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It has been shown that it is theoretically possible for there to exist quantum
and classical processes in which the operations performed by separate parties
do not occur in a well-defined causal order. A central question is whether and
how such processes can be realised in practice. In order to provide a rigorous
framework for the notion that certain such processes have a realisation in
standard quantum theory, the concept of time-delocalised quantum sub-
system has been introduced. In this paper, we show that realisations on time-
delocalised subsystems exist for all unitary extensions of tripartite processes.
This class contains processes that violate causal inequalities, i.e., that can
generate correlations that witness the incompatibility with definite causal
order in a device-independent manner, and whose realisability has been a
central open problem. We consider a known example of such a tripartite
classical process that has a unitary extension, and study its realisation on time-
delocalised subsystems. We then discuss this finding with regard to the
assumptions that underlie causal inequalities, and argue that they are indeed a
meaningful concept to show the absence of a definite causal order between the

variables of interest.

The concept of causality is essential for physics and for our perception
of the world in general. Our usual understanding is that events take
place in a definite causal order, with past events influencing future
events, but not vice versa. One may however wonder whether this
notion is really fundamental, or whether scenarios without such an
underlying order can exist. In particular, the questions of what quan-
tum theory implies for our understanding of causality, and what new
types of causal relations arise in the presence of quantum effects, have
recently attracted substantial interest. This investigation is motivated
both by foundational and by applied questions. On the one hand, it is
expected to lead to new conceptual insights into the tension between
general relativity and quantum theory'>. On the other hand, it also
opens up new possibilities in quantum information processing®.

A particular model for the study of quantum causal relations is the
process matrix framework’?, where one considers multiple parties
which perform operations that locally abide by the laws of quantum
theory, but that are not embedded into any a priori causal order. As it
turns out, this framework indeed allows for situations where the causal

order between the parties is not well-defined (see e.g. refs. >°7).
Moreover, some of these processes, called noncausal, can produce
correlations that violate causal inequalities>* %", which witnesses the
incompatibility with definite causal order in a device-independent
manner, similarly to the way a violation of a Bell inequalities witnesses
the incompatibility with local hidden variables®. A central question is
which of these processes with indefinite causal order have a practical
realisation, and in what physical situations they can occur. It has been
speculated that indefinite causal order could arise in exotic physical
regimes, such as at the interface of quantum theory and gravity'>.
However, there are also processes with indefinite causal order that
have an interpretation in terms of standard quantum theoretical con-
cepts. A paradigmatic example is the quantum switch®, a process in
which the order between two operations is controlled coherently by a
two-dimensional quantum system. This control qubit may be prepared
in a superposition state, which leads to a superposition of causal
orders. Although the quantum switch cannot violate causal
inequalities™*"* (however, see recent results in the presence of
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additional causal assumptions™'®), it can be proven incompatible with
a definite causal order in a device-dependent sense>®.

In order to demonstrate indefinite causal order in practice, a
number of experiments that realise such coherent control of orders
have been implemented in the laboratory”’ %, however their inter-
pretation as genuine realisations of indefinite causal order has
remained controversial’®™?. Indeed, the claim that indefinite causal
order can be realised in standard quantum scenarios seems contra-
dictory at first sight—after all, such experiments admit a description in
terms of standard quantum theory, where physical systems by
assumption evolve with respect to a fixed background time, and it is
therefore not manifest how the causal order between operations could
possibly be indefinite. A resolution of this apparent contradiction was
proposed in ref. ?°, where it was shown that certain processes with
indefinite causal order can be seen to take place as part of standard
quantum mechanical evolutions if the latter are described in terms of
suitable systems. The twist is to consider a more general type of system
than usually studied, namely so-called time-delocalised subsystems,
which are nontrivial subsystems of composite systems whose con-
stituents are associated with different times. This concept provides a
rigorous underpinning for the interpretation of previous laboratory
experiments as realisations of processes with indefinite causal order—
when the experiment is described with respect to such an alternative,
operationally equally meaningful factorisation of the Hilbert space, it
acquires precisely the form of the process with indefinite causal order.
It was then shown in ref. *° that this argument extends to an entire class
of quantum processes, namely unitary extensions of bipartite pro-
cesses, as well as a class of isometric extensions, whose relation to the
unitary class is not yet fully understood. The generalisation of these
constructions to more parties has however remained an open ques-
tion. In particular, it has remained an open question whether processes
violating causal inequalities can be realised in a similar way. It is in fact
generally believed that such processes could not be realised determi-
nistically within the known physics™.

In this paper, we extend the proof of realisability on time-
delocalised subsystems to all unitary extensions of tripartite pro-
cesses. This class contains examples of processes that can violate
causal inequalities, showing that they have realisations with the tools
of known physics in a well-defined sense.

This work is structured as follows. We set the stage by reviewing
the process matrix framework, as well as the notion of time-delocalised
subsystems. We present the general tripartite construction, and we
study an example of a tripartite noncausal process on time-delocalised
subsystems. We then analyse our finding with regard to the assump-
tions that underlie causal inequalities, and argue that their violation
witnesses the absence of a definite causal order in a meaningful way.

Results

Notations

We start by introducing some notations. We denote the Hilbert space
of some quantum system Y by Y, the dimension of /" by dy and the
space of linear operators over 1" by £(H"). Each such Hilbert space
comes with a preferred, computational basis generally denoted {|i)"};.
The identity operator on " is denoted by 17. We also use the notation
H'? .= 1Y @ HZ for the tensor product of two Hilbert spaces +! and
H% (whose computational basis is built as the tensor product of the
two subsystems’ computational bases). For two isomorphic Hilbert
spaces H" and HZ, we denote the identity operator between these
spaces (i.e. the canonical isomorphism, which maps each computa-
tional basis state |i)" of " to the corresponding computational basis
state [i)” of H%) by 1% := ¥",Ji*(il", and its pure Choi representa-
tion (see the Methods section “The Choi isomorphism and the link
product”) by 1)) := 3°,1i) ® |i). (Generally, superscripts on vec-
tors indicate the Hilbert space they belong to, which may be omitted
when clear from the context). Moreover, we will often abbreviate XXo

to Xjpo for the incoming and outgoing systems of the party X
(see below).

The process matrix framework

In the following, we briefly outline the process matrix framework,
originally introduced in ref. 2. We consider multiple parties X=A, B,
C, ... performing operations that are locally described by quantum
theory. That is, each party has an incoming quantum system X; with
Hilbert space #*' and an outgoing quantum system X, with Hilbert
space H*o, and can perform arbitrary quantum operations from X; to
Xo. A quantum operation is most generally described by a quantum
instrument, that is, a collection of completely positive (CP) maps
{ME?X]}OX, with each M1 : £(H¥1) - £(H¥0) associated to a classical
outcome oy, and with the sum over the classical outcomes yielding a
completely positive and trace-preserving (CPTP) map.

The process matrix framework was conceived to study the most
general correlations that can arise between such parties, without
making any a priori assumption about the way they are connected. In
ref. 2, it was shown that these correlations can most generally be
expressed as

P(0,4,05.0c,..)=W % (ME;’A] eMP oM g ... ) o

Here, ME?X] € L(H¥) are the Choi representations of the local CP maps
M and “*” denotes the link product’>”, a mathematical operation
that describes the composition of quantum operations in terms of
their Choi representation (see the Methods section “The Choi iso-
morphism and the link product”). W e £(H*0BioCi0o-) is a Hermitian
operator called the process matrix. The requirement that the prob-
abilities in Eq. (1) should be non-negative, even when the operations of
the parties are extended so as to act on additional, possibly entangled
ancillary input systems, is equivalent to W= 0. The requirement that
the probabilities should be normalised (i.e., they should sum up to 1 for
any choice of local operations) is equivalent to W satisfying certain
linear constraints®>****, and having the trace Tr(W)=d, dg dc, ...

