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Abstract—Rational agents’ decisions are driven by their inten-
tions, in the sense that agents execute actions that most probably
lead to situations where their intentions are achieved. Using that
insight, this paper proposes a method for ‘intention checking’:
let a description of a game, a state and the action executed by
the agent at that state be given, the method checks whether
the agent acted with the intention to reach a situation where
some proposition ‘p’ is true. We use a logic with epistemic and
temporal operators to reason about games and extend it with
an intention operator ‘IX’. Formulas of the form ‘IX(p)’ are
defined to be true in the situations where the intention check
method verifies that the agent acts with the intention to achieve
‘p’ in the next state of the game. We show that this operator
satisfies the principles of Bratman’s Asymmetry Thesis, and we
also compare it to other theories of intention.

Index Terms—Knowledge Representation and Reasoning, In-
tention, Alternating-time Temporal Logic

I. INTRODUCTION

The concept of intention has been widely studied in artificial
intelligence. It is one of the main components of BDI agent
architectures [1]–[3] and a vast literature focuses on its logical
properties and its links with actions, beliefs and desires.
Broadly-accepted theories of intention (e.g., [4], [5]) stipulate
that, unlike desires, intentions are rational attitudes: agents do
not intend to achieve what they know to be impossible. Games
in general and strategic games in particular, offer a controlled
environment where the goal of a rational agent is to win, or, at
least, to maximize utility. We take into consideration in this pa-
per both games with perfect and imperfect information. In such
games, rational agents’ decisions are driven by their intentions
in the sense that agents execute actions that most probably lead
to situations where their intentions are achieved. Therefore, it
is conceivable that, by observing agents’ behaviour, one could
use logical reasoning to calculate the intentions of rational
agents.

Different attempts have been made to link intentions, strate-
gies and games, for instance [6]–[8], or to define intentional
agents for a specific game [9]. None of them can be used to
analyze the intention of a rational agent post hoc. Indeed, in
such approaches, agent intentions are directly provided in the
model. In our approach, agent intentions are supposed to be
unknown and have to be determined.
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The aim of this paper is to propose logical foundations for
intention checking: let be given a description of a game, a state
and the action executed by the agent at that state, our method
checks whether the agent acted with the intention to reach a
situation where some proposition p is true. Intentions are to
be calculated given the information one can obtain from the
game, namely, what agents know in the game, game objectives
and how the agents played the game. We can determine agents’
knowledge in the game by analyzing their initial knowledge
and the information they obtain during the game.

In the present contribution, we first propose a definition for
the concept of intention in games. Then, we use a logic with
epistemic and temporal operators to reason about games and
extend it with an intention operator ‘IaiX

k’. Formulas of the
form IaiX

kφ are defined to be true in the exact situations where
the aforementioned method verifies that, when i executes a,
she intends to achieve φ after k steps. And finally, we compare
this operator with other logical theories of intention, such as
Shoham’s database perspective [5], and we also show that it
satisfies all principles of Bratman’s Asymmetry Thesis [4], as
well as Cohen and Levesque’s side-effect principle [10].

Our proposition can be used to provide a tool that helps an
expert understand the behaviour of a powerful game program
that cannot give an explanation of its choices (for example,
the moves played by AlphaZero [11]). The expert could, by
having access to the trace of the game, perform queries such
as ‘did the program play this move because it wished that
particular property to be true k turns later’ and thus exhibit
the tactical (even strategic) reasoning of the program.

The remainder of this article is organized as follows. The
next section (Sec. II) introduces the basic logical formalism
used throughout the paper. Section III defines the intention
checking method and explains it using various examples.
Section IV proposes an extension of the basic formalism and
studies a number of properties satisfied (or not) by our theory
of agent intention. The last section (Sec. V) concludes and
points out some perspectives.

II. PRELIMINARIES

A standard (game theoretic) definition of extensive-form
game can be found in several textbooks (e.g., [12], [13]).
However, logical theories of intention are usually formalized
in some kind of dynamic logic [10], temporal logic [1], [14],
or situation calculus [15]. The underlying logic must suit the



final purpose, but the particular syntax and semantics used is
not the main contribution we intend to make here.

We chose to use imperfect information concurrent game
structures (ICGS) [16] as models. These are an extension of
the concurrent game structures (CGS) proposed by [17] to
give semantics to alternating-time temporal logic (ATL). They
extend CGS with a family of equivalence relations ∼i between
states to model the information available to each agent i. If
two states are related by ∼i, then agent i cannot distinguish
them.

