motor torque is pro-
portional to the current

Tm(t) = KT i(t)

with KT , the torque constant (N.m.A−1). The mechanical power produced
by the DC motor is Tmω = KT iω. The electric power Pe = vi delivered
by the source is transformed into heat loss in the resistance R, into stored
magnetic energy in the inductance L and the remaining quantity iKeω is
converted to mechanical energy Tmω. It leads to Tmω = KT iω = Keiω
where KT = Ke = Kφ [9].

The DC motor has two dynamics, a fast electrical dynamics (1) and a
slow mechanical one (2). This will be treated using a multi-rate controller.
High computation constraints are required for the fast dynamic control and
lower constraints for the other one.

Figure 3: DC Motor Bloc Diagram

3 Model validation

In the previous section, a theoretical model for the DC motor was presented,
however differences between theory and practice always exist. That is why,
the first step is to compare the theoretical model with real data from the ex-
periment to ensure that the model is accurate. This phase makes it possible
to refine the simulation model and consider the maximum of uncertainties
in the simulation model. It is important to differentiate between simulation
and control model. The simulation model must take into account most
of the physical phenomena in order to be the closest to the experimental re-
sults. The control model on the other side must encompass the dominant
dynamics in order to be able to propose a constructive control design. The
application of the control law on the simulation model shows the robustness
of the control and highlights some potential problems that could arise on the
real system. Possible issues can be saturation of the command due to high
frequency noise or dynamic not taken into account by the control model.

Overflow and lacks of resolution can also be detected if fixed-point calcula-
tion are performed but not scaled appropriately. Fixed-point calculation can
be used in critical steps where high speed execution is required. Section 5
provides further insight on fixed point scaling tools.

Real-time experiments data can be sent to MATLAB/Simulink using the
UART. The received logs can be used in simulation to compare an input sent
both to the model and the real system. Figure 4 represents such a scenario.
The experimental data are played in simulation. For this experience, open
loop voltage steps are applied to the motor as well as to the model proposed
in Section 2. The comparison of current and velocity measurements are plot-
ted on Figure 5. The figure shows that the velocity and current dominant
dynamics are well represented in our model. It means that the low frequency
behaviour is well considered in the model so it validates the control model.
However the experimental current exhibits high frequency oscillations. To
observe the behaviour, a zoom of the figure is given on Figure 5. The oscil-
lation has a frequency 12 times higher than the motor speed. It corresponds
to the number of motor poles pairs and represents the current peaks caused
by the passage of coals from one pole to the next. This was not considered
in our modeling and should be added in the simulation model by adding an
oscillation on the motor back EMF.

Figure 4: Use of log as simulation input

Figure 5: Experimental results vs. simulation

4 Control

The control design is based on a cascaded control method. Indeed, the fre-
quency separation allows to split the controller into two control loops (Figure
7). The inner loop controls the fast electrical dynamics while the outer loop
handles the slow mechanical dynamics. For each loop, different types of con-
trollers can be designed. Here, a PI controller, a conventional Sliding Mode
Controller (SMC) and Super Twisting Algorithm (STA) will be tested for the
electrical loop. As far as the mechanical control loop, a PI controller will be
implemented. The design of these controllers is given in the next subsections.

Remark 1 Generally, for small DC motor, the dynamics of the electrical
part is neglected and only the mechanical dynamics is considered. However,
whenever the motor resistance is low, this strategy may damage the motor
because of current peaks during transients.

Remark 2 The fast inner loop is sampled at 20 kHz and the output loop at

Figure 6: Zoom of the experimental results vs. simulation

1 kHz. Note that this cascaded control method is a good example to illustrate
a multi-rate controller implementation.

DC Motor
From Fig. 2

Electrical+

−

iref
Mechanical 1

Kφ

Tm,ref v
i

i

ωωref

ω

+

− ControlControl

Figure 7: Closed-loop cascaded system

4.1 Electrical control loop

The current dynamics in the motor is governed by (1) and the control ob-
jective is to ensure that i → iref where iref is the current reference provided

by the output of the mechanical controller (Figure 7) designed in the next
subsection. Note that controlling the current will impose the torque value
since Tm(t) = Kφi(t).