The process matrix is the central object of the formalism, which
describes the physical resource or environment through which the
parties are connected. Mathematically, the process matrix defines (i.e.,
it is the Choi representation of) a quantum channel W : £(H40B0Co-) _
L(HYBi%) from all output systems of the parties to their input sys-
tems. Equation (1) then describes the composition of that channel with
the local operations, which can be interpreted as a circuit with a cycle
as represented graphically (for the bipartite case) in Fig. 1a.

Through the top-down approach outlined here, one recovers
standard quantum scenarios, such as joint measurements on multi-
partite quantum states, or, more generally, quantum circuits in which
the parties apply their operations in a fixed causal order (and the
process matrix corresponds to the acyclic circuit fragment consisting
of the operations in between the parties**). However, one also finds
processes that are incompatible with any definite causal order between
the local operations. Such processes are said to be causally
nonseparable>>*°. Furthermore, some causally nonseparable pro-
cesses can generate correlations P(04, 0, O, ...li, ig, ic, ...), Where iy
are local classical inputs based on which the local operations are
chosen, that violate so-called causal inequalities>**'°", which certifies
their incompatibility with a definite causal order in a device-
independent way. Such processes are referred to as noncausal.

A class of processes that is of particular interest in this paper is
that of unitarily extendible processes, which were first discussed in
ref. 3*. A unitary extension of a process matrix W is a process matrix
which involves an additional party P with a trivial, one-dimensional
input Hilbert space, as well as an additional party F with a trivial, one-
dimensional outgoing Hilbert space, such that the corresponding
channel from PpApBoCo... to FAB/C,... is unitary, and such that the
original process matrix W is recovered when P prepares some fixed
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Fig. 1| Process matrix scenarios as cyclic circuits. a In the process matrix fra-
mework, the operations performed by the parties (here, Alice and Bob) are com-
posed with the process matrix, which defines a channel from the output systems
AoBo of the parties back to their input systems A;B,. This composition can be seen as
a cyclic circuit, and provides the probabilities for the classical outcomes 04 and 0.

b Composing a unitarily extended process matrix with unitary operations per-
formed by the parties gives rise to a unitary operation from the outgoing system Po
of the global past party P and the incoming ancillas of the parties A},B; to the
incoming system F; of the global future party F and the outgoing ancillas of the

parties Ap,B,*".

state and F is traced out. That is, the extended process matrix is a rank-
one projector |U))((U|, where |U)) is the pure Choi representation (see
Methods) of a unitary U : H oA0BoCo- s HFABIC- which satisfies

W=1U)) (Ul % (10)(0]"° @ 177). ©)
The additional parties P and F can be interpreted as being in the global
past, respectively global future, of all other parties, since they do not
receive, respectively send out, a quantum system.

Note that the unitary extension also needs to be a valid process
matrix, i.e., it needs to satisfy the above-mentioned constraints which
ensure that it yields valid probabilities when the parties (including P and
F) perform arbitrary local operations. In ref. *, it was found that some
process matrices do not admit such a unitary extension, and unitary
extendibility was postulated as a necessary condition for a process
matrix to describe a physically realisable scenario. It was also shown that
unitary extensions are equivalent to processes that preserve the
reversibility of quantum operations. That is, when the slots of P and F
are left open, and all other parties perform unitary operations
Uy : L(HXT) — £(H¥oX0), which act on X; and X, as well as some
(possibly trivial) additional ancillary incoming and outgoing systems X;
and X, the resulting global operation, which takes the initial systems
PoABC; ... to the final systems F,A,B,Cy, .. ., is again unitary (Fig. 1b).

In this case, the Choi representations of the local operations,
as well as the unitarily extended process matrix, are rank-one projec-
tors, and we can describe their composition in terms of their
pure Choi representations. The global unitary operation
UgUnUgUec, ) : LHPABIC ) o £(HF40BoCo), in its pure Choi
representation, is given by

UsUs UpU, )= 100+ (Un)) & |Us) @ U)) ®..)
< HPOABIClFiABoCo ... (€
where |Uy)) € H¥1oXio are the pure Choi representations of the local
unitary operations Uy, and “*” denotes here the so-called vector link
product” (cf. Methods). In the following, we are going to refer to |U))
as the process vector of the unitary process under consideration.
The process matrices that we are concerned with in this work are
unitary extensions of bipartite or tripartite process matrices. More-
over, any local operation can be dilated to a unitary channel acting on
the original incoming and outgoing systems together with an addi-
tional incoming and outgoing ancilla, followed by a measurement of

the outgoing ancilla. Throughout the paper, we will therefore not
consider the actions of the global past and global future parties
explicitly, but rather work with the description as per Eq. (3) in terms of
pure Choi representations, which is convenient. We will also take the
incoming and outgoing Hilbert spaces of all parties, except for Pand F,
to be of equal dimension dy, =dy, =: d. This simplification saves us
some technicalities, and it does not entail any loss of generality.
Namely, if these dimensions do not match, one can treat the
process under consideration as a part of an extended process
with process vector |U)) ® |1)P% @ |1))0F1 @ |1))Ps8 @ |1))Bfs g
[1))cC® |1y)Cfc @ ..., which involves additional identity channels
between additional outgoing (incoming) Hilbert spaces
HPa P8 HPe, . (HEa HEs HPe, ) of the global past (future) party,
and additional incoming (outgoing) Hilbert spaces H*,H%,HS, ...
(HA0,HPo,}Co, ) of the remaining parties, whose dimensions are
chosen such that d, 3 =d, y_=d for all parties (except P and F).

Time-delocalised subsystems and operations

In this section, we discuss the concept of time-delocalised subsystem,
first introduced in ref. %, Briefly summarised, the idea is that a quantum
circuit, consisting of operations that act at definite times on specific
input and output systems, can be described in terms of a different choice
of systems, corresponding to an alternative factorisation of the joint
Hilbert spaces of the input and output systems of operations at different
times. In general, the new systems may be delocalised relative to the old
ones and thus spread over different times. When described in terms of
such alternative time-delocalised subsystems, the circuit generally con-
tains cycles as considered in the process matrix framework (Fig. 1). We
first discuss the general formalisation of this idea, then we recall how it
applies to the case of the quantum switch, as well as general unitary
extensions of bipartite processes, for which it was shown in ref. % that
realisations on such time-delocalised subsystems always exist.

The concept of time-delocalised subsystem arises from combin-
ing two notions from standard quantum theory, namely the definition
of quantum subsystem decompositions in terms of tensor product
structures, and the fact that a fragment of a quantum circuit containing
multiple operations implements itself a quantum operation from all its
incoming to all its outgoing systems.

In quantum theory, the division of a physical system into sub-
systems is formally described through the choice of a tensor product
structure. Equipping a given Hilbert space #", corresponding to some
quantum system Y, with a tensor product structure means choosing an
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Fig. 2 | Description of a quantum circuit in terms of time-delocalised sub-
systems. a Example of a quantum circuit, consisting of quantum operations

S M,EM, T U Ny, (FBy, (P}, which are composed through the systems
A,B,C,D,E, F,G,H, 1, and a decomposition thereof into fragments, corresponding
to the red and blue boxes. The red fragment implements itself a quantum operation
from the incoming systems A and F to the outgoing systems D, H and /, which are
each associated with different times. It is composed with its complement, the blue
fragment, which implements a quantum operation from the systems D, H, I to the

systems A, F. b Description of the red circuit fragment in terms of time-delocalised
subsystems V, W, X, ¥, which are defined by isomorphisms /;;, : HYY — HAF and
Jout : HP — 1*Y. We obtain a new operation {£ )}, from V, Wto X, Y.

