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Echo Cancellation—The Generalized Likelihood
Ratio Test For Double-Talk Versus Channel Change

Jean-Yves Tourneret, Senior Member, IEEE, Neil J. Bershad, Fellow, IEEE, and
José Carlos M. Bermudez, Senior Member, IEEE

Abstract—Echo cancellers (EC) are required in both electrical
(impedance mismatch) and acoustic (speaker-microphone cou-
pling) applications. One of the main design problems is the control
logic for adaptation. Basically, the algorithm weights should be
frozen in the presence of double-talk and adapt quickly in the
absence of double-talk. The optimum likelihood ratio test (LRT)
for this problem was studied in a recent paper. The LRT requires
a priori knowledge of the background noise and double-talk power
levels. Instead, this paper derives a generalized log likelihood ratio
test (GLRT) that does not require this knowledge. The probability
density function of a sufficient statistic under each hypothesis is
obtained and the performance of the test is evaluated as a function
of the system parameters. The receiver operating characteristics
(ROCs) indicate that it is difficult to correctly decide between
double-talk and a channel change, based upon a single look.
However, detection based on about 200 successive samples yields a
detection probability close to unity (0.99) with a small false alarm
probability (0.01) for the theoretical GLRT model. Application of
a GLRT-based EC to real voice data shows comparable perfor-
mance to that of the LRT-based EC given in a recent paper.

Index Terms—Adaptive filters, adaptive signal processing, adap-
tive systems, echo cancellation, channel change, double-talk, gen-
eralized likelihood ratio test.

I. INTRODUCTION

E CHO cancellers (EC) have been used in networks for
voice quality enhancement for several decades. There are

two different kinds of applications for speech EC: network and
acoustic echo cancellation [1]. The network or hybrid echo on
the public switched telephone network (PSTN) is caused by
the four-wire to two-wire impedance mismatch. This mismatch
results in unwanted reflection of transmitted energy back to the
source. Networks are equipped with EC, known as network
or line echo cancellers, to remove these unwanted reflections.
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Acoustic echos are caused by the acoustic coupling between the
loudspeaker and the microphone, as for instance in hands-free
telephones [1], [2].

The two main EC design problems are 1) choice of adaptation
algorithm(s), and 2) control logic for adaptation. The latter de-
sign problem is caused mainly by double-talk, which happens
when both the far-end and the near-end speakers talk simul-
taneously. The EC observes the channel input vector and the
scalar error signal. The error signal can consist of both double-
talk and/or the uncancelled outgoing signal due to the far-end
speaker. Assume the far-end speech signal is quasi-stationary
within a decision interval. Then a significant change in the EC
error power suggests either a channel change or double-talk.
However, the EC response should be quite different to these two
events. The adaptive filter should stop adapting if double-talk is
the cause. Otherwise, the near-end speech appears as a large in-
terference and forces the adaptive filter coefficients away from
the correct echo channel response. On the other hand, the adap-
tive algorithm should adapt immediately to track the channel
variations if a channel change has occurred. Given the available
observations, distinguishing between double-talk and channel
change leads to a non-trivial detection problem. Reference [3]
presents a good overview of several proposed adaptation control
mechanisms to guide the decision making.

The vast majority of the techniques available rely on ad hoc
statistics to make the decision. Only a few works formulate the
problem using a statistical decision framework. For instance, [4]
proposes a maximum a posteriori (MAP) decision rule using a
sliding window of channel output samples as observations, and
assumes Bernoulli distributed priors for the different hypotheses
formulated. An ARX model is used for the echo channel output.
A similar MAP detection approach is used in [5] for a Markov
modulated finite impulse response channel model. Reference [6]
proposes a generalized likelihood ratio test (GLRT) based on
observations composed of windows of samples from both the
channel input and output signals. These detection algorithms
have all been proposed for the conventional adaptive EC struc-
ture [3].

An alternative EC structure has been proposed in [7], which
uses a shadow adaptive filter that operates in parallel with the
actual echo cancellation filter. The shadow filter coefficients are
transferred to the echo cancellation filter when the shadow filter
is a better estimate of the unknown channel response than the
echo cancellation filter. This structure is shown in Fig. 1. The
EC consists of the main echo cancellation filter and the adap-
tive shadow filter . The output of the main filter is subtracted
from the echo to obtain the cancelled echo . The shadow



Fig. 1. Basic EC structure.

filter weights are adapted continuously. Control logic decides
when copying the shadow filter coefficients to the main filter
will improve the EC performance. This logic is based on mea-
surements of the available signals.

