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MIXED BOUNDARY CONDITIONS AS LIMITS OF DISSIPATIVE

BOUNDARY CONDITIONS IN DYNAMIC PERFECT PLASTICITY

JEAN-FRANÇOIS BABADJIAN AND RANDY LLERENA

Abstract. This paper addresses the well posedness of a dynamical model of perfect plasticity
with mixed boundary conditions for general closed and convex elasticity sets. The proof relies

on an asymptotic analysis of the solution of a perfect plasticity model with relaxed dissipative

boundary conditions obtained in [7]. One of the main issues consists in extending the measure
theoretic duality pairing between stresses and plastic strains, as well as a convexity inequality

to a more general context where deviatoric stresses are not necessarily bounded. Complete

answers are given in the pure Dirichlet and pure Neumann cases. For general mixed boundary
conditions, partial answers are given in dimension 2 and 3 under additional geometric hypothesis

on the elasticity set and the reference configuration.

1. Introduction

Elasto-plasticity is a classical theory of continuum mechanics [19, 21] that predicts the appear-
ance of permanent deformations in materials when an internal critical stress is reached. At the
atomistic level, these plastic deformations occur when the crystal lattice of the atoms are mis-
aligned due to the accumulation of slips defects, called dislocations. These dislocations determine
the change of behavior of a body from an elastic and reversible state to a plastic and irreversible
one.

At the continuum level, and in the context of small deformations, the theory involves the
displacement field u : Ω× (0, T )→ Rn and the Cauchy stress tensor σ : Ω× (0, T )→ Mn

sym, both
defined on the reference configuration Ω of the body, a bounded open subset of Rn (n = 2, 3).
They first satisfy the equation of motion

ü− divσ = f in Ω× (0, T ), (1.1)

for some (given) external body load f : Ω × (0, T ) → Rn. In the previous expression, and in the
sequel, the dot stands for the partial derivative with respect to time. One particular feature of
perfect plasticity is that the stress tensor is constrained to take its values into a fixed closed and
convex set K of the space Mn

sym of symmetric n× n matrices, also called elasticity set:

σ ∈ K. (1.2)

In classical elasticity, the linearized strain is purely elastic and it is represented by the symmetric
part of the gradient of displacement, i.e. Eu := (Du + DuT )/2. In perfect elasto-plasticity, the
elastic strain e : Ω× (0, T )→Mn

sym only represents a part of the linearized strain Eu. It stands for
the reversible part of the total deformation and it is related to σ by means of Hooke’s law, which
we assume to be isotropic:

σ = Ae = λ(tr e)Id + 2µe, (1.3)

for some constants (λ, µ) ∈ R2, called Lamé coefficients, which satisfy the ellipticity conditions
µ > 0 and nλ+ 2µ > 0. The remaining part of the strain,

p := Eu− e (1.4)

stands for the plastic strain leading to irreversible deformations. It is a new unknown of the
problem whose evolution is described by means of a flow rule. Assuming that K has nonempty
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interior, it stipulates that if σ belongs to the interior of K, then the material behaves elastically
and no additional inelastic strains are created, i.e. ṗ = 0. On the other hand, if σ reaches the
boundary of K, then ṗ may develop in such a way that a non–trivial permanent plastic strain p
may remain after unloading. The evolution of p is described by the Prandtl-Reuss law

ṗ ∈ NK(σ),

where NK(σ) stands for the normal cone to K at σ, or equivalently, thanks to convex analysis, by
Hill’s principle of maximum plastic work

H(ṗ) = σ : ṗ, (1.5)

where H(q) := supτ∈K τ : q is the support function K. The system (1.1)–(1.5) has to be supple-
mented by initial conditions

(u(0), u̇(0), e(0), p(0)) = (u0, v0, e0, p0) (1.6)

as well as suitable boundary conditions to be discussed later, and which will be one of the main
focus of this work.

For most of metals and alloys, standard models of perfect plasticity involve elasticity sets K
which are invariant in the direction of hydrostatic matrices (multiples of the identity) and bounded
in the direction of deviatoric (trace free) ones. This is for example the case of the Von Mises and
Tresca models (see e.g. [2, 4, 27] in the static case, [3, 17, 26, 22] in the quasi-static case and [5, 11]
in the dynamic one). In other situations like in the context of soils mechanics, it is of importance
to consider elasticity sets K that are not necessarily invariant with respect to hydrostatic matrices.
So called Drucker-Prager or Mohr-Coulomb models fall within this framework (see [7, 9, 10]). In
this paper, we treat as utmost as possible the case of a general elasticity set K.

Let us now discuss the boundary conditions. Having in mind that the system of dynamic
elasto-plasticity described so far has a hyperbolic nature, one has to consider boundary conditions
compatible with this hyperbolic structure, in particular, with the finite speed propagation of the
initial data along the characteristic lines. A general approach to this type of initial–boundary value
constrained hyperbolic systems has been studied in [15] (see also [14]) where a class of so-called
admissible dissipative boundary conditions has been introduced. This problem has subsequently
been specified to the case of plasticity, first in [8] for a simplified scalar model, and then in [7]
for the general vectorial model as described before. In this context, all admissible (homogeneous)
dissipative boundary conditions take the form (see [7, Section 3])

Su̇+ σν = 0 on ∂Ω× (0, T ), (1.7)

where ν denotes the outer unit normal to Ω, and S : ∂Ω→Mn
sym is a spatially dependent positive

definite boundary matrix. The well posedness of the initial–boundary value system (1.1)–(1.7) has
been carried out in [7]. It has been established existence and uniqueness of two equivalent notions
of relaxed solutions (variational and entropic solutions). The relaxation phenomena is a simple
consequence of the fact that, formally, the stress contraint (1.2) might not be compatible with the
boundary condition (1.7). Indeed, if σ(t) ∈ K in Ω, we would expect that σ(t)ν ∈ Kν on ∂Ω while
σ(t)ν = −Su̇(t) is free on the boundary. Thus, the boundary condition and the stress constraint
have to accomodate to each other and the dissipative boundary condition (1.7) has to be relaxed
into

P−Kν(Su̇) + σν = 0 on ∂Ω× (0, T ), (1.8)

where, for x ∈ ∂Ω, P−Kν(x) stands for the orthogonal projection in Rn onto the convex set −Kν(x)
with respect to a suitable scalar product. This is indeed a relaxation in the sense of the Calculus
of Variations, because the energy balance involves a term of the form∫

Ω

H(ṗ) dx+
1

2

∫
∂Ω

Su̇ · u̇ dHn−1 +
1

2

∫
∂Ω

S−1(σν) · (σν) dHn−1.

The previous energy functional turns out of not being lower semicontinuous with respect to weak
convergence in the energy space, and its relaxation with respect to this topology is explicitly given
by ∫

Ω

H(ṗ) dx+

∫
∂Ω

ψ(x, u̇) dHn−1 +
1

2

∫
∂Ω

S−1(σν) · (σν) dHn−1,
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where ψ(x, ·) is the inf-convolution of the functions z 7→ 1
2S(x)z · z and z 7→ H(−z � ν(x)). The

connexion between the relaxed energy and the modified boundary condition (1.8) comes from a
first order minimality condition and the following formula (see [7, Section 4])

Dzψ(x, u̇(t, x)) = P−Kν(x)(S(x)u̇(t, x)).

Unfortunately, Dirichlet, Neumann and mixed boundary conditions are not admissible because
the matrix S is not allowed to vanish nor to take the value ∞. It is the main focus of the present
work to show that these type of natural boundary conditions can actually be obtained by means
of an asymptotic analysis letting S →∞ in a portion of the boundary where we want to recover a
Dirichlet condition, and letting S → 0 on the complementary part where one wishes to formulate a
Neumann condition. This type of analysis has already been performed in [8] in the simplified case
of antiplane scalar plasticity where pure Dirichlet and pure Neumann boundary conditions have
been derived. We extend here this analysis to the general vectorial case where additional issues
arise, and to the case of mixed boundary conditions.

To be more precise, in the spirit of [17, 20, 22], we partition ∂Ω into the disjoint union of ΓD,ΓN
and Σ, where ΓD and ΓN stand for the Dirichlet and Neumann parts of the boundary, respectively,
and Σ is the interface between ΓD and ΓN which is Hn−1-negligible. We consider a boundary
matrix of the form

Sλ(x) :=

(
λ1ΓD +

1

λ
1ΓN

)
Id (1.9)

for some parameter λ > 0 which will be sent to ∞. Denoting by (uλ, eλ, pλ, σλ) the unique weak
solutions of the system (1.1)–(1.6) with the relaxed dissipative boundary condition (1.8) associated
to the boundary matrix Sλ, using the results of [7], we easily derive bounds in the energy space
for this quadruple, which allow one to get weak limits (u, e, p, σ) and pass to the limit into the
equation of motion (1.1), the stress constraint (1.2), Hooke’s law (1.3), the additive decomposition
(1.4) and the initial condition (1.6). This is the object of Lemma 4.2. As usual in plasticity, the
main difficulty consists in passing to the limit in the flow rule expressed by (1.5) and in the relaxed
boundary condition (1.8). In accordance with [7, 8, 9], the idea consists in taking the limit as
λ→∞ into the energy balance. The main difficulty is concerned with the term∫

Ω

H(ṗλ) dx+

∫
∂Ω

ψλ(x, u̇λ) dHn−1 +
1

2

∫
∂Ω

S−1
λ (σλν) · (σλν) dHn−1,

where

ψλ(x, z) := inf
w∈Rn

{
1

2

(
λ1ΓD +

1

λ
1ΓN

)
|w|2 +H((w − z)� ν(x))

}
.

A uniform bound on the previous energy easily shows that∫
ΓN

|σλν|2 dHn−1 ≤ C

λ
→ 0, as λ→∞,

which leads to the Neumann boundary condition σν = 0 on ΓN . The obtention of the Dirichlet
boundary condition on ΓD is more involved because, as usual in perfect plasticity, concentration
phenomena might occur. A convex analysis argument based on the Moreau-Yosida approximation
of H yields the following lower bound on the energy (see Lemma 4.3)∫

Ω

H(ṗ) dx+

∫
ΓD

H(−u̇� ν) dHn−1 ≤ lim inf
λ→∞

(∫
Ω

H(ṗλ) dx+

∫
∂Ω

ψλ(x, u̇λ) dHn−1

)
.