¢ Description of the blue circuit fragment in terms of the time-delocalised sub-
systems V, W, X, Y. We obtain a new operation {KV*™};, . from X, Yto V, W.d In the
new subsystem description in terms of the time-delocalised subsystems V, W, X, Y,
we obtain a cyclic circuit composed of {£¥}, and (KU*™), ..

isomorphism (i.e., a unitary transformation) J : 1" — ®§':1Hyﬂ, where
H",...;H"» are Hilbert spaces of dimensions dy,...,dy , with

i—1dy_=dy. Such a choice establishes a notion of locality on HY, and
defines a decomposition of the system Y into subsystems V;, ..., Y,.. For
instance, the operators in £(H") that are local on the subsystem Y; are
those of the form J7(O"i @ 1Yv-Yia¥i-Yayy with 0" e L(HY).
(Equivalently, the tensor product structure can also be defined in
terms of the algebras of operators that are local on the different
subsystems®®). Since the choice of such a tensor product structure is
not unique, there are many different ways to view H" as the state space
of some quantum system with multiple subsystems.

In standard quantum theory, physical systems evolve with respect
to a fixed background time. At an abstract level, such standard quan-
tum mechanical time evolution can be described in terms of a quan-
tum circuit, that is, a collection of quantum operations (pictorially
represented by boxes) that are composed through quantum systems
(pictorially represented by wires) in an acyclic network. The operations
in such a quantum circuit thus act on their incoming and outgoing
quantum systems (which may consist of several subsystems) at definite
times. One may however also consider quantum operations that act on
several subsystems associated with different times. In fact, this possi-
bility arises naturally within the quantum circuit framework. Namely, if
one considers a generic fragment of a quantum circuit containing
many operations, that fragment implements a quantum operation
from the joint system of all wires that enter into it, to the joint system
of all wires that go out of it*, where the incoming and outgoing wires
are generally associated with Hilbert spaces at different times (see
Fig. 2a for an example).

One may choose to describe such a quantum operation imple-
mented by a fragment with respect to a different subsystem decom-
position. Formally, this is achieved by composing its incoming,

respectively outgoing, wires with some isomorphisms that define a
different tensor product structure on the corresponding joint Hilbert
spaces (Fig. 2b). The resulting subsystems are then in general not
associated with a definite time. This is what one understands by time-
delocalised subsystems.

To describe the full circuit in terms of these newly chosen time-
delocalised subsystems, the operation implemented by the comple-
ment of the fragment under consideration needs to be composed with
precisely the inverse of the chosen isomorphisms (Fig. 2c). The com-
position of the two fragments (which, for a circuit with no open wires,
corresponds to the joint probability of the measurement outcomes of
the different operations in the circuit”~%, see Fig. 1a) then indeed
remains the same in the old and new descriptions. This follows from
the properties of the link product (see Methods, Egs. (13) and (14)),
which provides a formal tool to connect the different fragments that a
quantum circuit is decomposed into®**,

Importantly, the structure of a given circuit with respect to such a
choice of time-delocalised subsystems can also be tested
operationally®. In particular, the circuit can be disconnected at the
chosen subsystems and each of the time-delocalised operations that
occur on these subsystems can be experimentally addressed and ver-
ified, similarly to the way one would test the circuit description with
respect to the standard time-local factorisation. In this sense, such an
alternative description of the experiment is operationally just as
meaningful. This is discussed in more detail in Supplementary Note 1.

Processes with indefinite causal order on time-delocalised
subsystems

In the laboratory experiments that have been proposed as imple-
mentations of the quantum switch, one considers a target quantum
system at two possible times. The operation U, is applied to the target
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Fig. 3 | Temporal circuit for a general tripartite unitary process. U, and Up are
applied either on the time-local target system T(l” or T‘z” (and the ancillary systems),
depending coherently on the state of the two-dimensional control systems Q‘l” and
Q‘Z”. These two applications of the coherently controlled operations U, and Up are
surrounded by circuit operations @, (U¢) : HPiPo — HTEQ, w3(U,) : HIHE —
HT2E2, w3(Uc) : HTEr — HT2F2 (these two also being coherently controlled), and
wy(Ug) : HT2E2@ — HfCoF1 which can (together with the therein introduced
ancillary systems £y, E,) in general all depend on Uy, the third party’s (Charlie’s)
operation. The boxes I stand for identity channels that relate the systems with and
without the bars. The ancillary system p is prepared in the state |0)” in the

beginning, and the final ancillary system f is discarded. (Note that, with a slight
abuse of notation, we use the ground symbol for this discarding of f, which is
commonly used for mixed circuits where the boxes represent CP maps, rather than
for circuits consisting of pure operations, as we have here. The system f however
always ends up in the state |0y (see Supplementary Note 3A), so that taking the
partial trace over fis equivalent to projecting onto |0y, and does not introduce any
decoherence or loss of purity. The coherently controlled applications of U, and Up,
aswell as of w3(U) and w3(U), are displayed with a slight shift for graphical clarity,
but they can be taken to act at the same time.

system T at the earlier time, or to the target system 7T, at the later time,
depending on whether another two-dimensional quantum system, the
control qubit, is in the computational basis state |0) or |1), and con-
versely for the operation Up. There has been much debate (see e.g.
refs. 2*%!) about whether experiments of that type can be interpreted as
valid realisations of the quantum switch, understood as an abstractly
defined scenario in the process matrix formalism’. Indeed, the relation
between the above outlined experimental procedure, and the situation
considered in the process matrix framework, where one instance of
each U, and U is composed with the process matrix in a circuit with a
cycle, is a priori unclear. A heuristic argument that is sometimes
invoked to justify that each of the two operations is indeed applied
once and only once is that each operation occurs precisely once in
each of the two superposed coherent branches, and is therefore used
once overall. To further corroborate this, one could introduce a flag or
counter system'* that keeps track of the usage of the operations. To
really understand the sense in which the quantum switch is realised in
these experiments, it is however desirable to rigorously formalise the
link between the standard quantum description of the experiments,
and the process matrix scenario. This question was addressed in ref. %’
It was shown that the temporally ordered quantum circuit that
describes the experimental situation outlined above indeed takes the
structure of a circuit with a cycle as in the process matrix framework
(i.e., as in Fig. 1), when one changes to a description in terms of specific
time-delocalised subsystems—whose choice, broadly speaking, for-
malises the intuition that the input system is 7; when the control sys-
tem is in state |0) and T, when the control system is in state |1), and
similarly for the output systems®. In other words, when these experi-
ments are realised physically, what happens on these alternative sys-
tems is precisely the structure described in the process matrix
framework. It is in that sense that these experiments can be considered
realisations of the abstract mathematical concept.

It was then shown that this argument can be generalised, and that
there exist other types of processes which have a realisation in this
sense. Notably, this is the case for the entire class of unitary extensions
of bipartite processes, of which the quantum switch is a particular
example. It was subsequently shown in refs. *>*' that all such processes
are variations of the quantum switch, but the proof of Ref. # did not
rely on this knowledge. It is the idea behind the original proof from
ref. ?’, together with the subsequent result of refs. *>*, that will allow us
to generalise the proof to the tripartite case. We therefore recall the
bipartite result from ref. ?%, in the language and conventions we use in
this paper (notably employing the Choi representation and the link
product), in Methods, and the corresponding proofs in Supplemen-
tary Note 2.

Unitary extensions of tripartite processes on time-delocalised
subsystems

For unitary extensions of processes with more than two parties, it is a
priori unclear whether and how a realisation on time-delocalised
subsystems can be found. In the following, we will establish the result
for unitary extensions of tripartite processes. Briefly summarised, we
show that for any unitarily extended tripartite process, there exists a
standard, temporally ordered quantum circuit, with operations that
depend on the local operations Uy, Ug and Uc applied in the process,
which precisely corresponds to the situation considered in the pro-
cess matrix framework, with one instance of each U,, Ug and Uc
composed with the process matrix in a circuit with a cycle,
when described in terms of a suitable choice of time-delocalised
subsystems.