Consider the basic behavior of the EC when the cancelled
echo power changes significantly. Assume that the system is
initially in steady-state so that and the short term
time-averaged error powers for the two filters are small. Suppose
double-talk occurs suddenly at time . The two error powers
now become large because of the double-talk. The shadow filter
(incorrectly) adapts using this large error power and no longer
matches the unknown channel. No transfer should occur from
the shadow filter to the main filter. On the other hand, sup-
pose a channel change occurs at time . The shadow filter now
(correctly) adapts on this channel change. After some time, a
transfer should occur from the shadow filter to the main filter.
The structure in Fig. 1 has interesting potential for optimally
deciding between double-talk and channel change. However,
the detection scheme proposed in [7] is not based upon a deci-
sion-theoretic approach. A recent paper [8] studied the optimum
likelihood ratio test (LRT) for this problem. The LRT requires
a priori knowledge of the background noise and double-talk
power levels.

A GLRT is derived in this paper for deciding between
double-talk (freeze weights) and a channel change (adapt
quickly) using a stationary Gaussian stochastic signal model.
The GLRT is then simplified to a sufficient statistic (a function
of the observables that depends upon which hypothesis is true)
to obtain an optimum test statistic. The probability density
function (pdf) of the test statistic under each hypothesis is
obtained and the performance of the test statistic is evaluated
as a function of the system parameters. This performance is
represented through receiver operating characteristics (ROCs)
[9, p. 38]. These curves show the probability of detection
(deciding one hypothesis is true when it is actually true) vs.
probability of false alarm (deciding the same hypothesis
is true when it is actually not true). The ROCs have been
applied to the double-talk detection problem in [10] without

considering the hypothesis of channel change. This paper
derives the ROCs for the double-talk/channel-change (DTCC)
problem. Finally, different double-talk detectors are compared
using Monte Carlo (MC) simulations for both synthetic and
real voice data and channels.

The paper is organized as follows. Section II defines a hypoth-
esis test based on the likelihood functions for double-talk versus
a channel change. This hypothesis test differs from the one pro-
posed in [8], which involved the channel input ( variates) and
the channel output (one variate) for a total of variates.
Here only two variates (the instantaneous error signals from the
two filters) yield a sufficient statistic for this problem. The LRTs
for the one-sample and multiple-sample cases are reinvestigated
using these two variates. Finally, the GLRT is introduced for the
one-sample and multiple-sample cases. Section III studies the
pdf of the sufficient statistics under both hypotheses for both
the LRT and GLRT. Section IV presents MC simulations of the
ROCs for different sets of parameters for the LRT and GLRT
for the one-sample case. The GLRT is then studied for the mul-
tiple-sample case. Section V applies the GLRT to full EC im-
plementations for two cases: 1) a synthetically generated data
model, and 2) real voice data transmitted over a real channel.
Section VI presents some results and conclusions.

II. HYPOTHESIS TESTS

The EC control logic is based upon the error signal
(canceller output) and the shadow filter error signal as
explained in [8]. Whenever the powers of the error signals in-
crease significantly over some quiescent level, the EC must de-
cide whether the increase is due to double-talk or to a channel
change. Either occurrence will cause a significant increase in
the error powers. Reference [8] introduced statistical models for
these two events. These models are briefly reviewed here.

A. Signal and Channel Models

The channel input vector
is of dimension with covariance matrix

and the channel output is a scalar . Note that the input
signal in [8] was assumed white with covariance matrix

, where is the identity matrix. However,
the analysis presented in this paper will show that the test sta-
tistics used for the DTCC problem does not change when the
input signal is correlated in time. This is an important result
since speech signals are usually correlated.

For mathematical tractability, this paper assumes that the
input signal is stationary within the decision periods and that the
double-talk signal can be modelled by a white Gaussian process
for detection purposes [6]. Also, is modelled
as a zero-mean Gaussian vector. Consider the following two
hypotheses:

channel change has happened

double-talk is happening. (1)

Under ,

(2)



where is a known channel (see [8] for motivations), and the
additive noise is stationary zero-mean white1 Gaussian,
independent of with .

