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Highlights1

2

� Probabilistic Cellular Automata models �brocytes and CD8+ T cells interplay.3

� The parameters are estimated accurately from theoretical analysis and experiments.4

� The dynamics of cell populations is simulated within lungs over 20 years.5

� Two distinct patterns emerge, corresponding to the healthy and COPD situations.6
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Abstract1

The chronic obstructive pulmonary disease (COPD) is a highly prevalent lung disease, in2

which unusual interactions between �brocytes and CD8+ T lymphocytes in the peribronchial3

area could induce chronic in�ammation and tissue remodeling. We considered a probabilistic4

cellular automata type model where the two types of cells follow simple local interaction rules5

taking into account cell death, proliferation, migration and in�ltration. A rigorous mathe-6

matical analysis carried out within the framework of a streamlined model makes it possible7

to estimate with precision the parameters of the model using multiscale experimental data8

obtained in control and disease conditions. The simulation of the model is simple to be imple-9

mented. In simulations, two distinct patterns emerged, which can be analyzed quantitatively.10

In particular, we show that the change in �brocyte density in the COPD condition is mainly11

the consequence of their in�ltration into the lung during exacerbations, suggesting possible12

explanations for experimental observations in normal and COPD tissue. Our integrated ap-13

proach combining probabilistic cellular automata type model and experimental �ndings will14

provide further insights into COPD in future studies.15

Keywords :16

Fibrocytes, lymphocytes, chronic respiratory disease, local environment, Markov process, chro-17

nic in�ammation.18
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1 Introduction1

Chronic Obstructive Pulmonary Disease (COPD) is a chronic respiratory disease that2

a�ects adults over 40 years of age. The major risk factor is exposure to aerosolized pollutants,3

such as cigarette smoke. Patients with COPD often experience "exacerbations", which are4

periods of acute worsening of their respiratory symptoms. Exacerbations play an important5

role in the progression of the disease. COPD is characterized by chronic bronchial in�ammation6

of the airways and parenchyma.7

Changes in the structure of the tissue are also observed, such as lamina propria �brosis of the8

so-called "distal" bronchi, i.e. bronchi with a lumen diameter of less than 2 mm, leading to9

persistent air�ow obstruction ([20]). The understanding of the pathophysiological mechanisms10

of COPD has progressed thanks to animal models ([11]), in vitro studies ([23]), and expression11

analyses using bulk human lung tissue ([24]) and more recently at the single cell level ([2]).12

However, detailed knowledge of the crosstalks among multiple lung cell types and particularly13

their evolution along COPD development is still lacking, and treatments for COPD have seen14

minimal advances over the past decades ([52]).15

The bronchial wall is a complex structure, and comprises di�erent cell types, including both16

structural cells, such as �brocytes and �broblasts, and immune cells, such as lymphocytes and17

dendritic cells. These non-epithelial cells are sparse and they embedded in an extracellular18

matrix, which maintains the three-dimensional architecture of the lung by interconnecting19

cells, that do not adhere tightly to each other ([22]). Bronchi of COPD patients are in�ltrated20

with a large amount of lymphocytes, and in particular CD8+ T cells. The density of CD8+21

T cells in lung parenchyma and small airways inversely correlates with lung function, ([37]),22

suggesting the implication of CD8+ T cells in deleterious COPD evolution. On the other hand,23

we have previously shown in [6] that �brocytes, circulating cells with �broblastic properties,24

were present in increased levels in the blood of COPD patients at the time of an exacerbation25

and increased densities in the bronchi of COPD patients ([7] ).26

The deregulation of interactions between immune (including CD8+ T cells) and non-immune27

(including �brocytes) cells could be a hallmark of chronic in�ammation and tissue remodelling.28

In particular, it was recently shown that �brocytes could interact with CD8+ T cells and29

promote their proliferation ([1]), suggesting that the interplay between these two cell types30

could play a role in COPD onset and evolution.31

Nevertheless, we are very far from understanding how the system works at the population and32

tissue levels. Moreover, it is also di�cult to know how the disease disrupts this system. Our33

working hypothesis is the following : modi�cations of the local interactions between �brocytes34

and CD8+ T cells are the trigger to alter spatial distribution of cells, corresponding to the35

pathological state. This hypothesis is very di�cult to test experimentally. In vivo progressive36

air�ow obstruction is a complex and progressive process and an ideal model should take into37

account all types of cells and the associated cellular events. Therefore, we decided to build a38

mathematical model that only includes processes related to �brocytes and CD8+ T cells, on39

which information can be drawn from experimental data.40

The selected mathematical model and especially the simulations associated with it should allow41

to show how modi�cations of the local interaction rules lead to two distributions of �brocytes42

and CD8+ T cells, that di�er according to whether the subject considered is healthy or sick.43

Two-population mathematical models include deterministic models, which classically rely on44

predator-prey formulation. Deterministic models are particularly pertinent to describe biolo-45

gical systems such as tumorsphere growth. In these models, signi�cant insights and equations46
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underlying system dynamics have been partially obtained from experimental data, see for ins-1

tance [3]. These models are particularly useful to describe the behaviour of the system at the2

population level, but do not take into account the interactions at the single cell-level. Spatial3

variables, critical features in our problematic to predict the tissular architecture, are usually4

lacking in deterministic models. This, such an approach does not sound very appropriate to5

model cellular crosstalk in the peri-bronchial area, where experimental data are very scarce6

and mostly relate to results obtained on individual-level interactions between �brocytes and7

CD8+ T cells.8

The individual nature of cells can be taken into account by agent-based models, which9

allow to derive more easily the interaction rules from experimental data. O�-lattice models,10

such as center-based (CBM) and deformable-cell (DCM) models, are continuous-space agent-11

based models that can be formulated using discrete time steps ([53], [36]) or continuous time12

([38]). On-lattice models are spatially discrete models evolving in discrete time steps or in13

continuous time. For o�-lattice as for on-lattice models, displacement of a cell is deterministic14

and completely de�ned by its velocity ([36]). Interactions between cells in o�- and on-lattice15

models are taken into account by di�erent types of velocity alignment. Thus, those models16

appear especially adapted to study the emergence of pattern formation in multicellular systems17

from velocity alignment interactions among cells. Among agent-based models, Lattice Gas18

Cellular Automaton models (see Sections 5.4 and 7 in [5]) relies on both the explicit description19

on agent position and its velocity. Those type of models could be relevant to our needs [16]20

but they are mainly used to model single and collective migration.21

The framework of Probabilistic Cellular Automaton (PCA) seemed to us the most adapted22

to account for the local interactions of CD8+ T cells and �brocytes. PCA are discrete-time23

agent-based models, in which the state of the agents evolve with time according to stochastic24

rules. One can �nd in the two monographs [5] and [30] the de�nition of these PCA and25

theoretical models. CA and PCA are widely applicable for modelling systems like forest spread26

([32]), eco systems ([19]), natural patterns ([33]), neuronal networks ([42]), epidemic systems27

([10]). PCA have also been used in life sciences, for example to study adult neurogenesis28

for teleost �shes in [28] and cell di�erentiation in [50]. Interestingly, previous agent-based29

computational approaches have been used in the �eld of lung science to describe the allergic30

in�ammatory response ([39] and [40]) and airway remodelling in asthma ([44]). Thus, we31

decided to use PCA to model macroscopic behavior starting from microscopic interaction32

rules governing �brocytes and CD8+ T cells behaviours. In contrast to "classical" PCA, which33

evolves synchronously in discrete time and in which the updating concerns all the cells, we have34

made the cells evolve one after the other as in [12] and [25]. The probability that a cell moves,35

dies or proliferates depends on the number of cells present in a nearby neighbourhood. We will36

be able to access qualitative estimates of these probabilities thanks to data from the literature37

and from experiments : for example, we will be able to compare the attraction/proliferation38

potential of CD8+ T cells puri�ed from tissues/blood of healthy subjects or patients with39

COPD.40

Let us brie�y outline the organization of the paper. We describe in Section 2.1 the individual41

behavior of the CD8+ T cells and �brocytes and their mutual dynamics is presented in Section42

2.1.10. We show that our model is Markovian and ergodic in Section 2.2. We assume that for43

a healthy subject as for a sick subject, the same model applies, but with di�erent parameters.44

We introduce in Section 2.3 a streamlined model which is obtained for some speci�c values45

of the parameters. In this setting, a rigorous mathematical analysis makes it possible to both46

estimate the parameters and measure the quality of these estimates (see Section 3.1).47
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Our model can be simulated, we present in Section 3.2 some outputs of the simulations of1

the streamlined model. The conclusion and discussion are found in Section 4. The proofs of2

technical points are postponed in Section 5.3

2 Materials and methods4

2.1 Model de�nition and notations5

2.1.1 General de�nition6

CD8+ T cells and �brocytes are noted respectively in the following C and F .7

The model takes into consideration cell displacement, death, proliferation and in�ltration,8

that occurs at the stable state and during exacerbation. Indeed, C and F cells have a limited9

lifespan that depends on cell type and they can therefore be a�ected by cell death. When the10

cells are alive, C cells can move and proliferate, whereas F can only move (see Section 2.1.5).11