Proving that this lower bound is also an upper bound is formally a consequence the convexity
inequality

H(ṗ) ≥ σ : ṗ

(because σ ∈ K), and integrations by parts in space and time. Unfortunately, this formal convexity
inequality is very difficult to justify in the context of perfect plasticity because the Cauchy stress
σ and the plastic strain rate ṗ are not in duality. Indeed, the natural energy space gives σ(t) ∈
H(div,Ω) while ṗ((t) ∈M(Ω∪ΓD;Mn

sym) since the support function H grows linearly with respect
to its argument. In particular, the plastic dissipation∫

Ω

H(ṗ(t)) dx
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has to be understood as a convex function of a measure (see [12, 13, 18]). Whenever the quadruple
(u, e, p, σ) belongs to the energy space, it follows that (u̇(t), ė(t), ṗ(t)) belongs to the space of all
kinematically admissible triples{

(v, η, q) ∈ [BD(Ω) ∩ L2(Ω;Rn)]× L2(Ω;Mn
sym)×M(Ω ∪ ΓD;Mn

sym) :

Ev = η + q in Ω, q = −v � νHn−1 on ΓD

}
,

and σ(t) belongs to the space of all statically and plastically admissible stresses

{τ ∈ H(div,Ω) : τν = 0 on ΓN , τ(x) ∈ K a.e. in Ω}.

In the spirit of [17, 20, 22], it allows one to consider a generalized stress/strain duality (see Definition
3.1) as the first order distribution [σ(t) : ṗ(t)] ∈ D′(Rn), compactly supported in Ω, defined as

〈[σ(t) : ṗ(t)], ϕ〉 = −
∫

Ω

ϕσ(t) : ė(t) dx−
∫

Ω

u̇(t) · divσ(t)ϕdx−
∫

Ω

σ(t) :
(
u(t)�∇ϕ

)
dx (1.10)

or any ϕ ∈ C∞c (Rn). The question now reduces to prove that

H(ṗ(t)) ≥ [σ(t) : ṗ(t)] in M(Rn), (1.11)

and this is the object of Section 3 . In Propositions 3.1 we show that this generalized convexity
inequality is always satisfied in the pure Dirichlet (ΓD = ∂Ω) and pure Neumann (ΓN = ∂Ω)
cases. In the case of mixed boundary conditions, there might be some concentration effects at the
interface Σ between the Dirichlet and the Neumann parts, and the previous convexity inequality
is shown to hold only in M(Rn \ Σ) in Proposition 3.2. Unfortunately, this weaker result is
not enough to conclude the energy upper bound because, although Σ is Hn−1-negligible, some
undesirable energy concentration might accumulate on that set. We further exhibit special cases
in dimensions n = 2 and n = 3 which guarantee the validity of (1.11) also in the case of mixed
boundary conditions (see Propositions 3.3 and 3.4). In dimension n = 2, it is enough to assume
that Σ is a finite set (as in [17]) while in dimension n = 3, we suppose that the convex set K is
invariant in the direction of hydrostatic matrices and bounded in the direction of deviatoric ones,
as well as additional regularity assumptions on the reference configuration Ω (as in [20]).

To conclude this introduction, let us mention that our method only allows one to derive homoge-
neous mixed boundary conditions. Indeed, at a formal level, even starting from a nonhomogeneous
dissipative boundary condition of the form Su̇+σν = g on ∂Ω× (0, T ), for some non trivial source
term g, (or its relaxed counterpart P−Kν(Su̇− g) + σν = 0 on ∂Ω× (0, T ) given by an adaptation
of [7]), we obtain an energy balance involving the following additional term∫ T

0

∫
∂Ω

S−1g · g dHn−1 dt.

Specializing the problem to a boundary matrix S = Sλ of the form (1.9) and some λ-dependent
source term gλ ∈ L2(∂Ω× (0, T );Rn), the previous discussion shows that a uniform bound on the
solution (uλ, eλ, pλ, σλ) in the energy space would require that

sup
λ>0

{
1

λ

∫
ΓD

|gλ|2 dHn−1 + λ

∫
ΓN

|gλ|2 dHn−1

}
<∞.

It would imply that

σλν = gλ − λ−1u̇λ → 0 in ΓN × (0, T )

in a weak sense as λ→∞ (because the trace of u̇λ is bounded in L1(∂Ω× (0, T );Rn)), leading to
a homogenous Neumann condition in ΓN . Concerning the Dirichlet part, formally reporting this
information in the dissipative boundary condition restricted to ΓD would lead to

u̇λ = λ−1gλ − λ−1σλν → 0 in ΓD × (0, T ),

in some weak sense as λ → ∞ (because σλν is bounded in L2(0, T ;H−1/2(∂Ω;Rn))), leading to
a homogeneous Dirichlet boundary condition. Strictly speaking one should rather consider the
relaxed boundary condition which would lead to a strain concentration on ΓD associated to a
homogeneous Dirichlet boundary condition.
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The paper is organized as follows. In Section 2, we introduce various notation and basic facts
used throughout this paper. In Section 3, we discuss the notion duality between plastic strains
and Cauchy stresses, and we prove generalized convexity inequalities of the form (1.11) involving
these two arguments which are not in duality in the energy space. Finally, in Section 4, we state
and prove our main result, Theorem 4.2, about the convergence of the solutions obtained in [7]
to the (unique) solution of a dynamical elasto-plastic model with homogeneous mixed boundary
conditions.

2. Notation and preliminaries

2.1. Linear algebra. If a and b ∈ Rn, we write a ·b :=
∑n
i=1 aibi for the Euclidean scalar product,

and we denote by |a| :=
√
a · a the corresponding norm.

We denote by Mn the set of n×n matrices and by Mn
sym the space of symmetric n×n matrices.

The set of all (deviatoric) trace free symmetric matrices will be denoted as Mn
D. The space Mn

is endowed with the Fröbenius scalar product A : B := tr
(
ATB

)
and with the corresponding

Fröbenius norm |A| :=
√
A : A. If a ∈ Rn and b ∈ Rn, we denote by a�b := (abT +bTa)/2 ∈Mn

sym

there symmetric tensor product.

If A ∈Mn
sym, there exists an orthogonal decomposition of A with respect to the Fröbenius scalar

product as follows

A = AD +
1

n
(trA)Id,

where AD ∈Mn
D stands for the deviatoric part of A.

2.2. Measures. The Lebesgue measure in Rn is denoted by Ln, and the (n − 1)-dimensional
Hausdorff measure by Hn−1. If X ⊂ Rn is a Borel set and Y is an Euclidean space, we denote by
M(X;Y ) the space of Y -valued bounded Radon measures in X endowed with the norm ‖µ‖ :=
|µ|(X), where |µ| is the variation of the measure µ. If Y = R we simply write M(X) instead of
M(X;R).

If the relative topology of X is locally compact, by Riesz representation theorem,M(X;Y ) can
be identified with the dual space of C0(X;Y ), the space of continuous functions ϕ : X → Y such
that {|ϕ| ≥ ε} is compact for every ε > 0. The (vague) weak* topology of M(X;Y ) is defined
using this duality.

Let µ ∈M(X;Y ) and f : Y → [0,+∞] be a convex, positively one-homogeneous function. Using
the theory of convex functions of measures developed in [12, 13, 18], we introduce the nonnegative
Borel measure f(µ), defined by

f(µ) = f

(
dµ

d|µ|

)
|µ| ,

where dµ
d|µ| stands for the Radon-Nikodým derivative of µ with respect to |µ|.

2.3. Functional spaces. We use standard notation for Lebesgue spaces (Lp) and Sobolev spaces
(W s,p and Hs = W s,2).

The space of functions of bounded deformation is defined by

BD(Ω) = {u ∈ L1(Ω;Rn) : Eu ∈M(Ω;Mn
sym)} ,

where Eu := (Du+DuT )/2 stands for the distributional symmetric gradient of u. We recall (see
[6, 27]) that, if Ω has a Lipschitz boundary, every function u ∈ BD(Ω) admits a trace, still denoted
by u, which belongs to L1(∂Ω;Rn), and such that the integration by parts formula holds: for all
ϕ ∈ C1(Ω;Mn

sym), ∫
∂Ω

u · (ϕν) dHn−1 =

∫
Ω

divϕ · u dx+

∫
Ω

ϕ : dEu .

Note that the trace operator is continuous with respect to the strong convergence of BD(Ω) but
not with respect to the weak* convergence in BD(Ω).
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Let us define

H(div,Ω) = {σ ∈ L2(Ω;Mn
sym) : divσ ∈ L2(Ω;Rn)} .

If Ω has Lipschitz boundary, for any σ ∈ H(div,Ω) we can define the normal trace σν as an element

of H−
1
2 (∂Ω;Rn) (cf. e.g. [27, Theorem 1.2, Chapter 1]) by setting

〈σν, ψ〉
H−

1
2 (∂Ω;Rn),H

1
2 (∂Ω;Rn)

:=

∫
Ω

ψ · divσ dx+

∫
Ω

σ : Eψ dx . (2.1)

for every ψ ∈ H1(Ω;Rn).

3. Duality between stress and plastic strain

In the spirit of [20, 17, 9], we define a generalized notion of stress/strain duality.

(H1) The reference configuration. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary.
We assume that ∂Ω is decomposed as the following disjoint union

∂Ω = ΓD ∪ ΓN ∪ Σ,

where ΓD and ΓN are open sets in the relative topology of ∂Ω, and Σ = ∂|∂ΩΓD = ∂|∂ΩΓN is

Hn−1-negligible.

On the Neumann part ΓN , we will prescribe a surface load given by a function g ∈ L∞(ΓN ;Rn).
The space of statically admissible stresses is defined by

Sg := {σ ∈ H(div,Ω) : σν = g on ΓN}.
In the sequel we will also be interested in stresses σ taking values in a given set.

(H2) Plastic properties. Let K ⊂Mn
sym be a closed convex set such that 0 belongs to the interior

point of K. In particular, there exists r > 0 such that{
τ ∈Mn

sym : |τ | ≤ r
}
⊂ K. (3.1)

The support function H : Mn
sym → [0,+∞] of K is defined by

H(q) := sup
σ∈K

σ : q for all q ∈Mn
sym.