Formally, we prove the following proposition.

Proposition 1. Consider a unitary extension of a tripartite process,
described by a process vector |U)) e H oAoBoCiofi composed with
unitary local operations U, : H** — HAo% Uy : BB — 1BoBo and
U : HYC — 1%, For any such process, the following exist.

1. Atemporal circuit of the form shown in Fig. 3, in which U, and Up
are applied on the target input and output systems ¢’ or 79,
coherently conditioned on the state of the control systems Q\”
and @Y, and which is composed of circuit operations that depend
on Uc.

Isomorphisms A and  Jou:
HIT2NT2QF 1, 4A0BoCo¥Z | gych that, with respect to the sub-
systems A, B;and C, of T,T,T,T,Q,P, and the subsystems Ao, Bo
and Cp of TjT,T,T,Q,F, that these isomorphisms define, the
circuit in Fig. 3 takes the form of a cyclic circuit composed of
U, Uy, Ug and Ug as in the process matrix framework (Fig. 4).

In the following, we outline the proof. All technical proofs and
calculations for this tripartite construction are given in Supplemen-
tary Note 3.

. 2 /ABCYZ T, T,T\THQP,
jin-Hl” — K122 o

Outline of proof. The existence of a temporal circuit as in Fig. 3 is
shown in Supplementary Note 3A. It follows from the result that all
unitary extensions of bipartite processes can be implemented as var-
iations of the quantum switch*®*, in which the time of the two local
operations is controlled coherently. Any unitary extension of a tri-
partite process can thus be implemented as a variation of the quantum
switch, with two local operations whose time is controlled coherently,
and which is composed of circuit operations that depend on the third
local operation. The isomorphisms J;, : HAZGYZ — HTiT2TiT2QPo and
Jour : HIT2NT2QF _ 3440B0Co¥Z (where ¥,Z,Y and Z are appropriate
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Fig. 4 | Description of the tripartite temporal circuit in terms of time-
delocalised subsystems. a Description of the red circuit fragment in terms of the
time-delocalised subsystems A,, B, C, Y, Z of the joint system T,7,T,T,Q,P,, and
Ap,Bo,Co,Y.Z of the joint system T;T,T,T,Q,F,. b Description of the blue circuit
fragment in terms of the time-delocalised subsystems A, B;, C;, Y, Z of the joint
system T, 7,7, T,Q,Po, and Ay,B,Co,Y,Z of the joint system T} T, T, T,Q,F,.c The
composition of the operations R(Uo) and R’ over the systems V,¥,Z,Z,Q,,Q, gives

oA e

@ @

rise to a cyclic circuit fragment consisting of the operation Ucand the unitary U that
defines the process. That is, when evaluating the composition of R(Uc) and R over
the wires shown in green (but not over C,and Cy), we obtain the cyclic circuit in the
middle, consisting of the operations Uy, U, Uc and U. With respect to the systems
Po.A10,B10,Cio.F;, as well as the time-delocalised systems Ao, Bjo, Cio, the circuit
therefore consists of Uy, Ug, Uc and U, composed in a cyclic manner as in the
process matrix framework.

complementary subsystems) are defined in Supplementary Note 3B,
based on a specific decomposition of unitarily extended process vec-
tors which plays a central role in the bipartite proof (cf. Supplementary
Equation (3)), and which generalises to the multipartite case (cf. Sup-
plementary Equation (24)).

In Supplementary Note 3C, we change to the description of the
circuit in terms of the corresponding time-delocalised subsystems.
For that purpose, we decompose the circuit into the red and blue
circuit fragment shown in Fig. 4. By construction, when composed
with /i, and /o, the red circuit fragment shown in Fig. 4a consists of
precisely one application of U, and Up, in parallel to a unitary
operation R(U,) : HEIGY2Q — 4€Co¥2Q Under that change of sub-
systems, the complementary blue fragment needs to be composed
with the inverse isomorphisms /i and Jlut, which results in an
operation R’ : HPoAoBoCo¥2Q _, 1FIABICYZQ, (Fig, 4b). R(UY) and R’
cannot be further decomposed for now.

At this point, we thus have a cyclic circuit which consists of the
four boxes Uy, Ug, R(Uc) and R, and which involves the systems
Po, AV BY),CY F,, as well as V,Y,Z,Z,Q,,Q, (see the left-hand side of
Fig. 4c). In order to obtain a description with respect to only the sys-
tems Py, A\, B),C\,F;, we need to evaluate the composition of R(Uc)
and R over the systems Y,Y,Z,Z ,QI,Q; (but not over the systems C;and
Co, which we wish to maintain in the description). The isomorphisms J;,
and /, are constructed in precisely such a way (based on the abstract
relation between the systems in the process that is also used in the

bipartite proof) that, when this composition of R(Uc) and R over
Y,Y,Z,Z,Q,,Q, is evaluated, the result is a cyclic circuit fragment con-
sisting of the unitary operation U : H 040BoCo _ 1FiABiC1 that defines
the process, composed with the operation U, : HS¢ — 1 (see
the middle of Fig. 4c). (Note the particularity that Uc only appears as an
explicit part of the cyclic circuit after this composition of R(U¢) with R,
and is not a tensor product factor of R(U()).

Therefore, in its description with respect to the systems
Po, AV BY),CY F), the circuit in Fig. 3 indeed consists of the four
operations Uy : HY — HAo% Uy - HBB — HBoBo U . HEGCG
HCC and U : HPoAoBoCo _, 1FABICI connected in a cyclic circuit as in
the process matrix framework (see the right-hand side of Fig. 4c). This
establishes the tripartite result.

Note that a similar construction is possible when one considers an
asymmetric tripartite temporal circuit where U, is applied at a given,
well-defined time, and Up either before or after it, coherently
depending on the control systems (or vice versa, with the roles of A and
B exchanged).

A process that violates causal inequalities on time-delocalised
subsystems

In ref. ', it was shown that, for three and more parties, there exist
process matrices that violate causal inequalities and that can be
interpreted as classical process matrices, since they are diagonal in the
computational basis. An example, first found by Aradjo and Feix and
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Fig. 5| Realisation on time-delocalised subsystems of |U g, ) ). Note that for this
particular process, the two circuit operations w3 and w$ do not depend on Uc. For
simplicity of the representation, the identity channels 1 1= -1 72T,
17272,1%~Q and 1%~ that constitute the blue circuit fragment in Fig. 4 are
omitted in the figure here. Note that, with respect to the general tripartite circuit of
Fig. 3, we can make a few simplifications for this particular process. In order to
match the general form, the ancilla y would need to be incorporated into the circuit
ancillas £;, and E,. But since it is just transmitted identically from w;(Uc) to ws(Uc),
we may keep it as a separate wire. We can also omit the additional systems p and f,
which we introduce in Supplementary Note 3A in order to derive an alternative
temporal circuit (Supplementary Fig. 5) for general unitarily extended bipartite
processes (and from which we then obtain the circuit of Fig. 3 for general unitarily
extended tripartite processes). The four circuit operations can be further broken

down into several temporal steps, as shown within the purple boxes. This allows
one to get a descriptive understanding of how the time-delocalisation of Charlie’s
operation comes about in this realisation. Namely, a time-local instance of U¢ is
applied once as part of the first circuit operation, and determines the state of the
control systems that determine coherently whether U, is applied on T‘1’> and Ug on
T‘Z” or vice versa (i.e., their order). After they have both been applied, a reversal and
reapplication of Uc may occur, with a NOT gate in between, and whether this
happens or not is determined jointly (and coherently, again) by the operations of
Alice and Bob. However, we emphasize again that the occurence of several time-
local operations that depend on U should not be interpreted as Uc being applied
multiple times. Instead, just like U, and Us, itis applied once and only once, on time-
delocalised input and output systems.

