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ABSTRACT

Background: We sought to improve the risk prediction of 3-month left ventricular remodeling (LVR) occurrence
after myocardial infarction (MI), using a machine learning approach.

Methods: Patients were included from a prospective cohort study analyzing the incidence of LVR in ST-elevation
MI in 443 patients that were monitored at Angers University Hospital, France. Clinical, biological and cardiac
magnetic resonance (CMR) imaging data from the first week post MI were collected, and LVR was assessed with
CMR at 3 month. Data were processed with a machine learning pipeline using multiple feature selection algo-
rithms to identify the most informative variables.

Results: We retrieved 133 clinical, biological and CMR imaging variables, from 379 patients with ST-elevation MI.
A baseline logistic regression model using previously known variables achieved an AUC of 0.71 on the test set,
with 67% sensitivity and 64% specificity. In comparison, our best predictive model was a neural network using
seven variables (in order of importance): creatine kinase, mean corpuscular volume, baseline left atrial surface,
history of diabetes, history of hypertension, red blood cell distribution width, and creatinine. This model ach-
ieved an AUC of 0.78 on the test set, reaching a sensitivity of 92% and a specificity of 55%, outperforming the
baseline model.

Conclusion: These preliminary results show the value of using an unbiased data-driven machine learning
approach. We reached a higher level of sensitivity compared to traditional methods for the prediction of a 3-
month post-MI LVR.

1. Introduction

number of patients show post-infarct LVR at 3 months after MI [3]. It
more likely occurs in large infarcts and leads to the development of heart

Myocardial infarction (MI) morbidity and mortality is broadly driven
by post-MI left ventricular remodeling (LVR) occurrence which associ-
ates functional and structural changes in both the ischemic and non-
ischemic regions of the heart [1,2]. Even in the present era in which
ST-elevation segment myocardial infarction (STEMI) is largely treated
with acute revascularisation and optimal pharmacotherapy, a large

failure and cardiac death [1,2,4]. Early detection of patients likely to
experience LVR may help to optimize therapeutic strategies aiming at
preventing or reverting LVR and its subsequent clinical consequences
[5].

In recent years, artificial intelligence based on machine and deep
learning algorithms has been used to tackle the challenge of integrating
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Fig. 1. Receiver Operating Characteristic plot of the baseline logistic regression model (in orange) and our proposed machine learning approach combining feature
selection and a neural network (in purple). Performances on the validation set (61 patients) and on the test set (76 patients) is displayed on the left (A) and right (B)
plots respectively. Thresholds for computing sensitivity and specificity are represented for default value (50%) and for the optimal threshold determined at the
maximal Youden’s index. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and analyzing the ever increasing accumulation of measured parameters
produced by patient care [6]. A machine learning approach has the
potential to allow increased performance in prediction compared to
traditional statistical methods that are still largely used to this day. It
could identify new potential candidates for prediction, without any
preconceived ideas often based on established parameters or patho-
physiological considerations. We therefore aimed to apply machine
learning algorithms to common or potentially accessible markers that
could help predict LVR at three month in patients following acute ML

2. Methods
2.1. Patients

443 patients were included at Angers University Hospital, France in a
prospective cohort study analyzing the incidence of LVR in STEMI
(PHRC, N° 2006/0070, more details in Supplementary Method). Time
period of inclusion span from 2004 to 2018. The protocol was approved
by the institutional ethics committee of the University Hospital of An-
gers (CCPPRB agreement 15/11,/2005).

2.2. Biological data and CMR data

We retrospectively collected biological results available in the first
week post-MI as part of medical care (detailed list in Supplementary
Table 1). All patients underwent CMR at baseline and after follow-up at
3 month. CMR was performed using either 1.5 or 3.0 T imager (Avanto
or Skyra, Siemens, Erlangen, Germany, details in Supplementary
Method).

2.3. Machine learning pipeline

LVR was defined as LV end systolic dilation superior or equal to 10%
between baseline CMR and the 3-month follow-up [7]. Data was splitted

in a train (64%), val (16%) and test set (20%) with random stratified
sampling. Missing values were imputed (detailed list of variables and
their corresponding amount of imputed missing values in Supplemen-
tary Table 1). Three feature selection algorithms (ElasticNet [8], BOR-
UTA [9] and MULTISURF [10]) were used to select the most relevant
variables. We then trained multiple machine learning algorithms. The
role and impact of each feature value on the model’s prediction was also
assessed using SHAP (SHapley Additive exPlanation) values [11] (code
for the analysis available at: https://www.github.com/XavierDieuR
enard/LVR_prediction_with_ML).

3. Results

3.1. Cohort description

From the 443 patients initially included in our STEMI cohort, 379 for
whom we could cross match our clinical, CMR and biological data were
finally included in our study (patients’ description in Supplementary
Table 2). We collected 133 variables: 41 clinical and 12 CMR features as
well as 80 biological parameters. Of those 379 patients, 78 (20.5%) had
a LVR at 3 month. After random stratified sampling, the final training set
comprised 242 patients, the validation set comprised 61 patients and the
test set comprised the remaining 76.

