Rotational spectrum of chloroform, "grass-roots among the forest of trees": The $\mathbf{v} 2=1, \mathrm{v} 3=2$, v5 $=1$, and $\mathrm{v} 6=3$ vibrational states of CH 35 Cl 3

Adina Ceausu-Velcescu, Petr Pracna, Laurent Margules, Adriana Predoi-Cross

To cite this version:

Adina Ceausu-Velcescu, Petr Pracna, Laurent Margules, Adriana Predoi-Cross. Rotational spectrum of chloroform, "grass-roots among the forest of trees": The v2 $=1$, v3 $=2$, v5 $=1$, and v6 $=3$ vibrational states of CH35Cl3. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 276, pp.107937. 10.1016/j.jqsrt.2021.107937 . hal-03572188

HAL Id: hal-03572188

https://hal.science/hal-03572188

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Rotational spectrum of chloroform, "grass-roots among the forest of trees": The $v_{2}=1, v_{3}=2, v_{5}=1$, and $v_{6}=3$ vibrational states of $\mathrm{CH}^{35} \mathrm{Cl}_{3}$

Adina CEAUSU - VELCESCU*, Petr PRACNA ${ }^{\dagger}$, Laurent MARGULES ${ }^{\S}$, Adriana PREDOI-CROSS ${ }^{1,2}$
*Université de Perpignan, LAMPS, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France
${ }^{\dagger}$ University of Chemistry and Technology, Department of Analytical Chemistry, Technická 5, 16628
Prague 6, Czech Republic
s Université de Lille, CNRS, UMR8523-PhLAM, 59000 Lille, France
${ }^{1}$ Formerly at: Department of Physics and Astronomy, University of Lethbridge, Lethbridge AB, T1K 3M4 Canada; ${ }^{2}$ Present address: Faculty of Science and Technology, Athabasca University, 1 University Drive, Athabasca, AB, T9S 3A3, Canada

Proofs to: Dr. Adina CEAUSU-VELCESCU

Université de Perpignan,
LAMPS, 52 Avenue Paul Alduy, 66860 Perpignan Cedex France
Tel. (0033)4 68662219
Fax: (0033)4 68662234
E-mail address: adina@univ-perp.fr

Tables: 2

Figures: 7

Keywords: chloroform, high-resolution MMW spectroscopy, excited vibrational states, difference band
October 7, 2021

Abstract

We have recently analyzed the broadband millimeter-wave rotational spectrum of chloroform $\mathrm{CH}^{35} \mathrm{Cl}_{3}$ in the $\mathrm{v}_{3}=\mathrm{v}_{6}=1$ (E symmetry) and $\mathrm{v}_{6}=2\left(\mathrm{~A}_{1}+\mathrm{E}\right)$ vibrational excited. In the present work, we have used the same spectrum (recorded between $150-330$ and $360-660 \mathrm{GHz}$) for a rotational analysis of the $v_{2}=1$ and $v_{3}=2 A_{1}$ states of the same molecule, together with a new analysis of the $\mathrm{v}_{5}=1(\mathrm{E})$ fundamental vibration. For the $\mathrm{v}_{2}=1$ state $\left(\mathrm{A}_{1}\right.$, near $\left.677 \mathrm{~cm}^{-1}\right)$, the body of assigned data comprises 392 rotational transitions. The corresponding frequencies were fitted within an isolated-level model, with a standard deviation of 36.4 kHz , and the obtained parameters are in good agreement with the previous IR work.

For the $v_{3}=2$ vibrational state $\left(A_{1}\right.$, near $\left.734 \mathrm{~cm}^{-1}\right)$, a total of 351 rotational transitions were assigned. Their fit was improved by inclusion of a second-order Coriolis coupling term with the $\mathrm{v}_{5}=1$ fundamental level, providing standard deviation of 40.2 kHz .

At the same time, the description of the $\mathrm{v}_{5}=1$ vibration (E symmetry, $776 \mathrm{~cm}^{-1}$), studied previously with high-resolution as an isolated level, was also improved. The quantitative interpretation of the newly assigned 612 MMW data and the significantly extended set of IR assignments necessitated the introduction of the second-order Coriolis interaction with $\mathrm{v}_{3}=2$, but more importantly of an anharmonic interaction with the $\mathrm{v}_{6}=3\left(\mathrm{~A}_{1}+\mathrm{A}_{2}+\mathrm{E}\right.$, near $\left.782 \mathrm{~cm}^{-1}\right)$ level. For this latter level more than 200 rotational transitions, together with several series of rovibrational transitions, could finally be assigned and included in the fit.

1. Introduction

The main purpose of the present work was to fully exploit the potential of the broadband rotational MMW spectroscopy and to prove that in a rotational spectrum, "grass-roots" still contain an interesting piece of information, among the "forest of trees" with which the analyses usually stop. Indeed, the millimeter-wave rotational spectrum of a small, heavy molecule, recorded using a natural sample, contains, besides the usually exploited information on the ground and low-lying excited states of the main isotopologues, some partly hidden, but still important information on higher excited states of the main species, and also on the ground state of minor isotopologues. However, this information is obviously also more difficult to extract and interpret.
The main isotopologue of chloroform, $\mathrm{CH}^{35} \mathrm{Cl}_{3}$, has several vibrational states below $800 \mathrm{~cm}^{-1}$ (Fig. 1), which could in principle be analyzed by rotational spectroscopy at room temperature. We have recently studied two such excited vibrational states, $\mathrm{v}_{3}=\mathrm{v}_{6}=1\left(627 \mathrm{~cm}^{-1}\right)$ and $\mathrm{v}_{6}=2$ ($520 \mathrm{~cm}^{-1}$) [1]. For the former vibrational level, despite the extremely low intensity of its rotational lines, assignments were facilitated by its 'isolated level' character, and also by the great similarity with the $\mathrm{v}_{6}=1$ rotational pattern. For the latter $\mathrm{v}_{6}=2$ levels, however, situation was somewhat unprecedented. Indeed, these overtone levels, of $\mathrm{A}_{1}+\mathrm{E}$ symmetry, are equally isolated from neighboring vibrational states, but their rotational pattern is quite complicated, as described in Ref. [1]. The intensity of the corresponding rotational lines, forming three distinct clusters, for $l_{6}=0, l_{6}=+2$ and $l_{6}=-2$ respectively, is however higher than that of the $\mathrm{v}_{3}=\mathrm{v}_{6}=1$ lines. Nevertheless, the effective B rotational constants, which determine the relative positions of the three clusters, are the result of the combined effects of a generalized, quasiresonant, $l(2,2)$ interaction, relative positions of the unperturbed levels, together with centrifugal distortion.

The next vibrational level which provides weak, but still detectable spectroscopic patterns, is the $v_{2}=1$ level, at $676 \mathrm{~cm}^{-1}$. The previous high-resolution IR study of the v_{2} band [2] provided spectroscopic constants which constitute a good basis for the current assignment of about 400 rotational transitions within this vibrational level.