Under ,

(3)

where can be assumed known (see again [8] for motivations).
The second additive noise , modeling the double-talk, is
zero-mean white Gaussian, and independent of both and

with .

B. The LRT Revisited

The likelihood ratio detector for the DTCC detection problem
was derived in [8]. This section shows that the LRT can be
obtained in an easier way by using a different coordinate
system. More precisely, two scalars (error signals) are intro-
duced and .
The equivalence of the LRT derived in [8] and the LRT de-
rived here using can be verified as
follows. Consider an matrix denoted as
such that 1) there is a one-to-one transformation between

and , and 2) the
vectors and are independent2.
Using the results of [9, p. 35] and noting that the distribution
of does not change under hypotheses and , the
LRTs based on the observation vectors and

provide the same test statistics. How-
ever, this section shows that the LRT for the observation vector

is easier to derive than with . Another
interesting property is that the derivations obtained with
are similar for white or colored input signals .

1) One-Sample Case: Under , the error signals and
can be written

(4)

whereas under

(5)

The joint pdf of is Gaussian under both hypotheses and
such that

(6)

1Note here that the whiteness assumption for � ��� is not restrictive since it
is always possible to whiten the channel outputs by premultiplying consecutive
samples by an appropriate matrix. Of course, this operation assumes that the
covariance matrix of consecutive noise samples is known or can be estimated.

2We can proceed as follows to build a matrix��� such that the vectors ������ �
�� ���� � ���� and ��������� are independent Gaussian. Since ������, � ��� and
� ��� are independent vectors, it is interesting to note that the independence
between ������ and��������� is ensured if ��������� and ���� ���� � ������ are also
independent Gaussian. This last property is satisfied provided ��������� is or-
thogonal to ��� ������ and ��� ������. Thus the matrix ��� can be found provided
the covariance matrix of ������ is full-rank and ��� �� ��� .

where the second subscript in (1 in this case) indicates the
1-sample case. The covariance matrices under and for
the -sample case will be denoted, respectively, and .
In (6)

(7)

(8)

where

(9)

The LRT for (1) can then be expressed as

(10)

or equivalently

(11)

where and are threshold settings determined by the prob-
ability of detection and the probability of false alarm .
The 2 2 matrices and can be inverted easily, yielding
the equivalent detection strategy

(12)

Straightforward computations show that the test statistics
is equivalent to the one given in [8, Eq. (13)], up to a

multiplicative constant3. However, the previous analysis applies
for white and colored input signals since the covariance
matrix of only affects which does not appear in the test
statistics .

2) The LRT for Multiple Samples: The analysis above can
be generalized to the case where multiple time samples ,
for , are available. This result is inter-
esting and differs from what was obtained when using the vec-
tors , for (see discussion
in [8, Sec. V]). The analysis is performed here for two samples
(i.e., ) for simplicity and is generalized later. When two
samples are observed, the error signals and

under can be written

(13)

3In proceeding from [8, Eq. (13) to (14)], the terms in [8, Eq. (13)], that did
not change under either hypothesis were ignored for mathematical tractability.
However, these terms are not statistically independent of the remaining terms.
Hence, [8, Eq. (14)], is only an approximation to the LRT. Equation (12) above
results if these ignored terms are included. Hence, we will recompute the ROC
curves for the LRT later in this paper.



whereas under

(14)

Thus, is a
zero-mean Gaussian vector under both hypotheses and .
Straightforward computations yield the covariance matrices of

under and . These matrices, denoted respectively
as and can be expressed as

(15)

and

(16)

where

(17)

(18)

and where (recall that
). The determinants and inverses of these block

matrices can be computed following [11, p. 572]:

(19)

and

(20)

(21)

Thus the log-LRT for the 2-sample case rejects hypothesis
if

(22)

where is a threshold depending on and/or . The dif-
ference between the two inverse matrices and can be
computed easily using the previous results

(23)

yielding the following DTCC detection strategy

(24)

where and is the threshold
setting. This result can be compared with (12) obtained for the
one-sample case. The generalization to more than two samples
is straightforward. Indeed, in the -sample case, the matrices

and are defined as in (15)–(18), except has to be re-
placed by , and is defined differently. However, since
cancels from the difference between the two inverses, the LRT
for the -sample case is expressed as (24) where

is the squared norm of .
This last result is a proof that the postdetection scheme proposed
in [8] is the optimum Neyman-Pearson detector for the -sample
case.