We can deduce from (3.1) that

H(q) ≥ r|q| for all q ∈Mn
sym. (3.2)

If p ∈M(Ω ∪ ΓD;Mn
sym), we denote the convex function of a measure H(p) by

H(p) := H

(
dp

d|p|

)
|p|,

and the plastic dissipation is defined by

H(p) :=

∫
Ω∪ΓD

H

(
dp

d|p|

)
d|p|.

We define the set of all plastically admissible stresses by

K := {σ ∈ H(div,Ω): σ(x) ∈ K for a.e. x ∈ Ω}
which defines a closed and convex subset of H(div,Ω).

The portion ΓD of ∂Ω stands for the Dirichlet part of the boundary where a given displacement
w will be prescribed. We assume that it extends into a function w ∈ H1(Ω;Rn) (so that w|ΓD ∈
H1/2(ΓD;Rn)). We define the space of kinematically admissible triples by

Aw :=
{

(u, e, p) ∈ [BD(Ω) ∩ L2(Ω;Rn)]× L2(Ω;Mn
sym)×M(Ω ∪ ΓD;Mn

sym) :

Eu = e+ p in Ω, p = (w − u)� νHn−1 on ΓD

}
,

where ν is the outer unit normal to Ω. The function u stands for the displacement, e is the
elastic strain and p is the plastic strain. The following result provides an approximation for triples
(u, e, p) ∈ Aw and its proof follows the line of Step 1 in [17, Theorem 6.2].
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Lemma 3.1. Let (u, e, p) ∈ [BD(Ω) ∩ L2(Ω;Rn)] × L2(Ω;Mn
sym) × M(Ω;Mn

sym) be such that

Eu = e + p in Ω. Then, there exists a sequence {(uk, ek, pk)}k∈N in C∞(Ω;Rn ×Mn
sym ×Mn

sym)
such that

Euk = ek + pk in Ω,

uk → u strongly in L2(Ω;Rn),

ek → e strongly in L2(Ω;Mn
sym),

pk ⇀ p weakly* in M(Ω;Mn
sym),

|pk|(Ω)→ |p|(Ω),

|Euk|(Ω)→ |Eu|(Ω),

uk → u strongly in L1(∂Ω;Rn).

(3.3)

and for all ϕ ∈ C∞c (Rn) with ϕ ≥ 0,

lim sup
k→∞

∫
Ω

ϕdH(pk) ≤
∫

Ω

ϕdH(p). (3.4)

Proof. The construction of a sequence {(uk, ek, pk)}k∈N in C∞(Ω;Rn ×Mn
sym ×Mn

sym) such that
Euk = ek + pk in Ω together with the four first convergences of (3.3) result from Step 1 in [17,
Theorem 6.2]. Moreover, a careful inspection of that proof also shows that |Euk|(Ω) → |Eu|(Ω).
The strong convergence of the trace in L1(∂Ω;Rn) is a consequence of [6, Proposition 3.4]. The
last condition (3.4) follows as well from the proof of [17, Theorem 6.2] using the subadditivity and
the positive one-homogeneity of H. Note that (3.4) cannot be directly obtained from the strict
convergence of {pk}k∈N and Reshetnyak continuity Theorem (see [1, Theorem 2.39] or [25]) because
H is just lower semicontinuous and it can take infinite values. �

We now define a distributional duality pairing between statically admissible stresses and plastic
strains.

Definition 3.1. Let σ ∈ Sg and (u, e, p) ∈ Aw. We define the first order distribution [σ : p] ∈
D′(Rn) by

〈[σ : p], ϕ〉 :=

∫
Ω

ϕσ : (Ew−e) dx+

∫
Ω

(w−u)·divσ ϕdx+

∫
Ω

σ :
(
(w−u)�∇ϕ

)
dx+

∫
ΓN

ϕg · u dHn−1

for all ϕ ∈ C∞c (Rn).

Remark 3.1. If ϕ ∈ C∞c (Ω), thanks to the integration by parts formula in H1(Ω;Rn), the
expression of the stress/strain duality becomes independent of w and g, and it reduces to

〈[σ : p], ϕ〉 = −
∫

Ω

ϕσ : e dx−
∫

Ω

u · divσ ϕdx−
∫

Ω

σ : (u�∇ϕ) dx . (3.5)

As already observed in [9], contrary to [17, 20], we are not able to show in general that [σ : p]
extends into a bounded Radon measure. This is due to the fact that, in our context, σD fails to
belong to L∞(Ω;Mn

D). However, provided σ ∈ K and under suitable assumption on Ω and K, we
are going to show a convexity inequality which will ensure that H(p) − [σ : p] is a nonnegative
distribution, hence that [σ : p] actually defines a bounded Radon measure supported in Ω.

3.1. Pure Dirichlet or pure Neumann boundary conditions. As the following result shows,
the distribution [σ : p] always extends into a bounded Radon measure in the pure Dirichlet or pure
Neumann cases.

Proposition 3.1. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Assume that either
∂Ω = ΓD or ∂Ω = ΓN . Then, for every σ ∈ Sg ∩ K and (u, e, p) ∈ Aw with H(p) ∈ M(Ω ∪ ΓD),

the distribution [σ : p] extends to a bounded Radon measure supported in Ω and

H(p) ≥ [σ : p] in M(Rn). (3.6)
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Proof. In the case of pure Dirichlet boundary conditions, ∂Ω = ΓD, we first note that Sg =
H(div,Ω). The duality pairing is then independent of g and reduces to

〈[σ : p], ϕ〉 =

∫
Ω

ϕσ : (Ew − e) dx+

∫
Ω

(w − u) · divσ ϕdx+

∫
Ω

σ :
(
(w − u)�∇ϕ

)
dx

for all ϕ ∈ C∞c (Rn). This case has already been addressed in [9, Section 2]. The result is a direct
consequence an approximation result for σ ∈ K by smooth functions (see e.g. [22, Lemma 2.3]) as
well as the integration by parts formula in BD(Ω) (see [6, Theorem 3.2]).

In the case of pure Neumann boundary conditions, ∂Ω = ΓN , using the integration by parts
formula in H1(Ω;Rn) for the function w, the duality pairing becomes independent of w and reduces
to

〈[σ : p], ϕ〉 := −
∫

Ω

ϕσ : e dx−
∫

Ω

u · divσ ϕdx−
∫

Ω

σ :
(
u�∇ϕ

)
dx+

∫
∂Ω

ϕg · u dHn−1

for all ϕ ∈ C∞c (Rn). According to Lemma 3.1, there exists a sequence {(uk, ek, pk)}k∈N in
C∞(Ω;Rn ×Mn

sym ×Mn
sym) such that Euk = ek + pk in Ω and (3.3)–(3.4) hold. By definition

of the duality pairing [σ : pk], for all ϕ ∈ C∞c (Rn) we have

〈[σ : pk] , ϕ〉 := −
∫

Ω

σ : ekϕdx−
∫

Ω

ϕuk · divσ dx−
∫

Ω

σ : (uk �∇ϕ) dx+

∫
∂Ω

ϕg · uk dHn−1, (3.7)

and using the integration by parts formula (2.1) for σ ∈ H(div,Ω), we get that

〈[σ : pk] , ϕ〉 :=

∫
Ω

σ : pkϕdx. (3.8)

By definition of the support function H, we have that H(pk) ≥ σ : pk a.e. in Ω, hence if ϕ ≥ 0, by
(3.7), it yields∫

Ω

H(pk)ϕdx ≥
∫

Ω

σ : pkϕdx

= −
∫

Ω

σ : ekϕdx−
∫

Ω

ϕuk · divσ dx−
∫

Ω

σ : (uk �∇ϕ) dx+

∫
∂Ω

ϕg · uk dHn−1.

Hence, passing to the limit as k →∞ thanks to the convergences (3.3)–(3.4) yields∫
Ω

ϕdH(p) ≥ −
∫

Ω

σ : eϕ dx−
∫

Ω

ϕu · divσ dx−
∫

Ω

σ : (u�∇ϕ) dx+

∫
∂Ω

ϕg · u dHn−1

=: 〈[σ : p] , ϕ〉 ,

where we used once more the definition of duality [σ : p]. As a consequence, the distribution
H(p)− [σ : p] is nonnegative, hence it extends into a bounded Radon measure in Rn. Thus, [σ : p]
extends as well into a bounded Radon measure in Rn. Finally [σ : p] is clearly supported in Ω from
its very definition. �

3.2. Mixed boundary conditions. When ΓD 6= ∅ and ΓN 6= ∅, the situation is much more
delicate as in [17]. We first prove the following general result giving the required convexity in-
equality but only outside Σ (see [17, Theorem 6.2]) which, unfortunately, will not be enough for
our purpose. We will later do additional assumptions in dimensions n = 2 and 3 which will ensure
the validity of the convexity inequality in the whole Rn.

Proposition 3.2. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. For every σ ∈ Sg∩K
and (u, e, p) ∈ Aw with H(p) ∈ M(Ω ∪ ΓD), the restriction of the distribution [σ : p] to Rn \ Σ
extends to a bounded Radon measure in Rn \ Σ and

H(p) ≥ [σ : p] in M(Rn \ Σ). (3.9)

Proof. Without loss of generality, we can assume w = 0 in Definition 3.1. Let us fix a test function
ϕ ∈ C∞c (Rn \ Σ), and let U ⊂ Rn be an open set such that Σ ⊂ U and U ∩ supp(ϕ) = ∅. Let
us consider another open set W ⊂ Rn such that ΓN \ U ⊂ W and W ∩ ∂Ω ⊂ ΓN . Finally, let
W ′ ⊂ Rn be a further open set such that W ′ ⊂⊂ W , ΓN \ U ⊂ W ′ and supp(ϕ) ∩ ΓN ⊂ W ′. Let
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ψ ∈ C∞c (Rn) be a cut-off function such that 0 ≤ ψ ≤ 1, Supp(ψ) ⊂ W and ψ = 1 on W ′. We
decompose σ as follows,

σ = ψσ + (1− ψ)σ =: σ1 + σ2.