Concerning the $\mathrm{v}_{3}=2$ level (A_{1} symmetry, at $734 \mathrm{~cm}^{-1}$), a 1995 study by Carpenter et al. [3] has already published a few assignments of rotational lines within this level. We have equally to notice a 1999 study of the $2 v_{3}-v_{3}$ hot band, in the v_{3} region (near $367 \mathrm{~cm}^{-1}$), by Pietila et al. [4]. Both these studies were a good starting point for the assignments, even though they
provided only the B and D_{J} rotational constants, which were used as initial values for the present work.
In the course of the analysis of the rotational transitions belonging to the $\mathrm{v}_{3}=2$ level, it became necessary to consider its second-order Coriolis interaction with $\mathrm{v}_{5}=1$. But this latter level is itself coupled to the $\mathrm{v}_{6}=3\left(\mathrm{~A}_{1}+\mathrm{A}_{2}+\mathrm{E}\right)$ level through an anharmonic interaction. Therefore, an extended set of more than 4000 rovibrational transitions in the ν_{5} fundamental band, together with 612 rotational transitions in the $\mathrm{v}_{5}=1$ level, 26 rovibrational and 220 rotational transitions in the $\mathrm{v}_{6}=3$ level, was merged to the 351 rotational transitions in $\mathrm{v}_{3}=2$ in a global fit, including all the above-mentioned interactions.

Last, this work also gave us the opportunity of identifying a mysterious band, appearing at $510-515 \mathrm{~cm}^{-1}$. This has been done in the course of the search for $3 v_{6}-v_{6}$ hot transitions; it became soon obvious that the regular spectral patterns observed in this region did not belong to the above-mentioned hot band, but to the $\nu_{5}-v_{6}$ difference band, as will be described later.

2. Experimental details

The rotational spectrum used in this work is that already employed in Ref. [1] for the rotational analysis of the $\mathrm{v}_{3}=\mathrm{v}_{6}=1$ and $\mathrm{v}_{6}=2$ levels.

In addition, three infrared high-resolution spectra have been used in the present work, in order to collect rovibrational transitions pertaining to the $v_{5}, 3 v_{6}$, and $v_{5}-v_{6}$ bands respectively. Two of them were recorded by Dr. V.-M. Horneman on an isotopically pure $\mathrm{CH}^{35} \mathrm{Cl}_{3}$ sample, using a Bruker IFS-120HR FTIR spectrometer, at the University of Oulu (Finland). The third spectrum was recorded at the CLS in Saskatoon (Canada), using a CHCl_{3} sample with natural abundance.

The first spectrum (spectrum A), covering the $750-800 \mathrm{~cm}^{-1}$ spectral region, was recorded employing a Globar source, a KBr beamsplitter and a MCT96 detector. Sample pressure was of about 0.8 Pa , and about 0.93 Pa of OCS were introduced for calibration purposes. The spectrum was recorded with a $3.2-\mathrm{m}$ optical pathlength and room temperature; the spectral resolution was of about $0.00125 \mathrm{~cm}^{-1}$. Calibration was done using v_{1} OCS lines in the 812$890 \mathrm{~cm}^{-1}$ region [5] ${ }^{1}$. Relative to these lines, the precision of our data is better than 5×10^{-5} cm^{-1}. The wavenumbers of the NIST report [5] were corrected by a multiplicative factor of 1.00000035 , as suggested in the technical report of the IUPAC [6]. The recommended accuracy is better than $2.8 \times 10^{-4} \mathrm{~cm}^{-1}$.

[^0]The second spectrum (spectrum B) covers the $480-570 \mathrm{~cm}^{-1}$ spectral region and was recorded using a Globar source, a Mylar beamsplitter and a bolometer detector. The spectrum was recorded using a multipass cell, with a $41.8-\mathrm{m}$ optical path length, at a pressure of 253 Pa and at room temperature. A total of 375 scans were co-added and the spectral resolution was of about $0.00125 \mathrm{~cm}^{-1}$. Calibration was done with v_{2} OCS lines [7], OCS having been introduced in the multipass cell at a pressure of about 0.8 Pa . Relative to these lines, the precision of our data is better than $1 \times 10^{-5} \mathrm{~cm}^{-1}$. The accuracy was estimated to be $3 \times 10^{-5} \mathrm{~cm}^{-1}$.

The third spectrum (spectrum C) covers the $450-600 \mathrm{~cm}^{-1}$ spectral region and was recorded using the synchrotron radiation as a source at the Canadian Light Source in Canada, in a multipass cell with a $64-\mathrm{m}$ optical path length, at a pressure of 400 Pa and at room temperature. A 6-micron Mylar beamsplitter and a $\mathrm{Ge}: \mathrm{Cu}$ detector were employed, and the spectral resolution was $0.00096 \mathrm{~cm}^{-1}$. The spectrum was calibrated using a few strong residual water lines present in the spectrum. The line positions of the water lines were taken from the HITRAN database. The line accuracy was estimated to be $1.0 \times 10^{-4} \mathrm{~cm}^{-1}$.

3. Rotational spectrum

The assignments of the rotational transitions were performed using the AABS package designed by Z. Kisiel for broadband rotational spectroscopy [8]. Intensity alternation due to nuclear spin statistics and Loomis-Wood representation of the spectrum in the AABS package were extremely helpful in progressive extension to higher J values.

3.1 The $v_{2}=1$ and $v_{3}=2$ rotational transitions

Assignment of the $\mathrm{v}_{2}=1$ and $\mathrm{v}_{3}=2$ rotational transitions was quite straightforward, despite their low intensity. The spectrum of $\mathrm{CH}^{35} \mathrm{Cl}_{3}$ in the region of $J=35 \leftarrow 34$ transitions in the $\mathrm{v}_{2}=1$ level is presented in Figure 2. The spectrum of the same isotopologue in the region of $J=35 \leftarrow 34$ transitions in the $\mathrm{v}_{3}=2$ and $\mathrm{v}_{5}=1$ levels is plotted in Figure 3.

3.2 The $\mathrm{v}_{5}=1$ rotational spectrum

The $\mathrm{v}_{5}=1$ clusters of transitions were more difficult to assign, for several reasons: (i) their intensity, which is even lower than that of the above-mentioned bands; (ii) a partial overlap with $\mathrm{v}_{3}=2$ and $\mathrm{v}_{6}=2\left(l_{6}=0\right)$ clusters; (iii) last, but not least, the $l_{5}=+1$ and $l_{5}=-1$ clusters have almost identical $B_{\text {eff }}$ values (as q_{22} is small and the separation of interacting levels is huge) and hence almost coincide (Fig. 3).

3.3 The $\mathrm{v}_{6}=3$ rotational spectrum

The pattern of rotational transitions in the $\mathrm{v}_{6}=3\left(\mathrm{~A}_{1}+\mathrm{A}_{2}+\mathrm{E}\right)$ level is again different from those of $\mathrm{v}_{6}=1$ [9] and $\mathrm{v}_{6}=2$ [1]. It is, however, again the $l(2,2)$ resonance, connecting the $\left(k-3, l_{6}=-3\right)$ $\leftrightarrow\left(k-1, l_{6}=-1\right) \leftrightarrow\left(k+1, l_{6}=+1\right) \leftrightarrow\left(k+3, l_{6}=+3\right)$ levels, which mainly determines the $B_{\text {eff }}$ values and the appearance of the four K-clusters of rotational lines, for a given value of J. This appearance can be easily understood by considering the case of an exact resonance, which concerns the $\mid \pm 1^{ \pm 1}>$ and $\mid \pm 3^{ \pm 3}>$ levels, each pair consisting of sublevels which are degenerate in the absence of the $l(2,2)$ interaction. The Wang transformation yields two 2×2 blocks of A_{+} and A. levels:

$$
A_{ \pm}=\left(\begin{array}{cc}
E_{1} \mp 4 q_{22} J(J+1) & W(J, 1) \\
W(J, 1) & E_{3}
\end{array}\right)
$$