For the initial distribution, we used the mean density of non-smokers subjects, re�ecting the12

�healthy� situation.13

As stated in the introduction, in our model there are two types of subjects : those who14

are healthy and those who are a�ected by COPD. We make the assumption that these two15

situations can be represented by the same model, but with di�erent parameter values. To be16

able to simulate the model, it is necessary to obtain numerical values for these parameters.17

This will be achieved through biological experiments and data from literature. We denote by18

γctl (resp. γCOPD) the value of the parameter γ for a healthy (resp COPD) subject.19

All the parameters are de�ned below and summarized in Table 1 in Section 6.20

2.1.2 Representation of the surface of interest21

We consider a lattice, of dimension 103×103 where the area of each square is determined by22

the size of a cell (Figure 1). A C cell has a diameter of about 8 µm ([35] and our unpublished23

observations), giving a surface area of 50 µm2. The size is roughly equivalent for a F cell.24

Thus, the cells are modeled by squares with a side length x0 = 7 µm, which correspond to the25

units of the lattice. Each element of the lattice is de�ned by 2 coordinates, where the point26

on the upper left (resp. lower right) corner has the coordinates (1, 1) (resp. (103, 103)). The27

coordinates of the center of the lattice are (52, 52). The geometry of bronchi corresponds to28

the transverse section of a cylinder, then we model our surface of interest, the peribronchial29

(also called � lamina propria �), by a crown with a "hole" in the middle. The external and30

internal radii of this crown are de�ned thanks to our measurements on the bronchial tissues :31

1. the internal radius is 263 µm, which represents the length of 38 lattice sites. This has32

been calculated using our measurements of the corresponding disk (i.e. lumen area +33

epithelium surface), which is on average 216 567 µm2.34

2. The external radius is 355 µm, which represents the length of 50 lattice sites. This has35

been calculated using our measurements of the corresponding disk (i.e. lumen area +36

epithelium surface + lamina propria), which is on average 396 436 µm2.37

Then the lamina propria L is the set of points with coordinates (i, j) such that :

38 ≤ d̂
(
(i, j), (52, 52)

)
≤ 50
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where d̂ is the pseudo-distance : d̂
(
(i, j), (i′, j′)

)
=
⌊√

(i− i′)2 + (j − j′)2
⌋
and bxc stands1

for the integer part of the real number x. We thus obtain a working surface containing 3 6522

lattice sites (potential cells) corresponding to an area of approximately 179 000 µm2, which3

is in agreement with our in situ measurements. In other words, the number |L| of elements4

of L equals 3 652. Re�ecting (zero-�ux) boundary conditions are imposed at the external and5

internal borders. On each site, there is at most one cell.6

In the literature, it is described that bronchial wall thickness is increased in COPD patients,7

([20], [15]) but we did not observe this increase in our tissue measurements. We will consider8

the area of the lamina propria to be the same for healthy subjects and patients with COPD.9

10

Figure 1. The lamina propria L forms two 2-dimensional crown shape in the bronchial wall,11

between the bronchial epithelium and the smooth muscle layer. ECM : extracellular matrix.12

We now �x some notations.13

Notation 2.1 1. For any site (i, j) ∈ L,M(i, j) is the neighbourhood of (i, j), it is the set14

of (i−1, j−1), (i−1, j), (i−1, j+1), (i, j−1), (i, j+1), (i+1, j−1), (i+1, j), (i+1, j+1)15

belonging to L. For a site inside the lamina propria the cardinal of M(i, j) is 8 and16

lower if this site is at the edge of L. We will note in the following |M(i, j)| the number17

of elements of M(i, j). In the literature, Moore's neighbourhood is M(i, j) ∪ {(i, j)}.18

2. A site of L has the code 1 (resp. 2) if it contains a F (resp. C) cell. If the site is19

empty it will be coded 0. This state corresponds either to another cell type (mainly20

mesenchymal, that was hypothetized to interact minimally with �brocyte and CD8+ T21

cells) or to extracellular matrix, which does not play any role in the cellular cross-talk.22

This is the predominant state, as the bronchial wall contains structural and immune23

cells sparsely embedded in the extracellular matrix.24

3. A con�guration is an element x =
(
x(i, j)

)
(i,j)∈L where x(i, j) belongs to {0, 1, 2} and25

x(i, j) = 1 (resp. x(i, j) = 2) means that a F (resp. C) cell occupies the site (i, j) and26

x(i, j) = 0 when the site (i, j) is empty. The set of con�gurations is {0, 1, 2}L and is27

identi�ed with {0, 1, 2}|L|.28

4. For any s = (i, j), V (F )(s) (resp. V (C)(s)) denotes the number of F (resp. C) cells
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near s

V (F )(s) =
∑

s′∈M(s)

1{x(s′)=1}, V (C)(s) =
∑

s′∈M(s)

1{x(s′)=2}.

V (s) is the number of F and C cells close to s :

V (s) = V (F )(s) + V (C)(s) =
∑

s′∈M(s)

1{x(s′)=1 or 2} =
∑

s′∈M(s)

1{x(s′)6=0}.

2.1.3 The initial cell distribution1

For the initial distribution ν0, we �rst used the mean of the densities of C and F cells
measured on tissues from non-smokers subjects, re�ecting the �healthy� situation :

n0(C) = 0.660× 10−3cells /µm2 and n0(F ) = 0.106× 10−3 cells/µm2.

To obtain these densities with a lattice of 3 652 sites which represents an area of 3 652× 49 =
178 948 ≈ 179 000µm2, we will therefore consider

N0(C) = 0.660× 10−3 × 179 000 ≈ 118 C cells
N0(F ) = 0.106× 10−3 × 179 000 ≈ 19 F cells.

(2.1)

Second we choose the N0(C) (resp. N0(F )) C (resp. F ) cells uniformly distributed in the2

lamina propria.3

Random spatial representations can be obtained with determinantal point processes. We have4

not retained them because they rather model repulsive phenomenons and therefore they are5

not adapted to our interaction model. Moreover their simulation is delicate, see [26].6

2.1.4 Cell death7

C and F cells have a limited lifespan, which varies from cell to cell. When they are alive, they8

will be able to move or duplicate as explained in the following sections. In our algorithm (see9

Section 2.1.10), when a cell dies, it stays in place for a while and then disappears.10

We suppose that a F cell has a probability pdF of dying, see Figure S1.11

We de�ne for each C cell a "basal" probability pdC of dying, and an increased probability12

pdC+ of dying when the C cell has many other C cells in its neighbourhood. We distinguish13

two cases see Figure S1 :14

1. if C cell has few C neighbours (V (C)(s) < σ, where σ is an unknown integer), then15

this C cell attemps to die with the probability pdC16

2. If C cell has many C neighbours (V (C)(s) ≥ σ), then C cell attemps to die with the17

probability pdC+.18

The introduction of the probability pdC+ is justi�ed by a recent study ([55]) showing the19

existence of CD8+ T cell-population-intrinsic mechanisms regulating cellular behavior, with20

induction of apoptosis to avoid an excessive increase in T cell population. Therefore, we de�-21

ned σ, as the threshold number of neighbouring C cells, above which the probability of dying22

for a C cell is increased from pdC to pdC+.23

The numerical values of pdC , pdC+, σ and pdF will be presented in Section 3.1.1.24

25
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2.1.5 Proliferation of C cells1

Cells have the ability to duplicate. In our algorithm (see Section 2.1.10), when a cell2

divides, it gives birth to 2 daughter cells, with one staying at the place of the mother cell,3

and the other one being created in an empty site in the neighborhood of the mother cell. We4

de�ne for each F cell a probability pF of dividing. Based on our own unpublished observations5

and published studies ([29] and [46]), �brocytes (F cells) very poorly proliferate in culture,6

allowing us to consider that an F cell does not divide in lung tissue. We will thus consider7

that a F cell does not proliferate, so we will take pF = 0.8

For each C cell, we de�ne a "basal" probability pC of dividing and an increased probability9

pC/F of dividing when the C cell has F cell(s) in its neighbourhood. This latter probability10

is justi�ed as our unpublished results and those from another study ([1] et al., 2021) show a11

robust and high increase of C cell proliferation in direct co-cultures of F and C cells.12

Consider a C cell located in s (Figure S2). To re�ect contact inhibition that enables cells to13

stop proliferating when many of them are in contact with each other, we also introduce the14

threshold number λ, such that the proliferation of C does not occur if for any s′ neighbouring15

s, the number of C cells exceeds λ.16

1. In the following two cases17

(a) all sites in M(s) are occupied (i.e. V (s) = |M(s)|)18

(b) if all empty s′ sites belonging toM(s) have "many" C neighbours (i.e. V (C)(s′) ≥ λ,19

where λ is an integer to be speci�ed)20

the C cell does not divide.21

2. There exists at least one empty site s′ ∈M(s) such that V (C)(s′) < λ.22

(a) If there is no F cell in M(s), the C cell attempts to divide with the probability pC .23