Note that, for i = 1, 2, we have that σi ∈ H(div,Ω). Moreover,

σ1ν := ψ(σν) = ψg on ∂Ω and σ2 = 0 on W ′. (3.10)

Substituting σ with this decomposition in Definition 3.1 we get that

〈[σ : p], ϕ〉 := −
∫

Ω

ϕσ : e dx−
∫

Ω

u · divσ ϕdx−
∫

Ω

σ :
(
u�∇ϕ

)
dx+

∫
ΓN

ϕg · u dHn−1

= −
∫

Ω

ϕσ1 : e dx−
∫

Ω

u · divσ1 ϕdx−
∫

Ω

σ1 :
(
u�∇ϕ

)
dx+

∫
ΓN

ϕg · u dHn−1

−
∫

Ω

ϕσ2 : e dx−
∫

Ω

u · divσ2 ϕdx−
∫

Ω

σ2 :
(
u�∇ϕ

)
dx. (3.11)

We first approximate (u, e, p) in the expression (3.11) involving σ1. Indeed, thanks to Lemma
3.1, there exists a sequence {(uk, ek, pk)}k∈N in C∞(Ω;Rn×Mn

sym×Mn
sym) such that Euk = ek+pk

in Ω and (3.3)–(3.4) hold. On the one hand, we have

−
∫

Ω

ϕσ1 : ek dx−
∫

Ω

uk · divσ1 ϕdx−
∫

Ω

σ1 :
(
uk �∇ϕ

)
dx+

∫
ΓN

ϕg · uk dHn−1

→ −
∫

Ω

ϕσ1 : e dx−
∫

Ω

u · divσ1 ϕdx−
∫

Ω

σ1 :
(
u�∇ϕ

)
dx+

∫
ΓN

ϕg · u dHn−1. (3.12)

On the other hand, for any k ∈ N, thanks to the integration by parts formula for σ1 ∈ H(div,Ω)
together with (3.10), we can observe that

−
∫

Ω

ϕσ1 : ek dx−
∫

Ω

uk · divσ1 ϕdx−
∫

Ω

σ1 :
(
uk �∇ϕ

)
dx+

∫
ΓN

ϕg · uk dHn−1

=

∫
Ω

ϕσ1 : pk dx− 〈σ1ν, ϕuk〉
H−

1
2 (∂Ω;Rn),H

1
2 (∂Ω;Rn)

+

∫
ΓN

ϕg · uk dHn−1

=

∫
Ω

ϕσ1 : pk dx−
∫
∂Ω

ϕψg · uk dHn−1 +

∫
ΓN

ϕg · uk dHn−1

=

∫
Ω

ϕσ1 : pk dx, (3.13)

where we used that ψ = 1 on Supp(ϕ) ∩ ΓN and ψ = 0 in ∂Ω \ ΓN . Hence, by definition of the
support function H, we have that H(pk) ≥ σ : pk a.e. in Ω. As a consequence, if ϕ ≥ 0,∫

Ω

H(pk)ψϕdx ≥
∫

Ω

σ1 : pkϕdx

= −
∫

Ω

ϕuk · divσ1 dx−
∫

Ω

σ1 : (uk �∇ϕ) dx

−
∫

Ω

σ1 : ekϕdx+

∫
ΓN

ϕg · uk dHn−1.

We can pass to the limit as k →∞ owing to (3.4) and (3.12). We deduce that∫
W∩Ω

ϕdH(p) ≥
∫

Ω

ϕψ dH(p)

≥ −
∫

Ω

ϕu · divσ1 dx−
∫

Ω

σ1 : (u�∇ϕ) dx

−
∫

Ω

σ1 : eϕ dx+

∫
ΓN

ϕg · u dHn−1, (3.14)

where we have used the fact that p, hence H(p), does not charge ΓN .
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Coming back to (3.11), we now approximate the last term in the right-hand side by approxi-
mating σ2. Arguing as in [22, Lemma 2.3] or Step 2 in [17, Theorem 6.2] and using (3.10), there
exists a sequence

{
σk2
}
k∈N ⊂ C

∞(Ω;Mn
sym) such that σk2 (x) ∈ K for all x ∈ Ω and{

σk2 → σ2 strongly in H(div,Ω),

σk2ν = 0 on W ′ ∩ ΓN .
(3.15)

Therefore, using the integration by parts formula in BD(Ω), we infer that

−
∫

Ω

ϕσk2 : e dx−
∫

Ω

u · divσk2 ϕdx−
∫

Ω

σk2 :
(
u�∇ϕ

)
dx

=

∫
Ω

ϕσk2 : dp−
∫
∂Ω

ϕ(σk2ν) · u dHn−1

=

∫
Ω

ϕσk2 : dp−
∫

ΓD

ϕ(σk2ν) · u dHn−1

=:

∫
Ω∪ΓD

ϕσk2 : dp

(3.16)

where in the second equality, we have used the fact that supp(ϕ) ∩ ∂Ω ⊂ ΓD ∪ (ΓN ∩W ′) and the
last condition of (3.15), while in the third equality we used that p ΓD = −u�νHn−1 ΓD. Using
that σk2 (x) ∈ K for all x ∈ Ω, we get that∫

Ω∪ΓD

ϕdH(p) ≥
∫

Ω∪ΓD

ϕσk2 : dp,

hence passing to the limit as k →∞ using (3.15) and (3.16) leads to∫
Ω∪ΓD

ϕdH(p) ≥ −
∫

Ω

ϕσ2 : e dx−
∫

Ω

u · divσ2 ϕdx−
∫

Ω

σ2 :
(
u�∇ϕ

)
dx. (3.17)

Combining (3.11), (3.14) and (3.17), we conclude that

〈[σ : p], ϕ〉 ≤
∫

Ω∪ΓD

ϕdH(p) +

∫
W∩Ω

ϕdH(p).

Let us finally consider a decreasing sequence of open sets {Wj}j∈N such that ΓN \ U ⊂ Wj and

Wj ∩ ∂Ω ⊂ ΓN for all j ∈ N, and
⋂
jWj = ΓN \ U . Passing to the limit in the previous expression

as j →∞ owing to the monotone convergence theorem yields

〈[σ : p], ϕ〉 ≤
∫

Ω∪ΓD

ϕdH(p) +

∫
ΓN\U

ϕdH(p).

As ΓN \ U ⊂ ΓN ∪ Σ and p is concentrated on Ω ∪ ΓD, we deduce that

〈[σ : p], ϕ〉 ≤
∫

Ω∪ΓD

ϕdH(p)

which completes the proof of the proposition. �

In the remaining part of this section, we exhibit some particular cases where we can extend
inequality (3.9) above into one in M(Rn). The following result deals with the two-dimensional
case where the convexity inequality holds provided Σ is a finite set.

Proposition 3.3. Under the same assumptions as in Proposition 3.2, assume further that n = 2
and that Σ is a finite set. Then, for all σ ∈ Sg ∩ K and all (u, e, p) ∈ Aw,

H(p) ≥ [σ : p] in M(R2).

Proof. We again reduce to the case w = 0. Arguing as in [17, Example 2], for all (u, e, p) ∈ A0,
there exists a sequence {(uk, ek, pk)}k∈N in A0 such that, for each k ∈ N, (uk, ek, pk) = 0 in an
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open neighborhood Uk of Σ and
uk → u strongly in L2(Ω;R2),

ek → e strongly in L2(Ω;M2
sym),

pk ⇀ p weakly* in M(Ω ∪ ΓD;M2
sym),

|pk|(Ω ∪ ΓD)→ |p|(Ω ∪ ΓD).

(3.18)

A careful inspection of the argument used in [17, Example 2] shows that |Euk|(Ω) → |Eu|(Ω).
Thus, applying [6, Proposition 3.4], we deduce the convergence of the trace

uk → u strongly in L1(∂Ω;Rn). (3.19)

Moreover, for all ϕ ∈ C∞c (R2) with ϕ ≥ 0,

lim sup
k→∞

∫
Ω∪ΓD

ϕdH(pk) ≤
∫

Ω∪ΓD

ϕdH(p). (3.20)

Once more, (3.20) does not follow from the Reshetnyak continuity Theorem because our H does
not fulfill the assumptions of that result.

Let Vk be an open set satisfying Σ ⊂ Vk ⊂⊂ Uk, and let ψk ∈ C∞c (R2; [0, 1]) be a cut-off
function such that ψk = 1 in Vk and Supp(ψk) ⊂ Uk. For every ϕ ∈ C∞c (R2) with ϕ ≥ 0, then
(1− ψk)ϕ ∈ C∞c (R2 \ Σ) so that by Proposition 3.2,∫

Ω∪ΓD

ϕdH(pk) ≥
∫

Ω∪ΓD

ϕ(1− ψk) dH(pk) ≥ 〈[σ : pk], ϕ(1− ψk)〉.

Since by construction Supp(uk, ek, pk) ⊂ R2 \ Uk, it is easily seen that Supp([σ : pk]) ⊂ R2 \ Uk
hence 〈[σ : pk], ϕψk〉 = 0. As a consequence∫

Ω∪ΓD

ϕdH(pk) ≥ 〈[σ : pk], ϕ〉,

and the conclusion follows passing to the limit as k → ∞ owing to the convergences (3.18)–
(3.20). �

The three-dimensional case requires additional regularity assumptions for the domain Ω, and
a particular geometric structure for the elasticity set K which has to be a cylinder whose axis is
given by the set of spherical matrices. Note that these assumptions cover the physical cases of Von
Mises and Tresca models.

Proposition 3.4. Under the same assumptions as in Proposition 3.2, assume further that n = 3
and that:

(i) Ω ⊂ R3 is a bounded open set of class C2 and Σ is 1-dimensional submanifold of class C2;
(ii) K = KD⊕ (R Id) = {σ ∈M3

sym : σD ∈ KD} where KD ⊂M3
D is a compact and convex set

containing 0 in its interior.

Then, for all σ ∈ Sg ∩ K and all (u, e, p) ∈ Aw,

H(p) ≥ [σ : p] in M(R3).

Proof. Since σ ∈ L2(Ω;M3
sym) satisfies divσ ∈ L2(Ω;R3) and σD ∈ L∞(Ω;M3

sym) (because σ ∈ K
implies σD(x) ∈ KD a.e. in Ω), we claim that σ ∈ L6(Ω;M3

sym). Indeed, arguing as in [17,

Proposition 6.1], using the decomposition σ = σD + 1
3 (trσ)Id, we have that 1

3∇(trσ) = divσ −
divσD ∈ L2(Ω;R3) +W−1,∞(Ω;R3), hence by the Sobolev embedding,

∇(trσ) ∈W−1,6(Ω) +W−1,∞(Ω) ⊂W−1,6(Ω).

Applying Nečas Lemma (see [23]), we infer that trσ ∈ L6(Ω), hence σ ∈ L6(Ω;M3
sym).