C. Generalized Likelihood Ratio Test

The LRT approach in [8] requires that , , and be
known a priori. Clearly, this is not the case for echo cancella-
tion as the input signals are nonstationary in general. Thus, these
parameters must be estimated from the observed data. The ac-
curacy of these estimates can vary widely as the statistics of the
input signals vary over time. Thus, the LRT detector will suffer
some degradation in performance. Hence, suboptimal detectors
estimating these parameters could, in a practical situation, per-
form as well as the LRT detector.

When the covariance matrices of the noises and
and of the input signal are unknown, a classical alternative
to the Neyman–Pearson detector is the generalized likelihood
ratio (GLR) detector. The GLR detector replaces the unknown
parameters in the LR by their maximum likelihood (ML) es-
timates. This section derives the GLR detector for the DTCC
problem. As before, the derivations are first conducted for the
one-sample case and then generalized to the case of multiple
samples.

1) The GLRT for the One-Sample Case: The notation
is used in the one-sample case. It is first as-

sumed that is known (or equivalently that is known). The
GLRT for the DTCC problem rejects hypothesis if

(25)

or equivalently,

(26)
Differentiation of the denominator, with respect to , yields its
supremum for

(27)

Similarly, the supremum of the numerator of (26) is obtained for

(28)



Thus, for a known , the GLRT for the DTCC problem is

(29)

The GLRT for the DTCC problem is unchanged when is un-
known. For this case, the suprema in (25) have to be computed
with respect to and instead of and

. However, it is easy to see that the suprema with respect to
appearing in the numerator and denominator of (25) cancel.
2) Multiple Samples: Considering initially the 2-sample

case, denote and
. Assume first that the matrix , defined in (18), is known

(or equivalently that and are known). The GLR detector
for the DTCC problem rejects hypothesis if

(30)

or equivalently

(31)

Differentiation of the denominator with respect to yields its
supremum for

(32)

Similarly, the supremum of the numerator of (31) is obtained for

(33)

Thus, the GLRT with a known matrix for the DTCC
problem reduces to

(34)

The GLRT for the DTCC problem is unchanged when is
unknown. Indeed

(35)

Thus, the terms depending on in the GLR cancel, which
leads to a test statistic equal to that obtained for a known .
This result indicates that the GLR detectors for the DTCC
problem are the same for known and unknown , i.e., for
known and unknown covariance and correlation matrices

and . The generalization to samples is straightforward and
yields the following DTCC detection strategy

(36)

III. PDFS OF THE SUFFICIENT STATISTICS

This section studies the pdfs of the LRT and GLRT sufficient
statistics under the two hypotheses and . Knowledge of
these pdfs is important for obtaining the test threshold from the

and for plotting the ROCs for the DTCC problem.

A. One-Sample LRT

The sufficient statistic for the one-sample case
is defined in (12). is the difference between two uni-

variate squared correlated Gaussian random variables, i.e., the
difference between two correlated chi-square random variables.
The pdf of under hypothesis can then be expressed
as follows (see [12, p. 76]):

(37)

where , is the modified Bessel
function of the second kind, is the inverse

covariance matrix of the vector
under hypothesis , and

(38)

Standard calculations lead to

(39)

with

(40)

A similar result is obtained for the pdf of under hy-
pothesis . In (34) replace with defined as

(41)

with

(42)

B. Multiple-Sample LRT

The LRT test statistics for the -sample case can be
expressed as functions of the two vectors

and
as follows

(43)



can be de-The distributions of and
termined under both hypotheses. More precisely:

• Under

(44)

(45)

where is the covariance matrix of the vector con-
taining all input samples (i.e., the covariance matrix of

in the
-sample case), and is a matrix

defined in (46) (see the bottom of the page) where
. These results have been obtained by noting

that and under hy-
pothesis , where .

• Under
Noting that and

under hypothesis (with
), the following

results are obtained

(47)

(48)

The distribution of under hypothesis
(resp. under hypothesis ) is a
central chi-square distribution with degrees of freedom.
However, the distributions of under
hypothesis and under hypothesis
cannot be expressed in closed form since they are the
distributions of quadratic forms of Gaussian vectors. An
alternative is to approximate the distributions of
and in (24) by Gaussian distributions using
the central limit theorem. However, several experiments
have shown that these approximations are valid only for
very large values of (the Gaussian approximations are
not in good agreement with the histograms of ,
even for ). This behavior prevents using these
approximations.