4.1.1 PI controller

Assuming that the mechanical dynamic is slower than the electrical, i.e

τelec =
L

R
� τmeca =

J

f
,

then the velocity ω can then be considered as constant with respect to the
dynamics of the current i. In this case, one can consider the term −Kφ

L
ω as

a constant perturbation which will be rejected by adding an integral action
in the controller in order to obtain a zero steady state error [10]. The PI
controller has the following expression

vPI = −KPii+KIiεi (3)

with ε̇i = iref − i. The resulting closed-loop dynamics with v = vPI is[
di
dt
dεi
dt

]
=

[
−R+KPi

L

KIi
L

−1 0

]
︸ ︷︷ ︸

Āi

[
i
εi

]
+

[
0
1

]
iref +

[
−Kφ

L
ω

0

]
.

The closed-loop dynamics depends on the eigenvalues of the matrix Āi which
can be fixed in order to verify predefined specifications like overshoot and
convergence speed. By identification with the canonical form of a second
order system one gets

KPi = 2Lξωn −R and KIi = Lω2
n

where ξ and ωn are the desired damping ratio and natural frequency respec-
tively.

Remark 3 Assuming that Kφ is perfectly known and since the speed ω is

measured, it would have been possible to cancel the term −Kφ
L
ω in (1) by

defining vPI = −KPii+KIiεi +Kφω . Here it is has been decided to treat the

whole term −Kφ
L
ω as a perturbation. This choice is made from a pedagogical

point of view because it allows studying the robustness of the controller.

4.1.2 Conventional Sliding Mode Controller

Sliding mode control is known to be robust to uncertainties and external
disturbances thanks to the presence of a discontinuous term in the controller.
In our case the term −Kφ

L
ω is considered as perturbation that is why it is

relevant to test sliding mode controllers. First, the conventional sliding mode
controller of order 1 is defined by

vSMC = Ri+KSMC · sign(σi) (4)

where σi = iref − i is the sliding surface. Taking v = vSMC, the dynamics (1)
becomes

di
dt

= −KSMC

L
sign(σi)− Kφ

L
ω.

By a Lyapunov analysis, the following stability condition

KSMC > L

∣∣∣∣direfdt

∣∣∣∣+Kφ|ω| (5)

is obtained [11]. Assuming that iref is slow, condition (5) is approximated
by vmax > Kφωmax where ωmax is the maximum speed of the motor. Note
that taking KSMC too large will increase undesired fast oscillations known
as chattering phenomenon [12]. As a consequence, there is a compromise
between response time1 and chattering.

Remark 4 Note that the term Ri in (4) is not necessary but will allow to
reduce the chattering effect.

4.1.3 Super Twisting Algorithm

Conventional sliding mode controllers suffer from chattering, which produce
a very unpleasant noise and can damage the motor in the long run. To
overcome this problem while preserving the robustness property of the SMC,
a STA is tested. This algorithm has the advantage to have a continuous
control vSTA. The STA is defined by{

vSTA = Ri+ ci|σi|0.5sign(σi) + wi
ẇi = bi · sign(σi)

(6)

with σi = iref − i and bi, ci positive constants. A careful choice of bi and ci
guarantees the stability of the closed-loop system with v = vSTA [12].

1It can be shown that the larger KSMC, the faster the response time.

Figure 8: Experimental results comparison between electrical loop controllers
(see Table 2 for the explanation of the different cases)

4.2 Mechanical control loop

Assuming that the electrical loop is much faster than the desired mechanical
dynamics, then the mechanical control loop can be designed considering that

i = iref . From (2), the mechanical dynamics becomes

dω
dt

=
Kφ
J
iref − f

J
ω. (7)

the control objective is to get ω → ωref where ωref is the desired speed. Unlike
the electrical control loop, it is not possible to design a conventional sliding
mode controller because a smooth reference iref is required for the electrical
loop [11]. The PI controller and the STA are both continuous and could be
implemented. However, for clarity and because of space limitation, only the
PI controller is not presented here. The control design is similar to the one
proposed for the electrical dynamics. The expression of the controller is

iPIref = −KPωω +KIωεω (8)

with ε̇ω = ωref − ω. The resulting closed-loop dynamics with iref = iPIref is[
ω̇
ε̇ω

]
=

[
−KφKPω+f

J

KφKIω
J

−1 0

]
︸ ︷︷ ︸

Āω

[
ω
εω

]
+

[
0
1

]
ωref .