In particular, σ ∈ L3(Ω;M3
sym), σD ∈ L∞(Ω;M3

D), divσ ∈ L3/2(Ω;R3) and σν ∈ L∞(ΓN ;R3).
These conditions turn out to be sufficient to apply [20, Proposition 2.7] (with, in the notation of
[20], n = 3, p = 3/2 and p∗ = 3). Then, an immediate adaptation of the proof of [20, Lemma
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3.5] (using [20, Proposition 2.7] instead of [20, Corollary 2.8]) shows the validity of the so-called
Kohn-Temam condition:

lim
δ→0

1

δ

∫
Σδ

|σ||u| dx = 0,

where Σδ := Ω∩ {x ∈ R3 : dist(x,Σ) < δ}. We are thus in position to argue as in the proof of [17,
Theorem 6.5] to get the conclusion. Indeed, let ψδ ∈ C∞c (Σδ; [0, 1]) be a cut-off function such that
ψδ = 1 in a neighborhood of Σ and |∇ψδ| ≤ 2/δ. Then, for all ϕ ∈ C∞c (R3) with ϕ ≥ 0, we have

〈[σ : p], (1−ψδ)ϕ〉 = −
∫

Ω

(1−ψδ)ϕσ : e dx−
∫

Ω

u ·divσ (1−ψδ)ϕdx−
∫

Ω

(1−ψδ)σ :
(
u�∇ϕ

)
dx

+

∫
Ω

ϕσ :
(
u�∇ψδ

)
dx+

∫
ΓN

(1− ψδ)ϕg · u dHn−1.

Since ψδ ↘ 0 pointwise, and∣∣∣∣∫
Ω

ϕσ :
(
u�∇ψδ

)
dx

∣∣∣∣ ≤ 2‖ϕ‖L∞(Ω)

δ

∫
Σδ

|σ||u| dx→ 0,

the dominated convergence Theorem allows us to pass to the limit as δ → 0, and get that

〈[σ : p], (1− ψδ)ϕ〉 → 〈[σ : p], ϕ〉.

On the other hand, since (1− ψδ)ϕ ∈ C∞c (R3 \ Σ), Proposition 3.2 ensures that∫
Ω∪ΓD

ϕdH(p) ≥
∫

Ω∪ΓD

(1− ψδ)ϕdH(p) ≥ 〈[σ : p], (1− ψδ)ϕ〉.

The conclusion follows passing to the limit as δ → 0. �

4. Dynamic elasto-plasticity

4.1. The model with dissipative boundary conditions. We consider a small strain dynamical
perfect plasticity problem under the following assumptions:

(H3) The elastic properties. We assume that the material is isotropic, which means that the
constitutive law, expressed by Hooke’s tensor, is given by

Aξ = λ(tr ξ)Id + 2µξ for all ξ ∈Mn
sym,

where λ and µ are the Lamé coefficients satisfying µ > 0 and 2µ+nλ > 0. These conditions imply
the existence of constants α > 0 and β > 0 such that

α|ξ|2 ≤ Aξ : ξ ≤ β|ξ|2 for all ξ ∈Mn
sym.

We define the following quadratic form

Q(ξ) :=
1

2
Aξ : ξ =

λ

2
(tr ξ)2 + µ|ξ|2 for all ξ ∈Mn

sym.

If e ∈ L2(Ω;Mn
sym), we further define the elastic energy by

Q(e) :=

∫
Ω

Q(e) dx.

(H4) The dissipative boundary conditions. Let S ∈ L∞(∂Ω;Mn
sym) be a boundary matrix

satisfying the conditions: there exists a constant c > 0 such that

S(x)z · z ≥ c|z|2 for Hn−1-a.e. x ∈ ∂Ω and for all z ∈ Rn.

(H5) The external forces. We assume the body is subjected to external body forces

f ∈ H1(0, T ;L2(Ω;Rn)).
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(H6) The initial conditions. Let u0 ∈ H1(Ω;Rn), v0 ∈ H2(Ω;Rn), e0 ∈ L2(Ω;Mn
sym) and

p0 ∈ L2(Ω;Mn
sym) be such that 

σ0 := Ae0 ∈ K,
Eu0 = e0 + p0 in Ω,

Sv0 + σ0ν = 0 on ∂Ω.

In order to formulate the main result of [7], we further need to introduce the function ψ :
∂Ω× Rn → R+ defined by

ψ(x, z) = inf
w∈Rn

{
1

2
S(x)w · w +H((w − z)� ν(x))

}
for Hn−1-a.e. x ∈ ∂Ω and all z ∈ Rn, (4.1)

where ν(x) is the outer normal to Ω at x ∈ ∂Ω. We recall (see [7, Remark 4.7]) that the differential
of ψ in the z-direction is given by

Dzψ(x, z) = P−Kν(x)(S(x)z),

where P−Kν(x) is the orthogonal projection in Rn onto the closed and convex set −Kν(x) with

respect to the scalar product (u, v) ∈ Rn × Rn 7→ 〈u, v〉S(x)−1 := S(x)−1u · v. We further denote
by ‖ · ‖S(x)−1 its associated norm.

The following well posedness result with homogeneous dissipative boundary conditions has been
established in [7].

Theorem 4.1. Assume that assumptions (H1)–(H6) hold. Then, there exists a unique triple
(u, e, p) such that 

u ∈W 2,∞(0, T ;L2(Ω;Rn)) ∩ C0,1([0, T ] ;BD(Ω)),

e ∈W 1,∞(0, T ;L2(Ω;Mn
sym)),

p ∈ C0,1([0, T ] ;M(Ω;Mn
sym)),

σ := Ae ∈ L∞(0, T ;H(div,Ω)), σν ∈ L∞(0, T ;L2(∂Ω;Rn)),

and satisfying

(1) The initial conditions:

u(0) = u0, u̇(0) = v0, e(0) = e0, p(0) = p0;

(2) The additive decomposition: for all t ∈ [0, T ],

Eu(t) = e(t) + p(t) in M(Ω;Mn
sym);

(3) The equation of motion:

ü− divσ = f in L2(0, T ;L2(Ω;Rn));

(4) The relaxed dissipative boundary condition:

P−Kν(Su̇) + σν = 0 in L2(0, T ;L2(∂Ω;Rn));

(5) The stress constraint: for every t ∈ [0, T ],

σ(t) ∈ K a.e. in Ω;

(6) The flow rule: for a.e. t ∈ [0, T ],

H(ṗ(t)) = [σ(t) : ṗ(t)] in M(Ω);

(7) The energy balance: for every t ∈ [0, T ]

1

2

∫
Ω

|u̇(t)|2 dx+Q(e(t)) +

∫ t

0

H(ṗ(s))(Ω) ds+

∫ t

0

∫
∂Ω

ψ(x, u̇) dHn−1 ds

+
1

2

∫ t

0

∫
∂Ω

S−1(σν) · (σν) dHn−1 ds =
1

2

∫
Ω

|v0|2 dx+Q(e0) +

∫ t

0

∫
Ω

f · u̇ dx ds. (4.2)



14 J.-F. BABADJIAN AND R. LLERENA

Moreover, the following uniform estimate holds

‖ü‖2L∞(0,T ;L2(Ω;Rn)) + ‖ė‖2L∞(0,T ;L2(Ω;Mnsym)) ≤ C∗, (4.3)

for some constant C∗ > 0 depending on ‖u0‖H1(Ω;Rn), ‖v0‖H2(Ω;Rn), ‖e0‖L2(Ω;Mnsym), ‖σ0‖H(div,Ω)

and ‖p0‖L2(Ω;Mnsym), but which is independent of S.

4.2. Derivation of mixed boundary condition. Our aim is to show through an asymptotic
analysis how it is possible to obtain homogeneous mixed boundary conditions starting from dissi-
pative boundary conditions. We consider a boundary matrix of the form

S(x) = Sλ(x) :=

(
λ1ΓD (x) +

1

λ
1ΓN (x)

)
Id, λ > 0.

Remark 4.1. Note that since

‖ · ‖Sλ(x)−1 =

(
λ1ΓD (x) +

1

λ
1ΓN (x)

)−1

| · |,

for any λ > 0 and all x ∈ ∂Ω\Σ, the orthogonal projection P−Kν(x) onto the closed and convex set
−Kν(x) with respect to the scalar product 〈·, ·〉Sλ(x)−1 coincides with the orthogonal projection
with respect to the canonical Euclidean scalar product of Rn. It is in particular independent of λ.

We will need to strengthen assumption (H1) into

(H ′1) Reference configuration. Let Ω ⊂ Rn be a bounded open set with C3 boundary. We
assume that ∂Ω is decomposed as the following disjoint union

∂Ω = ΓD ∪ ΓN ∪ Σ,

where ΓD and ΓN are open sets in the relative topology of ∂Ω, and Σ = ∂|∂ΩΓD = ∂|∂ΩΓN is a

(n− 2)-dimensional submanifold of class C3.

Moreover, the initial condition needs to be adapted to our mixed boundary conditions.

(H ′6) The initial conditions. Let u0 ∈ H1(Ω;Rn), v0 ∈ H2(Ω;Rn), e0 ∈ L2(Ω;Mn
sym), p0 ∈

L2(Ω;Mn
sym) and σ0 := Ae0 ∈ H2(Ω;Mn

sym) be such that
Eu0 = e0 + p0 in Ω,

v0 = 0 on ΓD,

σ0ν = 0 on ΓN ,

σ0 +B(0, r) ⊂ K in Ω for some r > 0.

First, we are going to construct a sequence of initial data (uλ0 , v
λ
0 , e

λ
0 , p

λ
0 ) satisfying (H6) with

S = Sλ, and approximating (u0, v0, e0, p0) as λ→∞. This is the object of the following result.