(b) If there is at least one F cell in M(s), the C cell attempts to divide with the24

probability pC/F .25

If proliferation occurs, we decide that C remains in s and we uniformly choose an26

unoccupied site s′ belonging to M(s), such that V (C)(s′) < λ, on which we create a27

new cell.28

Since in the absence of stimulation, the major part of C cells do not divide in the lung
([18]), we will therefore consider that in the absence of any other stimulation, the probability
pC that a C cell divide in the peribronchial area is zero, for control subjects as well as COPD
patients :

pctlC = pCOPDC = 0. (2.2)

Previous studies indicate that the doubling time of C cells in vivo after a stimulation such
as a contact with a �brocyte is estimated around 4h ([54], [27]). We will consider an average
duration of 4h = 80×3min for a cell cycle of a C cell when a F cell is in its close environment.
For healthy subjects, the increased probability pC/F of dividing will therefore be taken equal
to 1/80. This probability is identical for control subjects and COPD patients :

pctlC/F = pCOPDC/F = 1/80 = 1.25× 10−2. (2.3)

9



2.1.6 Displacement of C and F cells1

C and F cells are able to move, as shown previously ([6], [35]). This process is taken into
account in the model, as described below.
Let s = (i, j) and s′ = (i′, j′) be two sites of the lamina propria. A cell can only move to a
site adjacent to the occupied site :

PF (s, s′) = PC(s, s′) = 0 if s′ 6∈M(s) ∪ {s} or s′ ∈M(s) and is occupied

where PF (s, s′) (resp. PC(s, s′)) denotes the probability that a F (resp. C) cell has to move
from s to s′.
Our chemotaxis experiments show that F cells are signi�cantly attracted towards the secretion
of C cells, whatever the condition of the subject (control or COPD). This leads us to take

PF (s, s′) =

{
kF fF

(
V (C)(s′)

)
if s′ ∈M(s) and s′ is empty

kFxF if s′ = s
(2.4)

where xF > 0, fF is a function de�ned on {0, 1, 2, · · · , 8} taking positive values and

kF =
1

xF +
∑

s′∈M(s) fF
(
V (C)(s′)

)
1{s′empty}

(2.5)

is the normalization factor such that PF (s, ·) is a probability.
Since this chemotactic e�ect requires soluble factors that have to be secreted in a su�cient
concentration, this justi�es an almost zero attraction (εF > 0 "small", arbitrarily chosen as
εF = 10−3) for s′ such as V (C)(s′) < 3 cells and a maximal and constant attraction for s′

such as V (C)(s′) = 3 or 4 cells. On the other hand, the attraction of the site s′ for a F cell
probably decreases when the site is too "crowded", because of physical hindrance and/or the
secretion of factors that are secreted when many C cells are aggregated. For control subjects,
we have thus chosen f ctlF (n) = 1 (resp. f ctlF (n) = εF ) if n ∈ {3, 4} (resp. n ∈ {0, 1, 2, 5, 6, 7, 8}).
Our chemotaxis experiments show that secretions from C cells isolated from parenchyma of
COPD patients are more attractive for F cells than those of C cells isolated from control
patients, indicating that a smaller number of C cells is required to attract F cells in patho-
logical condition than in healthy situation. For patients with COPD, we have thus chosen :
fCOPDF (n) = 1 (resp. fCOPDF (n) = εF ) if n ∈ {2, 3, 4} (resp. n ∈ {0, 1, 5, 6, 7, 8}).
We now consider the case of a C cell alive and occupying the site s. It will move to the site
s′ ∈M(s) ∪ {s}, with probability

PC(s, s′) =

{
kCfC

(
V (s′)

)
if s′ ∈M(s), s′ is empty

kCxC if s′ = s
(2.6)

with xC > 0, fC is a function de�ned on {0, 1, 2, · · · , 8} taking positive values and

kC =
1

xC +
∑

s′∈M(s) fC
(
V (s′)

)
1{s′empty}

(2.7)

is the normalization factor such that PC(s, ·) is a probability.2

Based on the same type of justi�cations than those used for F cells, f ctlC is the function de�ned3

on {0, 1, 2, 5, 6, 7, 8} such that f ctlC (n) = 1 (resp. f ctlC (n) = εC where εC = 10−3) if n ∈ {4, 5}4

(resp. n ∈ {0, 1, 2, 3, 6, 7, 8}). We will consider that fC is identical in control subjects and5

COPD patients, leading to f ctlC =fCOPDC , see Figure S4.6

The values of xF and xC will be determined in Section 3.1.2.7

8
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2.1.7 In�ltration of C and F cells at the stable state1

F and C cells can in�ltrate the lungs at the stable state, as justi�ed below.2

F cells have a limited lifespan in the lungs, with a half-life that we have estimated at 10 months3

in the lung, by analogy with the half-life of interstitial macrophages ([47]). Our previous work4

(cf [7]) indicates presence of F cells in the lungs, at varying densities in control subjects and5

COPD patients, suggesting in�ltration of F cells at stable state, in order to maintain this6

pulmonary pool relatively constant. This leads us to add F cells, for an healthy subject as for7

a COPD subject, to re�ect in�ltration into the lungs at the stable state.8

Since C cells have a limited lifespan in the airways, with an estimated half-life of 14 days in9

the lung ([34]), it has been proposed that the number of memory C cells in the lung tissue is10

maintained through continuous recruitment ([8] and [51]).11

We will add at the beginning of each 3mn time step, one F (resp. C) cell with probability12

pistaF (resp. pistaC) to take into account the phenomenon of in�ltration during the stable state.13

These probabilities will be determined from biological considerations (see Section 3.1.3). The14

choice of the value of 3mn will be justi�ed later in Section 2.1.9. If a cell is recruited, we15

randomly and uniformly position it among the empty sites. If there are no empty sites, no cell16

is added.17

2.1.8 In�ltration of F and C cells during exacerbations18

The process of in�ltration can be ampli�ed during exacerbations, which is an acute event19

speci�c of patients with COPD, and which is not happening in healthy subjects.20

Concerning F cells, in COPD patients, there is an increase in the concentration of F cells in21

the blood during exacerbations ([6]). In the lungs, the density of F cells is higher in tissues22

of COPD patients than in those of healthy subjects ([7]), suggesting that for COPD patients,23

F cells are recruited from the blood to the lungs at the time of exacerbations. The average24

frequency of exacerbations is one per year in patients with COPD ([21]). To take into account25

the excess of F cells in�ltration during this particular event, we will add, each year, a number26

N(iexaF ) of F cells, with the probability piexaF so that after 20 years, on average, the number27

of F cells in COPD patients is double than in healthy patients. If cells are added, they are28

placed uniformly on the empty sites of the lamina propria.29

30

Concerning C cells, the literature shows that there is probably an in�ltration of C cells31

in the lungs, especially in COPD patients ([9] and [43]), but whether this in�ltration occurs32

during exacerbations is not entirely clear. A study evidences an increased level of CD8+ T33

cells in the blood during exacerbations, which is interpreted as extravasation of CD8+ T cells34

towards sites of in�ammation and lymphoid organs ([9]), while another publication highlights35

an increased number of CD8+ T cells in the blood of COPD patients during exacerbation36

([4]). In a mice model of viral exacerbation, an increase of up to 5 times in the number of lung37

CD8+ T cells was observed 4 days after infection, before quickly returning to normal 6 days38

after infection ([8]).Overall, there therefore seems to be an in�ltration of CD8+ T cells during39

exacerbations, however this in�ltration seems to be very transient. For simpli�cation, we will40

assume that there is no C cell in�ltration during exacerbations. Thus, for a healthy subject41

as well as for a patient with COPD the value of piexaC is zero.42
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2.1.9 The di�erent time scales1

Let v0 be the median speed of a C cell measured in lung tissue during 15 minutes, and its
value has been �xed accordingly to experimental measurements ([35]). In this study, CD8+ T
cells have been imaged and tracked in mice lungs using two-photon live imaging. During the
15 min time frame which is typically used to analyze T cell movement, CD8+ T cells have
been found to move at a median speed of 2.3 µm/mn. This value is also consistent with other
experimental measurements ([17]). Therefore, we choose :

v0 = 2.3 µm/mn. (2.8)

Since we have no information on the in vivo speed of a F cell, we will assume that its speed
is identical to that of a C cell. For an idealized cell modeled by a square with a side length
x0 = 7 µm, v0 thus represents approximately a movement of one square (lattice site) every
t0 = 3 minutes. We therefore set the duration of a time step to 3 min.
The time steps are denoted k, where 1 ≤ k ≤ T and T is the time it takes between the
beginning of cigarette smoke exposure and the onset of the disease. The development of COPD
takes several decades ([31]), we therefore choose arbitrary T equal to 20 years. As the time
step in our model is 3min, T is expressed in iterations, and the value of T is :

T = 20× 365× 24× 20 = 3 504 000 iterations

To take into account cell death, proliferation, displacement, duplication of cells we use the2

procedure given in Section 2.1.10 : we divide each time step k in Nk sub-time steps, where Nk3

is the number of cells at the beginning of time step k. At each sub-time step, a cell is drawn4

at random and can die, proliferate or move. We will consider more �nely that v0 is a median5

in Proposition 3.2.6

2.1.10 The dynamics of C and F cells7

Let us consider the beginning of the time step k + 1. There are Nk(F ) F cells and Nk(C)8