An ICGS is close to an imperfect information extensive-
form game, but there are three important differences. The first
one is that ICGS permit concurrent actions, meaning that all
agents act in every state of the game. Nonetheless, turn-based
games can be represented: if it is not agent i’s turn to play, then
it is possible to specify that the only executable action for i at
the given state is a “noop” (no-operation) action that does not
change anything. The second difference is that ICGS do not
have terminal states, i.e., all states have at least one executable
action for each agent. To fill this gap, we allow terminal states
in our models. The third difference is that ICGS do not have
utilities. Again, we fill the gap by adding utility functions to
our models.

Definition 1 (Game signature): A game signature is a triplet
(P,N,A), where:
• P is a nonempty countable set of propositional variables;
• N is a nonempty finite set of agents (or players);
• A is a nonempty finite set of atomic actions (sometimes

called moves or choices) available to agents.
Definition 2 (Model): Let a signature (P,N,A) be given. A

model is a tuple M = (W,π, d, δ,∼, u), where:
• W is a nonempty finite set of states;
• π :W → 2P is a valuation function;
• d : N × W → 2A is function assigning a set of legal

actions to each agent at each state of the model;
• δ : W × AN 9 W is a (partially defined) transition

function;
• ∼ : N → 2W×W is a family of equivalence relations

specifying the indistinguishable states to each agent;
• u : N × W × A 9 R is a (partially defined) utility

function assigning a real value to the execution of each
legal action by each agent at each state of the model.

A pointed model is a pair (M, w), where M is a model and
w is a state in M.

Note that our utility function is different from the one
in standard extensive-form games, where it is defined for
terminal states. Here, utilities are supposed to simulate the
output of an evaluation function of a game program. Examples
of well-known evaluation functions are minimax, alpha-beta,
and monte-carlo tree search algorithms. Moreover, some game
programs use heuristic functions to evaluate game positions.
Since that is the way such programs reason about the game,
when checking their intentions, u should implement the cor-
responding heuristic function.

To increase readability, we use several notational shortcuts
in the remainder of the paper: di(w) denotes d(i, w); D(w)

denotes the set of legal joint actions at w, i.e., D(w) = {α ∈
AN | α(i) ∈ di(w), for all i ∈ N}; δi(w, a) denotes the set
of states that the execution of action a by agent i can lead to,
i.e., δi(w, a) = {δ(w,α) ∈ W | α ∈ D(w) and α(i) = a};
w ∼i w

′ denotes (w,w′) ∈ ∼(i); [w]i denotes the set of states
that agent i cannot distinguish from w, i.e., [w]i = {w′ | w ∼i

w′}; and finally, ui(w, a) denotes u(i, w, a).
We assume that models also satisfy the following constraints

(both also present in [16]):

δ(w,α) is defined if and only if α ∈ D(w) (EXE)
If w ∼i w

′ then di(w) = di(w
′) (CKA)

The executability constraint (EXE) stipulates that, at each
state, the legal joint actions are those such that each individual
action is legal for each agent. This implies that agents choices
are independent from each other. In other words, the action
chosen by one agent cannot restrict the actions available to
another agent.

The complete knowledge about (available) actions con-
straint (CKA) (name given in [18]) means that the executable
actions available to each agent are the same among indis-
tinguishable states. This must be so, otherwise agents could
distinguish such states by the decisions they can make. It may
seem very restrictive. However, we do not know of a “real”
game where this constraint is not satisfied. Even Krieg-tic-
tac-toe (a blind version of tic-tac-toe) can be modelled by a
structure where actions correspond to trying to mark a cell,
instead of marking a cell. The action of trying to mark is
always allowed, but the result of its execution is different
depending on the actual situation.

We provide examples of models in the next sections (see
Fig. 1, 2, 3 and 4).

In Sec. IV-B, we prove some properties about the rela-
tion between agent intentions and knowledge in games. To
achieve this, we need a logical language to express such
properties. Therefore, we follow [18], [19] and define a kind
of alternating-time epistemic logic (ATEL). For our purposes
though, we do not need the full expressiveness of ATEL. We
only need what could be called the “next-fragment” of ATEL.
This is the basic language of our formalism.

Definition 3 (Basic Language): Let a game signature
(P,N,A) be given. The language L0 is the set of formulas φ
defined by the following grammar in BNF:

φ ::= > | p | ¬φ | φ ∨ φ | Kiφ | EXφ

where p ranges over P and i ranges over N . We use the
common abbreviations for the symbols ⊥, ∧,→,↔, and AXφ
abbreviates ¬EX¬φ.

A formula of the form Kiφ is read ‘agent i knows that φ is
true’. A formula of the form EXφ is read ‘φ is true after the
execution of some joint action α’. Consequently, a formula of
the form AXφ is read ‘φ is true after the execution of any
executable joint action α’. Operators EX and AX have been
inspired by operators ‘all‘ (A) ‘exists’ (E) and ‘next’ (X) of
computation tree logic (CTL) [20]. They also have analogous
semantics.