Lemma 4.1. Let n = 2, 3. Under assumptions (H ′1) and (H ′6), for every λ > 0, there exists
(vλ0 , σ

λ
0 ) ∈ H2(Ω;Rn) × K such that (vλ0 , σ

λ
0 ) → (v0, σ0) strongly in H2(Ω;Rn) × H(div,Ω) as

λ→∞ and (
λ1ΓD +

1

λ
1ΓN

)
vλ0 + σλ0 ν = 0 Hn−1-a.e. on ∂Ω. (4.4)

Proof. Since ∂Ω has a C3 boundary then its normal ν belongs to C2(∂Ω;Rn) and, thanks to the

Trace Theorem in Sobolev spaces, the trace of σ0 belongs to H
3
2 (∂Ω;Mn

sym). As a consequence,

the product σ0ν belongs to H
3
2 (∂Ω;Rn) and there exists an extension v̂0 ∈ H2(Ω;Rn) whose trace

on ∂Ω coincides with −σ0ν with the estimate

‖v̂0‖H2(Ω;Rn) ≤ C‖σ0ν‖H3/2(∂Ω;Rn),

where C > 0 is a constant only depending on n and Ω. For each λ > 0, let us define

vλ0 := v0 + λ−1v̂0 ∈ H2(Ω;Rn).
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It follows that vλ0 → v0 strongly in H2(Ω;Rn) as λ→∞. Now, we consider z0 ∈ H1(Ω;Rn) as the
unique weak solution of the boundary value problem{

z0 − div(e(z0)) = 0 in Ω,

e(z0)ν = −v0 on ∂Ω.
(4.5)

According to Korn’s inequality and the Lax-Milgram Lemma such a solution exists and is unique.
Using that Ω has a C3-boundary and that v0 ∈ H

3
2 (∂Ω;Rn), elliptic regularity ensures that

z0 ∈ H3(Ω;Rn). Let us define

σλ0 := σ0 + λ−1e(z0)

In particular, σλ0 → σ0 strongly in H(div,Ω) as λ→∞. On ΓD, we observe that

λvλ0 |ΓD + σλ0 ν|ΓD = λv0|ΓD + v̂0|ΓD + σ0ν|ΓD +
1

λ
e(z0)ν|ΓD = 0,

where we have used the fact that e(z0)ν = −v0 = 0 and v̂0 = −σ0ν on ΓD. Similarly, on ΓN we
have

1

λ
vλ0 |ΓN + σλ0 ν|ΓN =

1

λ
v0|ΓN +

1

λ2
v̂0|ΓN + σ0ν|ΓN +

1

λ
e(z0)ν|ΓN = 0,

where we have used the fact that v̂0 = −σ0ν = 0 and e(z0)ν = −v0 on ΓN . We conclude (4.4)
thanks to the fact that ∂Ω = ΓD ∪ ΓN ∪ Σ and Hn−1(Σ) = 0.

It remains to check that σλ0 ∈ K a.e. in Ω. To this aim, we have by Sobolev imbedding (recall
that n = 2 or 3) that e(z0) ∈ H2(Ω;Mn

sym) ⊂ L∞(Ω;Mn
sym). Let r > 0 be the constant given by

the last property of hypothesis (H ′6) and λ > 0 large enough so that λ−1‖e(z0)‖L∞(Ω;Mnsym) < r. It

thus follows that σλ0 ∈ σ0 +B(0, r) ⊂ K a.e. in Ω. �

Given the initial data (u0, v
λ
0 , e

λ
0 := A−1σλ0 , p

λ
0 := Eu0 − A−1σλ0 ) satisfying (H6), we denote

by (uλ, eλ, pλ) the associated solution given by Theorem 4.1. Our aim is to study the asymptotic
behavior of the solutions (uλ, eλ, pλ) when λ→∞ in order to recover Dirichlet (ΓN = ∅), Neumann
(ΓD = ∅) and mixed boundary conditions in the other cases.

Our main result is the following:

Theorem 4.2. Assume that (H ′1), (H2), (H3), (H5) and (H ′6) hold. For each λ > 0, let (vλ0 , σ
λ
0 )

be given by Lemma 4.1, and let (uλ, eλ, pλ) be the solution given by Theorem 4.1 associated with the
boundary matrix Sλ defined in (1.9) and the initial data (u0, v

λ
0 , e

λ
0 := A−1σλ0 , p

λ
0 := Eu0−A−1σλ0 ).

Then, 
uλ ⇀ u weakly* in W 2,∞(0, T ;L2(Ω;Rn)),

eλ ⇀ e weakly* in W 1,∞(0, T ;L2(Ω;Mn
sym)),

σλ ⇀ σ weakly* in W 1,∞(0, T ;L2(Ω;Mn
sym)),

pλ(t) ⇀ p(t) weakly* in M(Ω;Mn
sym) for all t ∈ [0, T ],

where (u, e, p) is the unique triple satisfying
u ∈W 2,∞(0, T ;L2(Ω;Rn)) ∩ C0,1([0, T ];BD(Ω)),

e ∈W 1,∞(0, T ;L2(Ω;Mn
sym)),

σ := Ae ∈W 1,∞(0, T ;L2(Ω;Mn
sym)) ∩ L∞(0, T ;H(div,Ω)),

p ∈ C0,1([0, T ];M(Ω ∪ ΓD;Mn
sym)),

together with

(1) The initial conditions:

u(0) = u0, u̇(0) = v0, e(0) = e0, p(0) = p0;

(2) The kinematic compatibility: for all t ∈ [0, T ],{
Eu(t) = e(t) + p(t) in Ω,

p(t) = −u(t)� νHn−1 on ΓD;

(3) The equation of motion:

ü− divσ = f in L2(0, T ;L2(Ω;Rn));
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(4) The stress constraint: for every t ∈ [0, T ],

σ(t) ∈ K a.e in Ω;

(5) The boundary condition

σν = 0 in L2(0, T ;L2(ΓN ;Rn));

(6) The flow rule: if one of the following conditions are satisfied:
(i) Dirichlet case: Ω = ΓD,
(ii) Neumann case: Ω = ΓN ,

(iii) Mixed case in dimension n = 2: ΓD 6= ∅, ΓN 6= ∅ and Σ finite,
(iv) Mixed case in dimension n = 3: ΓD 6= ∅, ΓN 6= ∅ and

K = KD ⊕ (RId) := {σ ∈M3
sym : σD ∈ KD},

for some compact and convex set KD ⊂M3
D containing zero in its interior,

then, for a.e. t ∈ [0, T ],

H(ṗ(t)) = [σ(t) : ṗ(t)] in M(Ω ∪ ΓD).

As explained before, the solution (u, e, p) to the previous boundary value problem will be ob-
tained by means of an asymptotic analysis as λ→∞ of the solution (uλ, eλ, pλ) of the dissipative
boundary value in the Theorem 4.1. This analysis is based in the spirit of [8, Theorem 5.1] in the
antiplane case.

4.3. Weak compactness and passing to the limit into linear equations. We observe that
the constant C∗ > 0 appearing in estimate (4.3) of Theorem 4.1 depends on the various norms
‖u0‖H1(Ω;Rn), ‖vλ0 ‖H2(Ω;Rn), ‖eλ0‖L2(Ω;Mnsym), ‖σλ0 ‖H(div,Ω) and ‖pλ0‖L2(Ω;Mnsym) of the initial data.

Since, by Lemma 4.1, these quantities are independent of λ, it follows that the constant C∗ is
independent of λ as well. This is essential to get uniform bounds on the sequence {(uλ, eλ, pλ)}λ>0

and then weak compactness thereof.

The following compactness result follows from standard argument as, e.g., in [8, Section 5]. The
weak convergences allow us to obtain, in the limit, the initial conditions, the kinetic compatibility,
the equation of motion and the stress constraint,

Lemma 4.2. Assume that (H ′1), (H2), (H3), (H5) and (H ′6) hold. There exist a subsequence (not
relabeled) and 

u ∈W 2,∞(0, T ;L2(Ω;Rn)) ∩ C0,1([0, T ];BD(Ω)),

e ∈W 1,∞(0, T ;L2(Ω;Mn
sym)),

σ ∈W 1,∞(0, T ;L2(Ω;Mn
sym)) ∩ L∞(0, T ;H(div,Ω)),

p ∈ C0,1([0, T ];M(Ω;Mn
sym)),

such that as λ→∞, 
uλ ⇀ u weakly* in W 2,∞(0, T ;L2(Ω;Rn)),

eλ ⇀ e weakly* in W 1,∞(0, T ;L2(Ω;Mn
sym)),

σλ ⇀ σ weakly* in W 1,∞(0, T ;L2(Ω;Mn
sym)),

and, for every t ∈ [0, T ], 

uλ(t) ⇀ u(t) weakly in L2(Ω;Rn),

uλ(t) ⇀ u(t) weakly* in BD(Ω),

u̇λ(t) ⇀ u̇(t) weakly in L2(Ω;Rn),

eλ(t) ⇀ e(t) weakly in L2(Ω;Mn
sym),

σλ(t) ⇀ σ(t) weakly in L2(Ω;Mn
sym),

pλ(t) ⇀ p(t) weakly* in M(Ω;Mn
sym).

Moreover, there hold:

• the initial conditions: u(0) = u0, u̇(0) = v0, e(0) = e0, p(0) = p0;
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• the additive decomposition: for all t ∈ [0, T ],

Eu(t) = e(t) + p(t) in M(Ω;Mn
sym);

• the equation of motion: ü− divσ = f in L2(0, T ;L2(Ω;Rn));
• the stress constraint: for every t ∈ [0, T ], σ(t) = Ae(t) ∈ K a.e in Ω;
• the Neumann condition: σν = 0 in L2(0, T ;L2(ΓN ;Rn)).

Proof. According to the energy balance (4.2) and estimate (4.3), we infer that

‖u̇λ‖L∞(0,T ;L2(Ω;Rn)) + ‖σλ‖L∞(0,T ;L2(Ω;Mnsym)) + ‖ṗλ‖L1(0,T ;M(Ω;Mnsym))

+
1√
λ
‖σλν‖L2(0,T ;L2(ΓD;Rn))+

√
λ‖σλν‖L2(0,T ;L2(ΓN ;Rn))

+

∫ T

0

∫
∂Ω

ψλ(x, u̇λ) dHn−1 ds ≤ C, (4.6)

where ψλ is given by (4.1) with S = Sλ, and

‖üλ‖2L∞(0,T ;L2(Ω;Rn)) + ‖ėλ‖2L∞(0,T ;L2(Ω;Mnsym)) ≤ C∗.

In both previous estimates, the constants C > 0 and C∗ > 0 are independent of λ. Using that
uλ ∈W 2,∞(0, T ;L2(Ω;Rn)) and u0 ∈ L2(Ω;Rn), we get

sup
λ>0
‖uλ‖W 2,∞(0,T ;L2(Ω;Rn)) <∞,

and similarly, since eλ ∈W 1,∞(0, T ;L2(Ω;Mn
sym)) and e0 ∈ L2(Ω;Mn

sym),

sup
λ>0
‖eλ‖W 1,∞(0,T ;L2(Ω;Mnsym)) <∞.

