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Probabilistic Cellular Automata models brocytes and CD8+ T cells interplay.

The parameters are estimated accurately from theoretical analysis and experiments.

The dynamics of cell populations is simulated within lungs over 20 years.

Two distinct patterns emerge, corresponding to the healthy and COPD situations.

Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a chronic respiratory disease that aects adults over 40 years of age. The major risk factor is exposure to aerosolized pollutants, such as cigarette smoke. Patients with COPD often experience "exacerbations", which are periods of acute worsening of their respiratory symptoms. Exacerbations play an important role in the progression of the disease. COPD is characterized by chronic bronchial inammation of the airways and parenchyma.

Changes in the structure of the tissue are also observed, such as lamina propria brosis of the so-called "distal" bronchi, i.e. bronchi with a lumen diameter of less than 2 mm, leading to persistent airow obstruction ( [START_REF] Hogg | The nature of small-airway obstruction in chronic obstructive pulmonary disease[END_REF]). The understanding of the pathophysiological mechanisms of COPD has progressed thanks to animal models ( [START_REF] Groneberg | Models of chronic obstructive pulmonary disease[END_REF]), in vitro studies ( [START_REF] Krimmer | What can in vitro models of copd tell us ?[END_REF]), and expression analyses using bulk human lung tissue ( [START_REF] Kusko | Integrated genomics reveals convergent transcriptomic networks underlying chronic obstructive pulmonary disease and idiopathic pulmonarybrosis[END_REF]) and more recently at the single cell level ( [START_REF] Basil | Human distal airways contain a multipotent secretory cell that can regenerate alveoli[END_REF]).

However, detailed knowledge of the crosstalks among multiple lung cell types and particularly their evolution along COPD development is still lacking, and treatments for COPD have seen minimal advances over the past decades ( [START_REF] Van Haarst | Review of drug development guidance to treat chronic obstructive pulmonary disease : Us and eu perspectives[END_REF]).

The bronchial wall is a complex structure, and comprises dierent cell types, including both structural cells, such as brocytes and broblasts, and immune cells, such as lymphocytes and dendritic cells. These non-epithelial cells are sparse and they embedded in an extracellular matrix, which maintains the three-dimensional architecture of the lung by interconnecting cells, that do not adhere tightly to each other ( [START_REF] Karakioulaki | Extracellular matrix remodelling in COPD[END_REF]). Bronchi of COPD patients are inltrated with a large amount of lymphocytes, and in particular CD8+ T cells. The density of CD8+ T cells in lung parenchyma and small airways inversely correlates with lung function, ( [START_REF] O'shaughnessy | Inammation in bronchial biopsies of subjects with chronic bronchitis : inverse relationship of cd8+ t lymphocytes with fev1[END_REF]), suggesting the implication of CD8+ T cells in deleterious COPD evolution. On the other hand, we have previously shown in [START_REF] Dupin | Blood brocytes are recruited during acute exacerbations of chronic obstructive pulmonary disease through a cxcr4-dependent pathway[END_REF] that brocytes, circulating cells with broblastic properties, were present in increased levels in the blood of COPD patients at the time of an exacerbation and increased densities in the bronchi of COPD patients ( [START_REF] Dupin | Fibrocyte accumulation in the airway walls of copd patients[END_REF] ).

The deregulation of interactions between immune (including CD8+ T cells) and non-immune (including brocytes) cells could be a hallmark of chronic inammation and tissue remodelling.

In particular, it was recently shown that brocytes could interact with CD8+ T cells and promote their proliferation ( [START_REF] Afroj | Blockade of pd-1/pd-l1 pathway enhances the antigen-presenting capacity of brocytes[END_REF]), suggesting that the interplay between these two cell types could play a role in COPD onset and evolution.

Nevertheless, we are very far from understanding how the system works at the population and tissue levels. Moreover, it is also dicult to know how the disease disrupts this system. Our working hypothesis is the following : modications of the local interactions between brocytes and CD8+ T cells are the trigger to alter spatial distribution of cells, corresponding to the pathological state. This hypothesis is very dicult to test experimentally. In vivo progressive airow obstruction is a complex and progressive process and an ideal model should take into account all types of cells and the associated cellular events. Therefore, we decided to build a mathematical model that only includes processes related to brocytes and CD8+ T cells, on which information can be drawn from experimental data.

The selected mathematical model and especially the simulations associated with it should allow to show how modications of the local interaction rules lead to two distributions of brocytes and CD8+ T cells, that dier according to whether the subject considered is healthy or sick. Two-population mathematical models include deterministic models, which classically rely on predator-prey formulation. Deterministic models are particularly pertinent to describe biological systems such as tumorsphere growth. In these models, signicant insights and equations underlying system dynamics have been partially obtained from experimental data, see for instance [START_REF] Benítez | Modeling tumorspheres reveals cancer stem cell niche building and plasticity[END_REF]. These models are particularly useful to describe the behaviour of the system at the population level, but do not take into account the interactions at the single cell-level. Spatial variables, critical features in our problematic to predict the tissular architecture, are usually lacking in deterministic models. This, such an approach does not sound very appropriate to model cellular crosstalk in the peri-bronchial area, where experimental data are very scarce and mostly relate to results obtained on individual-level interactions between brocytes and CD8+ T cells.

The individual nature of cells can be taken into account by agent-based models, which allow to derive more easily the interaction rules from experimental data. O-lattice models, such as center-based (CBM) and deformable-cell (DCM) models, are continuous-space agentbased models that can be formulated using discrete time steps ( [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF], [START_REF] Nava-Sedeño | Extracting cellular automaton rules from physical Langevin equation models for single and collective cell migration[END_REF]) or continuous time ( [START_REF] Peruani | A mean-eld theory for self-propelled particles interacting by velocity alignment mechanisms[END_REF]). On-lattice models are spatially discrete models evolving in discrete time steps or in continuous time. For o-lattice as for on-lattice models, displacement of a cell is deterministic and completely dened by its velocity ( [START_REF] Nava-Sedeño | Extracting cellular automaton rules from physical Langevin equation models for single and collective cell migration[END_REF]). Interactions between cells in o-and on-lattice models are taken into account by dierent types of velocity alignment. Thus, those models appear especially adapted to study the emergence of pattern formation in multicellular systems from velocity alignment interactions among cells. Among agent-based models, Lattice Gas Cellular Automaton models (see Sections 5.4 and 7 in [START_REF] Deutsch | Cellular automaton modeling of biological pattern formation[END_REF]) relies on both the explicit description on agent position and its velocity. Those type of models could be relevant to our needs [START_REF] Hatzikirou | Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion[END_REF] but they are mainly used to model single and collective migration.

The framework of Probabilistic Cellular Automaton (PCA) seemed to us the most adapted to account for the local interactions of CD8+ T cells and brocytes. PCA are discrete-time agent-based models, in which the state of the agents evolve with time according to stochastic rules. One can nd in the two monographs [START_REF] Deutsch | Cellular automaton modeling of biological pattern formation[END_REF] and [START_REF] Louis | Probabilistic cellular automata[END_REF] the denition of these PCA and theoretical models. CA and PCA are widely applicable for modelling systems like forest spread ( [START_REF] Mahmoud | A probabilistic cellular automata framework for assessing the impact of wui res on communities[END_REF]), eco systems ( [START_REF] Hogeweg | Cellular automata as a paradigm for ecological modeling[END_REF]), natural patterns ( [START_REF] Manukyan | A living mesoscopic cellular automaton made of skin scales[END_REF]), neuronal networks ( [START_REF] Puljic | Narrow-band oscillations in probabilistic cellular automata[END_REF]), epidemic systems ( [START_REF] Ghosh | Computational model on covid-19 pandemic using probabilistic cellular automata[END_REF]). PCA have also been used in life sciences, for example to study adult neurogenesis for teleost shes in [START_REF] Lehotzky | Cellular automata modeling suggests symmetric stem-cell division, cell death, and cell drift as key mechanisms driving adult spinal cord growth in teleost sh[END_REF] and cell dierentiation in [START_REF] Silva | A cellular automata model for cell dierentiation[END_REF]. Interestingly, previous agent-based computational approaches have been used in the eld of lung science to describe the allergic inammatory response ( [START_REF] Pothen | The inammatory twitch as a general strategy for controlling the host response[END_REF] and [START_REF] Pothen | A computational model of unresolved allergic inammation in chronic asthma[END_REF]) and airway remodelling in asthma ( [START_REF] Saunders | Antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myobroblast recruitment[END_REF]). Thus, we decided to use PCA to model macroscopic behavior starting from microscopic interaction rules governing brocytes and CD8+ T cells behaviours. In contrast to "classical" PCA, which evolves synchronously in discrete time and in which the updating concerns all the cells, we have made the cells evolve one after the other as in [START_REF] Hackett-Jones | On the role of dierential adhesion in gangliogenesis in the enteric nervous system[END_REF] and [START_REF] Landman | PCA modelling of multi-species cell clusters : ganglion development in the gastrointestinal nervous system[END_REF]. The probability that a cell moves, dies or proliferates depends on the number of cells present in a nearby neighbourhood. We will be able to access qualitative estimates of these probabilities thanks to data from the literature and from experiments : for example, we will be able to compare the attraction/proliferation potential of CD8+ T cells puried from tissues/blood of healthy subjects or patients with COPD.