where $W(J, 1) \simeq 2 \sqrt{3} q_{22} \sqrt{J(J+1)-2} \sqrt{J(J+1)-6}$ and $E_{3}-E_{1} \simeq 8(C-B-2 C \zeta+$ $\left.g_{66}\right) \simeq 3222 \mathrm{MHz}$. The q_{22} interaction parameter is negative, which places the $\left|1^{1}, A_{+}\right\rangle$ sublevel above the $\left|1^{1}, A_{-}\right\rangle$one for all J values (situation which is similar to that encountered in a $\mathrm{v}_{\mathrm{t}}=1$ degenerate fundamental vibration). Also, the $\left|3^{3}, A_{-}\right\rangle$sublevel is above the $\left|1^{1}, A_{-}\right\rangle$ one for all J values. The $\left|3^{3}, A_{-}\right\rangle$sublevel is higher than $\left|1^{1}, A_{+}\right\rangle$for $J<70$; the two sublevels interchange their positions for $J>71$. As a consequence of the effect of the $l(2,2)$ interaction on the $B_{\text {eff }}$ values, for low to moderate J-values, the lower and upper frequency clusters, which much resemble those of the $\mathrm{v}_{6}=1$ state, are composed respectively of $l_{6}=+1$ transitions ('following' the $\left(1^{1}, A_{-}, J+1\right) \leftarrow\left(1^{1}, A_{-}, J\right)$ line) and $l_{6}=-1$ transitions ('following' the $\left(1^{1}, A_{+}\right.$, $J+1) \leftarrow\left(1^{1}, A_{+}, J\right)$ line $)$. These clusters are widely separated. The $l_{6}= \pm 3$ clusters, starting from a common origin, lie inside this splitting and are much less separated.

The rotational transitions which could be safely assigned in the $\mathrm{v}_{6}=3$ level are mainly $k=l_{6}= \pm 1$ and $k=l_{6}= \pm 3$ transitions, which are split by the $l(2,2)$ interaction, as described above. The extreme weakness and the complex pattern of the four observed rotational clusters, for a given value of J, prevent us from a confident assignment of their K structure, except for $J=22,23$, and 24 .

4. Rovibrational spectrum

Assignments in the rovibrational spectra were performed with the aid of the interactive Loomis-Wood for Windows program [10] and checked, whenever possible, by lower state combination differences (LSCD).

4.1 The \mathbf{V}_{5} fundamental band

This fundamental perpendicular band, centered at $776 \mathrm{~cm}^{-1}$ (Fig. 4), has been already given a detailed description in a previous high-resolution study [11]; its main characteristics will be therefore not recalled. The overview spectrum (Fig. 4) gives the location of the newly assigned subbands, as detailed in Section 5.

4.2 The $\mathrm{v}_{5}-\mathrm{v}_{6}$ difference band

This difference band, occurring in the $500-520 \mathrm{~cm}^{-1}$ region (Fig. 5), has already been mentioned by a 1995 paper by Fu β and Weizbauer [12], but no assignment of its fine rotational structure has been undertaken by these authors. For such a difference band, both the lower and the upper vibrational levels are of E symmetry; two types of transitions are then allowed, corresponding respectively to the selection rules $\left(\Delta k=0, \Delta l_{5}=-\Delta l_{6}= \pm 1\right)$ and $(\Delta k=\mp 1$, $\Delta l_{5}=\Delta l_{6}= \pm 1$) [13]. However, a simulation of the rotational structure according to the first set of selection rules and based on the already known rovibrational energies of the $\mathrm{v}_{5}=1$ and $\mathrm{v}_{6}=1$ levels, did not allow to obtain a reasonable agreement with the experimental spectrum. Indeed, the latter spectrum shows a series of quite intense, sharp peaks, regularly spaced by about $0.1 \mathrm{~cm}^{-1}$. These structures become broader and partially resolved at lower wavenumbers. A closer inspection of these features revealed that they are not single lines, but rather composed of several, almost coincident, transitions with the selection rules $\Delta k=\mp 1, \Delta l_{5}=$ $\Delta l_{6}= \pm 1$. The spacing between these unresolved peaks, of $0.1 \mathrm{~cm}^{-1}$, is due to a particular combination of constants $C, C \zeta_{5}$, and $C \zeta_{6}$; the separation between two ${ }^{p} P_{K+1}(J+1)$ and ${ }^{p} P_{K}(J)$ $(J \geq K)$ adjacent lines is indeed roughly equal to $2\left(C+C \zeta_{5}+C \zeta_{6}\right) \simeq 0.109 \mathrm{~cm}^{-1} \simeq B_{5}$ (Fig. 6) which leads to a remarkable collapse of many individual lines into sharp peaks across the whole band and thus seemingly to an unexpectedly increased intensity of this difference band. Figure 6 presents a section of the spectrum of $\mathrm{CH}^{35} \mathrm{Cl}_{3}$ in the $\nu_{5}-v_{6}$ difference bands region. The progressions of ${ }^{p} P_{K}(J=K+n)$ lines of the $v_{5}^{+1}-v_{6}^{-1}$ band are shown, with K and n values indicated on the figure. Each unresolved peak is composed of ${ }^{p} P_{K}(J),{ }^{p} P_{K+2}(J+1), \ldots$ lines, the spacing between two such lines being very weak, of $-4\left(C+C \zeta_{5}+C \zeta_{6}\right)+2 B \simeq-0.0025$ cm^{-1}. We have to notice that, in principle, the same clustering phenomenon as that occurring for the ${ }^{p} P_{K}(J),{ }^{p} P_{K+2}(J+1), \ldots$ lines should also be observed for the ${ }^{r} R_{K}(J),{ }^{r} R_{K+2}(J+1), \ldots$ lines. However, the much lower intensity of the $\Delta J=+1$ side of the spectrum together with the wider spacing between adjacent lines make this clustering phenomenon less spectacular. Eventually, a total of 205 transitions belonging to 'special' series of ${ }^{p} P_{K}(K+n)$ lines, $n=0$ to 15 , as well as $273{ }^{p} X_{K}(J)(X=P, Q ;-14 \leq K \cdot \Delta K \leq-4)$ lines were included in the least-squares fit. The final October 7, 2021
least-squares calculations also included 1539 lines of the above-mentioned difference band assigned from spectrum C where, despite the presence of two isotopologues of similar abundance, $\mathrm{CH}^{35} \mathrm{Cl}_{3}$ and $\mathrm{CH}^{35} \mathrm{Cl}_{2}{ }^{37} \mathrm{Cl}$, the main spectral features remained however those belonging to the first species ${ }^{2}$. Notice that, in these calculations, including the $v_{5}-v_{6}$ assigned rovibrational transitions, the $\mathrm{v}_{6}=1$ parameters were all constrained to the values obtained in our $\mathrm{v}_{6}=1$ previous study [14].

5. Results and discussion

The matrix elements of the rovibrational Hamiltonian used in the present work are detailed in Appendix A. Least-squares calculations were performed using the SIMFIT program, described in detail in Ref. [15].

5.1 The $v_{2}=1$ vibrational state

The v_{2} fundamental vibration ($676.64 \mathrm{~cm}^{-1}$) is well separated from the other vibrational states, the nearest vibration, $2 \nu_{3}$, being almost $60 \mathrm{~cm}^{-1}$ higher. An isolated-level model could therefore be applied; a total of 392 rotational transitions, with $0 \leq K \leq 20$ and $22 \leq J^{\prime \prime} \leq 77$, could be fitted, with a standard deviation of 36.4 kHz . Besides the B_{2} rotational constant, we could also determine two quartic (D_{J} and $D_{J K}$) and two sextic (H_{J} and $H_{J K}$) centrifugal distortion parameters. The h_{3} parameter of the $\Delta k=6$ interaction was also obtained, showing a remarkable consistency with the ground state value. The rotational parameters of this level, involved in equations (A1) and (A7) of the Appendix, are given in Table 1. The frequencies of the assigned transitions and their final reproduction are provided as Supplementary Material.