We can thus extract a subsequence (not relabeled) and find u ∈ W 2,∞(0, T ;L2(Ω;Rn)) and e ∈
W 1,∞(0, T ;L2(Ω;Mn

sym)) such that, as λ→∞,{
uλ ⇀ u weakly* in W 2,∞(0, T ;L2(Ω;Rn)),

eλ ⇀ e weakly* in W 1,∞(0, T ;L2(Ω;Mn
sym)).

Setting σ := Ae ∈W 1,∞(0, T ;L2(Ω;Mn
sym)) we also have

σλ ⇀ σ weakly* in W 1,∞(0, T ;L2(Ω;Mn
sym)),

and using the equation of motion leads to

divσλ = üλ − f ⇀ ü− f weakly* in L∞(0, T ;L2(Ω;Rn)).

By uniqueness of the distributional limit, we infer that divσ = ü − f ∈ L∞(0, T ;L2(Ω;Rn)) and,
thus, σ ∈ L∞(0, T ;H(div,Ω)).

Owing to Ascoli-Arzela Theorem, for every t ∈ [0, T ],
uλ(t) ⇀ u(t) weakly in L2(Ω;Rn),

u̇λ(t) ⇀ u̇(t) weakly in L2(Ω;Rn),

eλ(t) ⇀ e(t) weakly in L2(Ω;Mn
sym),

σλ(t) ⇀ σ(t) weakly in L2(Ω;Mn
sym).

We now derive weak compactness on the sequence {pλ}λ>0 of plastic strains. Thanks to the energy
balance between two arbitrary times 0 ≤ t1 ≤ t2 ≤ T together with (3.2),

r

∫ t2

t1

|ṗλ(s)|(Ω) ds ≤
∫ t2

t1

H(ṗλ(s))(Ω) ds ≤ 1

2

∫
Ω

(u̇λ(t1)− u̇λ(t2)) · (u̇λ(t1) + u̇λ(t2)) dx

+
1

2

∫
Ω

(σλ(t1)− σλ(t2)) : (eλ(t1) + eλ(t2)) dx

+

∫ t2

t1

∫
Ω

f · u̇λ dx ds. (4.7)



18 J.-F. BABADJIAN AND R. LLERENA

By (H5), using that f ∈ L∞(0, T ;L2(Ω;Rn)), that {u̇λ}λ>0 is bounded in L∞(0, T ;L2(Ω;Rn)) and
that {σλ}λ>0 is bounded in L∞(0, T ;L2(Ω;Mn

sym)), we can find a constant C > 0 independent of
λ such that

|pλ(t1)− pλ(t2)|(Ω) ≤
∫ t2

t1

|ṗλ(s)|(Ω)ds ≤ C(t2 − t1).

Applying Ascoli-Arzela Theorem, we extract a further subsequence (independent of time) and find
p ∈ C0,1([0, T ];M(Ω;Mn

sym)) such that for all t ∈ [0, T ],

pλ(t) ⇀ p(t) weakly* in M(Ω;Mn
sym).

Using the additive decomposition Euλ = eλ + pλ in Ω, the previously established weak conver-
gences show that u ∈ C0,1([0, T ];BD(Ω)) and, for all t ∈ [0, T ],

uλ(t) ⇀ u(t) weakly* in BD(Ω).

It is now possible to pass to the limit in the initial condition

u(0) = u0, u̇(0) = v0, e(0) = e0, p(0) = p0,

in the additive decomposition: for all t ∈ [0, T ],

Eu(t) = e(t) + p(t) in M(Ω;Mn
sym),

and in the equation of motion

ü− divσ = f in L2(0, T ;L2(Ω;Rn)).

The stress constraint being convex, hence closed under weak L2(Ω;Mn
sym) convergence, we further

obtain that for every t ∈ [0, T ], σ(t) ∈ K a.e in Ω.

It remains to show the Neumann boundary condition σν = 0 on ΓN . Since σλ ⇀ σ weakly in
L2(0, T ;H(div,Ω)), we deduce that σλν ⇀ σν weakly in L2(0, T ;H−1/2(∂Ω;Rn)). On the other
hand, using estimate (4.6), we have

‖σλν‖L2(0,T ;L2(ΓN ;Rn)) ≤
C√
λ
→ 0,

as λ→∞, hence σν = 0 in L2(0, T ;L2(ΓN ;Rn)). �

4.4. Flow rule. It remains to prove the flow rule, which will be performed by passing to the limit
in the energy balance obtained in the Theorem 4.1, namely, for all t ∈ [0, T ],

1

2

∫
Ω

|u̇λ(t)|2 dx+

∫
Ω

Q(eλ(t)) dx+

∫ t

0

H(ṗλ(s))(Ω) ds+

∫ t

0

∫
∂Ω

ψλ(x, u̇λ) dHn−1 ds

≤ 1

2

∫
Ω

|v0|2 dx+

∫
Ω

Q(e0) dx+

∫ t

0

∫
Ω

f · u̇λ dx ds. (4.8)

The first two terms will easily pass to the lower limit by lower semicontinuity of the norm with
respect to weak L2-convergence. The main issue is to pass to the (lower) limit in both last terms
in the left-hand side of the previous inequality. The following result will enable one to obtain a
lower bound.

Lemma 4.3. Let {(ûλ, êλ, p̂λ)}λ>0 ⊂ [BD(Ω)∩L2(Ω;Rn)]×L2(Ω;Mn
sym)×M(Ω;Mn

sym) be such
that Eûλ = êλ + p̂λ in Ω, and

ûλ ⇀ û weakly in L2(Ω;Rn),

ûλ ⇀ û weakly* in BD(Ω),

êλ ⇀ ê weakly in L2(Ω;Mn
sym),

p̂λ ⇀ p̂ weakly* in M(Ω;Mn
sym),

as λ→∞, for some (û, ê, p̂) ∈ [BD(Ω) ∩ L2(Ω;Rn)]× L2(Ω;Mn
sym)×M(Ω;Mn

sym). Then,

H(p̂)(Ω) +

∫
ΓD

H(−û� ν) dHn−1 ≤ lim inf
λ→∞

(
H(p̂λ)(Ω) +

∫
∂Ω

ψλ(x, ûλ) dHn−1

)
. (4.9)
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Proof. Without loss of generality, we assume that the right hand side of (4.9) is finite. Let (λk)k∈N
be such that λk ↗∞ and

lim inf
λ→∞

(
H(p̂λ)(Ω) +

∫
∂Ω

ψλ(x, ûλ) dHn−1

)
= lim
k→∞

(
H(p̂λk)(Ω) +

∫
∂Ω

ψλk(x, ûλk) dHn−1

)
.

As a consequence, there exists a constant c > 0 (independent of k) such that∫
∂Ω

ψλk(x, ûλk) dHn−1 ≤ c

for all k ∈ N. By definition (4.1) of ψλ (see also [7, Lemma 4.9]), there exists a function vk ∈
L2(∂Ω;Rn) such that∫

∂Ω

ψλk(x, ûλk) dHn−1 =
1

2

∫
∂Ω

Sλk(ûλk − vk) · (ûλk − vk) dHn−1 +

∫
∂Ω

H(−vk � ν) dHn−1

≥ λk
2

∫
ΓD

|ûλk − vk|2 dHn−1 +

∫
∂Ω

H(−vk � ν) dHn−1.

By nonnegativity of H, we infer that ûλk − vk → 0 in L2(ΓD;Rn) as k →∞. Moreover

H(p̂λk)(Ω) +

∫
∂Ω

ψλk(x, ûλk) dHn−1

≥ H(p̂λk)(Ω) +

∫
ΓD

H(−vk � ν) dHn−1

≥ Hµ(p̂λk)(Ω) +

∫
ΓD

Hµ(−vk � ν) dHn−1, (4.10)

where Hµ : Mn
sym → R+ is the Moreau–Yosida transform of H (see [1, Lemma 1.61] or [16, Lemma

5.30]), defined by

Hµ(p) := inf
q∈Mnsym

{H(q) + µ|p− q|} for all p ∈Mn
sym.

We recall that Hµ of H enjoys the following properties:

(1) For all µ > 0 we have that Hµ ≤ H;
(2) The function Hµ is µ-Lipschitz;
(3) The function Hµ is convex as the inf-convolution between the proper convex functions H

and µ| · | (see e.g. [24, Theorem 5.4]);
(4) For all p ∈Mn

sym, Hµ(p)→ H(p) as µ→∞.

By the µ-Lipschitz continuity of Hµ, adding and subtracting the term
∫

ΓD
Hµ(−ûλk � ν) dHn−1

in (4.10) yields

H(p̂λk)(Ω) +

∫
∂Ω

ψλk(x, ûλk) dHn−1

≥ Hµ(p̂λk)(Ω) +

∫
ΓD

Hµ(−ûλk � ν) dHn−1 − µ
∫

ΓD

|ûλk − vk| dHn−1. (4.11)

Passing to the limit as k →∞ in (4.11), we obtain

lim
k→∞

(
H(p̂λk)(Ω) +

∫
∂Ω

ψλk(x, ûλk) dHn−1

)
≥ lim inf

k→∞

(
Hµ(p̂λk)(Ω) +

∫
ΓD

Hµ(−ûλk � ν) dHn−1

)
. (4.12)

Let U ⊂ RN be an open set such that ΓD = U ∩ ∂Ω, and let Ω̃ := Ω ∪ U . We extend (ûλ, êλ, p̂λ)

to Ω̃ as

ũλ :=

{
ûλ in Ω,

0 in Ω̃ \ Ω,
ẽλ :=

{
êλ in Ω,

0 in Ω̃ \ Ω,

and

p̃λ := Eũλ − ẽλ = p̂λ Ω− ûλ � νHn−1 ΓD.
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Similarly, we set

ũ :=

{
û in Ω,

0 in Ω̃ \ Ω,
ẽ :=

{
ê in Ω,

0 in Ω̃ \ Ω.