Let us briey outline the organization of the paper. We describe in Section 2.1 the individual behavior of the CD8+ T cells and brocytes and their mutual dynamics is presented in Section 2.1.10. We show that our model is Markovian and ergodic in Section 2.2. We assume that for a healthy subject as for a sick subject, the same model applies, but with dierent parameters.

We introduce in Section 2.3 a streamlined model which is obtained for some specic values of the parameters. In this setting, a rigorous mathematical analysis makes it possible to both estimate the parameters and measure the quality of these estimates (see Section 3.1).

Our model can be simulated, we present in Section 3.2 some outputs of the simulations of the streamlined model. The conclusion and discussion are found in Section 4. The proofs of technical points are postponed in Section 5. The model takes into consideration cell displacement, death, proliferation and inltration, that occurs at the stable state and during exacerbation. Indeed, C and F cells have a limited lifespan that depends on cell type and they can therefore be aected by cell death. When the cells are alive, C cells can move and proliferate, whereas F can only move (see Section 2.1.5).

Materials and methods

For the initial distribution, we used the mean density of non-smokers subjects, reecting the healthy situation.

As stated in the introduction, in our model there are two types of subjects : those who are healthy and those who are aected by COPD. We make the assumption that these two situations can be represented by the same model, but with dierent parameter values. To be able to simulate the model, it is necessary to obtain numerical values for these parameters. This will be achieved through biological experiments and data from literature. We denote by γ ctl (resp. γ COP D ) the value of the parameter γ for a healthy (resp COPD) subject.

All the parameters are dened below and summarized in Table 1 in Section 6.

Representation of the surface of interest

We consider a lattice, of dimension 103×103 where the area of each square is determined by the size of a cell (Figure 1). A C cell has a diameter of about 8 µm ( [START_REF] Mrass | Rock regulates the intermittent mode of interstitial t cell migration in inamed lungs[END_REF] and our unpublished observations), giving a surface area of 50 µm 2 . The size is roughly equivalent for a F cell.

Thus, the cells are modeled by squares with a side length x 0 = 7 µm, which correspond to the units of the lattice. Each element of the lattice is dened by 2 coordinates, where the point on the upper left (resp. lower right) corner has the coordinates (1, 1) (resp. (103, 103)). The coordinates of the center of the lattice are [START_REF] Van Haarst | Review of drug development guidance to treat chronic obstructive pulmonary disease : Us and eu perspectives[END_REF][START_REF] Van Haarst | Review of drug development guidance to treat chronic obstructive pulmonary disease : Us and eu perspectives[END_REF]. The geometry of bronchi corresponds to the transverse section of a cylinder, then we model our surface of interest, the peribronchial (also called lamina propria ), by a crown with a "hole" in the middle. The external and internal radii of this crown are dened thanks to our measurements on the bronchial tissues :

1. the internal radius is 263 µm, which represents the length of 38 lattice sites. This has been calculated using our measurements of the corresponding disk (i.e. lumen area + epithelium surface), which is on average 216 567 µm 2 .

2. The external radius is 355 µm, which represents the length of 50 lattice sites. This has been calculated using our measurements of the corresponding disk (i.e. lumen area + epithelium surface + lamina propria), which is on average 396 436 µm 2 .

Then the lamina propria L is the set of points with coordinates (i, j) such that :

38 ≤ d (i, j), (52, 52) ≤ 50 where d is the pseudo-distance : d (i, j), (i , j ) = (i -i ) 2 + (j -j ) 2 and x stands for the integer part of the real number x. We thus obtain a working surface containing 3 652 lattice sites (potential cells) corresponding to an area of approximately 179 000 µm 2 , which is in agreement with our in situ measurements. In other words, the number |L| of elements of L equals 3 652. Reecting (zero-ux) boundary conditions are imposed at the external and internal borders. On each site, there is at most one cell.

In the literature, it is described that bronchial wall thickness is increased in COPD patients, ( [START_REF] Hogg | The nature of small-airway obstruction in chronic obstructive pulmonary disease[END_REF], [START_REF] Hasegawa | Airow limitation and airway dimensions in chronic obstructive pulmonary disease[END_REF]) but we did not observe this increase in our tissue measurements. We will consider the area of the lamina propria to be the same for healthy subjects and patients with COPD. We now x some notations. Notation 2.1 1. For any site (i, j) ∈ L, M (i, j) is the neighbourhood of (i, j), it is the set of (i-1, j -1), (i-1, j), (i-1, j +1), (i, j -1), (i, j +1), (i+1, j -1), (i+1, j), (i+1, j +1) belonging to L. For a site inside the lamina propria the cardinal of M (i, j) is 8 and lower if this site is at the edge of L. We will note in the following |M (i, j)| the number of elements of M (i, j). In the literature, Moore's neighbourhood is M (i, j) ∪ {(i, j)}.

2.

A site of L has the code 1 (resp. 2) if it contains a F (resp. C) cell. If the site is empty it will be coded 0. This state corresponds either to another cell type (mainly mesenchymal, that was hypothetized to interact minimally with brocyte and CD8+ T cells) or to extracellular matrix, which does not play any role in the cellular cross-talk. This is the predominant state, as the bronchial wall contains structural and immune cells sparsely embedded in the extracellular matrix.

3. A conguration is an element x = x(i, j) (i,j)∈L where x(i, j) belongs to {0, 1, 2} and x(i, j) = 1 (resp. x(i, j) = 2) means that a F (resp. C) cell occupies the site (i, j) and

x(i, j) = 0 when the site (i, j) is empty. The set of congurations is {0, 1, 2} L and is identied with {0, 1, 2} |L| .

For any

s = (i, j), V (F )(s) (resp. V (C)(s)) denotes the number of F (resp. C) cells near s V (F )(s) = s ∈M (s) 1 {x(s )=1} , V (C)(s) = s ∈M (s) 1 {x(s )=2} .
V (s) is the number of F and C cells close to s :

V (s) = V (F )(s) + V (C)(s) = s ∈M (s) 1 {x(s )=1 or 2} = s ∈M (s) 1 {x(s ) =0} .

The initial cell distribution

For the initial distribution ν 0 , we rst used the mean of the densities of C and F cells measured on tissues from non-smokers subjects, reecting the healthy situation : n 0 (C) = 0.660 × 10 -3 cells /µm 2 and n 0 (F ) = 0.106 × 10 -3 cells/µm 2 .

To obtain these densities with a lattice of 3 652 sites which represents an area of 3 652 × 49 = 178 948 ≈ 179 000µm 2 , we will therefore consider

N 0 (C) = 0.660 × 10 -3 × 179 000 ≈ 118 C cells N 0 (F ) = 0.106 × 10 -3 × 179 000 ≈ 19 F cells. (2.1)
Second we choose the N 0 (C) (resp. N 0 (F )) C (resp. F ) cells uniformly distributed in the lamina propria.

Random spatial representations can be obtained with determinantal point processes. We have not retained them because they rather model repulsive phenomenons and therefore they are not adapted to our interaction model. Moreover their simulation is delicate, see [START_REF] Launay | Exact sampling of determinantal point processes without eigendecomposition[END_REF].

Cell death

C and F cells have a limited lifespan, which varies from cell to cell. When they are alive, they will be able to move or duplicate as explained in the following sections. In our algorithm (see Section 2.1.10), when a cell dies, it stays in place for a while and then disappears.

We suppose that a F cell has a probability p dF of dying, see Figure S1.

We dene for each C cell a "basal" probability p dC of dying, and an increased probability p dC+ of dying when the C cell has many other C cells in its neighbourhood. We distinguish two cases see Figure S1 : 1. if C cell has few C neighbours (V (C)(s) < σ, where σ is an unknown integer), then this C cell attemps to die with the probability p dC 2. If C cell has many C neighbours (V (C)(s) ≥ σ), then C cell attemps to die with the probability p dC+ .

The introduction of the probability p dC+ is justied by a recent study ( [START_REF] Zenke | Quorum regulation via nested antagonistic feedback circuits mediated by the receptors cd28 and ctla-4 confers robustness to t cell population dynamics[END_REF]) showing the existence of CD8+ T cell-population-intrinsic mechanisms regulating cellular behavior, with induction of apoptosis to avoid an excessive increase in T cell population. Therefore, we dened σ, as the threshold number of neighbouring C cells, above which the probability of dying for a C cell is increased from p dC to p dC+ .