11,42

further studied by Baumeler and Wolf'in refs. **, is the process matrix

WAF = Z |[=bo A ComCo A @p—ap A bp)(=bo A Co—Co A ap,~a0 A bo\A’B’C‘

apboco

® ‘“0rb0rco><ao'bo’co|AOBOC0'

@)

where ao, bo, co € {0, 1} and where - is the negation. It was then shown
by Baumeler and Wolf** (cf. also refs. ****) that W, has a unitary

extension Wy = |Ugw ))({

Z ‘I71’I7z:l73>PleP3 ® |p1® —bo A CoP2 ® ~Co A Ag,P3 & ~Ap A b, >A B

apboco
P1P2P3

® |a0,b0,C0)

|Upw)) =

AoBo FiFyFs

0 ® |ag.bo.co)

(©)

(with py, p2, p3 € {0, 13, i.e., H o = HP1P2Ps and 11 = 1FF2Fs consisting of
three qubits each, and with ® denoting addition modulo 2). Wy is
recovered from |Ugw)){{(Ugw| when the global past party prepares
the state |0,0,0)(0,0,0|"2", and the global future party is traced out.
What kind of temporal circuit do we obtain when we apply the general
tripartite considerations from the previous section to this particular
example? A possible such realisation of this process on time-
delocalised subsystems is given by the circuit shown in Fig. 5 (similar
circuits corresponding to this process have also been studied in other
contexts in refs. ©%).

In Supplementary Note 4A, we give the explicit expressions of the
circuit operations in Fig. 5, as well as for the isomorphisms that define
the description in terms of time-delocalised subsystems for this par-
ticular case, and we sketch how to apply the general tripartite proof to
this example.

The abstract process Wyr in Eq. (4) violates causal inequalities
when each party performs a computational basis measurement on its
incoming Hilbert space (and outputs the measurement result oyx), and
prepares the computational basis state |iy) (corresponding to its
classical input iy) on its outgoing Hilbert space. The corresponding

unitary operations that need to be applied in the pure description of
the process (and therefore in the circuit of Fig. 5) are
= 1XXo g 1Xi7Xo, with each incoming ancillary system being
prepared in the state |’x> " and the outgoing ancillary systems being
measured in the computational bases. One obtains the deterministic
correlation P(04,05,0¢lis/ip/ic) =64, ~i,ni 60, ~icni 0 which was
shown to violate causal inequalities in ref. ',
An example of a causal inequality that is violated by this correla-
tion is

Oc,~igNig’

P(0,0,0/0,0,1)+ P(0,0,10,0,1) + P(0,0,0[1,0,0) + P(1,0,0|1,0,0)
+P(0,0,0/0,1,0) + P(0,1,0]0,1,0) — P(0,0,0/0,0,0)=: /; >0,
(6)

which was derived in ref. %, (It corresponds to Eq. (26) given there, with
0 and 1 exchanged for all inputs and outputs). Here, we find that /; =-1.

Interestingly, for that particular process with these particular local
operations, all operations involved in the tripartite construction sim-
ply take computational basis states to computational basis states.
These can be understood as deterministic operations between classi-
cal random variables, rather than unitary operations between quantum
systems. In Supplementary Note 4B, we explain this in more detail.

All things considered, our main result is thus that there exist
classical, deterministic circuits, composed of operations between
time-local variables, which, when described in terms of suitable time-
delocalised variables, correspond to classical, deterministic processes
that violate causal inequalities.

Noncausal correlations between time-delocalised variables

After having established that this realisation of a noncausal process
exists, we now turn to the question of what we should conclude from
the fact that a causal inequality can be violated in such a situation. The
general reasoning behind causal inequalities is similar to that behind
Bell inequalities—one considers certain assumptions which restrict the
correlations that can arise from some experiment, and their violation
then implies that not all of these assumptions are satisfied. To
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Fig. 6 | Causal structure of the cyclic causal model corresponding to the pro-
cess Wi The causal influences represented by the arrows can be rigorously
defined in the framework of cyclic split-node causal models* (or, in the case of
more general quantum processes, cyclic quantum causal models*°). In particular, if
we regard each single variable as a split-node (or in the more general case of
quantum processes, a quantum node where the output Hilbert space is the dual of
the input Hilbert space), the experiment can be viewed as a process on a larger
number of nodes, which is given by the (tensor) product of the original process and
the local operations of the parties. The causal relations between the new nodes
form the cyclic causal structure in Fig. 6. This follows from the known cyclic causal
structure of the process W,¢*® and the most general causal structure that each local
operation from X;, Iy to Xo, Ox, X=A, B, C, can have. (Here, we are imagining an

experiment in which each party could choose over a finite set of local operations
that could instantiate all these different causal relations. The set of operations over
which the party can choose can be embedded within a single deterministic
operation with the maximally connected acyclic causal structure displayed in the
figure by choosing Iy and Oy of sufficiently large cardinality.) This causal structure
can be operationally verified: by applying time-delocalised SWAP operations on the
time-delocalised variables (or quantum systems) so as to disconnect the operations
of the parties (see Supplementary Note 1), one could intervene on the variables (or
quantum systems) and verify which ones are directly influenced by which other
ones. Note that the process W, was first studied in the framework of cyclic causal
models in ref. *°, but from the perspective of the coarse-grained split nodes defined
by the pairs of variables (X, Xo) =X, for X=A, B, C.

determine whether a causal inequality violation is a meaningful device-
independent witness of causal indefiniteness, one must therefore
clarify whether the assumptions underlying causal inequalities are
plausible or compelling in the setting under consideration—a question
that is subtle, notably in regimes of relativistic quantum information
and quantum gravity***’, but, as it will turn out, also in the standard
quantum situations we consider here. In the following, we will there-
fore analyse our result in this regard, and argue that causal inequalities
are indeed a meaningful concept to show the absence of a definite
causal order between the time-delocalised variables we identified.

In the original approach developed in ref. %, one firstly assumes
that the events involved in the experiment take place in a causal order
(which, in general, can be dynamical and subject to randomness®®).
With respect to this causal order, there are two further assumptions
that enter the derivation of causal inequalities. Firstly, the classical
inputs which the parties receive are subject to free choice. Technically
speaking, this means that they cannot be correlated with any proper-
ties pertaining to their causal past or elsewhere (see Methods). Sec-
ondly, the parties operate in closed laboratories. That is, intuitively
speaking, they open their laboratory once to let a physical system
enter, interact with it and open their laboratory once again to send out
a physical system, which provides the sole means of information
exchange between the local variables and the rest of the experiment.
More formally, the closed laboratory assumption says that, for each
party X, any causal influence from the setting variable /y, which
describes its classical input, to any other variable, except the variable
Ox which describes its classical outcome, has to pass through the
outgoing variable Xo. Similarly, any causal influence to Oy from any
other variable except Iy has to pass through X;. Furthermore, X; is in the
causal past of X (see Methods). In order to clarify whether the viola-
tion of a causal inequality discovered here is meaningful and inter-
esting, the question that we need to address is whether one would
naturally expect the free choice and closed laboratory assumptions to
be satisfied in our scenario with time-delocalised (classical) variables,
or whether one of them is manifestly violated.

In the Methods section “Causal inequality assumptions”, we for-
mulate these assumptions, for the multipartite case, in a way that is
suitable for our time-delocalised setting, namely directly in terms of
the variables involved (rather than in terms of events as in ref. ), and

show that they indeed imply that causal inequalities must be respec-
ted. Our formulation provides a strengthening of the original deriva-
tion in ref. ? by relaxing the closed laboratories assumption—rather
than imposing that the incoming variable X; is always in the causal past
of the outgoing variable X,, we only require this constraint to hold for
at least one particular value of the corresponding setting variable /y
(see Methods). As we discuss in the following, this formulation of the
assumptions is directly motivated by the observable causal relations
between the variables of interest. Thus, the violation of a causal
inequality in the experiment can be seen as a compelling, device-
independent demonstration of the nonexistence of a possibly dyna-
mical and random causal order between the variables.