C cells, then Nk = Nk(C) +Nk(F ). If a C or F cell is added by in�ltration at the stable state9

(cf subsection 2.1.7) we consider however that it is not part of the Nk initial cells, and cannot10

be drawn at random afterwards. It is therefore neither subject to death, nor to proliferation,11

nor to displacement during the time step k + 1, it is just considered as present.12

We divide the time step k + 1 into Nk sub-time steps. For each sub-time step, we randomly13

draw a cell among the Nk present (with the probability 1/Nk). Several cases can occur.14

1. If the selected cell is dead or if it is a C cell that gave birth to a new cell by proliferation15

in a previous sub-time step, nothing happens.16

2. Assuming in the following that the selected cell is alive and is not a "mother" cell, we17

denote by (i, j) the site occupied by this cell. The cell attempts to die following the18

procedure described in Subsection 2.1.4.19

3. Suppose that the randomly drawn cell does not die.20

(a) If the selected cell is F , it moves according to the rule described in Section 2.1.6.21

(b) If it is a C cell,22

i. it divides according to the procedure described in Section 2.1.5. If the cell prolife-23

rates, we consider that the cell that has been added is not part of the population24

of Nk cells ;25

12



ii. otherwise, it moves according to the rule described in Section 2.1.6.1

When the Nk subtime steps have been repeated independently we add to the initial population2

cells that are either born by proliferation or recruited by in�ltration. Dead cells are removed.3

The number of cells is then Nk+1. We start a new cycle of Nk+1 sub-time steps, as previously4

described. Therefore, over a time step, a given cell will on average die, move or divide (if it is5

a C cell).6

In�ltration during exacerbation : Every year, i.e. after 175 200 time steps, we add a number7

N(iexaF ) of F cells with the probability piexaF . If F cells are recruited by in�ltration during8

an exacerbation, they are randomly and uniformly positioned among all of the vacant sites.9

Cells that have in�ltrated in the meantime are added to the initial population. A new time10

step starts again as described above.11

12

Figure 2. Algorithm de�ning cell in�ltration, death, proliferation and displacement of cells at13

each time step. We consider the beginning of the time step k + 1. This period is divided into14

Nk sub-time steps, where Nk is the number of cells at the beginning of period k+ 1. F and C15

13



cells are indicated by respectively green and purple squares.1

2.2 Markov property2

We start by setting some notations.3

De�nition 2.2 1. For any k belonging to {1, · · · , T}, Xk =
(
Xk(i, j)

)
(i,j)∈L represents4

the state of the lamina propria at the end of the k time step. According to item 3 of5

Notation 2.1, Xk(i, j) = 1 (resp. Xk(i, j) = 2) means that a F (resp. C) cell occupies6

the site (i, j) and Xk(i, j) = 0 when the site (i, j) is empty. Xk is a random variable7

which takes its values in {0, 1, 2}L.8

2. ν0 is the distribution of the initial state X0, its value will be given in Section 2.1.39

3. Let Nk(C) (resp. Nk(F )) be the number of C (resp. F ) cells at the end of time step k.10

We adopt the notations used in the theory of random processes : for any initial probability µ11

on {0, 1, 2}L, Pµ represents the probability under which the law of X0 is µ.12

Proposition 2.3 (Xk)k≥0 is a recurrent, irreducible, a-periodic Markov chain that admits an13

unique invariant probability ν.14

Proof. Note that

Nk(F ) =
∑

(i,j)∈L

1{Xk(i,j)=1}, Nk(C) =
∑

(i,j)∈L

1{Xk(i,j)=2}.

Therefore, if x = Xk is known, the quantities Nk(F ) and Nk(C) are �xed, as well as the15

composition of each neighbourhood. It is then possible to write Xk+1 = F (Xk, ξ), where F is16

a function and ξ = (ξi)i≥1 is a sequence of independent random variables and with uniform17

law on [0, 1], independent of Xk. The Markovian property is immediately deduced from this.18

It is straighforward to prove that the Markov chain is recurrent and irreducible. Since Px(X1 =19

x) > 0, for any x, it is a-periodic. Therefore (Xk)k≥0 admits a unique invariant probability.20

To obtain the equilibrium state during simulations, one could think of using the Prott algo-21

rithm which allows to carry out exact simulations, see the seminal paper [41]. The lamina22

propria has a �nite number of sites but too many (3 652), this algorithm only works when a23

"sandwiching" hypothesis is realized, see Chap. 11 in [13]. Unfortunately, in our context this24

assumption is not satis�ed.25

Corollary 2.4 Let µ be an initial law on {0, 1, 2}L. The two sequences of random variables(
Nk(F )

)
k≥0

and
(
Nk(F )

)
k≥0

converge in law when k tends to in�nity. Moreover there is

convergence of the means :

lim
k→∞

Eµ
(
Nk(F )

)
= Eν

(
N0(F )

)
, lim

k→∞
Eµ
(
Nk(C)

)
= Eν

(
N0(C)

)
.

Proof. We only deal with F cells. Note that Pµ
(
Nk(F ) = l

)
= Pµ

(
Xk ∈ A(l, F )

)
, where26

l is an integer and A(l, F ) =
{
x, ]

{
(i, j) ∈ L, such that x(i, j) = 1

}
= l
}
. We deduce the27

14



convergence in law of Nk(F ), as k → +∞. Moreover :1

lim
k→∞

Eµ
(
Nk(F )

)
= lim

k→∞

( |L|∑
l=0

l Pµ
(
Xk ∈ A(l, F )

))

=

|L|∑
l=0

l Pν
(
Xk ∈ A(l, F )

)
= Eν

(
Nk(F )

)
= Eν

(
N0(F )

)
.

2

Since we are interested in a large number of periods T ≈ 3.5 × 106 time-steps, we can consi-3

der that the Markov chain has reached its stationary state. This state depends only on the4

parameters and is independent from the initial distribution of cells.5

2.3 The streamlined model6

The streamlined model is a special case of the model, where local interactions, i.e. C cell-
induced cell death and contact inhibition of C cell proliferation play no role. To re�ect these
two properties, σ and λ have been �xed respectively to 9 and 0. In the streamlined model, the
probability pC that a C cell divide is zero (see justi�cation below). In the streamlined model
the parameters are :

σ = 9, pC = 0, λ = 0. (2.9)

This means that C and F cell displacement, the stable in�ltration and that due to exacer-7

bations (see Section 2.1.7, resp. 2.1.8) are identical to those in the complete model. However,8

C cells do not proliferate at all (i.e. pC = 0 and λ = 0) and die with the probability pdC9

independently of the local context (σ = 9).10

Since the streamlined model is a special case of the interaction model, the results of Section11

2.2 apply. In particular, the streamlined model is Markovian.12

The major interest of the streamlined model is that it allows a rigourous mathematical analy-13

sis to accurately calculate parameters such as v0, pdC , pdF , xC , xF , pistaC , pistaF , piexaF and14

NiexaF .15

We now justify the choice pC = 0. Indeed, the cell cycle length of a C cell is highly variable,16

and it is di�cult to obtain quantitative data at steady state. In so-called "nonlymphoid"17

tissues, such as the peribronchial area, activated C cells are unable to divide, although they18

are able to do so in vitro in response to the same antigenic stimulus ([14]). After primary19

viral infection, a minor part of the memory C cells continues to proliferate in the secondary20

lymphoid organs after resolution of the infection, and are recruited in the lungs, which makes21

it possible to ensure a relatively constant quantity of memory C cells in the lungs ([18]). The22

major part of the antigen-speci�c memory e�ector C cells no longer divides in the lung. We23

will therefore consider that in the absence of any other stimulation, the probability pC that a24

C cell divide in the lamina propria is zero.25

2.4 Algorithm implementation26

Our algorithm (see section 2.1.10) is implemented in Julia, which allows to parallelize the27

computation sequences as well as to use graphic libraries, in order to produce drawings and28

15



videos illustrating step by step the evolution of a starting situation according to the biological1

parameters selected to launch the simulations. Our program is modular, in the sense that it2

is made up of reusable functions for the bene�t of users wishing to test other con�gurations3

involving di�erent evolutionary laws. A complete version of the program can be downloaded4

from the following site :5

https://plmbox.math.cnrs.fr/d/49bcbc1db63a4654be7e6

3 Results7

3.1 Determination of parameters via biological information8

We will use the streamlined model for which a probabilistic analysis is possible to determine9

numerical values for the parameters ν0, pdC , pdF , xC , xF , pistaC , pistaF piexaF and N(iexaF )10

for healthy subjects and patients with COPD. We will proceed in two steps. For each parameter11

considered, we will start by stating a mathematical property formulated in the framework of12

the streamlined model. Then, the use of biological data will allow to deduce a numerical value13

of the parameter which will be used for the simulations. For ease of reading, the proofs are14

pushed back to Section 5.15

The numerical values of the di�erent parameters in the streamlined model are presented in16