The good agreement observed between the B_{2} value obtained in the present work and that obtained by Paso et al. [2] from the fit of v_{2} IR transitions shows that $\mathrm{v}_{2}=1$ is (and can safely be treated as) an isolated level. Notice also that the present work reports the first assignment of rotational transitions in the $\mathrm{v}_{2}=1$ vibrational state. Indeed, we can find in the literature a tentative assignment by Carpenter et al. [3] of about ten lines, for $J^{\prime \prime}=17$, which were thought as belonging to the $\mathrm{v}_{2}=1$ state, owing to their intensity. These lines, obviously pertaining to a non-degenerate vibrational state, gave however a negative α_{2}^{B} value. We can now safely affirm that the lines reported in Table V of Ref. [3] are not v_{2} lines, but very likely ($\mathrm{v}_{6}=2$, $l_{6}=0$) rotational transitions.

5.2 The $v_{3}=2, v_{5}=1$, and $v_{6}=3$ vibrational states

[^1]
5.2.1. \quad The $v_{3}=2$ level treated as isolated: Model I

The $\mathrm{v}_{3}=2$ vibrational level (near $734 \mathrm{~cm}^{-1}$) is also rather well separated from the next vibrational level, which is $\mathrm{v}_{5}=1\left(776 \mathrm{~cm}^{-1}\right)$. The 351 assigned transitions $(0 \leq K \leq 20$ and $22 \leq$ $J^{\prime \prime} \leq 80$) could therefore be equally fitted to an isolated-level model (Model I, Table 1), with a standard deviation of 40.2 kHz , which is only slightly worse than that obtained for $\mathrm{v}_{2}=1$. The B_{33} value obtained in this way is however quite different from that estimated using the B_{0} value quoted in [14] together with the α_{3}^{B} value quoted in [4]: our 'isolated level' model allows obtaining $B_{33}=3297.29513(15) \mathrm{MHz}$, compared to $B_{33}=B_{0}-2 \alpha_{3}^{B}=$ 3297.45573 (12) MHz. This important discrepancy indicates that some higher-order Coriolis interactions with neighboring levels were not considered.

5.2.2. Model II: a three-level interacting system

We have therefore elaborated a second model, in which $2 v_{3}$ interacts with v_{5} through a second-order Coriolis coupling ζ_{335}; the latter level is itself coupled to the $3 \mathrm{v}_{6}$ level (near 782 cm^{-1}) through an anharmonic (Darling-Dennison) term. In this model, the ζ_{335} term could not be refined, because the $\mathrm{v}_{3}=2$ and $\mathrm{v}_{5}=1$ levels do not cross; hence, ζ_{335} has been estimated as indicated in the Appendix of Ref. [16]. The harmonic and anharmonic contributions, calculated from force field parameters ${ }^{3}$ kindly provided by J. Demaison [17], yield together $\zeta_{335}=0.013382 \mathrm{~cm}^{-1}$. When this second-order Coriolis coupling is introduced, the B_{33} value changes to $3297.42498(26) \mathrm{MHz}$, which is much closer to the above-mentioned prediction. Our second calculation included, besides the 351 rotational transitions in $v_{3}=2$, a total of 4326 rovibrational transitions pertaining to the ν_{5} band, as well as 612 rotational transitions in the $\mathrm{v}_{5}=1$ vibrational state ($-32 \leq K \cdot l \leq 20$ and $22 \leq J \leq 69$). Concerning the v_{5} infrared band, the data set has been enriched with respect to that used in the previous study [11] by the inclusion of the ${ }^{p} X_{26-39}$ series $(X=P, Q)$, around the anharmonic resonance crossings with $\left(\mathrm{v}_{6}=3, l_{6}=-1\right)$.

In Figure 7 we have plotted the reduced energies (pure J-dependent terms not included) against J, for the $\mathrm{v}_{5}=1^{-1}$ and $\mathrm{v}_{6}=3^{-1}$ levels. The locations of resonant crossings due to DarlingDennison interaction are marked. Thanks to a large variety of crossings, shown on Fig. 7, the anharmonic resonance parameter k_{5666} was thus obtained with reasonably good accuracy, 2429.031 (37) MHz. Moreover, 26 infrared transitions belonging to the $3 v_{6}^{ \pm 1}$ band ($K " \cdot \Delta K=-$ 57 and -58), together with 220 rotational transitions in the $\mathrm{v}_{6}=3$ level could be assigned and fitted. The ν_{5} IR data eventually included rovibrational transitions with $-39 \leq K^{\prime \prime} \cdot \Delta K \leq 57$

[^2]and $0 \leq J " \leq 84$. Among them, we have also introduced the ${ }^{r} Q_{0}$ and ${ }^{r} R_{0}$ branches (not included in the global fit of the previous study [11]), which provide the main information on the $l(2,2)$ interaction parameters. The body of data eventually included about 2000 rovibrational transitions of the $\nu_{5}^{ \pm 1}-v_{6}^{\mp 1}$ difference band, assigned on the two FTIR spectra we had at our disposal (spectra B and C). The results of our Model II, including also eight fitted diagonal parameters of the $\mathrm{v}_{6}=3^{ \pm 1}$ sublevel and four of the $\mathrm{v}_{6}=3^{ \pm 3}$ sublevel (the bandcenter, the B rotational constant, the D_{J} and $D_{J K}$ quartic centrifugal distortion parameters), together with the q_{22}, f_{22}^{J}, and q_{12}^{l} parameters, are listed in Table 2. The frequencies/wavenumbers of the assigned rotational/rovibrational transitions as well as their final reproduction are provided as Supplementary Material.

It would be also interesting to compare certain parameters of the $\mathrm{v}_{5}=1$, redetermined in our work, with previous experimental determinations [11] and also with force field calculations [17]. For instance, from $C \zeta_{5}=1425.6333$ (70) MHz and $C_{5}=1708.40257$ (73) MHz, we obtain a Coriolis coupling $\zeta_{5}=0.834483$ (4), which agrees with $\zeta_{5}=0.83382$ (10) obtained in Ref. [11] within 5σ, but is quite different from the force field calculations, $\zeta_{5}=0.8539$. Situation is similar for the main $l(2,2)$ interaction parameter: we obtain $q_{22}=-2.33219(35) \times 10^{-5} \mathrm{~cm}^{-1}$, whereas Ref. [11] gives $-2.47(2) \times 10^{-5} \mathrm{~cm}^{-1}$ and the anharmonic force field calculations [17], $-1.75 \times 10^{-5} \mathrm{~cm}^{-1}$.

Supplementary data associated with this article can be found in the online version, at doi: ...

6. Conclusion

The present study, dealing with the rotational spectrum of $\mathrm{CH}^{35} \mathrm{Cl}_{3}$ in the $\mathrm{v}_{2}=1, \mathrm{v}_{3}=2, \mathrm{v}_{5}=1$, and $\mathrm{v}_{6}=3$ vibrational excited states, demonstrates once again that a very large amount of information can be collected from a millimeter-wave spectrum. This information concerns, besides the ground state and lower excited states of main isotopologues, higher excited states and also ground state of minor isotopologues [18]. The assignment of several hundreds of, often very weak, rotational transitions for these excited states thus allows a very accurate determination of rotational and centrifugal distortion constants (quartic and sextic), as well as rovibrational interaction parameters. Last, but not least, the most complete knowledge of the rovibrational parameters of a molecule is achieved, whenever possible, by combining rotational and rovibrational data in a merged least-squares fit. This has been done in the present study for the ν_{5} fundamental vibration of chloroform.