The causal relations between the incoming and outgoing variables
X; and Xo, as well as the setting and outcome variables /Iy and
Oy, X=A, B, C, can be graphically represented by a directed graph as in
Fig. 6, where the arrows describe direct causal influences.

In the causal structure in Fig. 6, the variables Iy are root variables
and hence they can only be correlated with other variables as a result of
causal influence from them to these other variables. It is thus natural to
assume the same would be true if there existed an explanation of the
correlations in terms of a definite causal order, which legitimates the
free choice assumption.

Regarding the closed laboratory assumption, in the graph of
Fig. 6, any causal influence from Iy to variables other than Oy and X, is
mediated, or screened off, by Xo. Similarly, any influence onto Ox by
variables other than /y and X; is mediated by X,. It is natural to assume
that these constraints would also hold in any potential explanation of
the correlations in terms of a definite causal order. Finally, the causal
diagram displays causal influence from X; to Xo. Note that this causal
influence from X; to X, can be turned on or off depending on the value
of the setting variable /y. This is precisely the reason why we intro-
duced the weakened form of the closed laboratory assumption
described above, which indeed allows for X, to be inside or outside of
the causal future of X;, depending on the value of Iy.

To summarise, we have shown that there is a set of natural
assumptions about the possible underlying causal orders between the
variables of interest in our experiment, which are directly motivated by
the observable causal relations between these variables, and which
imply that the correlations in the experiment would need to respect
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causal inequalities. The observable violation of a causal inequality in
the experiment thus implies that an underlying causal order compa-
tible with these assumptions cannot exist.

Are there any considerations that would lead us to drop one
assumption over another in this type of experiment? In particular,
could it be that, in spite of the outlined considerations about the
observable causal relations, a more careful inspection of the temporal
description of the experiment would reveal that it is in fact the free
choice or closed laboratory assumptions that is violated, as opposed to
the existence of a causal order per se? In the discussion below and in
Supplementary Note 6, we analyse this question and argue that if the
hypothetical causal order is expected to be imposed by spatio-
temporal relations, it is the existence of causal order per se that seems
violated, since the variables of interest do not admit an effective
localisation in spacetime.

Discussion

A central question in the study of quantum causality is which processes
with indefinite causal order have a realisation within standard quantum
theory. In order to address this question, it is first of all necessary to
clarify what it means for a causally indefinite process to have a stan-
dard quantum theoretical realisation, a question that is subtle and has
led to a lot of controversy. An answer to this question is provided by
the concept of time-delocalised subsystems, which establishes a
bridge between the standard quantum theoretical description of the
scenarios under consideration and their description in the process
matrix framework, in which the notion of indefinite causal order is
formalised. Prior to our work, it had been known that indefinite causal
order can be realised on systems that are time-delocalised in a
coherently controlled manner—that is, intuitively speaking, the input
and output systems of each party effectively reduce to one or another
time-local system, conditionally on the state of a control quantum
system. Here, we showed that this paradigm does not encompass all
possibilities, and that standard quantum theory also allows for more
radical ways to realise indefinite causal order processes. Notably, there
exist processes that have realisations on time-delocalised subsystems
and that violate causal inequalities, a feature that is generally believed
to be impossible within standard (quantum) physics'*. We analysed a
concrete tripartite example, for which it turned out that the situation
can entirely be understood in terms of classical variables, rather than
quantum systems. There, Alice’s and Bob’s input and output variables
are time-delocalised in a classically controlled way, while the situation
for Charlie is quite different. From the point of view of the temporal
description of the experiment, one time-local instance of Charlie’s
operation is applied in the beginning of the circuit, which may be
reversed and reapplied at the end of the circuit, conditionally on the
output of Alice and Bob. We then analysed this causal inequality vio-
lation with regard to the assumptions that underlie the derivation of
causal inequalities, and found that the free choice and closed labora-
tory assumptions are not manifestly violated, which makes causal
inequalities a meaningful device-independent concept to qualify these
realisations as incompatible with a definite causal order.

Let us further elaborate on the subtleties that this analysis
involves, in particular with respect to the closed laboratory assump-
tion (see a more detailed discussion in Supplementary Note 6). From
an intuitive reading of the circuit in Fig. 5, one may be tempted to say
that Charlie acts multiple times or receives several inputs, and sends
out several outputs. At first sight, this seems to violate the closed
laboratory assumption, which essentially stipulates that each party is
involved in a single round of information exchange, where they receive
information about the past through the input variable X; and subse-
quently send out information into the future through the output
variable X,. However, it is crucial to realise that the causal inequality
assumptions concern concrete variables (or quantum systems), which
in our case we have explicitly specified, and which are not the same as

what one might intuitively assume if one thinks of this experiment as
involving three laboratories existing through time that exchange
information with each other. In particular, the parties Alice, Bob and
Charlie must be understood abstractly as agents who control the
parameters that describe the operations taking place on the time-
delocalised variables. As such, they indeed apply their operations once
and only once on the pairs of input and output variables we have
identified. To say that the closed laboratory assumption is violated,
one would need to come up with an account for the process in terms of
variables which are embedded into a causal order, but for which the
closed laboratory assumption fails. We are not aware of any explana-
tion in terms of the time-local variables in the temporal circuit and the
causal order defined by their spatiotemporal relations (or any other
operationally meaningful variables) where this is the case. In particular,
the above-outlined intuitive reading of the circuit, with the operations
being effectively localised in time, conditioned on other variables
in the process, while meaningful for quantumly controlled time-
delocalised operations, does not make operational sense in our case
(as it would mean that some future parties can influence what has
happened in the past, see Supplementary Note 6). In Supplementary
Note 6, we show that, for some of the time-delocalised variables we
identified, there do not exist time-local variables that take their value,
meaning that they do not admit any effective localisation in time.

The further implications of this finding are yet to be unravelled,
and raise various open questions. In a more general sense, there is a
causal explanation for how these correlations in our process come
about-namely, precisely the tripartite circuit realisation we found. This
raises the question of whether and how the concept of causal
inequalities in itself could be revised or modified. For instance, could
there be a notion of causal process which is more relaxed, and which
includes such possibilities?

What other processes beyond the classes considered here have a
realisation on time-delocalised subsystems, and what other types of
time-delocalisation would this involve? Could it be that any indefinite
causal order process admits such a realisation, or are there counter-
examples? The proof for unitarily extended tripartite processes is
crucially based on the fact that the bipartite unitarily extended process
resulting from fixing one of the operations has a particular standard
form—namely, a variation of the quantum switch*®*. Establishing
whether a similar standard form exists for unitarily extended processes
with more than two parties could give insight into whether the con-
structions presented here can be generalised to more parties.

Note that there are also unitary extensions of bipartite processes—
i.e., variations of the quantum switch—that have realisations of the kind
considered here, with one of the operations being reversed and
reapplied (for instance, one obtains such a realisation when one fixes
Alice’s or Bob’s operation in the circuit of Fig. 5). This raises the
question of whether, conversely, the process considered in this work
could have an alternative, more intuitive interpretation as a super-
position of processes with different definite causal orders in some
sense (although it cannot be achieved by direct multipartite general-
isations of the quantum switch®). The decomposition of this process
into a direct sum of causal unitary processes shown in*® may offer
insights into this question.

Finally, in the way the process framework was originally con-
ceived, the operations performed by the parties were imagined to be
local from the point of view of some local notion of time for each party.
Can we conceive of a notion of a quantum temporal reference frame
with respect to which the time-delocalised variables considered here
would look local, and what implications would this have for our
understanding of the spacetime causal structure in which these
experiments are embedded? In view of the fact that the example
considered here is purely classical, the question arises of which part of
a noncausal process is actually related to the quantumness of causal
relations. On the practical side, an obvious question is whether our
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finding could unveil new applications. For instance, could we use such
time-delocalised variables for new cryptographic or other information-
processing protocols?