C. One-Sample GLRT

The sufficient statistics for the GLRT can be expressed as
follows:

(49)

where and in the one-sample
case. The joint distribution of is a zero-
mean Gaussian distribution under the hypotheses and
with the following inverse covariance matrices

(50)

and

(51)

The distribution of under hypoth-
esis (with ) can then be determined (see [12, p. 54]):

(52)

with , where is the indi-
cator function defined on .

D. Multiple-Sample GLRT

Determination of the exact distribution of or
in the general -sample case is complicated.

is the ratio of two correlated random variables.
The distribution of one of these two random variables is a
central chi-square distribution. However, the other random
variable is a quadratic form of correlated Gaussian variables
(correlated with the first random variable) whose pdf does
not have a simple closed-form expression. Note again that
approximating the distributions of and in
(36) as Gaussians (using the central limit theorem) cannot be
used for reasonable values of . Indeed, we have verified that

...
...

...
...

...
...

...
... (46)



the Gaussian approximations are not in good agreement with
the histograms of , even for .

IV. MONTE CARLO SIMULATIONS

The first set of simulations compares the performances of the
LRT and GLRT for the DTCC problem. The channels and
are the two one-sided exponential channels studied in [8], i.e.

(53)

where is the relative delay of the channel and the param-
eter is defined by the filter gain . Two dif-
ferent scenarios are studied here corresponding to
(electrical application) and (acoustic application).
The performances of the two detectors are determined by the
ROCs [9, p. 12]. The ROCs show versus . These two
conditional probabilities are defined as follows [9, p. 34]:

(54)

(55)

where and are the pdfs of the sufficient statistic
under the two hypotheses, i.e., or depending
on the detector considered, and is the decision threshold.

A. GLRT ROCs in the One-sample Case

The relation between and the threshold , given in (55),
can be inverted for the GLRT, yielding a closed-form expression
for the threshold as a function of . More precisely

(56)

where . Thus

(57)

where the ratio in the right hand side of (57) is the ratio of the
norms of two correlated Gaussian variables with unity variances
and correlation coefficient under hypothesis . Using the
results of [12, p. 10],

(58)

with

(59)

Equation (58) and (59) lead to a quadratic equation in . The
quadratic can be solved to yield the threshold as a function of

Fig. 2. � versus � for the LRT (top curves—black) and GLRT (bottom
curves—red). One-sample case. (a) � � ���. (b) � � ����. (c) � � �����.
(d) � � ������.

and . The probability of detection defined in (54) can be
computed analytically using similar calculations:

(60)

with

(61)

No numerical problems were encountered for computing the
ROCs using this procedure (as opposed to the LRT of [8]).

Fig. 2 shows the well known loss of performance of the GLRT
with respect to the LRT for a white input signal with and
double-talk variance . The filter gain is and
corresponds to an electrical application. The two channels
and are orthogonal with lengths . At
a (an acceptable false alarm probability) the GLRT
performs very poorly compared to the LRT for and

but is satisfactory for smaller noise powers. This
loss of performance is explained by the lack of knowledge of
the parameters , , and for the GLRT. The GLRT ROCs
are depicted in Figs. 3 and 4 for different values of and .
Fig. 3 supports the previous conclusion that the GLRT does not
perform well for and (without comparison
to the LRT). Fig. 4 displays the same crossover behavior of the
ROCs as [8, Fig. 4] (discussed in [8]).

B. GLRT ROCs for Multiple Samples

The next simulations study the ROCs for the -sample case.
As explained before, tractable expressions for the distributions
of the sufficient test statistics (36) under hypotheses and
are too complicated to derive. Again, an alternative is to approx-
imate the distributions of the numerators and denominators of



Fig. 3. GLRT ROCs for different values of � with � � �� � � ��� �

����, and orthogonal channels. One-sample case.

Fig. 4. GLRT ROCs for different values of � � � � �� � � ������� �

����, and orthogonal channels. One-sample case.