Table 2, see Section 6.17

3.1.1 Determination of pdC , pdC+ and pdF18

We take into account that, for a healthy subject, the half-lives hl(C) and hl(F ) of C and F19

cells are known. Half-live is de�ned as the time required for the death of half a cell population.20

Thank to cell tracing experiments in animal models, this time is relatively easy to measure.21

Expressing the half-life of a cell as a function of its probability of dying over a 3mn-period is22

however non trivial, and is rigorously described below.23

We consider a F cell at time 0 or a C cell at time 0 or just born. Let us note T (C) (resp.24

T (F )) the life time of a C (resp. F ) cell and q1/2

(
T (C)

)
(resp. q1/2

(
T (F )

)
) its median. Recall25

that the median of a probability law is its quantile of order 1/2.26

Proposition 3.1 We have27 ⌊ ln 2

ln
{

1/(1− pdC)
}⌋ ≤ q1/2

(
T (C)

)
≤ 1 +

ln 2

2(1− pdC)2
+
⌊ ln 2

ln
{

1/(1− pdC)
}⌋ (3.1)⌊ ln 2

ln
{

1/(1− pdF )
}⌋ ≤ q1/2

(
T (F )

)
≤ 1 +

ln 2

2(1− pdF )2
+
⌊ ln 2

ln
{

1/(1− pdF )
}⌋ (3.2)

where bxc is the greatest integer less than or equal to x.28

Equation (3.1) (resp. (3.2)) gives a lower and an upper bound of the quantile of the half-life
of a C (resp. F ) cell. It e�ectively allows to determine a value of pdC (resp. pdC) as explained
below. Indeed, it is known from the literature ([34] and [47]) that

hlctl(C) = 14 days = 6 720 time steps, hlctl(F ) = 10 months = 144 000 time steps. (3.3)

16



We choose pdC such that hlctl(C) = ln 2

ln
{

1/(1−pdC)
} and pdF so that hlctl(F ) = ln 2

ln
{

1/(1−pdF )
} ,

i.e.

pctldC = 1− e− ln 2/hlctl(C) ≈ 1.0× 10−4, pctldF = 1− e− ln 2/hlctl(F ) ≈ 4.8× 10−6. (3.4)

For this choice of pctldC and pctldF we have :
ln 2

2(1− pctldC)2
≈ 0.151 and

ln 2

2(1− pctldF )2
≈ 0.151.

We can thus deduce that the median of T (C) (resp. T (F )) is reasonably close to hlctl(C)
(resp. hlctl(F )).
A study [49] suggests a modi�cation of the C cell death processes in tissues from patients
with COPD, with a decrease by about half of the percentage of apoptotic C cells in the
distal airways of mild to moderate COPD patients, which constitute the majority of our study
cohort. In patients with COPD, we will therefore choose for each C cell the probability pCOPDdC

of dying equal to

pCOPDdC = pctldC/2 ≈ 5× 10−5. (3.5)

Our previous work [7] showed that the exposure of �brocytes to the secretions of the bronchial
epithelia from patients with COPD decreases by a factor 2 the percentage of dead cells .
Therefore we choose :

pCOPDdF = pctldF /2 ≈ 2.4× 10−6. (3.6)

In the streamlined model, which is a special case where local interactions play no role, σ is
equal to 9 neighbors.
Studies show that lymphocyte cell death is increased by a factor 4 in a crowed environment
([45], [55]). We therefore choose : pdC+ = 4pdC . We thus obtain :

pctldC+ = 4pctldC ≈ 4.0× 10−4, pCOPDdC+ = 4pCOPDdC ≈ 2.0× 10−4. (3.7)

3.1.2 Determination of xC and xF1

The parameters xF and xC are terms involved in the de�nition of respectively PF (s, s′)
and PC(s, s′), see (2.4) and (2.6). They are chosen such as the median speed of F and C cells
is equal to 2.3 µm/mn, as describe below.
Since C and F cells behave in a similar way, we will detail the following analysis only for F
cells. Let α > 0 be a real number such that

P(Yα ≤ 4) =
1

2
, where Yα ∼ P(α). (3.8)

It is easy to determine numerically the value of α, we �nd α ≈ 4.67091.
Consider a F cell occupying the site s and which is alive and not completely surrounded.
According to (2.4), F moves with probability pmoveF = 1− kFxF . Since α < 5, we can easily
deduce from relation (2.5) that there is a unique xF such that

pmoveF = 1− kFxF =
α

5
≈ 0.9342. (3.9)

This leads to :

xF =
1− α/5
α/5

( ∑
s′∈M(s)

fF
(
V (C)(s′)

)
1{s′empty}

)
, kF =

α/5∑
s′∈M(s) fF

(
V (C)(s′)

)
1{s′empty}

.
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(3.10)

It is now possible to take into account the biological observation (2.8). During the 15mn = 5×3
mn time intervals the F cell covers the distance of x0Z µm where Z = Zk(moveF ) + · · · +
Zk+4(moveF ) is the number of moves between the time steps k + 1 and k + 5 (recall from
Section 2.1.2 that x0 = 7 µm). It follows from Proposition 3.2 below that the law of Z is
approximatively P(α). The speed of F is thus V (moveF ) = x0Z

15 µm/mn. Using (2.8) and
(3.8) we get :

Pν0
(
V (moveF ) ≤ v0

)
= Pν0(Z ≤ 4.93) = Pν0

(
Z ≤ 4

)
=

1

2
.

Because the streamlined model is simple, we can give in Proposition 3.2 an accurate estimation
of the law of Z. During a subperiod, if F is chosen, does not die and is completely surrounded,
it cannot move, but we agree that it can have a virtual move with probability α/5. We note
Zk(moveF ) (resp. Z ′k(moveF )) the number of real (resp. real and virtual) moves during the
time-step k + 1. It is interesting to introduce the random variable Z ′k(moveF ) since its law

under P|kν0 is B
(
Nk,

(1−pdF )α
5Nk

)
, where

P|kν0 is the conditional expectation given Xk. (3.11)

Proposition 3.2 We have :

P|kν0
(
Zk(moveF ) 6= Z ′k(moveF )

)
≤ 1

Nk
E|kν0
(
Γk(F )

)
(3.12)

where Γk is the number of times F is fully surrounded during the time step k + 1.1

We took k = 5 years = 876 000 time periods, because we estimated that beyond this date2

the stationary state is reached. We considered an additional period and we performed 1003

simulations of this scheme. For each simulation, Γk(C) = Γk(F ) = 0 and the empirical mean4

of the 2/Nk is 0.015.5

From (3.12) we deduce that the conditional law of the random variable Zk(moveF ) is approxi-6

matively B
(
Nk,

(1−pdF )α
5Nk

)
. The distance between the binomial law B(a, b) and the Poisson7

distribution P(ab) is lower than δ = 2 min(2, ab)b (see the Prohorov's inequality, section III.78

in [48]). In our case δ ≤ 2/Nk. Relations (3.4), (3.5) and (3.6) as well as our 100 simulations9

imply that the binomial distribution B
(
Nk,

(1−pdF )α
5Nk

)
can be accurately approximated by the10

Poisson distribution P(α/5).11

12

Remark 3.3 For the C cells, there is a formula similar to (3.12) which is obtained by repla-

cing the letter F by C. The real numbers xC and kC are given by

xC =
1− α/5
α/5

( ∑
s′∈M(s)

fC
(
V (s′)

)
1{s′empty}

)
, kC =

α/5∑
s′∈M(s) fC

(
V (s′)

)
1{s′empty}

. (3.13)
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3.1.3 Determination of pistaF and pistaC1

Recall that according to Corollary 2.4, for k large enough

Eν0
(
Nk(C)

)
≈ Eν

(
Nk(C)

)
= Eν

(
N0(C)

)
, Eν0

(
Nk(F )

)
≈ Eν

(
Nk(F )

)
= Eν

(
N0(F )

)
(3.14)

where ν is the invariant probability.2

However, the mean equilibrium values Eν
(
N0(C)

)
and Eν

(
N0(F )

)
are unknown. We will select3

pistaC (resp. pistaF ) as a function of pdC and N0(C) (resp. pdF and N0(F )) in such a way that4

the number of C (resp. F ) cells is close to N0(C) (resp. N0(F )) at equilibrium. This result is5

based on a calculation of the expectation of Nk(C) (resp. Nk(F )) in terms of k and the model6

parameters.7

Proposition 3.4 We suppose that there is no in�ltration during exacerbations, i.e. N(iexaF ) =8

piexaF = 0. Then for any k we have :9

Eν0
(
Nk(C)

)
=

(
N0(C)− pistaC

pdC

)
(1− pdC)k +

pistaC
pdC

+ εCk (3.15)

Eν0
(
Nk(F )

)
=

(
N0(F )− pistaF

pdF

)
(1− pdF )k +

pistaF
pdF

+ εFk (3.16)

where εCk and εFk are positive numbers such that

εCk ≤
pdC
2

( pistaC
pdC(1− pdC/2)

+N0(C)
)
, εFk ≤

pdF
2

( pistaF
pdF (1− pdF /2)

+N0(F )
)
. (3.17)

Remark 3.5 1. Since lim
k→∞

(1 − pdC)k = 0 (resp lim
k→∞

(1 − pdF )k = 0), then under the

assumption that pdC (resp. pdF ) is small, the general formula (3.15) (resp. (3.16))
implies

Eν0
(
Nk(C)

)
≈ pistaC

pdC
,
(
resp. Eν0

(
Nk(F )

)
≈ pistaF

pdF

)
for k large enough.