3.2. Feature selection

We applied three feature selection algorithms to remove non-
informative features, and used them to highlight the most important
features to keep (Supplementary Table 3). Accordingly, 7 features were
finally selected: median value of creatine kinase (CK), maximum value
of mean corpuscular volume, maximum value of red blood cell distri-
bution width, maximum value of creatinine, baseline left atrial surface,
presence or absence of hypertension and presence or absence of
diabetes.
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3.3. Model training and results

For comparison purposes we first started by training a baseline lo-
gistic regression model which used previously described variables [12]
such as: infarct size, microvascular obstruction, CK peak, hypertension,
diabetes, family history of MI, hypercholesterolemia, tobacco smoking,
alcohol consumption, time interval between chest pain and angioplasty
and intra-hospital heart failure. This model achieved an AUC-ROC of
0.71, 0.65 and 0.71 on the train, validation and test sets respectively.
When using the optimal threshold found on the validation set on the test
set, this model had a sensitivity of 67% and a specificity of 64% for the
prediction of 3-month post MI LVR.

In comparison, our best model (a neural network) fitted on our 7
variables achieved an AUC-ROC of 0.78, 0.81 and 0.78 on the train,
validation and test sets respectively (Figure 1). When using the optimal
threshold of the validation set on the test set, we obtained a sensitivity of
92% and the specificity was at 55%. The importance of each feature for
the models was assessed on the train set through the computation of
SHAP values (Figure 2).

We tested our model’s prediction against different thresholds
recently proposed in the literature. When using a threshold of a 10%
dilation of the left ventricular end-diastolic volume (LVEDV) [13], none
of the approaches could predict LVR. However when using a threshold of
a dilation superior to 12% in both left ventricular end systolic volume
(LVESV) and LVEDV [14], we did achieve similar performance

SHAP value (impact on model output)

LVR

(Supplementary Fig. 1).
4. Discussion

We have developed a machine learning pipeline which selected
seven variables that are easily accessible and/or already routinely
measured and achieved a good sensitivity for the prediction of 3-month
post MI LVR, enabling a better detection of patients at risk of LVR than
classical statistical approaches. Our results showcase that this type of
unbiased approach could lead to better results than a baseline model
that rely solely on established parameters or pathophysiological con-
siderations. This approach could be the basis for the future development
of more effective models that could help with adapting treatments or
follow-up for patients after MI [15].

A pivotal aspect when trying to predict LVR is how we define it. The
threshold we used presents the theoretical appeal of combining infor-
mation on both volumetric assessment and systolic function. However,
we tried to apply our model’s predictions to recently proposed thresh-
olds. We did achieve similar performances when using the threshold
proposed by Bulluck et al [14] but not when using the threshold of
Reindl et al. [13] Bulluck et al [14] had observed similar results, where
isolated LVEDV dilation was not associated with clinical outcomes. It
illustrates the difficulty to dichotomize LVR in a generalizable way
across different centers.

As health care produce large amounts of data from diverse



modalities, model performance will decrease without feature selection.
Fewer features selected enables better model explainability and easier
use by other centers. As there is no best way to select the best features for
a prediction task, the concept of ensemble feature selection (combining
the strength of different algorithms) recently emerged [16]. Leveraging
this approach and consistently with the literature, we have found that
our model selected known predictors of post-MI LVR remodeling such as
CK [4], hypertension or diabetes, which helps in validating the rele-
vance of this approach. Interestingly, LAS is also among our selected
predictors. We used CMR to obtain its surface in our patients, however it
could also be obtained by standard cardiac echocardiography. In the
literature, LA volume increase has been shown to be an early predictor of
death and heart failure in patients with a high risk MI [17]. Our model
also selected some unexpected biological biomarkers. Specifically,
RBCDW and mean corpuscular volume (MCV) have been linked with
cardiovascular diseases in the literature, however the link between these
variables and post-MI LVR is unclear and should be explored. An in-
crease in RBCDW has previously been reported to correlate with poor
clinical outcomes in cardiovascular diseases [18]. Similarly, changes in
MCYV levels have been reported as a marker of poorer outcomes in pa-
tients with MI but not as a predictor of LVR [19].

Our study has certain limitations. The modest specificity of our
model may be due to other unknown factors involved in LVR patho-
physiology which could limit the extrapolation of our results for clinical
use. It also could be due to the size of our cohort which prompted us to
use drastic feature selection and limited our ability to create a more
complex model including more variables. Additionally, our results were
obtained on a monocentric cohort and should be validated on external
data. However, our approach may be pushed even further thanks to the
relative simplicity and the good availability of the parameters making it
suitable for additional testing on multicentric cohorts, necessary for
validating the relevance of our methodology.

5. Conclusion

In this preliminary study, the use of a “big data” and machine
learning approach, i.e. using highly and easily available common bio-
logical, clinical and imaging markers as inputs for a model capable of
complex modelling without making assumptions about data, allowed us
to achieve better results than traditional statistical approach for the
prediction of a 3-month LVR post-MI.
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