Similarly, to the electrical control loop design one can choose

KPω =
2Jξωn − f

Kφ

and KIω =
Jω2

n

Kφ

where ξ and ωn are selected according to the speed dynamics specifications.

4.3 Experimental results

In this section, a comparison of the different current controllers is drawn.
The different scenario are shown in Table 2. The electrical and mechanical
PI controllers are tuned to get a 5% overshoot and a time response three
times faster than the open-loop one. The experimental results are displayed
on Figure 8. For the three cases, one can see that the speed tracking is fast
and exhibits an overshoot and a time response that are coherent with the
specifications. It can be seen that the SMC causes chattering on the current.
In addition, the SMC produces an unpleasant noise during the experiment.
The PI and STA lead to similar performances with slightly better noise at-
tenuation for the STA. For future works, it would be interesting to add an
external torque perturbation in order to study the robustness of the different
algorithms and see if the STA is more robust than PI controller.

Electrical Mechanical
control loop control loop

case 1 PI (3) PI (8)
case 2 SMC (4) PI (8)
case 3 STA (6) PI (8)

Table 2: Different control scenario

QEI POS(1-1/z)
uint16

in Out

LPF16bit

sfix16_En4

Scaling

sfix16_En5

ADC

AN13

OA2

int16

int16

sfix16_En15

Scaling

sfix16_Sp00013427734375

Comparators
Op-Amps
VoltRef

Vdc[-11]

PWM

sfix16_En15

Digital
Input

G7

S2

boolean UART1
Tx-Matlab

Bytes/Step:6
TotalBytes:6

CH1

CH2

UART1
Tx-Matlab

Bytes/Step:0.075
TotalBytes:3

CH3

int16

int16

Ia

Speed

int16
Ia

Pot

Pot

Speed

Cmd

Log to PC

2 logic signal in quadrature

Analog Potentiometer and Current

H bridge command

MCLV-2 board

DC motor

Scaling

feedback loop select

20 kHz task

1 kHz task

analog signal

embed in dsPIC

MCHP_MASTER
33EP256MC506

70 MIPS

UART 1 Config
2000000 (-2.78%)
Byes / Step: 9.72

Controller

2

i

MaxCurrent
[-33]

k1

k2

KTs(z+1)

2(z-1)

1

iref

1

v

Figure 9: DC control motor global scheme. The model is compiled and run
as a standalone program on the targeted board

5 Technical considerations

This section details the important steps for the real-time implementation of
a multi-rate control law. The Simulink interface with the motor using the
MPLAB device blocks is represented on Figure 9. The control voltage is
applied to a PWM signal driving a H-bridge converter. The inputs of the

control algorithm are the current and velocity measurements. The velocity
is obtained from an incremental encoder through the use of a Quadrature
Encoder Interface (QEI) peripheral. The current is measured using shunt
resistor, conditioned with the dsPIC DSCs internal op-amps and converted
with the ADC peripheral. The Analog Digital Converter (ADC) conversion
is synchronized with the PWM period. It ensures that the ADC sampling
time is taken when the low side of the H-bridge is on. Speed and current
control loops are sampled at different rates. An option in Simulink highlights
with color the different rates in a model as presented on Figure 9. The
red color represents the fastest sampling rate. Here the sampling frequency
for the control of the fast current dynamics is Felec = 20 kHz. The green
color represents the sampling rate for the mechanical dynamics, here Fmeca =
1 kHz.

5.1 Requirements

Hardware The Microchip MCLV-2 board is targeted. It is equipped with
the 16-bit dsPIC DSCs 33EP256MC506 Plug In Module (PIM) version using
the dsPIC internal op-amps for current signal conditioning. The board drives
the DC motor thanks to a H-bridge.