2. For healthy patients, we want to determine the parameters pistaF and pistaF in such

a way that k 7→ Nk(C) and k 7→ Nk(F ) �uctuate little (at least at equilibrium) and

remain close to N0(C) and N0(F ) respectively. This leads us to take :

pctlistaC = pctldC N0(C) = 1.18× 10−2, pctlistaF = pctldF N0(F ) = 9.12× 10−5. (3.18)

We easily deduce that we have achieved our goal : Eν0
(
Nk(C)

)
≈ N0(C) and Eν0

(
Nk(F )

)
≈10

N0(F ), for k large enough.11

3. In pratice, in the COPD case, we choose to keep the relation pCOPDistaC = pCOPDdC N0(C)12

and as pdC is di�erent in patients with COPD than in healthy subjects (cf (3.5)), we13

obtain pCOPDistaC = pctlistaC/2 = 5.9× 10−3.14

The case of F cells is analogous, we choose pCOPDistaF = pCOPDdF N0(F ). Relation (3.6)15

leads to pCOPDistaF = pctlistaF /2 = 4.56× 10−5.16

Therefore the average number of C (resp. F ) cells, not counting those added by exacer-17

bation, is close to N0(C) (resp. N0(F )).18
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3.1.4 Determination of N(iexaF ) and piexaF for COPD patients1

For simpli�cation, we will assume that there is no C cell in�ltration during exacerbations.
Then piexaC = 0. Thus, for healthy subjects as well as for patients with COPD pctliexaC =
pCOPDiexaC = 0. Concerning F cells, the value of piexaF depends closely on the condition of the
subject. For a healthy subject, as there is no exacerbation, this probability is zero : pctliexaF = 0.
For patients with COPD, we add NiexaF F cells with probability piexaF every year, which is
the average exacerbation frequency of patients with COPD. Recall that we have made the
same assumption as for stable in�ltration : if we add NiexaF F cells at the beginning of a year,
these cells are not active immediately and they have to wait for the next time step before
being active. In agreement with in situ measurements ([7]) the average number of F , after T
time steps (i.e. 20 years), must be twice the number of F cells for a healthy subject.
According to item 2 of Remark 3.5, for an healthy subject, the expected number of F cells
is close to the initial number N0(F ) of F cells. Therefore the goal is to determine piexaF and
N(iexaF ) such that

Eν0
(
NT (F )

)
= 2N0(F ). (3.19)

Let us introduce the real numbers K1, K2 and R′ :2

K1 =
(
1− (1− pdF )Ty

)(
2N0(F )− (1− pdF )T

(
N0(F )− pistaF

pdF

)
− pistaF

pdF

)
(3.20)

K2 = (1− pdF )Ty−1
(
1− (1− pdF )T

)
. (3.21)

and

R′ =
1

1− (1− pdF )Ty

{
pistaF

2(1− pdF /2)
+
pdF
2

(
pistaF +N(iexaF )piexaF

)
+
pdF (1 + pdF )

2

[
N0(F ) +

(pistaF
pdF

(
1− (1− pdF )Ty

)
+(1− pdF )Ty−1N(iexaF )piexaF +

pistaF
2(1− pdF /2)

+
pdF
2

(
pistaF +N(iexaF )piexaF

)) 1

1− (1− pdF )Ty − pdF (1 + pdF )/2

]}
.

(3.22)

Proposition 3.6 We choose :

N(iexaF ) =
⌊K1

K2

⌋
+ 1 (3.23)

and

piexaF =
1

N(iexaF )

K1

K2
(3.24)

where Ty = 175 200 is the number of time steps in a year. Then

0 ≤ Eν0
(
NT (F )

)
− 2N0(F ) ≤ R′ (3.25)

Remark 3.7 1. N(iexaF ) is the smallest integer such that (3.24) holds.3

2. Suppose that pistaF = pdF N0(F ), then

K1

K2
=

N0(F )
(
1− (1− pdF )Ty

)
(1− pdF )Ty−1

(
1− (1− pdF )T

) .
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3. According to item 3 of Remark 3.5, pCOPDistaF = 4.56×10−5. Then pCOPDistaF = pCOPDdF N0(F )
and

N(iexaF ) = 10, piexaF ≈ 0.993, R′ ≈ 4.3× 10−4.

Consequently, the expected number of F cells for COPD patients is reasonably close to1

2N0(F ).2

3.2 Elements of simulation3

Figure 3 shows the simulation results of �brocytes and CD8+ T cells behaviors within the4

peribronchial area during 20 years, for healthy subjects and patients with COPD, obtained5

with the streamlined model. Initial cell densities were scaled with respect to reference values,6

corresponding to the mean densities experimentally measured in non-smoking subjects. All7

results in Figure 3 have been obtained from the simulations. Figure 3A represents snapshots8

of the peribronchial area with �brocytes, and CD8+ T cells at the beginning and at the end of9

the simulations. The distributions of cells are non-uniform for healthy subjects as well as for10

COPD patients after 20 years (Figure 3A). An increased density of F cells as well as clusters11

of cells seems to be present in the sick condition (Figure 3A and movie 2). These properties12

are also visible on the movies 1 and 2. As these movies have been obtained 5 years after the13

beginning of the simulations, it shows that these particular repartitions are already present few14

years after the application of control or COPD dynamics. These movies also show important15

dynamic behavior, that would be di�cult to reveal in any other way : some cells seem to form16

clusters, which are relatively dynamic structures. New clusters are formed during the 24h-time17

frame of the movies and others are dissolving, whereas some clusters seem relatively stable18

over the time frame, especially in the COPD situation.19

Simulations allowed us to analyze the dynamics of cells over time. We represent in Figure 3B20

the �uctuations of k → N(C)k, where N(C)k is the empirical mean of the number of C cells21

for the month k. They are close to 118 in the healthy condition, which is equal to the initial22

number of C cells (N0(C) = 118). It corroborates the theoretical results, showing that after23

a su�cient amount of time, the average number of C cells is close to N0(C) (cf Remark 3.5).24

Similar �ndings are found in the COPD condition.25

To characterize the importance of cell death and in�ltration, we plotted the number of C26

cells (resp F cells) that have died (Figure 3C, 3G) or in�ltrated (Figure 3D, 3H) for each27

month. In agreement with experimental �ndings ([49]) taken into account in our model, cf28

(3.5), the death of C cells is reduced by two in COPD compared to control situation (Figure29

3C). In both situations, the in�ltration of C cells compensates C cell death (Figure 3D-30

E). Furthermore, as expected, the number N(F )k doubles after 20 years, from the control31

(mean N(F ) = 20) to the COPD condition (mean N(F ) = 40) (Figure 3F). The change in32

N(F )k in the COPD condition is mainly the consequence of the in�ltration of F cells during33

exacerbations (Figure 3G-H), as shown by the cumulative numbers of F cells that have died34

and in�ltrated (Figure 3I). This result was anticipated by our mathematical analysis, see35

Section 3.1.4, but the simulations allow us to show that the �uctuations are reasonable and36

seem to reproduce patients heterogeneity.37
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1

Figure 3. Simulation results of cell dynamics within the peribronchial area during 20 years,2

for healthy subjects and patients with COPD, obtained with the streamlined model. A) Se-3

lected representative pictures for control (top panels) and COPD (bottom panels) situations4

at initial state (left panels) and after 20 years (right panels). CD8+ T cells (C cells) and5

�brocytes (F cells) are represented respectively by pink and green squares. Panels surrounded6

by grey : higher magni�cations of peribronchial area. B, F) Graphs showing the time varia-7

tions of x → N(C)x in panel B (resp. x → N(F )x in panel F), where N(C)x (resp. N(F )x)8

is the empirical mean of the number of C (resp. F ) cells for the month x. The average of9

N(C)x and N(F )x over the 20 years-period are indicated by red lines. C, G) Graphs sho-10

wing the variations of Nx−1,x(dC) (panel C) and Nx−1,x(dF ) (panel G) over time. Nx−1,x(dC)11

and Nx−1,x(dF ) are the number of C (resp. F ) cells that have died for the month x. D, H)12
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Graphs showing the variations of Nx−1,x(iC) (panel D) and Nx−1,x(iF ) (panel H) over time.1

Nx−1,x(iC) and Nx−1,x(iF ) are the number of C (resp. F ) cells that have in�ltrated the per-2

ibronchial area for the month x. The in�ltration at the stable state and during exacerbation3

are indicated respectively in blue and green. For control situation, there is no in�ltration by4

exacerbation. E, I) Cumulative distributions of the numbers of C cells Nx(dC) and F cells5