Acknowledgments

The authors would like to thank Dr. V.-M. Horneman from the University of Oulu (Finland) for providing them the FTIR spectra A and B used in the present work. Dr. J. Demaison from the University of Lille (France) is also greatly acknowledged for providing some, unpublished, force field calculations. We thank Dr. B. Billinghurst for recoding the chloroform spectra at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council (NSERC), the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan.

Appendix A. Definition of the matrix elements of the effective vibration-rotational Hamiltonian

The diagonal matrix elements were defined conventionally as
$E_{v r}\left(J, k, l_{t}\right)=E_{v}+B_{v} J(J+1)+\left(C_{v}-B_{v}\right) k^{2}-D_{J}^{v} J^{2}(J+1)^{2}-D_{J K}^{v} J(J+1) k^{2}$
$-D_{K}^{v} k^{4}+H_{J}^{v} J^{3}(J+1)^{3}+H_{J K}^{v} J^{2}(J+1)^{2} k^{2}+H_{K J}^{v} J(J+1) k^{4}+H_{K}^{v} k^{6}$
$+L_{J}^{v} J^{4}(J+1)^{4}+L_{J J K}^{v} J^{3}(J+1)^{3} k^{2}+L_{J K}^{v} J^{2}(J+1)^{2} k^{4}+L_{J K K}^{v} J(J+1) k^{6}+L_{K}^{v} k^{8}$
$+\left[-2\left(C \zeta_{t}\right)_{v}+\eta_{t J} J(J+1)+\eta_{t K} k^{2}+\tau_{t J} J^{2}(J+1)^{2}+\tau_{t J K} J(J+1) k^{2}+\tau_{t K} k^{4}\right.$
$\left.+\sigma_{t J} J^{3}(J+1)^{3}+\sigma_{t J K} J^{2}(J+1)^{2} k^{2}+\sigma_{t K J} J(J+1) k^{4}+\sigma_{t K} k^{6}\right] k l_{t}$
The following off-diagonal matrix elements were considered
a) l-type operators
$\left\langle v_{t}^{l_{t} \pm 2} ; J, k \pm 2\right| \mathbf{H}_{22}+\mathbf{H}_{24}+\mathbf{H}_{26}\left|v_{t}^{l_{t}} ; J, k\right\rangle$
$=\left[\left(v_{t} \mp l_{t}\right)\left(v_{t} \pm l_{t}+2\right)\right]^{1 / 2}\left\{q_{22}+f_{22}^{J} J(J+1)+f_{22}^{K}\left[k^{2}+(k \pm 2)^{2}\right]\right.$
$\left.+f_{22}^{J J} J^{2}(J+1)^{2}+f_{22}^{J K} J(J+1)\left[k^{2}+(k \pm 2)^{2}\right]+f_{22}^{K K}\left[k^{4}+(k \pm 2)^{4}\right]\right\} F_{2}^{ \pm}(J, k)$
$\left\langle v_{t}^{l_{t} \pm 2} ; J, k \mp 1\right| \mathbf{H}_{22}+\mathbf{H}_{24}\left|v_{t}^{l_{t}} ; J, k\right\rangle=\left[\left(v_{t} \mp l_{t}\right)\left(v_{t} \pm l_{t}+2\right)\right]^{1 / 2}$
$\times\left\{\left[q_{12}+f_{12}^{J} J(J+1)\right](2 k \mp 1)+f_{12}^{K}\left[k^{3}+(k \mp 1)^{3}\right]\right\} F_{1}^{\mp}(J, k)$
$\left\langle v_{t}^{l_{t} \pm 2} ; J, k \mp 1\right| \mathbf{H}_{41}+\mathbf{H}_{43}\left|v_{t}^{l_{t}} ; J, k\right\rangle=\left[\left(v_{t} \mp l_{t}\right)\left(v_{t} \pm l_{t}+2\right)\right]^{1 / 2}$
$\times\left\{q_{12}^{l}+f_{12}^{l J} J(J+1)+f_{12}^{l K}\left[k^{2}+(k \mp 1)^{2}\right]\right\}\left(2 l_{t} \pm 2\right) F_{1}^{\mp}(J, k)$
$\left\langle v_{t}^{l_{t} \pm 2} ; J, k \mp 4\right| \mathbf{H}_{24}+\mathbf{H}_{26}\left|v_{t}^{l_{t}} ; J, k\right\rangle=\left[\left(v_{t} \mp l_{t}\right)\left(v_{t} \pm l_{t}+2\right)\right]^{1 / 2}$
$\times\left\{f_{42}+f_{42}^{J} J(J+1)+f_{42}^{K}\left[k^{2}+(k \mp 4)^{2}\right]\right\} F_{4}^{\mp}(J, k)$
b) $\Delta k= \pm 3$ operator
$\left\langle v_{t}^{l_{t}} ; J, k \pm 3\right| \mathbf{H}_{23}+\mathbf{H}_{25}\left|v_{t}^{l_{t}} ; J, k\right\rangle=\left\{d_{t}+d_{t}^{J} J(J+1)+d_{t}^{K}\left[k^{2}+(k \pm 3)^{2}\right]\right\} l_{t} F_{3}^{ \pm}(J, k)$
c) $\Delta k= \pm 6$ operator
$\left\langle v_{t}^{l_{t}} ; J, k \pm 6\right| \mathbf{H}_{06}+\mathbf{H}_{08}\left|v_{t}^{l_{t}} ; J, k\right\rangle=\left\{h_{3}+h_{3}^{J} J(J+1)+h_{3}^{K}\left[k^{2}+(k \pm 6)^{2}\right]\right\} F_{6}^{ \pm}(J, k)$
The notation of the matrix elements of the rotational shifting operators was taken as
$F_{n}^{ \pm}(J, k)=\prod_{i=1}^{n}[J(J+1)-(k \pm i \mp 1)(k \pm i)]^{1 / 2}$
Besides these usual intra-vibrational off-diagonal operators, the following ones, describing inter-vibrational interactions in the $2 v_{3} / v_{5} / 3 v_{6}$ system, were considered. In the following
equations, the $L_{n}^{ \pm}$and $L_{t \pm}^{ \pm}$operators (the lower and the upper signs are independent) are respectively vibrational ladder and double ladder operators, as defined for instance in Ref. [19].
a) Second-order Coriolis interaction $2 v_{3} / v_{5}$
$\mathbf{H}_{31}=\frac{1}{4} \zeta_{n n t} L_{n}^{-} L_{n}^{-}\left(L_{t+}^{+} J_{-}-L_{t-}^{+} J_{+}\right)+$h.c., where $n=3$ and $t=5$. Matrix elements:
$\left\langle 0,1^{ \pm 1} ; J, k \pm 1\right| \mathbf{H}_{31}\left|2,0^{0} ; J, k\right\rangle= \pm \frac{1}{\sqrt{2}} \zeta_{335} F_{1}^{ \pm}(J, k)$
b) Darling-Dennison interaction $\nu_{5}^{ \pm 1} / 3 v_{6}^{ \pm 1}$
$\mathbf{H}_{40}=k_{5666}\left(L_{t+}^{+} L_{t^{\prime}-}^{-} L_{t^{\prime}+}^{-} L_{t^{\prime}-}^{-}+L_{t-}^{+} L_{t^{\prime}+}^{-} L_{t_{\prime}-}^{-} L_{t^{\prime}+}^{-}\right)+$h.c., where $t=5$ and $t^{\prime}=6$. Matrix elements:
$\left\langle 1^{ \pm 1}, 0^{0} ; J, k\right| \mathbf{H}_{40}\left|0^{0}, 3^{ \pm 1} ; J, k\right\rangle=\sqrt{2} k_{5666}$
c) $\Delta k= \pm 1, \Delta l=\mp 2$ interactions
i. $\quad v_{5}^{\mp 1} / 3 v_{6}^{\mp 3}: \quad \mathbf{H}_{41}^{a}=f_{41}^{a}\left(L_{t+}^{-} L_{t^{\prime}-}^{+} L_{t^{\prime}-}^{+} L_{t^{\prime}-}^{+} J_{-}-L_{t-}^{-} L_{t^{\prime}+}^{+} L_{t^{\prime}+}^{+} L_{t^{\prime}+}^{+} J_{+}\right)+$h.c. \quad Matrix elements:
$\left\langle 0^{0}, 3^{\mp 3} ; J, k \pm 1\right| \mathbf{H}_{41}^{a}\left|1^{\mp 1}, 0^{0} ; J, k\right\rangle= \pm \sqrt{6} f_{41}^{a} F_{1}^{ \pm}(J, k)$
ii. $\quad v_{5}^{ \pm 1} / 3 v_{6}^{\mp 1}: \quad \mathbf{H}_{41}^{b}=f_{41}^{b}\left(L_{t-}^{-} L_{t^{\prime}+}^{+} L_{t^{\prime}-}^{+} L_{t^{\prime}-}^{+} J_{-}-L_{t+}^{-} L_{t^{\prime}-}^{+} L_{t^{\prime}+}^{+} L_{t^{\prime}+}^{+} J_{+}\right)+h . c . \quad$ Matrix elements:
$\left\langle 0^{0}, 3^{\mp 1} ; J, k \pm 1\right| \mathbf{H}_{41}^{b}\left|1^{ \pm 1}, 0^{0} ; J, k\right\rangle= \pm \sqrt{2} f_{41}^{b} F_{1}^{ \pm}(J, k)$
d) $\Delta k=\Delta l= \pm 2$ interactions
i. $\quad v_{5}^{\mp 1} / 3 v_{6}^{\mp}: \quad \mathbf{H}_{42}^{a}=f_{42}^{a}\left(L_{t+}^{-} L_{t^{\prime}-}^{+} L_{t^{\prime}-}^{+} L_{t^{\prime}}^{+} J_{+}^{2}+L_{t-}^{-} L_{t^{\prime}+}^{+} L_{t^{\prime}+}^{+} L_{t^{\prime}+}^{+} J_{-}^{2}\right)+h . c . \quad$ Matrix elements:
$\left\langle 0^{0}, 3^{\mp 3} ; J, k \mp 2\right| \mathbf{H}_{42}^{a}\left|1^{\mp 1}, 0^{0} ; J, k\right\rangle=\sqrt{6} f_{42}^{a} F_{2}^{\mp}(J, k)$
ii. $\quad v_{5}^{ \pm 1} / 3 v_{6}^{\mp 1}: \quad \mathbf{H}_{42}^{b}=f_{42}^{b}\left(L_{t-}^{-} L_{t^{\prime}+}^{+} L_{t^{\prime}-}^{+} L_{t^{\prime}}^{+} J_{+}^{2}+L_{t+}^{-} L_{t^{\prime}-}^{+} L_{t^{\prime}+}^{+} L_{t^{\prime}+}^{+} J_{-}^{2}\right)+h . c . \quad$ Matrix elements:
$\left\langle 0^{0}, 3^{\mp 1} ; J, k \mp 2\right| \mathbf{H}_{42}^{b}\left|1^{ \pm 1}, 0^{0} ; J, k\right\rangle=\sqrt{2} f_{42}^{b} F_{2}^{\mp}(J, k)$