Software Matlab/Simulink is used with the Embedded Coder and the
fixed-point toolbox from MathWorks. The MPLAB device blocks for Simulink
adds to Simulink the capability to target up to 270 Microchip microcon-
trollers (dsPIC, PIC32). Theses blocks rely on XC16 compiler and the
MPLAB X IDE 2 to compile the generated code and program the board
from the Simulink interface with a single ‘Build’ push button on top right
of the simulink interface (see Figure 10). The compiled model has a discrete
time solver and few dsPIC peripheral blocks.

5.2 Rapid Control Prototyping (RCP)

Standard Simulink blocks generate code, which compiles on a dsPIC DSCs
target. Any model can thus be embedded with respect to the following
constraints:

2blockset, Compiler and IDE are tools available from www.microchip.com.

http://microchipdeveloper.com/simulink:installation

Simulink model
Master block

peripheral blocks

UART

MATLAB / Simulink
Plant Identification
Controller design

Simulation

One push button
process

Flash binary

C source files

Compiler
XC 16

MPLAB IDE / IPE

elf/hex binary

program

Interprete ;
use logs as

 simulation input

reuse model

MCLV-2 board picgui interface
Plot & log data

Figure 10: Rapid Prototyping Scheme

Discrete time Simulation are typically performed in the continuous time
domain. A differential equation solver is used to solve simulation outputs.
The real-time embedded software does not implement such solver so a discrete-
time equivalent controller must be used. Multi-rate model comprises blocks
running at various rates. For each block, it is possible to set its rate and
its offset. Blocks rate offset are multiple of the base model time step de-
fined in the solver panel. A multi-rate model can be implemented using a
multi-tasking scheduler (default settings) or a single tasking program.

In a Single tasking program, all tasks started at a given base model
time step must be completed within the end of that time step slot to respect
real-time constraints.

In a Multi-tasking scheduler, a monotonic-rate scheduler is imple-
mented where higher rate tasks have higher priority and interrupt lower task
rate which have lower priority whenever required. This multi-tasking sched-
uler has a simple priority rule which is well suited for automatic. Its limited

implementation penalty in execution time worth the gain in flexibility.
Figure 11 presents a timing analysis of the cascaded PI algorithms. One

pins driven by the ‘CPU load’ block and two pins driven by the ‘task state’
block shows respectively the CPU state (black curve where 1 is busy and 0 is
idle state), the fast task D1 (red) and slow task D2 (green) respective start
and stop on rising and falling edges. The lower graph is a magnification of
the higher priority task D1 preemption of the lower priority task D2. Note
that, the slow D2 task pin state is not cleared when beeing preempted but
exclusively when task is completed. The shaded region in the tasks D1 and
D2 shows the CPU execution on each task. Here the control algorithm is
modified to show an example of preemption: The mechanical control loop is
implemented using floating point instead of fixed point so as to increasing
the related task ‘D2’ execution time to 55µs which is above the 50µs period
of the 20kHz D1 task. This slow down of the D1 task allows illustrating the
benefit of a Multi-tasking scheduler as presented on Figure 11.

Fixed point Another constraint is the limited power from low cost micro-
controllers in comparison to dSPACE of Speed-Goat. Discrete step of 25µs or
(40kHz control loop frequency) can be reached but floating-point calculation
should be avoided in high rate task. Floating-point calculation can be used
in lower rate tasks as illustrated by the D2 task in Figure 11.

Matlab/Simulink provides a Fixed-point toolbox to help with the conver-
sion of the floating-point model into a fixed-point equivalent. One method
consists in logging values taken by each variable during a simulation using
double datatype. Then for each variable, it is possible from the distribution
histogram to choose the variable data length, which typically would be either
16 or 32 bits, and to select its scaling.

Scaling: Simulink is not limited to floating point value, integers and
the classical fixed point (noted Qx.xx) value within [−1 1] or [0 1] range.
The Simulink fixed-point datatype is very flexible as the Least Significant
Bit (LSB) can represent any quantity. For example if we use the common 16
bits signed fixed-point (Q1.16), the LSB would represent the quantity 2−15.
Simulink sine and cosine blocks output provide a 16 bit output value with a
LSB representing 2−14, allowing to represent value in the range [2−2−14 −2],
including thus the value 1.