Nx(dF ) that have died during the month x (red curve), and the numbers of C cells Nx(iC)6

and F cells Nx(iF ) that have in�ltrated the surface of interest during the month x (blue7

curve).8

Movie legends9

Cell dynamics within the peribronchial area, 5 years after the beginning the initial time, images10

of the simulations were recorded every 3 min during 24 hours. CD8+ T cells (C cells) and11

�brocytes (F cells) are represented respectively by pink and green squares.12

Movie 1 (resp. 2) : control (resp. COPD) situation.13

4 Conclusion and discussion14

In order to gain insights about the reasons for the breakdown of homeostasis that could15

emerge from slight deregulations of normal cellular processes in COPD, we developed a proba-16

bilistic cellular automaton mathematical model to replicate cell-scale properties of two di�erent17

cell populations, �brocytes and CD8+ T cells. It takes into account individual cell motility,18

death, proliferation and in�ltration processes with rules that are dependent on the local mi-19

croenvironment. We assume that the diseased and healthy states are obtained for two distinct20

sets of parameters. We have introduced a simpler model in which one can mathematically21

compute probabilities of events or expectations of random variables of interest. This allowed22

to accurately derive the parameters according to biologically observations in human tissues23

and in vitro experiments. The results from the simulations suggest that modi�cations of the24

parameters are su�cient to generate an increased density of �brocytes in the COPD situation25

compared to the healthy one, as well as di�erent spatial distributions, which are consistent26

with in situ observations. This has not been achieved using any experimental approaches pre-27

viously.28

Several assumptions were made to simplify this initial model. Parameters were estimated from29

biological data using the streamlined model, and their validity in the complete model is unk-30

nown. Our Markov model does not take into account memory e�ects, which could play a role31

in disease onset and evolution. In addition, cell interactions inside tissues are far more complex32

than those considered in this system. In particular, it does not take into account all the other33

cells, such as epithelial cells, smooth muscle cells and other immune cells. Long-range e�ects,34

such as the attractive e�ect of the bronchial epithelium at the lumen border could be included35

by assigning di�erent displacement probabilities based on the distance to the inner edge of36

the grid. Nevertheless, our model seems to us to be a very good starting version that we may37

improve.38

This model does not only propose causal explanations for in situ observations, but we also39

anticipate it to be predictive. Promising perspectives of this study include the ability to test40

the reversibility of the pathological state, as well as the e�cacy and therapeutic window of a41

potential treatment for COPD.42
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5 Proofs of technical points1

5.1 Proof of Proposition 3.12

Since the cells C and F play symmetrical roles, it is su�cient to consider a �xed C cell.3

We start with two preliminary lemmas 5.1 and 5.3.4

Lemma 5.1 Let Dk(C) be the event "C dies during Nk sub-time steps of the time step k+1".
Then

P |kν0
(
Dk(C)

)
= 1−

(
1− pdC

Nk

)Nk

. (5.1)

and

pdC −
p2
dC

2
≤ P |kν0

(
Dk(C)

)
≤ pdC . (5.2)

where P
|k
ν0 has been de�ned by (3.11).5

Proof. To simplify the notations we denote by P = P
|k
ν0 . Let Bj be the event : "C is alive

and does not die at the sub-time step j", 1 ≤ j ≤ Nk. Then,

P
(
Bj
∣∣B1 ∩ · · · ∩Bj−1

)
=
Nk − 1

Nk
+

1

Nk
(1− pdC) = 1− pdC

Nk
.

Reasoning by induction on j, we get :

P
(
B1 ∩ · · · ∩Bj

)
=
(

1− pdC
Nk

)j
, 1 ≤ j ≤ Nk. (5.3)

Since Dk(C) = B1 ∩ · · · ∩BNk
, then (5.1) follows. Inequality (5.2) is a consequence of

1− αx ≤ (1− x)α ≤ 1− αx+
α(α− 1)

2
x2, 0 ≤ x ≤ 1, α ≥ 1. (5.4)

6

Remark 5.2 For a F cell, it is enough to change pdC into pdF and Dk(C) into Dk(F ) in the7

identities (5.1) and (5.2).8

The estimate provided by Lemma 5.1 will be used twice, in the proofs of Lemma 5.3 and9

Proposition 3.4 (see Section 5.3).10

Consider a C cell which is born at time step k0− 1 and which starts to be active at time step11

k0. Let T (C) be the lifetime of this cell, it is the �rst integer k ≥ 1 such that the C cell dies at12

the time step k0−1+k. By de�nition T (C) ≥ 1. The distribution of this variable is unknown.13

However, thanks to (5.2), we can give an approximation of its distribution function.14

Lemma 5.3 For any integer k ≥ 0,

(1− pdC)k ≤ Pν0
(
T (C) > k

)
≤
(

1− pdC +
p2
dC

2

)k
(5.5)
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Proof. Set n = k0 − 1 + k, then

P|nν0
(
T (C) > k + 1

)
= 1{T (C)>k}

(
1− P|nν0

(
Dn(C)

))
, k ≥ 0.

We take the expectation, using (5.2) we get :

(1− pdC)Pν0
(
T (C) > k

)
≤ Pν0

(
T (C) > k + 1

)
≤
(

1− pdC +
p2
dC

2

)
Pν0
(
T (C) > k

)
.

The double inequality (5.5) is obtained by reasoning by recurrence on the integer k.1

Recall that the median of a random variable Y with integer values is its quantile of order
1/2 :

q1/2(Y ) = max
{
k ≥ 1, P(Y ≤ k) ≤ 1

2

}
.

Lemma 5.4 Let 0 < a ≤ b < 1, and Y be a random variable which takes its values in

{1, 2, · · · } and such that :

(1− b)k ≤ P(Y > k) ≤ (1− a)k, ∀ k ≥ 0. (5.6)

Then ⌊ ln 2

ln(1/(1− b)

⌋
≤ q1/2(Y ) ≤

⌊ ln 2

ln(1/(1− a)

⌋
. (5.7)

Proof. For any 0 < ρ < 1, we have :

n ≥
⌊ ln 2

ln(1/ρ)

⌋
+ 1 ⇔ ρn <

1

2
. (5.8)

We take ρ = 1− a and k =
⌊ ln 2

ln(1/ρ)

⌋
+ 1. Relations (5.6) and (5.8) imply

1− P(Y ≤ k) = P(Y > k) ≤ ρk < 1

2
⇒ P(Y ≤ k) >

1

2
⇒ q1/2(Y ) < k.

Similarly, with ρ = 1− b et k =
⌊ ln 2

ln(1/ρ)

⌋
we get :

1− P(Y ≤ k) = P(Y > k) ≥ ρk ≥ 1

2
⇒ P(Y ≤ k) ≤ 1

2
⇒ k ≤ q1/2(Y ).

2

We now have all the elements to prove Proposition 3.1. We consider the relation (3.1) which
only concerns the C cells. A direct use of inequalities (5.5) and (5.7) leads to : q− ≤ q1/2

(
T (C)

)
≤

q+, where :

q− =
⌊ ln 2

ln
{

1/(1− pdC)
}⌋, q+ =

⌊ ln 2

ln
{

1/
(
1− pdC +

p2dC
2

)}⌋.
By an easy calculation, we have :

q+ − q− ≤ 1 +
ln 2

ln
(

1− pdC +
p2dC

2

)
ln(1− pdC)

ln
(

1 +
p2
dC

2(1− pdC)

)
.

To obtain (3.1), it is enough to use ln(1 + x) < x, for any x > −1.3
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5.2 Proof of Proposition 3.21

If the F cell is never completely surrounded during time step k + 1, then Zk(moveF ) =
Z ′k(moveF ). Otherwise, let us note i1, · · · , ir the sub-periods when the F cell is fully sur-
rounded where r = Γk(F ). Note that Zk(moveF ) = Z ′k(moveF ) means that there is no
virtual move. Moreover the probability that a virtual shift occurs at time ij is

1
Nk

(1− pdF )α5 .
Consequently

P|kν0
(
Zk(moveF ) = Z ′k(moveF )

∣∣i1, · · · , ir) =
(

1− 1

Nk
(1− pdF )

α

5

)Γk(F )
.

Using (5.4) we have :

P|kν0
(
Zk(moveF ) < Z ′k(moveF )

)
≤ 1

Nk
(1− pdF )

α

5
E|kν0
(
Γk(F )

)
≤ 1

Nk
E|kν0
(
Γk(F )

)
.

5.3 Proof of Proposition 3.42

We start with a lemma which will also be used in the proof of Proposition 3.6.3

Lemma 5.5 Let 0 < λ < a < 1, λ0 ≥ 0 and b > 0. We suppose that the two sequences of real

numbers (xn)n≥0 and (yn)n≥1 satisfy

xn+1 = (1− a)xn + b+ yn+1, n ≥ 0 (5.9)

with x0 ≥ 0 and

0 ≤ yn+1 ≤ λ0 + λxn, n ≥ 0. (5.10)

Then

xn =
b

a

(
1− (1− a)n

)
+ (1− a)nx0 + εn, n ≥ 0 (5.11)

where ε0 = 0 and for any n ≥ 1,4

0 ≤ εn ≤ 1

a

(
1− (1− a)n

)(
λ0 + λ

(b+ λ0

a− λ
+ x0

))
(5.12)

≤ 1

a

(
λ0 + λ

(b+ λ0

a− λ
+ x0

))
. (5.13)

Proof. We deduce from (5.9) and (5.10) :

xn+1 ≤ (1− a+ λ)xn + b+ λ0, n ≥ 0.