Figure captions

Figure 1. Level diagram of the lowest vibrational states of $\mathrm{CH}^{35} \mathrm{Cl}_{3}$ up to $800 \mathrm{~cm}^{-1}$, out of which the cluster of the four highest energy vibrational states (those above the dotted horizontal line) were analyzed in the current study. All energy values are in cm^{-1} units.

Figure 2. The rotational spectrum of chloroform in the region of $J=35 \leftarrow 34$ transitions in the $\mathrm{v}_{2}=1$ level of the $\mathrm{CH}^{35} \mathrm{Cl}_{3}$ isotopologue. Upper panel: experimental spectrum (natural sample; spectral range, $150-330 \mathrm{GHz}$; pressure, 30 Pa ; pathlength, 2.2 m ; room temperature). Lower panel: simulated spectrum, with several K-assignments indicated. The pointer and the dotted horizontal line indicate the position of the $K=0$ transition (with its upper and lower state quantum numbers given below the corresponding labels).

Figure 3. The rotational spectrum of chloroform in the region of $J=35 \leftarrow 34$ transitions in the $\mathrm{v}_{3}=2$ and $\mathrm{v}_{5}=1$ levels of the $\mathrm{CH}^{35} \mathrm{Cl}_{3}$ isotopologue. Upper panel: experimental spectrum (same conditions as for Figure 2). Lower panel: simulated spectrum, with several K-assignments for $\mathrm{v}_{3}=2$ and k^{l}-assignments for $\mathrm{v}_{5}=1$ indicated. Transitions in the $\mathrm{v}_{3}=2$ level are in black, those in the $\mathrm{v}_{5}=1$ level in blue. The pointer and the dotted horizontal line indicate the position of the $K=0$ transition in $\mathrm{v}_{3}=2$ (with its upper and lower state quantum numbers given below the corresponding labels).

Figure 4. Overview of the $760-790 \mathrm{~cm}^{-1}$ region of the infrared spectrum of $\mathrm{CH}^{35} \mathrm{Cl}_{3}$, with the bandcenters of $v_{5}, 3 v_{6}^{ \pm 1}$, and $3 v_{6}^{ \pm 3}$, as well as the newly assigned sections, denoted. Experimental conditions: $\mathrm{CH}^{35} \mathrm{Cl}_{3}$ sample; pressure, 0.8 Pa ; optical pathlength, 3.2 m ; room temperature.

Figure 5. Overview of the $495-530 \mathrm{~cm}^{-1}$ region of the infrared spectrum of $\mathrm{CH}^{35} \mathrm{Cl}_{3}$, showing the $v_{5}^{ \pm 1}-v_{6}^{\mp 1}$ difference band, with section shown in the subsequent Figure 6 marked. Experimental conditions: natural sample; pressure, 400 Pa ; optical pathlength, 64 m ; room temperature. The sharp, intense lines marked by an asterisk are water lines and were used for calibration.

Figure 6. Detail of the infrared spectrum of $\mathrm{CH}^{35} \mathrm{C}_{3}$ in the $\mathrm{v}_{5}-\mathrm{v}_{6}$ difference bands region; several clear progressions of ${ }^{p} P_{K}(J=K+n)$ lines of the $v_{5}^{+1}-v_{6}^{-1}$ band are shown, with K and n values indicated. Upper panel: experimental spectrum $\left(\mathrm{CH}^{35} \mathrm{Cl}_{3}\right.$ sample; pressure, 253 Pa ; optical pathlength, 41.8 m ; room temperature). Lower panel: simulated spectrum. The very
sharp lines marked by an asterisk belong to the v_{2} band of the OCS molecule, added to the $\mathrm{CH}^{35} \mathrm{Cl}_{3}$ sample for calibration purposes (pressure of OCS of about 0.8 Pa).