Note that p̃λ ⇀ p̃ weakly* in M(Ω̃;Mn
sym) with p̃ = Eũ− ẽ = p̂ Ω− û� νHn−1 ΓD. Using

that Hµ is a continuous, convex and positively one homogeneous function with Hµ(0) = 0, we can
apply Reshetnyak’s lower semicontinuity Theorem (see [1, Theorem 2.38]) to get that

lim inf
k→∞

(
Hµ(p̂λk)(Ω) +

∫
ΓD

Hµ(−ûλk � ν) dHn−1

)
= lim inf

k→∞
Hµ(p̃λk)(Ω̃) ≥ Hµ(p̃)(Ω̃)

= Hµ(p̂)(Ω) +

∫
ΓD

Hµ(−û� ν) dHn−1.

We have thus estabished that for all µ > 0,

lim inf
λ→∞

(
H(p̂λ)(Ω) +

∫
∂Ω

ψλ(x, ûλ) dHn−1

)
≥ Hµ(p̂)(Ω) +

∫
ΓD

Hµ(−û� ν) dHn−1.

We can now pass to the limit as µ→∞ owing to the Monotone Convergence theorem to get that

lim inf
λ→∞

(
H(p̂λ)(Ω) +

∫
∂Ω

ψλ(x, ûλ) dHn−1

)
≥ H(p̂)(Ω) +

∫
ΓD

H(−û� ν) dHn−1,

which leads to the desired lower bound. �

We are now in position to prove a lower bound energy inequality. Since for all t ∈ [0, T ], we
have u̇λ(t) ⇀ u̇(t) weakly in L2(Ω;Rn) and eλ(t) ⇀ e(t) weakly in L2(Ω;Mn

sym), we get by weak
lower semicontinuity of the norm that

1

2

∫
Ω

|u̇(t)|2 dx+Q(e(t)) ≤ lim inf
λ→∞

{
1

2

∫
Ω

|u̇λ(t)|2 dx+Q(eλ(t))

}
.

To pass to the lower limit in the remaining terms in the left-hand side of the energy inequality
(4.8), we consider a partition 0 = t0 ≤ t1 ≤ . . . ≤ tN = t of the time interval [0, t]. By convexity
of H and ψλ(x, ·), we infer from Jensen’s inequality that∫ t

0

H(ṗλ(s))(Ω) ds+

∫ t

0

∫
∂Ω

ψλ(x, u̇λ(s)) dHn−1 ds

≥
N∑
i=1

{
H(pλ(ti)− pλ(ti−1))(Ω) +

∫
∂Ω

ψλ(x, uλ(ti)− uλ(ti−1)) dHn−1

}
.

Since, for all 0 ≤ i ≤ N we have that
uλ(ti) ⇀ u(ti) weakly in L2(Ω;Rn),

uλ(ti) ⇀ u(ti) weakly* in BD(Ω),

eλ(ti) ⇀ e(ti) weakly in L2(Ω;Mn
sym),

pλ(ti) ⇀ p(ti) weakly* in M(Ω;Mn
sym),

we can apply Proposition 4.3 to get that

lim inf
λ→∞

(∫ t

0

H(ṗλ(s))(Ω) ds+

∫ t

0

∫
∂Ω

ψλ(x, u̇λ) dHn−1 ds

)
≥

N∑
i=1

H(p(ti)− p(ti−1))(Ω ∪ ΓD),

where the measure p(t) is extended to ΓD by setting

p(t) ΓD := −u(t)� νHn−1 ΓD.

Passing to the supremum with respect to all partitions, we deduce that

VH(p; 0, t) := sup

{
N∑
i=1

H(p(ti)− p(ti−1))(Ω ∪ ΓD) : 0 = t0 ≤ t1 ≤ · ≤ tN = t, N ∈ N

}
<∞.
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Using [22, Theorem 7.1]1, we get that

lim inf
λ→∞

(∫ t

0

H(ṗλ(s))(Ω) ds+

∫ t

0

∫
∂Ω

ψλ(x, u̇λ) dHn−1 ds

)
≥
∫ t

0

H(ṗ(s))(Ω ∪ ΓD) ds.

Passing to the lower limit in (4.8) as λ→∞ yields

1

2

∫
Ω

|u̇(t)|2 dx+Q(e(t)) +

∫ t

0

H(ṗ(s))(Ω ∪ ΓD) ds

≤ 1

2

∫
Ω

|v0|2 dx+Q(e0) +

∫ t

0

∫
Ω

f · u̇ dx ds. (4.13)

The proof of the other energy inequality relies on the convexity inequality proved in Section 3.
Indeed, assuming one of the following assumptions:

• ∂Ω = ΓD;
• ∂Ω = ΓN ;
• n = 2 and Σ is a finite set;
• n = 3 and K = KD ⊕ (R Id), for some compact and convex set KD ⊂M3

D containing 0 in
its interior;

we can appeal Proposition 3.1, Proposition 3.3 or Proposition 3.4. Indeed, for a.e. t ∈ [0, T ],
we have (u̇(t), ė(t), ṗ(t)) ∈ A0, σ(t) ∈ K ∩ S0 and H(ṗ(t)) is a finite measure (by (4.13)). As a
consequence, for a.e. t ∈ [0, T ], the duality pairing [σ(t) : ṗ(t)] ∈ D′(Rn) is well defined and it
extends to a bounded Radon measure supported in Ω with

H(ṗ(t)) ≥ [σ(t) : ṗ(t)] in M(Rn) . (4.14)

Since the nonnegative measure H(ṗ(t)) − [σ(t) : ṗ(t)] is compactly supported in Ω, we can
evaluate its mass by taking the test function ϕ ≡ 1 in Definition 3.1. We then obtain that
for a.e. t ∈ [0, T ],

0 ≤ H(ṗ(t))(Ω ∪ ΓD) +

∫
Ω

σ(t) : ė(t) dx+

∫
Ω

u̇(t) · divσ(t) dx.

Using the equation of motion and the regularity properties of u̇ and e, we can integrate by parts
respect to time and get that

0 ≤
∫ t

0

H(ṗ(s))(Ω ∪ ΓD)) ds+Q(e(t))−Q(e0)

+
1

2

∫
Ω

|u̇(t)|2 dx− 1

2

∫
Ω

|v0|2 dx−
∫ t

0

∫
Ω

f · u dx ds.

Owing to the first energy inequality (4.13), we deduce that the last expression is zero, which implies
that the nonnegative measure H(ṗ(t)) − [σ(t) : ṗ(t)] has zero mass in Ω. This leads in turn that
this measure vanishes in Ω, in other words the flow rule H(ṗ(t)) = [σ(t) : ṗ(t)] inM(Ω) is satisfied.
Finally, since H(ṗ(t)) is concentrated on Ω ∪ ΓD, it follows that [σ(t) : ṗ(t)] vanishes on ∂Ω \ ΓD
and that the flow rule H(ṗ(t)) = [σ(t) : ṗ(t)] holds in M(Ω ∪ ΓD).

4.5. Uniqueness. Let (u1, e1, p1) and (u2, e2, p2) be two solutions given by Theorem 4.2. Sub-
tracting the equations of motion of each solution, we have

ü1 − ü2 − div(σ1 − σ2) = 0 in L2(0, T ;L2(Ω;Rn)).

Let us consider the test function ϕ := 1[0,t](u̇1 − u̇2) ∈ L2(0, T ;L2(Ω;Rn)), we deduce∫ t

0

∫
Ω

(ü1 − ü2) : (u̇1 − u̇2) dx ds−
∫ t

0

∫
Ω

(div(σ1 − σ2)) · (u̇1 − u̇2) dx ds = 0. (4.15)

1Note that [22, Theorem 7.1] is stated for functions H which are bounded from above, which is not our case here

because H is allowed to take the value +∞. However, a carefull inspection of the proof of [22, Theorem 7.1] shows

the validy of this result in our case thanks to the additional property VH(p; 0, t) < ∞.
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Since ü1 − ü2 ∈ L2(0, T ;L2(Ω;Rn)) and u̇1(0) = u̇2(0) = v0, we infer that∫ t

0

∫
Ω

(ü1(s)− ü2(s)) : (u̇1(s)− u̇2(s)) dx ds =
‖u̇1(t)− u̇2(t)‖2L2(Ω;Rn)

2
. (4.16)

We already know that, for a.e. s ∈ [0, T ], the distributions [σ1(s) : ṗ1(s)] and [σ2(s) : ṗ2(s)] belong
toM(Ω∪ΓD). Moreover, since (u̇1(s), ė1(s), ṗ1(s)), (u̇2(s), ė2(s), ṗ2(s)) ∈ A0, σ1(s), σ2(s) ∈ S0∩K
and H(ṗ1(s)), H(ṗ2(s)) are finite measures we can appeal Propositions 3.1, 3.3 and 3.4 which state
that [σ2(t) : ṗ1(s)] and [σ1(s) : ṗ2(s)] extend to bounded Radon measures supported in Ω with

[σ1(s) : ṗ1(s)] = H(ṗ1(s)) ≥ [σ2(s) : ṗ1(s)] in M(Rn),

and

[σ2(s) : ṗ2(s)] = H(ṗ2(s)) ≥ [σ1(s) : ṗ2(s)] in M(Rn).

As a consequence, the measure [(σ1(s)− σ2(s)) : (ṗ1(s)− ṗ2(s))] is nonnegative. Furthermore, by
the definition of stress duality (see Definition 3.1 with the test function ϕ ≡ 1 and g = 0), we infer
that

0 ≤
∫ t

0

[(σ1(s)− σ2(s)) : (ṗ1(s)− ṗ2(s))](Ω)

= −
∫ t

0

∫
Ω

(σ1(s)− σ2(s)) : (ė1(s)− ė2(s)) dx ds

−
∫ t

0

∫
Ω

(div(σ1(s)− σ2(s))) · (u̇1(s)− u̇2(s)) dx ds

= −Q(e1(t)− e2(t))−
∫ t

0

∫
Ω

(div(σ1(s)− σ2(s))) · (u̇1(s)− u̇2(s)) dx ds, (4.17)

where we have used the fact that e1(0) = e2(0) = e0. By (4.15), (4.16) and (4.17), we infer that

‖u̇1(t)− u̇2(t)‖2L2(Ω;Rn)

2
+Q(e1(t)− e2(t)) ≤ 0.

From the expression above, we infer that e1 = e2 and u̇1 = u̇2. Since, u1(0) = u2(0) = u0, we
conclude that u1 = u2, and by the kinematic compatibility p1 = p2. This concludes the proof of the
uniqueness. In particular, by uniqueness of the limit, there is no need of extracting subsequences
when passing to the limit as λ→∞. The proof of Theorem 4.2 is now complete.
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