(36) by Gaussian distributions using the central limit theorem.
However, these approximations are valid only for very large
values of (even for , the Gaussian approximations
are not in good agreement with the histograms of ). Thus
the ROCs for the -sample case have been generated from MC
simulations instead. Here, 10 000 zero-mean Gaussian vectors
have been generated, corresponding to the hypotheses “channel
change” and “double-talk” according to (2) and (3). The LRT
and GLRT test statistics have then been computed using MC
run. The and have been estimated by counting the rela-
tive number of samples exceeding the threshold according to
(55) and (54). Note that the threshold value (between the min-
imum and maximum of the test statistic) has to be selected to
yield appropriate values of the pairs . Fig. 5 shows the
ROCs for the GLRT in the case of orthogonal channels

and channels differing by a small time delay . It is
easier to discriminate between channel changes and double-talk
for high gain channels, cf. Fig. 5(a) and Fig. 5(b), or Fig. 5(c)

Fig. 5. ROCs for the GLRT in the case of � samples (Top: orthogonal chan-
nels, Bottom: channels with � � �, left: � � ��� ��, right: � � 	 ��).
� � � � � � � and � � ����. (a) � � ��� ��—Orthogonal chan-
nels. (b) � � 	 ��—Orthogonal channels. (c) � � ��� ��—Channels with
relative delay � � �. (d) � � 	 ��—Channels with relative delay � � �.

Fig. 6. ROCs for the LRT in the case of � samples. Top: orthogonal channels,
Bottom: channels with � � �. Left: � � ��� ��. Right: � � 	 ��. � �

� � � � �, � � ����. (a) � � ��� ��—Orthogonal channels. (b) � �

	 ��—Orthogonal channels. (c) � � ��� ��—Channels with relative delay
� � �. (d) � � 	 ��—Channels with relative delay � � �.

and Fig. 5(d). Similarly, it is easier to discriminate between
channel changes and double-talk for orthogonal channels, cf.
Fig. 5(a) and Fig. 5(c), or Fig. 5(b) and Fig. 5(d).

Fig. 6 shows the ROCs for the corrected LRT and replaces [8,
Figs. 5 and 6]. Comparison of the two sets of figures indicates
improved performance for the corrected LRT. Comparison of
the corresponding cases in Figs. 8 and 5 show significant differ-
ences in the improvement between the LRT and the GLRT for
these cases. Case (a) requires about twice the number of time
samples for the GLRT as compared to the LRT. Case (b) re-
quires about the same number of time samples for the GLRT
as compared to the LRT. Case (c) requires about 20 times the
number of time samples for the GLRT as compared to the LRT.



Case (d) requires about two to three times the number of time
samples for GLRT as compared to the LRT. Hence, one cannot
generalize the quantitative improvement.

V. APPLICATION TO ECHO CANCELLERS

The GLRT theory has been tested for two distinct examples
in the full EC implementations of Fig. 1 with transfer logic be-
tween the shadow and main filters, modified to use the GLRT
statistic in (36). The first example consists of a synthetically
generated data set whose channel-change and double-talk pa-
rameters are assumed known to the EC. The second example
consists of real voice data transmitted over a real channel. The
interested reader is invited to consult [8] for more details.

A. Synthetic Data—Colored Inputs

This section considers the synthetic data generated in [8, Sec.
VI-A], where the channels and are described in (53), ex-
cept the input signal is correlated. The covariance matrix of the
input signal has been chosen as follows:

...
...

...
...

(62)

where the parameter controls the input signal correlation. The
unknown channel output consists of four 1 s segments gen-
erated as follows:

where and . Thus, con-
sists of channel changes at and , double-talk but
no channel change at , and the double-talk disappears
at without another channel change. Note that
and were replaced by the outputs of the main and shadow
filters at each iteration. Fig. 7(a)–(c) shows the performance of
the LRT for for different values of (i.e., , ,
and ) whereas Fig. 8(a), (b), and (c) is for the GLRT for

and different values of (i.e., , , and
).

Figs. 7 and 8 have been obtained for orthogonal channels and
a gain . The top curves show the EC MSEs (time-
average of 100 squared errors), the middle curves indicate the
number of transfers from the shadow filter to the main filter
every 200 samples and the bottom figures show the LRT and
GLRT test statistics compared to the threshold. For the GLRT,
the case results in transfers during the period of double-
talk (from 16 k to 24 k). This bad behavior disappears for

and , resulting in the correct drop in MSE during
the last 8 k.