Figure 7. Reduced energies (pure J-dependent terms not included) against J, for the $\mathrm{v}_{5}=1^{-1}$ (red circles) and $\mathrm{v}_{6}=3^{-1}$ (blue circles) levels. Positions of resonant crossings due to DarlingDennison interaction are indicated.

Table captions

Table 1. Molecular parameters of the $\mathrm{v}_{2}=1$ and $\mathrm{v}_{3}=2$ levels (Model I) of $\mathrm{CH}^{35} \mathrm{Cl}_{3}$.
Table 2. Molecular parameters of the $\mathrm{v}_{3}=2, \mathrm{v}_{5}=1$, and $\mathrm{v}_{6}=3$ levels of $\mathrm{CH}^{35} \mathrm{Cl}_{3}$ (Model II).

References

1 A. Ceausu-Velcescu, P. Pracna, R. A. Motiyenko, L. Margulès, Rotational spectroscopy in the $\mathrm{v}_{3}=\mathrm{v}_{6}=1$ and $\mathrm{v}_{6}=2$ vibrational states of $\mathrm{CH}^{35} \mathrm{Cl}_{3}$, J Quant Spectrosc Radiat Transf 250; 2020: 107006.
2 R. Paso, V.-M. Horneman, J. Pietilä, R. Anttila, High-resolution study of the infrared band v_{2} of $\mathrm{CH}^{35} \mathrm{Cl}_{3}$, Chem Phys Lett 247; 1995: 277-82.
3 J. H. Carpenter, P. J. Seo, D. H. Whiffen, The rotational spectrum of chloroform in its ground and excited vibrational states, J Mol Spectrosc 170; 1995: 215-27.
4 J. Pietilä, V.-M. Horneman, R. Anttila, High-resolution infrared study of the parallel band v_{3} of chloroform $\mathrm{CH}^{35} \mathrm{Cl}_{3}$, Mol Phys 96; 1999: 1449-56.
5 A. G. Maki, J. S. Wells, Wavenumber calibration tables from heterodyne frequency measurements, technical Report NIST Special Publication 821, US Department of Commerce, December 1991; A. G. Maki, J. S. Wells, New wavenumber calibration tables from heterodyne frequency measurements, J Res Natl Inst Stand Technol 97; 1992: 409-70.
6 G. Guelachvili, M. Birk, Ch. J. Bordé, J. W. Brault, L. R. Brown, B. Carli, A. R. H. Cole, K. M. Evenson, A. Fayt, D. Hausamann, J. W. C. Johns, J. Kauppinen, Q. Kou, A. G. Maki, K. Narahari Rao, R. A. Toth, W. Urban, A. Valentin, J. Vergès, G. Wagner, M. H. Wappelhorst, J. S. Wells, B. P. Winnewisser, M. Winnewisser, High resolution wavenumber standards for the infrared, Pure Appl Chem 68; 1996: 193-208; J Mol Spectrosc 177; 1996: 164 -79; Spectrochim Acta A52; 1996: 717-32.
7 V.-M. Horneman, Improved wave-number tables of the carbonyl sulfide v_{2} and $2 v_{2}$ bands and guides for accurate measurement, J Opt Soc Am B 21; 2004: 1050-64.
8 Z. Kisiel in: J. Demaison et al. (Eds.), "Spectroscopy from Space", Kluwer Academic Publishers, Dordrecht, 2001, p. 91-106; http://info.ifpan.edu.pl./~kisiel/prospe.htm.
9 L. Margulès, J. Demaison, P. Pracna, Rotational spectrum in the $\mathrm{v}_{6}=1$ and $\mathrm{v}_{3}=1$ levels of chloroform, J Mol Struct 795; 2006: 157-62.
10 W. Lodyga, M. Kreglewski, P. Pracna, Š. Urban, Advanced graphical software for assignments of transitions in rovibrational spectra, J Mol Spectrosc 243; 2007: 182-8.
11 J. Pietilä, V.-M. Horneman, R. Anttila, B. Lemoine, F. Reynaud, J.-M. Colmont, The perpendicular fundamental v_{5} of chloroform ${ }^{12} \mathrm{CH}^{35} \mathrm{Cl}_{3}$: high resolution infrared study of the ν_{5} band together with the millimetre-wave rotational spectrum, Mol Phys 98; 2000: 549-57.
$12 \mathrm{~W} . \mathrm{Fu} \beta$ and S . Weizbauer, Anharmonische Konstanten von SiHCl_{3} und CHCl_{3}, Ber. Bunsenges. Phys. Chem. 99; 1995: 289-95.
13 G. Tarrago, O. N. Ulenikov, G. Poussigue, Dipole moment matrix for vibration-rotation transitions in C ${ }_{3 \mathrm{v}}$ molecules, J Phys 45; 1984: 1429-47.
14 P. Pracna, A. Ceausu-Velcescu, V.-M. Horneman, The ground and $\mathrm{v}_{6}=1$ vibrational levels of $\mathrm{HC}^{35} \mathrm{Cl}_{3}$: The first high-resolution analysis of the v_{6} fundamental band, J Quant Spectrosc Rad Transf 113; 2012: 1220-5.
15 P. Pracna, J. Demaison, G. Wlodarczak, A.G. Lesarri, G. Graner, Simultaneous analysis of rovibrational and rotational spectra of the $\mathrm{v}_{5}=1$ and $\mathrm{v}_{8}=1$ vibrational levels of propyne, J Mol Spectrosc 177; 1996: 124-33.
16 J. Cosléou, J. Demaison, K. Sarka, W. Thiel, Ab initio anharmonic force field, molecular parameters, equilibrium structure and enthalpy of formation of fluoroform, Mol Phys 102; 2004: 1827-41.
17 J. Demaison, private communication.
18 J.-M. Colmont, D. Priem, P. Dréan, J. Demaison, James E. Boggs, Rotational spectra of the isotopic species of chloroform: experimental and ab initio structures, J Mol Spectrosc 191; 1998: 158-75.

19 K. Sarka, L. Nová Stříteská, A. Ceausu-Velcescu, Effective Hamiltonians for the Fermi resonance - interacting states of $\mathrm{C}_{3 \mathrm{v}}$ molecules, J Mol Spectrosc 311; 2015: 84-99.