Notation: Math blocks can handle inputs having different datatype.
Block output datatype could be either determined from the blocks input

datatype, or forced to a given datatype. A Simulink option shows on the
model the datatype for each block connection. Simulink notation example
with their meaning is given below:

• sfix16 En14 is a signed 16 bit variable with a negative power of 2 ex-
ponent: LSB represents 2−14.

• ufix16 E2 is an unsigned 16 bit variable with a power of 2 exponent:
LSB represents 22.

• sfix16 Sp05 is a signed 16 bit variable where the LSB represents 0.05.

Blocks, where internal or output datatype can be set, provide a user interface
with options like ‘inherited from internal rules’ or ‘inherited from back prop-
agation’. The datatype can also be forced using either the ‘Binary point’, the
‘Slope and bias’ or the ‘Best precision’ option. The ‘Binary point’ and ‘Slope
and Bias’ options set the variable LSB representation value. The ‘Best pre-
cision’ option compute the lowest LSB power of 2 scaling so as to be able to
represent the ‘min’ and ‘max’ values set in the block GUI. This will provide
the best resolution for this variable.

5.3 Timing analysis and efficiency

Some blocks are available for timing analysis.

MCU overload The block detects overload. A physical pin can be used
to detect an overload through a LED or a scope. A block output can pro-
vide overload information to the embedded program. The pin output works
asynchronously: the pin is set as soon as an overload occurs and is never
reset by the DSCs load block. It is however possible to reset the pin using
a ‘digital output write’ block which can be set again by the MCU overload
block. The block output works synchronously. For each MCU overload block
present on the model, any overload occurrence between successive evaluation
of the block are reported in a 16 bit-field integer where the bit 0 code for an
overload of the task D0 (fastest rate), bit 1 for the task D1 until D14. The
bit D15 represents overload on task D15 and higher if the model use more
than 16 different tasks.

Time (ms)0 10.1 0.5

Time (ms)0-0.1 0.1 0.2

Task D1
@ 20 kHz

CPU
load

Task D2
@ 1 kHz

Low priority
task D2

High priority
task D1

CPU
load

42ms 13ms
8ms

Preempted task
effective load 42+13 = 55ms 50ms

50ms

8ms

Magnified view

task start

task complete

Figure 11: Scope measurement of task execution for a Multi-rate model with
a multi-tasking rate monotonic scheduler

MCU Load The block measures the overall load of the DSCs. It can
output the load by toggling a pin. The high state shows the load. The block
can also measure the DSCs load using internal timers providing the value
to the embedded program as a block output. A timer is incremented when
the DSCs is either running a task, or running a peripheral interrupt (i.e not
idle). The block report the timer increment between two evaluations of this
block. The timer resolution should be selected to be able to measure a period
corresponding to the block sample time. The measured time should be equal
or lower than the block sample time. It’s worth noticing that a 100% load
on one time step (for example in Figure 11 from time 0 to 50µs) does not
mean that an overload takes place. Multiple MCU load blocks can be placed
within one model with different sample times, allowing to average the load
over different time period corresponding to the respective block sample time.

Task State The block allows to represent task execution state through
output pin. Each pin representing one selected task. Each task switches
its pin high when it starts, and switches back its dedicated pin low when
completed. Figure 11 shows such analysis for the inner and outer control
loop tasks of the cascaded PI controller detailed in the above section.

Figure 11 presenting DSCs load measurement in a multi-tasking sched-
uler use theses blocks.

Code efficiency The code performance are surprisignly good. Peripheral
are handled as in background through interrupts. Peripheral blocks for in-
put peripherals are thus not blocking as they just have to read the last result
obtained from that peripheral; keeping the CPU time dedicated to the con-
trol algorithm. For example, the base time step is typically triggered by the
ADC block end of conversion interrupt thus when the ADC block is evalu-
ated within the algorithm, the conversion results are already available. The
ADC block do not have to wait for a sample and hold sequence nor by the
following conversion sequence. The same remark holds for others peripheral
blocks like the UART transmission/reception, the SPI or I2C blocks. . .