The numerical values of p dC , p dC+ , σ and p dF will be presented in Section 3.1.1.

Proliferation of C cells

Cells have the ability to duplicate. In our algorithm (see Section 2.1.10), when a cell divides, it gives birth to 2 daughter cells, with one staying at the place of the mother cell, and the other one being created in an empty site in the neighborhood of the mother cell. We dene for each F cell a probability p F of dividing. Based on our own unpublished observations and published studies ( [START_REF] Ling | Dierentiated brocytes assume a functional mesenchymal phenotype with regenerative potential[END_REF] and [START_REF] Schmidt | Identication of circulating brocytes as precursors of bronchial myobroblasts in asthma[END_REF]), brocytes (F cells) very poorly proliferate in culture, allowing us to consider that an F cell does not divide in lung tissue. We will thus consider that a F cell does not proliferate, so we will take p F = 0.

For each C cell, we dene a "basal" probability p C of dividing and an increased probability p C/F of dividing when the C cell has F cell(s) in its neighbourhood. This latter probability is justied as our unpublished results and those from another study ( [START_REF] Afroj | Blockade of pd-1/pd-l1 pathway enhances the antigen-presenting capacity of brocytes[END_REF] et al., 2021) show a robust and high increase of C cell proliferation in direct co-cultures of F and C cells.

Consider a C cell located in s (Figure S2). To reect contact inhibition that enables cells to stop proliferating when many of them are in contact with each other, we also introduce the threshold number λ, such that the proliferation of C does not occur if for any s neighbouring s, the number of C cells exceeds λ.

1. In the following two cases

(a) all sites in M (s) are occupied (i.e. V (s) = |M (s)|) (b) if all empty s sites belonging to M (s) have "many" C neighbours (i.e. V (C)(s ) ≥ λ,
where λ is an integer to be specied) the C cell does not divide.

2. There exists at least one empty site s ∈ M (s) such that V (C)(s ) < λ. If proliferation occurs, we decide that C remains in s and we uniformly choose an unoccupied site s belonging to M (s), such that V (C)(s ) < λ, on which we create a new cell.

Since in the absence of stimulation, the major part of C cells do not divide in the lung ( [START_REF] Hogan | Long-term maintenance of virus-specic eector memory cd8+ t cells in the lung airways depends on proliferation[END_REF]), we will therefore consider that in the absence of any other stimulation, the probability p C that a C cell divide in the peribronchial area is zero, for control subjects as well as COPD patients :

p ctl C = p COP D C = 0. (2.2)
Previous studies indicate that the doubling time of C cells in vivo after a stimulation such as a contact with a brocyte is estimated around 4h ( [START_REF] Yoon | The cell cycle time of cd8+ t cells responding in vivo is controlled by the type of antigenic stimulus[END_REF], [START_REF] Lawrence | Activation, dierentiation, and migration of naive virus-specic cd8+ t cells during pulmonary inuenza virus infection[END_REF]). We will consider an average duration of 4h = 80 × 3min for a cell cycle of a C cell when a F cell is in its close environment. For healthy subjects, the increased probability p C/F of dividing will therefore be taken equal to 1/80. This probability is identical for control subjects and COPD patients :

p ctl C/F = p COP D C/F = 1/80 = 1.25 × 10 -2 .
(2.3)

Displacement of C and F cells

C and F cells are able to move, as shown previously ( [START_REF] Dupin | Blood brocytes are recruited during acute exacerbations of chronic obstructive pulmonary disease through a cxcr4-dependent pathway[END_REF], [START_REF] Mrass | Rock regulates the intermittent mode of interstitial t cell migration in inamed lungs[END_REF]). This process is taken into account in the model, as described below.

Let s = (i, j) and s = (i , j ) be two sites of the lamina propria. A cell can only move to a site adjacent to the occupied site :

P F (s, s ) = P C (s, s ) = 0 if s ∈ M (s) ∪ {s} or s ∈ M (s)
and is occupied where P F (s, s ) (resp. P C (s, s )) denotes the probability that a F (resp. C) cell has to move from s to s .

Our chemotaxis experiments show that F cells are signicantly attracted towards the secretion of C cells, whatever the condition of the subject (control or COPD). This leads us to take

P F (s, s ) = k F f F V (C)(s ) if s ∈ M (s) and s is empty k F x F if s = s (2.4) where x F > 0, f F is a function dened on {0, 1, 2, • • • , 8} taking positive values and k F = 1 x F + s ∈M (s) f F V (C)(s ) 1 {s empty} (2.5)
is the normalization factor such that P F (s, •) is a probability.

Since this chemotactic eect requires soluble factors that have to be secreted in a sucient concentration, this justies an almost zero attraction ( F > 0 "small", arbitrarily chosen as F = 10 -3 ) for s such as V (C)(s ) < 3 cells and a maximal and constant attraction for s such as V (C)(s ) = 3 or 4 cells. On the other hand, the attraction of the site s for a F cell probably decreases when the site is too "crowded", because of physical hindrance and/or the secretion of factors that are secreted when many C cells are aggregated. For control subjects, we have thus chosen

f ctl F (n) = 1 (resp. f ctl F (n) = F ) if n ∈ {3, 4} (resp.
n ∈ {0, 1, 2, 5, 6, 7, 8}). Our chemotaxis experiments show that secretions from C cells isolated from parenchyma of COPD patients are more attractive for F cells than those of C cells isolated from control patients, indicating that a smaller number of C cells is required to attract F cells in pathological condition than in healthy situation. For patients with COPD, we have thus chosen :

f COP D F (n) = 1 (resp. f COP D F (n) = F ) if n ∈ {2, 3, 4} (resp. n ∈ {0, 1, 5, 6, 7, 8}).
We now consider the case of a C cell alive and occupying the site s. It will move to the site s ∈ M (s) ∪ {s}, with probability

P C (s, s ) = k C f C V (s ) if s ∈ M (s), s is empty k C x C if s = s (2.6) with x C > 0, f C is a function dened on {0, 1, 2, • • • , 8} taking positive values and k C = 1 x C + s ∈M (s) f C V (s ) 1 {s empty} (2.7)
is the normalization factor such that P C (s, •) is a probability.

Based on the same type of justications than those used for F cells,

f ctl C is the function dened on {0, 1, 2, 5, 6, 7, 8} such that f ctl C (n) = 1 (resp. f ctl C (n) = C where C = 10 -3 ) if n ∈ {4, 5}
(resp. n ∈ {0, 1, 2, 3, 6, 7, 8}). We will consider that f C is identical in control subjects and COPD patients, leading to f ctl C =f COP D C

, see Figure S4.

The values of x F and x C will be determined in Section 3.1.2. F cells have a limited lifespan in the lungs, with a half-life that we have estimated at 10 months in the lung, by analogy with the half-life of interstitial macrophages ( [START_REF] Schyns | Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung[END_REF]). Our previous work

(cf [START_REF] Dupin | Fibrocyte accumulation in the airway walls of copd patients[END_REF]) indicates presence of F cells in the lungs, at varying densities in control subjects and COPD patients, suggesting inltration of F cells at stable state, in order to maintain this pulmonary pool relatively constant. This leads us to add F cells, for an healthy subject as for a COPD subject, to reect inltration into the lungs at the stable state.

Since C cells have a limited lifespan in the airways, with an estimated half-life of 14 days in the lung ( [START_REF] Mcmaster | Airway-resident memory cd8 t cells provide antigen-specic protection against respiratory virus challenge through rapid ifn-production[END_REF]), it has been proposed that the number of memory C cells in the lung tissue is maintained through continuous recruitment ( [START_REF] Ely | Memory T cell populations in the lung airways are maintained by continual recruitment[END_REF] and [START_REF] Takamura | Specic niches for lungresident memory CD8+ T cells at the site of tissue regeneration enable CD69-independent maintenance[END_REF]).

We will add at the beginning of each 3mn time step, one F (resp. C) cell with probability p istaF (resp. p istaC ) to take into account the phenomenon of inltration during the stable state.

These probabilities will be determined from biological considerations (see Section 3.1.3). The choice of the value of 3mn will be justied later in Section 2.1.9. If a cell is recruited, we randomly and uniformly position it among the empty sites. If there are no empty sites, no cell is added.

Inltration of F and C cells during exacerbations

The process of inltration can be amplied during exacerbations, which is an acute event specic of patients with COPD, and which is not happening in healthy subjects.