Table 1. Molecular parameters of the $\mathbf{v}_{2}=\mathbf{1}$ and $v_{3}=2$ levels of $\mathbf{C H}^{\mathbf{3 5}} \mathbf{C l}_{3}$

Parameter	$\mathbf{v}_{2}=\mathbf{1}$		v3 $\mathbf{2}$, Model I
	Previous values [2]	This work	
$B(\mathrm{MHz})$	$3287.2590(60)$	$3287.270390(99)$	$3297.29513(15)$
$C(\mathrm{MHz})$	$1710.25440(66)$	1710.25440^{a}	1712.43386^{c}
$D_{J}(\mathrm{kHz})$	$1.5081(25)$	$1.510664(28)$	$1.507645(62)$
$D_{J K}(\mathrm{kHz})$	$-2.473(14)$	$-2.46872(45)$	$-2.49475(73)$
$D_{K}(\mathrm{kHz})$	$0.77927(19)$	0.77927^{a}	0.82568^{b}
$H_{J}(\mathrm{mHz})$		$1.2732(24)$	$1.2908(64)$
$H_{J K}(\mathrm{mHz})$		$-4.774(60)$	$-4.29(22)$
$H_{K J}(\mathrm{mHz})$	6.375^{b}	5.494^{d}	
$H_{K}(\mathrm{mHz})$	-2.479^{b}	-2.479^{b}	
$L_{J}(\mathrm{nHz})$	-2.498^{b}	-2.498^{b}	
$h_{3}(\mathrm{mHz})$	$0.15246(82)$	$0.1278(97)$	
$\sigma(\mathrm{kHz})$	36.4	40.2	

${ }^{a}$ Fixed to values obtained from the differences given in Ref. [2], Table 2, and the ground state values given in Ref. [14].
${ }^{\mathrm{b}}$ Fixed to the corresponding ground state values, Ref. [14].
${ }^{\mathrm{c}}$ Fixed to the value obtained from C_{0} (Ref. [14]) and α_{3}^{C} (Ref. [4]).
${ }^{\mathrm{d}}$ Fixed to the corresponding value obtained for the $\mathrm{v}_{3}=1$ level in Ref. [9].
Numbers in parentheses are standard deviations in units of the last digit quoted.

Table 2. Molecular parameters of the $v_{3}=2, v_{5}=1$, and $v_{6}=3$ levels of $\mathbf{C H}^{35} \mathbf{C l}_{3}$

Parameter	$\mathbf{v}_{3}=\mathbf{2}$, Model II	$\mathrm{v}_{5}=1$	$\mathrm{V}_{6}=3^{ \pm 1}$	$\mathrm{v}_{6}=3^{ \pm 3}$
$E\left(\mathrm{~cm}^{-1}\right)$	$734.4721^{\text {a }}$	775.9643229 (65)	781.622649 (95)	782.433902 (63)
$B(\mathrm{MHz})$	3297.42498 (26)	3296.59314 (17)	3306.43279 (30)	3306.61333 (15)
C (MHz)	$1712.43386^{\text {b }}$	1708.40257 (73)	1709.1799 (41)	$1709.1480^{\text {g }}$
$D_{J}(\mathrm{kHz})$	1.50772 (11)	1.517641 (81)	1.51084 (20)	1.51860 (20)
$D_{J K}(\mathrm{kHz})$	-2.498 5 (13)	-2.55060 (43)	-2.516 7 (10)	-2.53303 (85)
$D_{K}(\mathrm{kHz})$	$0.82568{ }^{\text {c }}$	0.72141 (37)	0.83022 (14)	$0.83456^{\text {f }}$
$H_{J}(\mathrm{mHz})$	1.293 (11)	1.285 (12)	$1.29151^{\text {f }}$	$1.29151^{\text {f }}$
$H_{J K}(\mathrm{mHz})$	-4.31 (38)	-4.775 (80)	$-5.05042^{\text {f }}$	$-5.05042^{\text {f }}$
$H_{K J}(\mathrm{mHz})$	$5.494{ }^{\text {d }}$	$6.375^{\text {c }}$	$6.33362^{\text {f }}$	$6.33362^{\text {f }}$
$H_{K}(\mathrm{mHz})$	$-2.479^{\text {c }}$	$-2.479^{\text {c }}$	$-2.43467^{\text {f }}$	$-2.43467^{\text {f }}$
$L_{J}(\mathrm{nHz})$	$-2.498^{\text {c }}$	$-2.498^{\text {c }}$		
$C \zeta(\mathrm{MHz})$		1425.6333 (70)	-1500.424 (19)	$-1500.48832^{\text {h }}$
$\eta_{J}(\mathrm{kHz})$		10.4874 (73)	-4.818 (29)	$-4.93869^{\text {f }}$
$\eta_{K}(\mathrm{kHz})$		-12.094 (17)	$3.26752^{\text {f }}$	$3.26752^{\text {f }}$
$\tau_{J}(\mathrm{~Hz})$		0.0492 (17)		
$\tau_{J K}(\mathrm{~Hz})$		$-0.1723^{\text {e }}$		
$\tau_{K}(\mathrm{~Hz})$		$-1.903{ }^{\text {e }}$		
$q_{22}(\mathrm{MHz})$		-0.699 17 (10)	-1.828 960 (84)	
$f_{22}^{J}(\mathrm{~Hz})$		$2.6337^{\text {e }}$	4.004 (39)	
$f_{22}^{K}(\mathrm{~Hz})$			$-3.066{ }^{\text {f }}$	
$d_{t}(\mathrm{kHz})$		7.2773 (43)		
$q_{12}(\mathrm{MHz})$			-0.07251^{i}	
$q_{12}^{l}(\mathrm{MHz})$			0.0872 (17)	
$f_{12}^{l J}(\mathrm{~Hz})$			$-6.541^{\text {i }}$	
$\zeta_{335}(\mathrm{MHz})$	$401.18^{\text {j }}$			
$k_{5666}(\mathrm{MHz})$		2429.031 (37)		

$f_{41}^{a}(\mathrm{MHz})$	$-0.85580(60)$		
$f_{42}^{b}(\mathrm{kHz})$	$-1.10(15)$		
$f_{42}(\mathrm{~Hz})$	$-22.042(37)$		
$h_{3}(\mathrm{mHz})$	$0.125(17)$	0.1501^{c}	
σ^{k}	MMW: 40.2	IR: 0.237×10^{-3}	IR: 0.231×10^{-3}
		MMW: 65.2	MMW: 43.5

${ }^{a}$ Constrained to the value obtained from the v_{3} and $2 v_{3}-v_{3}$ bandcenters, Ref. [4].
${ }^{\mathrm{b}}$ Constrained to a value obtained from C_{0} [10] and α_{3}^{C}, quoted in [4].
${ }^{\mathrm{c}}$ Constrained to the corresponding GS values, Ref. [14].
${ }^{\mathrm{d}}$ Constrained to the corresponding value in the $\mathrm{v}_{3}=1$ level, Ref. [9].
${ }^{e}$ Constrained to values obtained in a preliminary fit.
${ }^{\mathrm{f}}$ Constrained to the corresponding $\mathrm{v}_{6}=1$ values, Ref. [14].
${ }^{\mathrm{g}}$ Constrained to a value obtained from the GS and $\mathrm{v}_{6}=1$ [14] values, and assuming a linear vibrational dependence.
${ }^{\mathrm{h}}$ Constrained to a value obtained from the $\mathrm{v}_{6}=1$ [14] and $\mathrm{v}_{6}=2$ [1] values, and assuming a linear vibrational dependence.
${ }^{i}$ Constrained to the corresponding $\mathrm{v}_{6}=2$ values, Ref. [1].
${ }^{j}$ Constrained to an anharmonic force field value, Ref. [17].
${ }^{\mathrm{k}}$ In kHz for the MMW lines, in cm^{-1} for the IR data.
Numbers in parentheses are standard deviations in units of the last digit quoted.

[^0]: ${ }^{1}$ In Refs. [5], the band centered at $858.967 \mathrm{~cm}^{-1}$ is referred to as the v_{3} band. October 7, 2021

[^1]: ${ }^{2}$ This is presumably due to the fact that, for the $\mathrm{CH}^{35} \mathrm{Cl}_{2}{ }^{37} \mathrm{Cl}$ species, of C_{s} symmetry, each E degenerate vibrational mode splits into two modes, of A^{\prime} and A " symmetry.
 October 7, 2021

[^2]: ${ }^{3}$ These calculations were performed at the MP2/TZ2Pf level.