Methods

The Choi isomorphism and the link product

The Choi isomorphism* is a convenient way to represent linear maps
between vector spaces as vectors themselves, and linear maps
between spaces of operators as operators themselves. In order to
define it, we choose for each Hilbert space +! a fixed orthonormal, so-
called computational basis {|i)"};. For a Hilbert space H'? =H" @ HZ,
with computational bases {|i)"}; of 7" and {| j>Z}j of HZ, respectively,
the computational basis is taken to be {|i,/) e |j>Z}I.J.. We then
define the pure Choi representation of a linear operator V : HY — H?
as

V) == mvm»”:Zi]i)Y@vW e H' ® HZ, )

with 1) =) @ )" e HY @ H'. Similarly, we define the
(mixed) Choi representation of a linear map M : £L(HY) — L(H?) as

M =@ @ M™M= 30| @ M| e L1 (g

where Z" denotes the identity map on £(H").

The link product®** is a tool which allows one to compute the
Choi representation of a composition of maps in terms of the Choi
representation of the individual maps. Consider two tensor pro-
duct Hilbert spaces #*' =H* ® H" and H"? =H" ® HZ which share
the same (possibly trivial) space factor **, and with non-
overlapping H*,H#%. The link product of any two vectors |a) €
HXY and |b) € 1" is defined (with respect to the computational
basis {|i)"}; of H") as®

la) * |b) := (1" @ (11" (@) ® |b))= Z la)* @ |b)" e (g

with [a,)" = (1Y@ (@")la) e H* and |B)" = ((iI" ® 17)|b) € HZ.
Similarly, the link product of any two operators A € £(H*Y) and B €
L(H?) is defined as*>*

AxB=(1" @ (1"MABI¥ @ IN™)=Y Af ©B; <L)
il

(10)

with A% = (X e @"HA¥ e |))eLH’) and BL :=(i"®

DAY ® 17) € L(H?).

The link products thus defined are commutative (up to a re-
ordering of the tensor products), and associative provided that each
constituent Hilbert space appears at most twice™>*. For |a) € #* and
|b) € H#, or A e L(H¥) and B e £L(H?) in distinct, non-overlapping
spaces, they reduce to tensor products (|a) = |b) =|a) ® |b) or A*B=
A®B). For |a),|b) e H", or ABeL(H") in the same spaces,
they reduce to scalar products (a)«|b)=>";(ila)(ilb)=|a)"|b)
or A« B=Tr[A"B]).

For two linear operators V; : HX — HX" and V, : H'? — HZ ,the
pure Choi representation of the composition V := X e V)V ®
1) : H*? — HX'Z is obtained, in terms of the pure Choi representa-
tions |V,)) € WY and |V,)) € H'#Z of the individual operators V;
and V), as

V) =|Vi))  [Va)) € WXZZ. (1

Similarly, for two linear maps M, : L(H*) - £L(HXY) and M, :
L(H"?) — £(H?) the Choi representation of the composition M :=
T @ My)o (M @ T%) : L(H?) — L(HY?) is obtained, in terms of
the Choi representations of the individual maps M; € £(H*X"") and
M, € L(H'%?') of M, and M,, as
M=M, M, e L(HX?). 12)
Another property of the link product, which can easily be verified
from its definition, is that for any |a) € #*",|b) € #"# and any unitary
U:H" - 1", it holds that

(la) * [UN) * (|UT)) % |b)) =1a) % |b). (13)

Similarly, for any Ae(HX"),Be £(H'?) and any unitary
U:H" - H", it holds that

Ax ) (UD * ((UN(U| xB)=A%B. (14)

This is precisely the property we use in the main text when changing
the subsystem description of a circuit. Namely, it is due to this prop-
erty that the overall composition of two circuit fragments remains the
same when we compose one fragment with certain isomorphisms (i.e.,
unitary transformations) defining new subsystems, and the com-
plementary fragment with the inverses of these isomorphisms.

Unitary extensions of bipartite processes on time-delocalised
subsystems

In summary, the bipartite result says that for any unitarily extended
bipartite process, there exists a temporally ordered quantum circuit,
with operations that depend on the local operations U, and Ug applied
in the process, which precisely corresponds to the situation con-
sidered in the process matrix framework, with one instance of each U,
and Uz composed with the process matrix in a cyclic circuit, when
described in terms of a suitable choice of time-delocalised subsystems.

Formally, the bipartite result can be stated as follows.

Proposition 2. Consider a unitary extension of a bipartite process,
described by a process vector |U)) e H oAoBofi, composed with uni-
tary local operations U, : H*4 — H4% and U, : HE® — HBoPo, For
any such process, the following exist.

1. A temporal circuit as in Fig. 7, in which Uy is applied on some
systems A; and Ao at a definite time, preceded and succeded
respectively by two unitary circuit operations w,(Up) : H5"o —
HAE and w,(Up) : HAE — HPBoFi that depend on Up. .

2. Isomorphisms J;, : H?%Z — 14Po and J, : 41 — HBoZ, such
that, with respect to the subsystem B; of ApPo and the subsystem
Bo of A;F; that these isomorphisms define, the circuit in Fig. 7 takes
the form of a cyclic circuit composed of U, U4 and Up, as in the
process matrix framework (Fig. 8).

Here, we outline the main points of the proof. All technical details
and calculations are given in Supplementary Note 2.

Ay Ao
B Ar UA Ao B‘
| — Do
wl(UB) > WQ(UB)
Po— Fy

Fig. 7 | Temporal circuit in the bipartite case. Temporal circuit for a bipartite
unitary process, with U, being applied on time-local systems A, and Ao, and with
circuit operations w; (Uy) : HPPo — HAE and w,(Up) : HAF — HPofr that depend
on Up, and that are connected by an ancillary system E.
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,,,,,,,,,,,,,,,,,,,,,, By U Bo
i : B
B A Ar i i B
el 4o ' A, Ao ! ", J B, Bo
B — —Bo —
Jin * w1 (Up) w2 (Ug) * J()m% - ®
Z_ Lo p,— E —rF L Z
""""""""""" Z—‘ b*Z
by g
®) Bo LA
1
o
Z I

A

Fr

Fig. 8 | Description of the bipartite temporal circuit in terms of time-
delocalised subsystems. a Description of the red circuit fragment, which imple-
ments an operation from HZPo%o to +Po4F1  in terms of the time-delocalised sub-
systems By, Z of the joint system AoPo and By,,Z of A,F;. b Description of the blue
circuit fragment, which is simply the operation Uy, in terms of the time-delocalised

Bo

subsystems B;, Z of AoPo and B, Z of A,F;. ¢ In the new subsystem description, one
obtains a cyclic circuit, as considered in the process matrix framework, where the
unitary operation U that defines the process is obtained by composing the inverse
isomorphismsﬁin andj*out and the identity channel 12~ over the subsystems Z
and Z (i.e., over the wires shown in green).

Outline of proof. The existence of a temporal circuit with the form of
Fig. 7 is shown in Supplementary Note 2A. It follows from the fact that
any unitary extension of a one-party process can be implemented as a
fixed-order circuit or quantum comb?>*, in which the party applies its
operation at a definite time. For a unitary extension of a bipartite
process, one can therefore find a fixed-order circuit in which one of the
parties acts at a definite time, and which is composed of circuit
operations that depend on the operation of the other party.

In Supplementary Note 2B, we show that the unitary U which
defines the process isomorphically maps some subsystem of AoP, to
B,, and B, to some subsystem of A,F;. The corresponding isomorphisms
Jin : HBZ — HPo and J,,, : HYF1 — HPoZ (where Z and Z are appro-
priate complementary subsystems) can be taken to define an alter-
native description of the circuit in Fig. 7 in terms of time-delocalised
subsystems, since there, Pp, A;, Ao and F; are time-local wires.