Concerning F cells, in COPD patients, there is an increase in the concentration of F cells in the blood during exacerbations ( [START_REF] Dupin | Blood brocytes are recruited during acute exacerbations of chronic obstructive pulmonary disease through a cxcr4-dependent pathway[END_REF]). In the lungs, the density of F cells is higher in tissues of COPD patients than in those of healthy subjects ( [START_REF] Dupin | Fibrocyte accumulation in the airway walls of copd patients[END_REF]), suggesting that for COPD patients, F cells are recruited from the blood to the lungs at the time of exacerbations. The average frequency of exacerbations is one per year in patients with COPD ( [START_REF] Hurst | Susceptibility to exacerbation in chronic obstructive pulmonary disease[END_REF]). To take into account the excess of F cells inltration during this particular event, we will add, each year, a number N (iexaF ) of F cells, with the probability p iexaF so that after 20 years, on average, the number of F cells in COPD patients is double than in healthy patients. If cells are added, they are placed uniformly on the empty sites of the lamina propria.

Concerning C cells, the literature shows that there is probably an inltration of C cells in the lungs, especially in COPD patients ( [START_REF] Freeman | dierentiation factor-15 (GDF-15) in peripheral blood[END_REF] and [START_REF] Saetta | Cd8+ t-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease[END_REF]), but whether this inltration occurs during exacerbations is not entirely clear. A study evidences an increased level of CD8+ T cells in the blood during exacerbations, which is interpreted as extravasation of CD8+ T cells towards sites of inammation and lymphoid organs ( [START_REF] Freeman | dierentiation factor-15 (GDF-15) in peripheral blood[END_REF]), while another publication highlights an increased number of CD8+ T cells in the blood of COPD patients during exacerbation ( [START_REF] Chen | A Systematic Review of Diagnostic Biomarkers of COPD Exacerbation[END_REF]). In a mice model of viral exacerbation, an increase of up to 5 times in the number of lung CD8+ T cells was observed 4 days after infection, before quickly returning to normal 6 days after infection ( [START_REF] Ely | Memory T cell populations in the lung airways are maintained by continual recruitment[END_REF]).Overall, there therefore seems to be an inltration of CD8+ T cells during exacerbations, however this inltration seems to be very transient. For simplication, we will assume that there is no C cell inltration during exacerbations. Thus, for a healthy subject as well as for a patient with COPD the value of p iexaC is zero.

The dierent time scales

Let v 0 be the median speed of a C cell measured in lung tissue during 15 minutes, and its value has been xed accordingly to experimental measurements ( [START_REF] Mrass | Rock regulates the intermittent mode of interstitial t cell migration in inamed lungs[END_REF]). In this study, CD8+ T cells have been imaged and tracked in mice lungs using two-photon live imaging. During the 15 min time frame which is typically used to analyze T cell movement, CD8+ T cells have been found to move at a median speed of 2.3 µm/mn. This value is also consistent with other experimental measurements ( [START_REF] Hickman | CXCR3 chemokine receptor enables local CD8(+) T cell migration for the destruction of virus-infected cells[END_REF]). Therefore, we choose :

v 0 = 2.3 µm/mn.

(2.8)

Since we have no information on the in vivo speed of a F cell, we will assume that its speed is identical to that of a C cell. For an idealized cell modeled by a square with a side length x 0 = 7 µm, v 0 thus represents approximately a movement of one square (lattice site) every t 0 = 3 minutes. We therefore set the duration 

C cells, then N k = N k (C) + N k (F ). If a C
or F cell is added by inltration at the stable state (cf subsection 2.1.7) we consider however that it is not part of the N k initial cells, and cannot be drawn at random afterwards. It is therefore neither subject to death, nor to proliferation, nor to displacement during the time step k + 1, it is just considered as present.

We divide the time step k + 1 into N k sub-time steps. For each sub-time step, we randomly draw a cell among the N k present (with the probability 1/N k ). Several cases can occur.

1. If the selected cell is dead or if it is a C cell that gave birth to a new cell by proliferation in a previous sub-time step, nothing happens.

2. Assuming in the following that the selected cell is alive and is not a "mother" cell, we denote by (i, j) the site occupied by this cell. The cell attempts to die following the procedure described in Subsection 2.1.4.

3. Suppose that the randomly drawn cell does not die.

(a) If the selected cell is F , it moves according to the rule described in Section 2.1.6.

(b) If it is a C cell, i. it divides according to the procedure described in Section 2.1.5. If the cell proliferates, we consider that the cell that has been added is not part of the population of N k cells ;

ii. otherwise, it moves according to the rule described in Section 2.1.6.

When the N k subtime steps have been repeated independently we add to the initial population cells that are either born by proliferation or recruited by inltration. Dead cells are removed.

The number of cells is then N k+1 . We start a new cycle of N k+1 sub-time steps, as previously described. Therefore, over a time step, a given cell will on average die, move or divide (if it is a C cell). 

Markov property

We start by setting some notations.

Denition 2.2

1. For any k belonging to {1, • • • , T }, X k = X k (i, j) (i,j)∈L represents
the state of the lamina propria at the end of the k time step. According to item 3 of Notation 2.1, X k (i, j) = 1 (resp. X k (i, j) = 2) means that a F (resp. C) cell occupies the site (i, j) and X k (i, j) = 0 when the site (i, j) is empty. X k is a random variable which takes its values in {0, 1, 2} L .

2. ν 0 is the distribution of the initial state X 0 , its value will be given in Section 2.1.3

3. Let N k (C) (resp. N k (F ))
be the number of C (resp. F ) cells at the end of time step k.

We adopt the notations used in the theory of random processes : for any initial probability µ on {0, 1, 2} L , P µ represents the probability under which the law of X 0 is µ.

Proposition 2.3 (X k ) k≥0 is a recurrent, irreducible, a-periodic Markov chain that admits an unique invariant probability ν.

Proof. Note that

N k (F ) = (i,j)∈L 1 {X k (i,j)=1} , N k (C) = (i,j)∈L 1 {X k (i,j)=2} .
Therefore, if x = X k is known, the quantities N k (F ) and N k (C) are xed, as well as the composition of each neighbourhood. It is then possible to write X k+1 = F (X k , ξ), where F is a function and ξ = (ξ i ) i≥1 is a sequence of independent random variables and with uniform law on [0, 1], independent of X k . The Markovian property is immediately deduced from this.

It is straighforward to prove that the Markov chain is recurrent and irreducible. Since P x (X 1 =

x) > 0, for any x, it is a-periodic. Therefore (X k ) k≥0 admits a unique invariant probability.

To obtain the equilibrium state during simulations, one could think of using the Prott algorithm which allows to carry out exact simulations, see the seminal paper [START_REF] Propp | Exact sampling with coupled Markov chains and applications to statistical mechanics[END_REF]. The lamina propria has a nite number of sites but too many (3 652), this algorithm only works when a "sandwiching" hypothesis is realized, see Chap. 11 in [START_REF] Häggström | Finite Markov chains and algorithmic applications[END_REF]. Unfortunately, in our context this assumption is not satised.

Corollary 2.4 Let µ be an initial law on {0, 1, 2} L . The two sequences of random variables N k (F ) k≥0 and N k (F ) k≥0 converge in law when k tends to innity. Moreover there is convergence of the means :

lim k→∞ E µ N k (F ) = E ν N 0 (F ) , lim k→∞ E µ N k (C) = E ν N 0 (C) .
Proof. We only deal with F cells. Note that P µ N k (F ) = l = P µ X k ∈ A(l, F ) , where l is an integer and A(l, F ) = x, (i, j) ∈ L, such that x(i, j) = 1 = l . We deduce the convergence in law of N k (F ), as k → +∞. Moreover :

lim k→∞ E µ N k (F ) = lim k→∞ |L| l=0 l P µ X k ∈ A(l, F ) = |L| l=0 l P ν X k ∈ A(l, F ) = E ν N k (F ) = E ν N 0 (F ) .
Since we are interested in a large number of periods T ≈ 3.5 × 10 6 time-steps, we can consider that the Markov chain has reached its stationary state. This state depends only on the parameters and is independent from the initial distribution of cells.

The streamlined model

The streamlined model is a special case of the model, where local interactions, i.e. C cellinduced cell death and contact inhibition of C cell proliferation play no role. To reect these two properties, σ and λ have been xed respectively to 9 and 0. In the streamlined model, the probability p C that a C cell divide is zero (see justication below). In the streamlined model the parameters are :

σ = 9, p C = 0, λ = 0. (2.9) 
This means that C and F cell displacement, the stable inltration and that due to exacerbations (see Section 2.1.7, resp. 2.1.8) are identical to those in the complete model. However, C cells do not proliferate at all (i.e. p C = 0 and λ = 0) and die with the probability p dC independently of the local context (σ = 9).

Since the streamlined model is a special case of the interaction model, the results of Section 2.2 apply. In particular, the streamlined model is Markovian.

The major interest of the streamlined model is that it allows a rigourous mathematical analysis to accurately calculate parameters such as v 0 , p dC , p dF , x C , x F , p istaC , p istaF , p iexaF and N iexaF .