Note that 0 < 1− a+ λ < 1. A direct induction reasoning allows to show

0 ≤ xn ≤
b+ λ0

a− λ
+ x0, n ≥ 0. (5.14)

We suppose that (5.11) occurs and show that this equality is veri�ed when n is changed into
n+ 1. Using both (5.9) and (5.10) we obtain :

xn+1 =
b

a

(
1− (1− a)n+1

)
+ (1− a)n+1x0 + εn+1
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where εn+1 = yn+1 + (1− a)εn. We set ε0 = 0, a reasoning by recurrence allows to show

εn+1 = (1− a)n+1
( n∑
k=0

yk+1

(1− a)k+1

)
, n ≥ 1.

Relations (5.10) and (5.14) imply :

εn+1 ≤ λ0

[1

a

(
1− (1− a)n+1

)]
+ λ

[(b+ λ0

a− λ
+ x0

)
× 1

a

(
1− (1− a)n+1

)]
.

This shows (5.12) where n is changed into n+ 1.1

We only prove(3.16). According to the de�nition of the streamlined model :

E|kν0
(
Nk+1(F )

)
= Nk(F ) + pistaF −Nk(F )P |kν0

(
Dk(F )

)
.

We take the expectation on both sides, we get

Eν0
(
Nk+1(F )

)
= (1− pdF ) Eν0

(
Nk(F )

)
+ pistaF + θk+1 (5.15)

where θk+1 = Eν0
[(
pdF − P

|k
ν0

(
Dk(F )

))
Nk(F )

]
. According to Lemma 5.1 :

0 ≤ θk+1 ≤
p2
dF

2
Eν0
(
Nk(F )

)
.

Then applying Lemma 5.5 with xk = Eν0
(
Nk(F )

)
leads to

Eν0
(
Nk(F )

)
=
(
N0(F )− pistaF

pdF

)
(1− pdF )k +

pistaF
pdF

+ εk (5.16)

and 0 ≤ εk ≤ pdF
2

(
pistaF

pdF (1−pdF /2) +N0(F )
)
.2

5.4 Proof of Proposition 3.63

The proof of Proposition 3.6 is based on the two lemmas 5.6 and 5.7.4

Lemma 5.6 For any 0 ≤ i ≤ 19 :

Eν0
(
N(i+1)Ty(F )

)
= (1− pdF )Ty Eν0

(
NiTy(F )

)
+
pistaF
pdF

(
1− (1− pdF )Ty

)
+(1− pdF )Ty−1N(iexaF )piexaF + ηi+1

(5.17)

and

0 ≤ ηi+1 ≤
pistaF

2(1− pdF /2)
+
pdF
2

(
pistaF+N(iexaF )piexaF

)
+
pdF (1 + pdF )

2
Eν0
(
NiTy(F )

)
(5.18)

where one year equals Ty = 175 200 time steps.5
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Proof. 1) Let 0 ≤ i ≤ 19. We start from (5.15) and (5.16) and apply Lemma 5.5 with
xk = Eν0

(
Nk(F )

)
where iTy + 1 ≤ k ≤ (i+ 1)Ty :

Eν0
(
N(i+1)Ty(F )

)
=
pistaF
pdF

(
1−(1−pdF )Ty−1

)
+(1−pdF )Ty−1Eν0

(
NiTy+1(F )

)
+εTy−1 (5.19)

where

0 ≤ εTy−1 ≤
pdF
2

( pistaF
pdF (1− pdF /2)

+ Eν0
(
NCOPD
iTy+1 (F )

))
. (5.20)

We add N(iexaF ) F cells with probability piexaF , at the end of the time step iTy, reasoning
as in the proof of Proposition 3.4, we have :

Eν0
(
NiTy+1(F )

)
= (1− pdF ) Eν0

(
NiTy(F )

)
+ pistaF +N(iexaF )piexaF + θ1 (5.21)

where

0 ≤ θ1 ≤
(pdF )2

2
Eν0
(
NiTy(F )

)
. (5.22)

Synthesizing (5.19) and (5.21) we obtain (5.17) and 0 ≤ ηi+1 = (1 − pdF )Ty−1θ1 + εTy−1 ≤
θ1 + εTy−1.
Using (5.20), (5.21) and (5.22) we obtain :

εTy−1 ≤
pistaF

2(1− pdF /2)
+ ε∗

where1

ε∗ =
pdF
2

[
(1− pdF ) Eν0

(
NiTy(F )

)
+ pistaF +N(iexaF )piexaF + θ1

]
≤ pdF

2

[
pistaF +N(iexaF )piexaF

)
+ Eν0

(
NiTy(F )

)]
.

Then inequality (5.18) follows directly.2

Lemma 5.7 We have :

Eν0
(
NT (F )

)
=

pistaF
pdF

+ (1− pdF )T
(
N0(F )− pistaF

pdF

)
+

(1− pdF )Ty−1

1− (1− pdF )Ty

(
1− (1− pdF )T

)
N(iexaF )piexaF

)
+ ε′20

(5.23)

where 0 ≤ ε′20 ≤ R′ and R′ has been de�ned by (3.22).3

Proof. We apply Lemme 5.5 with xi = Eν0
(
NiTy(F )

)
and 0 ≤ i ≤ 20 :

Eν0
(
NT (F )

)
= (1− pdF )T

(
N0(F )− pistaF

pdF
− (1− pdF )Ty−1

1− (1− pdF )Ty
N(iexaF )piexaF

)
+
pistaF
pdF

+
(1− pdF )Ty−1

1− (1− pdF )Ty
N(iexaF )piexaF + ε′20

This shows (5.23). Moreover 0 ≤ ε′20 ≤ R′.4

We apply (5.23) and (3.24), we easily obtain :

Eν0
(
NT (F )

)
= 2N0(F ) + ε′20.

This implies (3.25).5
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6 Annex1

Table 1. De�nition of the notations and parameters of the model2

3

Symbols Meanings

Surface L Lamina propria (=peribronchial area)

of interest x0 Side length of the units of the lattice L

M(s) Neighbourhood of the site s

V (s) Number of F and C cells belonging to M(s)

V (F )(s) Number of F cells belonging to M(s)

V (C)(s) Number of C cells belonging to M(s)

General Nk(F ) Number of F cells at the beginning of the time step k

Nk(C) Number of C cells at the beginning of the time step k

pdF Probability for a F cell to die

pdC Probability for a C cell to die

Cell death pdC+ Increased probability for a C cell to die

σ Threshold number of neighbouring C cells, above which
the probability of dying is increased from pdC to pdC+

pF Probability for a F cell to divide

pC Probability for a C cell to divide

Cell pC/F Increased probability for a C cell to divide

proliferation λ Threshold number of neighbouring C cells of an empty s′ site belonging
to M(s), above which the considered C cell does not divide

4

5
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PF (s, s′) Probability for a F cell to go from s to s′

PC(s, s′) Probability for a C cell to go from s to s′

fF Function that is involved in the de�nition of PF (s, s′) and which is
applied to VC(F )(s′) where s′ is empty, s′ 6= s and s′ ∈M(s)

Cell fC Function that is involved in the de�nition of PC(s, s′) and which is
applied to V (s′) where s′ is empty, s′ 6= s and s′ ∈M(s)

displacement εF Value taken by fF to re�ect a low attraction

εC Value taken by fC to re�ect a low attraction

pistaF Probability for a F cell to get in�ltrated at the beginning of a
3 minutes time step

pistaC Probability for a C cell to get in�ltrated at the beginning of a
3 minutes time step

Cell in�ltration piexaF Probability for a F cell to get in�ltrated during an exacerbation

piexaC Probability for a C cell to get in�ltrated during an exacerbation

N(iexaF ) Number of F cell that are in�ltrated during an exacerbation

N(iexaC) Number of C cell that are in�ltrated during an exacerbation

1

Table 2. Numerical values of the streamlined model parameters depending in control and2

COPD situations3

Symbols x0 N0(F ) N0(C) pctldF pCOPDdF pctldC pCOPDdC

Numerical values 7 µm 19 118 4.8× 10−6 2.4× 10−6 10−4 5× 10−54

Symbols pctldC+ pCOPDdC+ σ pF pC pctlC/F = pCOPDC/F λ εF = εC

Numerical values 4× 10−4 2× 10−4 9 0 0 1.25× 10−2 0 10−35

6

Symbols pctlistaF pCOPDistaF pctlistaC pCOPDistaC pctliexaF pCOPDiexaF

Numerical values 9.12× 10−5 4.56× 10−5 1.18× 10−2 5.9× 10−3 0 9.93× 10−17
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Symbols pctliexaC=p
COPD
iexaC N(iexaF )ctl N(iexaF )COPD N(ixaC)

Numerical values 0 0 10 0
1
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