Code replacement This MathWorks functionality allows replacing code
of standard Simulink blocks by an optimized code for the target so as to
benefit from the optimized target hardware architecture like its DSP unit
or specific instruction set. Code replacement is implemented for common
operations like rounding, saturation and few operations on matrix. It is also
implemented for functions like square root, sine and cosine functions when
used with fixed point datatype input.

5.4 Human Machine Interface (HMI)

No specific HMI was developed for this lab. The MCLV-2 board possesses
two switch buttons and a potentiometer which are used to set the modes
and the reference. To plot and log data, a built-in graphical user interface
(picgui) provides an easy way to visualize and log data. Data to be plotted
are sent using UART. The picgui tool is represented Fig. 12

Figure 12: picgui

6 Conclusion

In this paper, we have proposed a method for RCP that targets microcon-
trollers which can be embedded in custom boards. The different steps for a
real-time embedded multi-rate control where presented in detail. The pro-
posed method was illustrated with experimental results from a DC motor
control. This method was taught to a group of around 15 students in last
year of engineering school (Master 2 equivalent) at INSA Lyon. In 8 hours,
starting from scratch, students were able to control the DC motor using
the microcontroller. Students feedbacks were excellent. In the future, the
method will be extended to control a brushless DC motor with field oriented
control.

References

[1] D. Hercog, M. urkovi, and K. Jezernik, “DSP Based Rapid Control Pro-
totyping Systems for Engineering Education and Research,” in Proceed-
ings of the 2006 IEEE Conference on Computer Aided Control Systems
Design, pp. 2292–2297.

[2] “www.ctrl-elec.fr.”

[3] C. Rodrguez, J. L. Guzman, M. Berenguel, and S. Dormido, “Teaching
real-time programming using mobile robots,” in 11th IFAC Symposium
on Advances in Control Education ACE 2016, vol. 49, pp. 10–15.

[4] H. M. Omar, “Enhancing automatic control learning through Arduino-
based projects,” vol. 43, no. 5, pp. 652–663.

[5] A. Soriano, L. Marn, M. Valls, A. Valera, and P. Albertos, “Low Cost
Platform for Automatic Control Education Based on Open Hardware.”
in Proceedings of the 19th IFAC World Congress, vol. 47, pp. 9044–9050.

[6] R. Chakirov and Y. Vagapov, “Rapid Control Prototyping Platform
for the Design of Control Systems for Automotive Electromechanical
Actuators,” in 5th IFAC Symposium on Mechatronic Systems, ser. 5th
IFAC Symposium on Mechatronic Systems, vol. 43, pp. 646–651.

[7] M. Lizarraga, G. H. Elkaim, and R. Curry, “SLUGS UAV: A flexible and
versatile hardware/software platform for guidance navigation and con-
trol research,” in Proceedings of the 2013 American Control Conference,
pp. 674–679.

[8] R. Bucher and S. Balemi, “Rapid controller prototyping with Mat-
lab/Simulink and Linux,” vol. 14, no. 2, pp. 185–192.

[9] J.-N. Chiasson, Modeling and High-Performance Control of Electric Ma-
chines, ieee press ed., 2005.

[10] K. Ogata, Modern Control Engineering, ser. Instrumentation and con-
trols series. Prentice Hall, 2010.

[11] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electro-
Mechanical Systems, ser. Automation and Control Engineering. CRC
Press, vol. 31.

[12] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding Mode Con-
trol and Observation, ser. Control Engineering. Springer.

	INTRODUCTION
	Study case introduction: DC motor
	DC motor description

	Model validation
	Control
	Electrical control loop
	PI controller
	Conventional Sliding Mode Controller
	Super Twisting Algorithm

	Mechanical control loop
	Experimental results

	Technical considerations
	Requirements
	Rapid Control Prototyping (RCP)
	Timing analysis and efficiency
	Human Machine Interface (HMI)

	Conclusion