We now justify the choice p C = 0. Indeed, the cell cycle length of a C cell is highly variable, and it is dicult to obtain quantitative data at steady state. In so-called "nonlymphoid" tissues, such as the peribronchial area, activated C cells are unable to divide, although they are able to do so in vitro in response to the same antigenic stimulus ( [START_REF] Harris | Dierential T cell function and fate in lymph node and nonlymphoid tissues[END_REF]). After primary viral infection, a minor part of the memory C cells continues to proliferate in the secondary lymphoid organs after resolution of the infection, and are recruited in the lungs, which makes it possible to ensure a relatively constant quantity of memory C cells in the lungs ( [START_REF] Hogan | Long-term maintenance of virus-specic eector memory cd8+ t cells in the lung airways depends on proliferation[END_REF]). The major part of the antigen-specic memory eector C cells no longer divides in the lung. We will therefore consider that in the absence of any other stimulation, the probability p C that a C cell divide in the lamina propria is zero.

Algorithm implementation

Our algorithm (see section 2.1.10) is implemented in Julia, which allows to parallelize the computation sequences as well as to use graphic libraries, in order to produce drawings and videos illustrating step by step the evolution of a starting situation according to the biological parameters selected to launch the simulations. Our program is modular, in the sense that it is made up of reusable functions for the benet of users wishing to test other congurations involving dierent evolutionary laws. A complete version of the program can be downloaded from the following site :

https://plmbox.math.cnrs.fr/d/49bcbc1db63a4654be7e

3 Results

Determination of parameters via biological information

We will use the streamlined model for which a probabilistic analysis is possible to determine numerical values for the parameters ν 0 , p dC , p dF , x C , x F , p istaC , p istaF p iexaF and N (iexaF )

for healthy subjects and patients with COPD. We will proceed in two steps. For each parameter considered, we will start by stating a mathematical property formulated in the framework of the streamlined model. Then, the use of biological data will allow to deduce a numerical value of the parameter which will be used for the simulations. For ease of reading, the proofs are pushed back to Section 5.

The numerical values of the dierent parameters in the streamlined model are presented in Table 2, see Section 6.

Determination of p dC , p dC+ and p dF

We take into account that, for a healthy subject, the half-lives hl(C) and hl(F ) of C and F cells are known. Half-live is dened as the time required for the death of half a cell population.

Thank to cell tracing experiments in animal models, this time is relatively easy to measure.

Expressing the half-life of a cell as a function of its probability of dying over a 3mn-period is however non trivial, and is rigorously described below.

We consider a F cell at time 0 or a C cell at time 0 or just born. Let us note T (C) (resp.

T (F )) the life time of a C (resp. F ) cell and q 1/2 T (C) (resp. q 1/2 T (F ) ) its median. Recall that the median of a probability law is its quantile of order 1/2.

Proposition 3.1 We have

ln 2 ln 1/(1 -p dC ) ≤ q 1/2 T (C) ≤ 1 + ln 2 2(1 -p dC ) 2 + ln 2 ln 1/(1 -p dC ) (3.1) ln 2 ln 1/(1 -p dF ) ≤ q 1/2 T (F ) ≤ 1 + ln 2 2(1 -p dF ) 2 + ln 2 ln 1/(1 -p dF ) (3.2)
where x is the greatest integer less than or equal to x. Equation (3.1) (resp. (3.2)) gives a lower and an upper bound of the quantile of the half-life of a C (resp. F ) cell. It eectively allows to determine a value of p dC (resp. p dC ) as explained below. Indeed, it is known from the literature ( [START_REF] Mcmaster | Airway-resident memory cd8 t cells provide antigen-specic protection against respiratory virus challenge through rapid ifn-production[END_REF] and [START_REF] Schyns | Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung[END_REF]) that hl ctl (C) = 14 days = 6 720 time steps, hl ctl (F ) = 10 months = 144 000 time steps. (3.3) We choose p dC such that hl ctl (C) = ln 2 ln 1/(1-p dC ) and p dF so that hl ctl (F ) = ln 2 ln 1/(1-p dF ) , i.e.

p ctl dC = 1 -e -ln 2/hl ctl (C) ≈ 1.0 × 10 -4 , p ctl dF = 1 -e -ln 2/hl ctl (F ) ≈ 4.8 × 10 -6 .

(3.4)

For this choice of p ctl dC and p ctl dF we have : ln 2 2(1 -p ctl dC ) 2 ≈ 0.151 and ln 2 2(1 -p ctl dF ) 2 ≈ 0.151. We can thus deduce that the median of T (C) (resp. T (F )) is reasonably close to hl ctl (C) (resp. hl ctl (F )).

A study [START_REF] Siena | Reduced apoptosis of cd8+ t-lymphocytes in the airways of smokers with mild/moderate copd[END_REF] suggests a modication of the C cell death processes in tissues from patients with COPD, with a decrease by about half of the percentage of apoptotic C cells in the distal airways of mild to moderate COPD patients, which constitute the majority of our study cohort. In patients with COPD, we will therefore choose for each C cell the probability p COP D dC of dying equal to p COP D dC = p ctl dC /2 ≈ 5 × 10 -5 .

(3.5)

Our previous work [START_REF] Dupin | Fibrocyte accumulation in the airway walls of copd patients[END_REF] showed that the exposure of brocytes to the secretions of the bronchial epithelia from patients with COPD decreases by a factor 2 the percentage of dead cells .

Therefore we choose :

p COP D dF = p ctl dF /2 ≈ 2.4 × 10 -6 . (3.6)
In the streamlined model, which is a special case where local interactions play no role, σ is equal to 9 neighbors.

Studies show that lymphocyte cell death is increased by a factor 4 in a crowed environment ( [START_REF] Scheipers | Fas-independent death of activated cd4+ t lymphocytes induced by ctla-4 crosslinking[END_REF], [START_REF] Zenke | Quorum regulation via nested antagonistic feedback circuits mediated by the receptors cd28 and ctla-4 confers robustness to t cell population dynamics[END_REF]). We therefore choose : p dC+ = 4p dC . We thus obtain : The parameters x F and x C are terms involved in the denition of respectively P F (s, s ) and P C (s, s ), see (2.4) and (2.6). They are chosen such as the median speed of F and C cells is equal to 2.3 µm/mn, as describe below. Since C and F cells behave in a similar way, we will detail the following analysis only for F cells. Let α > 0 be a real number such that

p ctl dC+ =
P(Y α ≤ 4) = 1 2
, where Y α ∼ P(α).

(3.8)
It is easy to determine numerically the value of α, we nd α ≈ 4.67091.

Consider a F cell occupying the site s and which is alive and not completely surrounded. According to (2.4), F moves with probability p moveF = 1 -k F x F . Since α < 5, we can easily deduce from relation (2.5) that there is a unique x F such that

p moveF = 1 -k F x F = α 5 ≈ 0.9342. (3.9)
This leads to :

x F = 1 -α/5 α/5 s ∈M (s) f F V (C)(s ) 1 {s empty} , k F = α/5 s ∈M (s) f F V (C)(s ) 1 {s empty} . (3.10)
It is now possible to take into account the biological observation (2.8). During the 15 mn = 5×3 mn time intervals the F cell covers the distance of x 0 Z µm where Z = Z k (moveF

) + • • • + Z k+4 (moveF )
is the number of moves between the time steps k + 1 and k + 5 (recall from Section 2.1.2 that x 0 = 7 µm). It follows from Proposition 3.2 below that the law of Z is approximatively P(α). The speed of F is thus V (moveF ) = x 0 Z 15 µm/mn. Using (2.8) and

(3.8) we get :

P ν 0 V (moveF ) ≤ v 0 = P ν 0 (Z ≤ 4.93) = P ν 0 Z ≤ 4 = 1 2 .
Because the streamlined model is simple, we can give in Proposition 3. 

P |k ν 0 is B N k , (1-p dF )α 5N k
, where P |k ν 0 is the conditional expectation given X k .

(3.11) Proposition 3.2 We have :

P |k ν 0 Z k (moveF ) = Z k (moveF ) ≤ 1 N k E |k ν 0 Γ k (F ) (3.12)
where Γ k is the number of times F is fully surrounded during the time step k + 1.

We took k = 5 years = 876 000 time periods, because we estimated that beyond this date the stationary state is reached. We considered an additional period and we performed 100 simulations of this scheme. For each simulation, Γ k (C) = Γ k (F ) = 0 and the empirical mean of the 2/N k is 0.015.

From (3.12) we deduce that the conditional law of the random variable Z k (moveF ) is approxi- Remark 3.3 For the C cells, there is a formula similar to (3.12) which is obtained by replacing the letter F by C. The real numbers x C and k C are given by

matively B N k , (1-p dF )α
x C = 1 -α/5 α/5 s ∈M (s) f C V (s ) 1 {s empty} , k C = α/5 s ∈M (s) f C V (s ) 1 {s empty} . (3.13)

Determination of p istaF and p istaC

Recall that according to Corollary 2.4, for k large enough

E ν 0 N k (C) ≈ E ν N k (C) = E ν N 0 (C) , E ν 0 N k (F ) ≈ E ν N k (F ) = E ν N 0 (F ) (3.14)
where ν is the invariant probability.