In Supplementary Note 2C, we change to the description of the
circuit in terms of these time-delocalised subsystems. For that pur-
pose, we decompose the circuit into the red and blue circuit fragment
shown in Fig. 8. By construction, when composed with J;;, and Jou,
the red fragment consists of precisely one application of
Ug : HPB — 1PoPo, in parallel to an identity channel from Z to Z
(Fig. 8a). The blue fragment, which is just the operation Uy, needs to be
composed with the inverse isomorphisms /i, and Ji, so that the
overall, global transformation implemented by the circuit remains the
same (Fig. 8b). In the new description of the circuit of Fig. 7 in terms of
these subsystems, one thus obtains a cyclic circuit as on the left-hand
side of Fig. 8c).

The final step is to note that the composition of the inverse iso-

7-7

morphisms ﬁin and ﬁout with the identity channel 1 over the

systems Z and Z is precisely the unitary operation U that defines the
process. Therefore, in this coarse-grained description with respect to
the systems P,,A\),B%, and F, the circuit indeed consists of three
transformations U, : HA — HAAo Uy . 1B — 1PoPo  and U :
HPoAoBo s 1F4Bi that are composed in a cyclic circuit as in the pro-
cess matrix picture (see the right-hand side of Fig. 8c). In other words,

it is precisely that structure that happens on the subsystems with
respect to which we chose to describe the circuit. This establishes the
bipartite result.

Applying the bipartite constructions presented here to the parti-
cular case of the quantum switch leads to an asymmetric implementa-
tion with Alice performing a time-local operation and Bob’s operation
being time-delocalised through coherent control of the times at which
it is applied. For symmetric implementations in which both Alice’s and
Bob’s operation are time-delocalised, a similar argument can be made”.

Causal inequality assumptions
A causal order between the elements of some set S is formally
described by a strict partial order (SPO) on S*°. A SPO is a binary
relation <, which, forall X,Y,Z € S, satisfies irreflexivity (not X < X) and
transitivity (if X< Y and Y <Z, then X< 2). (Note that irreflexivity and
transitivity together imply asymmetry, i.e., if X<, then not Y<X.) If
X <Y, wewill say that Xis in the causal past of Y (equivalently, Yis in the
causal future of X). For X#Y and not X<, we will use the notation
XY, and the terminology X is not in the causal past of Y (equivalently,
Yis not in the causal future of X). If X« Yand Y £ X, we will say that X'is
in the causal elsewhere of Y*° (sometimes also termed X is not causally
connected to Y, or X is causally disconnected from Y). For subsets
S c S, we will use the short-hand notation X < S’ to denote that
VY € 8 X < Y. We furthermore define the causal past of X as the set
Py :={Y € S|Y < X}, the causal future of X as Fy :={Y e SIX <Y}
and the causal elsewhere of Xas &y := {Y € S|Y < X and X < Y}. Also,
note that a SPO on S naturally induces a SPO on any subset of S.
The variables involved in the process under consideration are the
time-delocalised incoming and outgoing variables A, Ao, B;, Bo, C;, Co,
as well as the settings and outcomes, which can be described by ran-
dom variables I, Ig, Ic (with values iy, ip, ic, respectively) and O,4, Og, O¢
(with values oy, 0, 0¢, respectively). We will abbreviate the set of all
these variables to = {A[,Ao, B[, Bo, C[, Co, IA, OA, IB' OBr Ic, Oc} The
assumption that the correlations P(04, 0p, 0diy, ip, ic) arise from a
situation in which these variables occur in a (generally probabilistic
and dynamical) causal order can be formalised as follows.
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Causal order assumption. There exists a random variable which
takes values k(I') in the possible strict partial orders on the set I, and a
joint probability distribution P(0y4, 0, 0¢, k(I)|iy, i, ic), which, when
marginalised over that variable, yields the correlations
P(04, 0, 0¢, li4, ip, ic) Observable in the process, i.e.,

> P(04,05,0¢,K(D)lig g ic) = P(04,05,0¢ li igic).
k()

15)
This probability distribution satisfies the following two conditions.

1. Free choice. The settings I, /g and I are assumed to be freely
chosen, which means that they cannot be correlated with any
properties pertaining to their causal past or elsewhere. That is, the
probability for their causal past and elsewhere to consist of cer-
tain variables, for the variables in these sets to have a certain
causal order, and for the outcome variables in these sets to take
certain values, cannot depend on the respective setting. Formally,
with respect to /4, for any (disjoint) subsets Y and Z of I'\{/,}, and
any causal order k() U Z) on the variables in ) U Z, the following
must hold:

P(OyIOZ!,PIA =y’€//4 =Zk(YU Z)IiAIiBriC)

16
=P(0”,0%,P, =V,E;, = ZKk(V U 2)lig ic). e

Here, by P(0”,0%,P; =Y, =ZKk(U Z)liyipic), we denote the
probability that is obtained from P(04, 0g, 0c, kK(I)|i4, ig, ic) by margin-
alising over all Oy ¢ Y U Z, and by summing over all k(') that satisfy the
specified constraints—that is, all k(') for which the causal past Py, of I,
is ), the causal elsewhere &, of I, is Z, and the causal order on the
subset YU Z is k(YU Z). The free choice assumption is that this
probability is independent of the value of /,. The analogous conditions
must hold with respect to /g and /..

2. Closed laboratories. The second constraint is the closed laboratory
assumption, which says, intuitively speaking, that causal influence
from I, to any other variable except O, has to pass through Ap;
that, similarly, any causal influence to O4 from any other variable
except I, has to pass through A; and that 4, is in the causal past of
Ao (and analogously for B and C). Note that, in the original deri-
vation of causal inequalities?, it was assumed that X; < X, always
holds. Here, we weaken this assumption by requiring that this
constraint only holds for at least one particular value of the cor-
responding setting variable /y. The reason is that this weakened
form of the assumption (unlike the stronger assumption of X; < Xo
regardless of the value of Iy) is directly motivated by the obser-
vable causal relations in our situation with time-delocalised
variables (see the discussion in the main text).

This closed laboratory assumption can be formalised as a con-
straint on the possible causal orders as follows.

P(0,4,05,0¢,k(N)liy,ig,ic)>0 only if k(I') satisfies the following
properties for all Y e :i)l, <V,iff Y=0, or Y=A, or Ay < Y.
i)Y < 0y,iff Y=1, or Y=A, or Y <A,.

ar

Furthermore, there exists at least one value i} of I, for which A,<Ao
with certainty, that is
P(04,05,0¢,k(N)|i},ig,ic)>0 only if x(I)satisfies A, <Ay.  (18)
The analogous conditions must be satisfied for B and C.
We show in Supplementary Note 5 that this causal order
assumption—notably, even with the weakened form of the closed

laboratory condition we introduced—implies that the correlations
P(04, 08, 0(lia, ip, ic) that are established in the process must be

causal®®, Such correlations form a polytope, whose facets precisely
define causal inequalities®™®.

(Note furthermore that we could similarly weaken the assumption
that O, is always in the causal future of A,. This would however change
nothing about the argument, and the proof from Supplementary
Note 5 would go through in the same way).

Here, we presented the argument in the classical case for con-
creteness, but it can be readily extended to a quantum process, or even
an abstract process® possibly compatible with more general opera-
tional probabilistic theories (OPTs)*’*%, where there is no analogue of
the classical variables X;and X,. Indeed, in the general case all elements
of the argument remain the same, except that the objects X; and X,
over which the partial order is assumed would be general systems
rather than classical variables (/y and Oy will remain classical). More-
over, the argument applies analogously for any number of parties, so
we have assumptions applicable to the most general case of a process.

Data availability
Data sharing not applicable to this article as no datasets were gener-
ated or analysed during the current study.
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