Some comments are appropriate about the threshold deter-
mination for the GLRT test statistics. The threshold in (56)
was chosen empirically to yield a PFA that resulted in no trans-
fers from the shadow filter to the main filter during double-talk.
For , knowledge of the pdfs of the sufficient statistics

Fig. 7. LRT-based EC performance for synthetic data. (Top) MSE. (Middle)
Number of transfers from the shadow filter to the main filter. (Bottom) Time-
average sufficient statistics � ��� and threshold. (a) � � �. (b) � � ��.
(c) � � ���.



Fig. 8. GLRT-based EC performance for synthetic data. (Top) MSE. (Middle)
Number of transfers from the shadow filter to the main filter. (Bottom) Time-
average sufficient statistics� ��� and threshold. (a) � � ���. (b) � � ���.
(c) � � ���.

Fig. 9. Performance of the GLRT-based EC for voice data over a real channel.
(Top) MSE. (Second) Number of transfers from the shadow filter to the main
filter. (Third) �� �	 ���. (Bottom) Main filter bulk delay.

determines the test thresholds as a function of . For in-
stance, the GLRT curves have been obtained with a threshold

(corresponding to and for
). This approach cannot be used for arbitrary , since the

pdfs of the GLRT sufficient statistics have no simple closed-
form expressions under the hypotheses. However, the GLRT
test statistic is the ratio of averaged errors. Thus, the thresh-
olds obtained for and should yield similar
and . Here, and have been estimated using the data
from the example above to illustrate this point. More precisely,

has been estimated by counting the number of samples ex-
ceeding the threshold during the time interval ,
according to (55). Likewise, has been evaluated by counting
the number of samples exceeding the threshold during the time
interval , according to (54). The values

and for and were
obtained (better results than for ).

B. Voice Data Over a Real Channel

The description of the voice data considered here can be
found in [8, Sec. VI-B]. This section concentrates on analyzing
the results obtained with the proposed GLRT detector in the
multi-sample case. The parameter settings for the EC were

and a threshold (again, the threshold
was chosen empirically to yield a PFA that resulted in no
transfers from the shadow filter to the main filter filter during
double-talk). Fig. 9 shows four curves for the EC using the
GLRT: the smoothed MSE of the main filter in dB (top), the
number of transfers from shadow to main (second), a measure
of the adaptive filter weight errors (third) (a small value of
the norm of the “delay coefficient” [13], denoted as , means
that the adaptive filter is at or near convergence), and the bulk
delay of the main filter (bottom). Fig. 9 compares favorably
to [8, Fig. 11]. Hence, for this case at least, the GLRT-based
EC performs as well as the LRT-based EC. This is a very
interesting result.



VI. RESULTS AND CONCLUSION

The LRT statistical hypothesis testing approach in [8] for de-
ciding between double-talk versus channel change for echo can-
cellation has been extended to the GLRT case. The LRT required
a priori knowledge of the background noise and double-talk
power levels. Here, a GLRT is derived which does not require
this knowledge. The GLRT makes joint maximum likelihood
estimates of these powers and uses them in the LRT. Since the
GLRT uses less a priori information than the LRT, it does not
perform as well as the LRT in theory.

The probability density function of a sufficient statistic under
each hypothesis was studied and the performance of the test
was evaluated as a function of the system parameters. The
ROCs indicate that it is difficult to correctly decide between
double-talk and a channel change based upon a single look.
However, post-detection integration of approximately 200
sufficient statistic samples yields a detection probability close
to unity (0.99) with a small false alarm probability (0.01) for
the theoretical GLRT model. Application of a GLRT-based EC
to real voice data showed comparable performance to that of
the LRT-based EC given in [8]. Several new and interesting
results were obtained.

1) [8] derived the optimum Neyman-Pearson detector for a
white data input. Here, it was shown that the same test is
valid for colored inputs. This is an important result since
speech signals are usually colored.

2) [8] derived the Neyman-Pearson detector for the
one-sample case. This result was extended, on an ad
hoc basis, to the multiple-sample case using post-detec-
tion integration. Here, it was proven that this test is also
optimum for the multiple-sample case.

3) It was shown that the GLR detectors are the same for both
known and unknown input data covariance and correlation
matrices. This is a very useful result since the statistics of
the input are often changing very rapidly and sometimes
cannot be estimated accurately from the input.
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