However, the mean equilibrium values E ν N 0 (C) and E ν N 0 (F ) are unknown. We will select p istaC (resp. p istaF ) as a function of p dC and N 0 (C) (resp. p dF and N 0 (F )) in such a way that the number of C (resp. F ) cells is close to N 0 (C) (resp. N 0 (F )) at equilibrium. This result is based on a calculation of the expectation of N k (C) (resp. N k (F )) in terms of k and the model parameters. Proposition 3.4 We suppose that there is no inltration during exacerbations, i.e. N (iexaF ) = p iexaF = 0. Then for any k we have :

E ν 0 N k (C) = N 0 (C) - p istaC p dC (1 -p dC ) k + p istaC p dC + C k (3.15) E ν 0 N k (F ) = N 0 (F ) - p istaF p dF (1 -p dF ) k + p istaF p dF + F k (3.16)
where C k and F k are positive numbers such that

C k ≤ p dC 2 p istaC p dC (1 -p dC /2) + N 0 (C) , F k ≤ p dF 2 p istaF p dF (1 -p dF /2) + N 0 (F ) . (3.17) 
Remark 3.5

1. Since lim k→∞ (1 -p dC ) k = 0 (resp lim k→∞ (1 -p dF ) k = 0), then under the assumption that p dC (resp. p dF ) is small, the general formula (3.15) (resp. (3.16)) implies

E ν 0 N k (C) ≈ p istaC p dC , resp. E ν 0 N k (F ) ≈ p istaF p dF
for k large enough.

2. For healthy patients, we want to determine the parameters p istaF and p istaF in such a way that k → N k (C) and k → N k (F ) uctuate little (at least at equilibrium) and remain close to N 0 (C) and N 0 (F ) respectively. This leads us to take :

p ctl istaC = p ctl dC N 0 (C) = 1.18 × 10 -2 , p ctl istaF = p ctl dF N 0 (F ) = 9.12 × 10 -5 . (3.18)
We easily deduce that we have achieved our goal : Therefore the average number of C (resp. F ) cells, not counting those added by exacerbation, is close to N 0 (C) (resp. N 0 (F )).

E ν 0 N k (C) ≈ N 0 (C) and E ν 0 N k (F ) ≈ N 0 (F ), for k large enough.

Determination of N (iexaF ) and p iexaF for COPD patients

For simplication, we will assume that there is no C cell inltration during exacerbations. Then p iexaC = 0. Thus, for healthy subjects as well as for patients with COPD p ctl iexaC = p COP D iexaC = 0. Concerning F cells, the value of p iexaF depends closely on the condition of the subject. For a healthy subject, as there is no exacerbation, this probability is zero : p ctl iexaF = 0. For patients with COPD, we add N iexaF F cells with probability p iexaF every year, which is the average exacerbation frequency of patients with COPD. Recall that we have made the same assumption as for stable inltration : if we add N iexaF F cells at the beginning of a year, these cells are not active immediately and they have to wait for the next time step before being active. In agreement with in situ measurements ( [START_REF] Dupin | Fibrocyte accumulation in the airway walls of copd patients[END_REF]) the average number of F , after T time steps (i.e. 20 years), must be twice the number of F cells for a healthy subject. According to item 2 of Remark 3.5, for an healthy subject, the expected number of F cells is close to the initial number N 0 (F ) of F cells. Therefore the goal is to determine p iexaF and N (iexaF ) such that

E ν 0 N T (F ) = 2N 0 (F ). (3.19)
Let us introduce the real numbers K 1 , K 2 and R :

K 1 = 1 -(1 -p dF ) Ty 2N 0 (F ) -(1 -p dF ) T N 0 (F ) - p istaF p dF - p istaF p dF (3.20) 
K 2 = (1 -p dF ) Ty-1 1 -(1 -p dF ) T . (3.21) 
and

R = 1 1 -(1 -p dF ) Ty p istaF 2(1 -p dF /2) + p dF 2 p istaF + N (iexaF )p iexaF + p dF (1 + p dF ) 2 N 0 (F ) + p istaF p dF 1 -(1 -p dF ) Ty +(1 -p dF ) Ty-1 N (iexaF )p iexaF + p istaF 2(1 -p dF /2) + p dF 2 p istaF + N (iexaF )p iexaF 1 1 -(1 -p dF ) Ty -p dF (1 + p dF )/2 . ( 3.22) 
Proposition 3.6 We choose :

N (iexaF ) = K 1 K 2 + 1 (3.23)
and

p iexaF = 1 N (iexaF ) K 1 K 2 (3.24)
where T y = 175 200 is the number of time steps in a year. Then

0 ≤ E ν 0 N T (F ) -2N 0 (F ) ≤ R (3.25) Remark 3.7 1. N (iexaF )
is the smallest integer such that (3.24) holds.

2. Suppose that p istaF = p dF N 0 (F ), then Consequently, the expected number of F cells for COPD patients is reasonably close to 2N 0 (F ).

K 1 K 2 = N 0 (F ) 1 -(1 -p dF ) Ty (1 -p dF ) Ty-1 1 -(1 -p dF ) T .

Elements of simulation

Figure 3 shows the simulation results of brocytes and CD8+ T cells behaviors within the peribronchial area during 20 years, for healthy subjects and patients with COPD, obtained with the streamlined model. Initial cell densities were scaled with respect to reference values, corresponding to the mean densities experimentally measured in non-smoking subjects. All results in Figure 3 have been obtained from the simulations. Figure 3A represents snapshots of the peribronchial area with brocytes, and CD8+ T cells at the beginning and at the end of the simulations. The distributions of cells are non-uniform for healthy subjects as well as for COPD patients after 20 years (Figure 3A). An increased density of F cells as well as clusters of cells seems to be present in the sick condition (Figure 3A and movie 2). These properties are also visible on the movies 1 and 2. As these movies have been obtained 5 years after the beginning of the simulations, it shows that these particular repartitions are already present few years after the application of control or COPD dynamics. These movies also show important dynamic behavior, that would be dicult to reveal in any other way : some cells seem to form 

Movie legends

Cell dynamics within the peribronchial area, 5 years after the beginning the initial time, images of the simulations were recorded every 3 min during 24 hours. CD8+ T cells (C cells) and brocytes (F cells) are represented respectively by pink and green squares.

Movie 1 (resp. 2) : control (resp. COPD) situation.

Conclusion and discussion

In order to gain insights about the reasons for the breakdown of homeostasis that could emerge from slight deregulations of normal cellular processes in COPD, we developed a probabilistic cellular automaton mathematical model to replicate cell-scale properties of two dierent cell populations, brocytes and CD8+ T cells. It takes into account individual cell motility, death, proliferation and inltration processes with rules that are dependent on the local microenvironment. We assume that the diseased and healthy states are obtained for two distinct sets of parameters. We have introduced a simpler model in which one can mathematically compute probabilities of events or expectations of random variables of interest. This allowed to accurately derive the parameters according to biologically observations in human tissues and in vitro experiments. The results from the simulations suggest that modications of the parameters are sucient to generate an increased density of brocytes in the COPD situation compared to the healthy one, as well as dierent spatial distributions, which are consistent with in situ observations. This has not been achieved using any experimental approaches previously.

Several assumptions were made to simplify this initial model. Parameters were estimated from biological data using the streamlined model, and their validity in the complete model is unknown. Our Markov model does not take into account memory eects, which could play a role in disease onset and evolution. In addition, cell interactions inside tissues are far more complex than those considered in this system. In particular, it does not take into account all the other cells, such as epithelial cells, smooth muscle cells and other immune cells. Long-range eects, such as the attractive eect of the bronchial epithelium at the lumen border could be included by assigning dierent displacement probabilities based on the distance to the inner edge of the grid. Nevertheless, our model seems to us to be a very good starting version that we may improve.

This model does not only propose causal explanations for in situ observations, but we also anticipate it to be predictive. Promising perspectives of this study include the ability to test the reversibility of the pathological state, as well as the ecacy and therapeutic window of a potential treatment for COPD. Then

P |k ν 0 D k (C) = 1 -1 - p dC N k N k . ( 5.1) 
and

p dC - p 2 dC 2 ≤ P |k ν 0 D k (C) ≤ p dC . (5.2) 
where P |k ν 0 has been dened by (3.11).

Proof. To simplify the notations we denote by P = P |k ν 0 . Let B j be the event : "C is alive and does not die at the sub-time step j", 1 ≤ j ≤ N k . Then,

P B j B 1 ∩ • • • ∩ B j-1 = N k -1 N k + 1 N k (1 -p dC ) = 1 - p dC N k .
Reasoning by induction on j, we get : Consider a C cell which is born at time step k 0 -1 and which starts to be active at time step k 0 . Let T (C) be the lifetime of this cell, it is the rst integer k ≥ 1 such that the C cell dies at the time step k 0 -1 + k. By denition T (C) ≥ 1. The distribution of this variable is unknown.

P B 1 ∩ • • • ∩ B j = 1 - p dC N k j , 1 ≤ j ≤ N k . (5.3) Since D k (C) = B 1 ∩ • • • ∩ B N k , then (5.1) follows. Inequality (5.2) is a consequence of 1 -αx ≤ (1 -x) α ≤ 1 -αx + α(α -1) 2 x 2 , 0 ≤ x ≤ 1, α ≥ 1. 
However, thanks to (5.2), we can give an approximation of its distribution function.

Lemma 5.3 For any integer

k ≥ 0, (1 -p dC ) k ≤ P ν 0 T (C) > k ≤ 1 -p dC + p 2 dC 2 k (5.5) Proof. Set n = k 0 -1 + k, then P |n ν 0 T (C) > k + 1 = 1 {T (C)>k} 1 -P |n ν 0 D n (C) , k ≥ 0.
We take the expectation, using (5.2) we get :

(1 -p dC )P ν 0 T (C) > k ≤ P ν 0 T (C) > k + 1 ≤ 1 -p dC + p 2 dC 2 P ν 0 T (C) > k .
The double inequality (5.5) is obtained by reasoning by recurrence on the integer k.

Recall that the median of a random variable Y with integer values is its quantile of order 1/2 :

q 1/2 (Y ) = max k ≥ 1, P(Y ≤ k) ≤ 1 2 .
Lemma 5.4 Let 0 < a ≤ b < 1, and Y be a random variable which takes its values in {1, 2, • • • } and such that : (

Proof. For any 0 < ρ < 1, we have :

n ≥ ln 2 ln(1/ρ) + 1 ⇔ ρ n < 1 2 .

(5.8)

We take ρ = 1 -a and k = ln 2 ln(1/ρ) + 1. Relations (5.6) and (5.8) imply

1 -P(Y ≤ k) = P(Y > k) ≤ ρ k < 1 2 ⇒ P(Y ≤ k) > 1 2
⇒ q 1/2 (Y ) < k.

Similarly, with ρ = 1 -b et k = ln 2 ln(1/ρ) we get :

1 -P(Y ≤ k) = P(Y > k) ≥ ρ k ≥ 1 2 ⇒ P(Y ≤ k) ≤ 1 2 ⇒ k ≤ q 1/2 (Y ).
We now have all the elements to prove Proposition 3.1. We consider the relation (3.1) which only concerns the C cells. A direct use of inequalities (5.5) and (5.7) leads to : q -≤ q 1/2 T (C) ≤ q + , where :

q -= ln 2 ln 1/(1 -p dC )

, q + = ln 2 ln 1/ 1 -p dC + p 2 dC

2

.

By an easy calculation, we have :

q + -q -≤ 1 + ln 2 ln 1 -p dC + To obtain (3.1), it is enough to use ln(1 + x) < x, for any x > -1.

Proof of Proposition 3.2

If the F cell is never completely surrounded during time step k + 1, then Z k (moveF ) = Z k (moveF ). Otherwise, let us note i 1 , • • • , i r the sub-periods when the F cell is fully surrounded where r = Γ k (F ). Note that Z k (moveF ) = Z k (moveF ) means that there is no virtual move. Moreover the probability that a virtual shift occurs at time i j is 1

N k (1 -p dF ) α 5 .

Consequently

P |k ν 0 Z k (moveF ) = Z k (moveF ) i 1 , • • • , i r = 1 - 1 N k (1 -p dF ) α 5 Γ k (F )
.

Using (5.4) we have :

P |k ν 0 Z k (moveF ) < Z k (moveF ) ≤ 1 N k (1 -p dF ) α 5 E |k ν 0 Γ k (F ) ≤ 1 N k E |k ν 0 Γ k (F ) .

Proof of Proposition 3.4

We start with a lemma which will also be used in the proof of Proposition 3.6.

Lemma 5.5 Let 0 < λ < a < 1, λ 0 ≥ 0 and b > 0. We suppose that the two sequences of real numbers (x n ) n≥0 and (y n ) n≥1 satisfy

x n+1 = (1 -a)x n + b + y n+1 , n ≥ 0

(5.9) with x 0 ≥ 0 and 0 ≤ y n+1 ≤ λ 0 + λx n , n ≥ 0. (5.13)

Proof. We deduce from (5.9) and (5.10) :

x n+1 ≤ (1 -a + λ)x n + b + λ 0 , n ≥ 0.

Note that 0 < 1 -a + λ < 1. A direct induction reasoning allows to show 0 ≤ x n ≤ b + λ 0 a -λ + x 0 , n ≥ 0.

(5.14)

We suppose that (5.11) occurs and show that this equality is veried when n is changed into n + 1. Using both (5.9) and (5.10) we obtain : This shows (5.12) where n is changed into n + 1.

We only prove (3.16). According to the denition of the streamlined model :

E |k ν 0 N k+1 (F ) = N k (F ) + p istaF -N k (F )P |k ν 0 D k (F ) .
We take the expectation on both sides, we get The proof of Proposition 3.6 is based on the two lemmas 5.6 and 5.7.

E ν 0 N k+1 (F ) = (1 -p dF ) E ν 0 N k (F ) + p istaF + θ k+1
Lemma 5.6 For any 0 ≤ i ≤ 19 : 

E ν 0 N (i+1)

2. 1

 1 Model denition and notations 2.1.1 General denition CD8+ T cells and brocytes are noted respectively in the following C and F .

Figure 1 .

 1 Figure 1. The lamina propria L forms two 2-dimensional crown shape in the bronchial wall, between the bronchial epithelium and the smooth muscle layer. ECM : extracellular matrix.

  (a) If there is no F cell in M (s), the C cell attempts to divide with the probability p C . (b) If there is at least one F cell in M (s), the C cell attempts to divide with the probability p C/F .

  of a time step to 3 min. The time steps are denoted k, where 1 ≤ k ≤ T and T is the time it takes between the beginning of cigarette smoke exposure and the onset of the disease. The development of COPD takes several decades ([START_REF] Løkke | Developing COPD : a 25 year follow up study of the general population[END_REF]), we therefore choose arbitrary T equal to 20 years. As the time step in our model is 3min, T is expressed in iterations, and the value of T is :T = 20 × 365 × 24 × 20 =3 504 000 iterationsTo take into account cell death, proliferation, displacement, duplication of cells we use the procedure given in Section 2.1.10 : we divide each time step k in N k sub-time steps, where N k is the number of cells at the beginning of time step k. At each sub-time step, a cell is drawn at random and can die, proliferate or move. We will consider more nely that v 0 is a median in Proposition 3.2.2.1.10 The dynamics of C and F cellsLet us consider the beginning of the time step k + 1. There are N k (F ) F cells and N k (C)

  Inltration during exacerbation : Every year, i.e. after 175 200 time steps, we add a number N (iexaF ) of F cells with the probability p iexaF . If F cells are recruited by inltration during an exacerbation, they are randomly and uniformly positioned among all of the vacant sites. Cells that have inltrated in the meantime are added to the initial population. A new time step starts again as described above.

Figure 2 .

 2 Figure 2. Algorithm dening cell inltration, death, proliferation and displacement of cells at each time step. We consider the beginning of the time step k + 1. This period is divided into N k sub-time steps, where N k is the number of cells at the beginning of period k + 1. F and C

4p ctl dC ≈ 4 .0 × 10 - 4 , 2

 41042 Determination of x C and x F 1

.

  The distance between the binomial law B(a, b) and the Poisson distribution P(ab) is lower than δ = 2 min(2, ab)b (see the Prohorov's inequality, section III.7 in[START_REF] Shiryayev | Probability[END_REF]). In our case δ ≤ 2/N k . Relations (3.4), (3.5) and (3.6) as well as our 100 simulations imply that the binomial distribution B N k , (1-p dF )α 5N k can be accurately approximated by the Poisson distribution P(α/5).

3 .

 3 In pratice, in the COPD case, we choose to keep the relation p COP D istaC = p COP D dC N 0 (C) and as p dC is dierent in patients with COPD than in healthy subjects (cf (3.5)), we obtain p COP D istaC = p ctl istaC /2 = 5.9 × 10 -3 . The case of F cells is analogous, we choose p COP D istaF = p COP D dF N 0 (F ). Relation (3.6) leads to p COP D istaF = p ctl istaF /2 = 4.56 × 10 -5 .

3 .

 3 According to item 3 of Remark 3.5, p COP D istaF = 4.56×10 -5 . Then p COP D istaF = p COP D dF N 0 (F ) and N (iexaF ) = 10, p iexaF ≈ 0.993, R ≈ 4.3 × 10 -4 .

  clusters, which are relatively dynamic structures. New clusters are formed during the 24h-time frame of the movies and others are dissolving, whereas some clusters seem relatively stable over the time frame, especially in the COPD situation.Simulations allowed us to analyze the dynamics of cells over time. We represent in Figure3Bthe uctuations of k → N (C) k , where N (C) k is the empirical mean of the number of C cells for the month k. They are close to 118 in the healthy condition, which is equal to the initial number of C cells (N 0 (C) = 118). It corroborates the theoretical results, showing that after a sucient amount of time, the average number of C cells is close to N 0 (C) (cf Remark 3.5).Similar ndings are found in the COPD condition.To characterize the importance of cell death and inltration, we plotted the number of C cells (resp F cells) that have died (Figure3C, 3G) or inltrated (Figure3D, 3H) for each month. In agreement with experimental ndings ([START_REF] Siena | Reduced apoptosis of cd8+ t-lymphocytes in the airways of smokers with mild/moderate copd[END_REF]) taken into account in our model, cf (3.5), the death of C cells is reduced by two in COPD compared to control situation (Figure3C). In both situations, the inltration of C cells compensates C cell death (Figure3D-E). Furthermore, as expected, the number N (F ) k doubles after 20 years, from the control (mean N (F ) = 20) to the COPD condition (mean N (F ) = 40) (Figure3F). The change in N (F ) k in the COPD condition is mainly the consequence of the inltration of F cells during exacerbations (Figure3G-H), as shown by the cumulative numbers of F cells that have died and inltrated (Figure3I). This result was anticipated by our mathematical analysis, see Section 3.1.4, but the simulations allow us to show that the uctuations are reasonable and seem to reproduce patients heterogeneity.

Figure 3 .

 3 Figure 3. Simulation results of cell dynamics within the peribronchial area during 20 years, for healthy subjects and patients with COPD, obtained with the streamlined model. A) Selected representative pictures for control (top panels) and COPD (bottom panels) situations at initial state (left panels) and after 20 years (right panels). CD8+ T cells (C cells) and brocytes (F cells) are represented respectively by pink and green squares. Panels surrounded by grey : higher magnications of peribronchial area. B, F) Graphs showing the time variations of x → N (C) x in panel B (resp. x → N (F ) x in panel F), where N (C) x (resp. N (F ) x ) is the empirical mean of the number of C (resp. F ) cells for the month x. The average of N (C) x and N (F ) x over the 20 years-period are indicated by red lines. C, G) Graphs showing the variations of N x-1,x (dC) (panel C) and N x-1,x (dF ) (panel G) over time. N x-1,x (dC) and N x-1,x (dF ) are the number of C (resp. F ) cells that have died for the month x. D, H)

(5. 4 )Remark 5 . 2

 452 For a F cell, it is enough to change p dC into p dF and D k (C) into D k (F ) in the identities (5.1) and (5.2). The estimate provided by Lemma 5.1 will be used twice, in the proofs of Lemma 5.3 and Proposition 3.4 (see Section 5.3).

( 1 -

 1 b) k ≤ P(Y > k) ≤ (1 -a) k , ∀ k ≥ 0.

p 2 dC 2 ln( 1 -p dC ) ln 1 + p 2 dC 2 ( 1 -

 21221 p dC ) .

1 - 1 - 0 ( 5

 1105 (1 -a) n + (1 -a) n x 0 + n , n ≥ 0(5.11) where 0 = 0 and for any n ≥ 1,0 ≤ n ≤ 1 a (1 -a) n λ 0 + λ b + λ 0 a -λ + x

x n+1 = b a 1 -n+1 ≤ λ 0 1 a 1 - 1 -

 111 (1 -a) n+1 + (1 -a) n+1 x 0 + n+1 where n+1 = y n+1 + (1 -a) n . We set 0 = 0, a reasoning by recurrence allows to show n+1 = (1 -a) n+1 n k=0 y k+1 (1 -a) k+1 , n ≥ 1. Relations (5.10) and (5.14) imply : (1 -a) n+1 + λ b + λ 0 a -λ + x 0 × 1 a (1 -a) n+1 .

(5. 15 )0 ≤ θ k+1 ≤ p 2 dF 2 E

 1522 where θ k+1 = E ν 0 p dF -P|k ν 0 D k (F ) N k (F ) . According to Lemma 5.1 : ν 0 N k (F ) .Then applying Lemma 5.5 withx k = E ν 0 N k (F ) leads to E ν 0 N k (F ) = N 0 (F ) -p istaF p dF (1 -p dF ) k + p istaF p dF + k(5.16)and 0 ≤ k ≤ p dF 2 p istaF p dF (1-p dF /2) + N 0 (F ) .5.4 Proof of Proposition 3.6

  F and C cells belonging to M (s) V (F )(s) Number of F cells belonging to M (s) V (C)(s) Number of C cells belonging to M (s) General N k (F ) Number of F cells at the beginning of the time step k N k (C) Number of C cells at the beginning of the time step k p dF Probability for a F cell to die p dC Probability for a C cell to die Cell death p dC+ Increased probability for a C cell to die σ Threshold number of neighbouring C cells, above which the probability of dying is increased from p dC to p dC+ p F Probability for a F cell to divide p C Probability for a C cell to divide Cell p C/F Increased probability for a C cell to divide proliferation λ Threshold number of neighbouring C cells of an empty s site belonging to M (s), above which the considered C cell does not divide Symbols p ctl iexaC =p COP D iexaC N (iexaF ) ctl N (iexaF ) COP D N (ixaC)

  2.1.7 Inltration of C and F cells at the stable state F and C cells can inltrate the lungs at the stable state, as justied below.

  2 an accurate estimation of the law of Z. During a subperiod, if F is chosen, does not die and is completely surrounded, it cannot move, but we agree that it can have a virtual move with probability α/5. We note Z k (moveF ) (resp. Z k (moveF )) the number of real (resp. real and virtual) moves during the time-step k + 1. It is interesting to introduce the random variable Z k (moveF ) since its law under

  Since the cells C and F play symmetrical roles, it is sucient to consider a xed C cell. Let D k (C) be the event "C dies during N k sub-time steps of the time step k +1".

	5 Proofs of technical points
	5.1 Proof of Proposition 3.1
	We start with two preliminary lemmas 5.1 and 5.3.
	Lemma 5.1

  Ty (F ) = (1 -p dF ) Ty E ν 0 N iTy (F ) + p istaF p dF 1 -(1 -p dF ) Ty +(1 -p dF ) Ty-1 N (iexaF )p iexaF + η i+1 N iTy (F ) (5.18)where one year equals T y = 175 200 time steps.

							(5.17)
	and						
	0 ≤ η i+1 ≤	p istaF 2(1 -p dF /2)	+	p dF 2	p istaF +N (iexaF )p iexaF +	p dF (1 + p dF ) 2	E ν 0

Table 1 .

 1 Denition of the notations and parameters of the model

	6 Annex		
		Symbols	Meanings
	Surface	L	Lamina propria (=peribronchial area)
	of interest	x 0	Side length of the units of the lattice L
		M (s)	Neighbourhood of the site s
		V (s)	Number of
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Proof. 1) Let 0 ≤ i ≤ 19. We start from (5.15) and (5.16) and apply Lemma 5.5 with

x k = E ν 0 N k (F ) where iT y + 1 ≤ k ≤ (i + 1)T y : E ν 0 N (i+1)Ty (F ) = p istaF p dF 1-(1-p dF ) Ty-1 +(1-p dF ) Ty-1 E ν 0 N iTy+1 (F ) + Ty-1 (5.19) where 0 ≤ Ty-1 ≤ p dF 2

(5.20)

We add N (iexaF ) F cells with probability p iexaF , at the end of the time step iT y , reasoning as in the proof of Proposition 3.4, we have :

where

(5.22)

Synthesizing (5.19) and (5.21) we obtain (5.17) and 0 ≤ η i+1 = (1 -p dF ) Ty-1 θ 1 + Ty-1 ≤ θ 1 + Ty-1 .

Using (5.20), (5.21) and (5.22) we obtain :

Then inequality (5.18) follows directly. Lemma 5.7 We have :

where 0 ≤ 20 ≤ R and R has been dened by (3.22).

Proof. We apply Lemme 5.5 with

This shows (5.23). Moreover 0 ≤ ε 20 ≤ R .

We apply (5.23) and (3.24), we easily obtain :

This implies (3.25).

P F (s, s )

Probability for a F cell to go from s to s P C (s, s ) Probability for a C cell to go from s to s f F Function that is involved in the denition of P F (s, s ) and which is applied to V C (F )(s ) where s is empty, s = s and s ∈ M (s)

Cell f C Function that is involved in the denition of P C (s, s ) and which is applied to V (s ) where s is empty, s = s and s ∈ M (s)