Definition 4 (Basic Satisfaction Relation): The satisfaction
relation � between pointed models and formulas in L0 is
defined recursively, as follows:

M, w � > (always)
M, w � p iff π(w)(p) = 1

M, w � ¬φ iff M, w 2 φ
M, w � φ ∨ ψ iff M, w � φ or M, w � ψ

M, w � Kiφ iff for all w′ ∈ [w]i we have M, w′ � φ

M, w � EXφ iff there is α ∈ D(w) s.t. M, δ(w,α) � φ

When M is clear from the context, we sometimes write
w � φ instead of (M, w) � φ. We also use [[φ]]M to denote
the extension of φ in M, i.e., [[φ]]M = {w | M, w � φ}.

LetM be the model in Fig. 2. We have, e.g., w1 � ¬(p∨q),
meaning that both p and q are false at w1, w0 � AX¬(p∨ q),
meaning that both p and q are false after the execution of any
action at w0, and w0 � ¬KiAX¬(p∨q) means that i does not
know that both p and q are false after the execution of any
action at w0.

Definition 5 (Validity and Satisfiability): A formula φ ∈ L0

is valid (noted � φ) iff (M, w) � φ, for all pointed models
(M, w). A formula φ ∈ L0 is satisfiable iff 2 ¬φ.

Examples of valid formulas include the axioms of modal
logic S5 for the knowledge operator: Ki(φ→ ψ)→ (Kiφ→
Kiψ), Kiφ → φ, and ¬Kiφ → Ki¬Kiφ, as well as modal
logic axiom K for the dual of the temporal operator: AX(φ→
ψ)→ (AXφ→ AXψ).

The logic proposed here is similar to several other logics
proposed to model agents’ intentions, namely, all those men-
tioned in the beginning of the section. For instance, Khan and
Lespérance’s approach [15] also defines transition function
for actions and accessibility relations for knowledge. Being
a version of situation calculus (thus a fragment of FOL), their
formalism is more expressive than ours, but has less attractive
computational complexity. The parametrized-time action logic
(PAL) by van Zee et al. [14] is a modal logic, like ours, but it
is a single-agent formalism, which is obviously inadequate to
represent games. In addition, PAL represents agent’s beliefs
with belief databases and does not have the knowledge (or
rather belief) operator in the language.

III. INTENTION

Suppose that one wants to know whether, at a given state
w of a game, agent i acts with the intention to achieve φ after
k steps. We propose that the answer to this question is yes
when the agent decides to execute an action a such that the
following four conditions are true.
Conditions of Intention:

1) From the agent’s perspective, action a is among the best
ones to achieve φ. We consider this as the most basic
principle of intention. We believe that one can conclude
that an agent acts with the intention to achieve φ only
when the agent decides to execute one of the actions
that the agent thinks have the best chance to achieve φ.

2) From the agent’s perspective, action a possibly leads to
φ. Indeed, if the opposite is known to be true (i.e., a
is known to lead to ¬φ) then clearly, the agent is not
acting with the intention to achieve φ.

3) From the agent’s perspective, there is an option that
may prevent φ, i.e., there is a different action b that
could lead to ¬φ. If there is no such alternative, then
it is not possible to conclude that the agent has the
intention to achieve φ, because φ would be unavoidable.
This condition is inspired by some theories of action
(e.g., [21]), which stipulate that choice (which relates
to intention) only exists when it is possible to “do
otherwise”.

4) From the agent’s perspective, action a is not one of the
best to achieve ¬φ. If this is not true, the agent’s decision
is ambiguous with respect to φ and ¬φ. We believe that
in such a case, it is not possible to conclude whether the
agent acts with the intention to achieve φ or ¬φ.

In the sequel, we describe a method that implements these
conditions. To do so, we give a formal definition for the
‘best actions to achieve φ’. It is done by calculating what
we call here ‘actions success rates’. Intuitively, it corresponds
to the number of times an individual action a achieves φ
over the number of all possible outcomes of a. Albeit joint
actions are deterministic, individual actions have several pos-
sible outcomes (i.e., δi(w, a) is a set), because the actual
outcome depends on the actions executed at the same time
by the other agents of the scenario. Now, assuming that
sr : N ×W × A × N × L0 → [0, 1] is such a success rate
function, agent intentions can be formally defined as follows.

Definition 6 (Intention): Let maxsri(w, k, φ) denote the
maximum action success rate to achieve φ after k steps, i.e.,
the maximum of the set {0} ∪ {sri(w, a, k, φ) | a ∈ di(w)}.
Agent i acts with the intention to achieve φ after k steps from
state w if and only if i executes an action a ∈ A for which
all conditions below are true:

sri(w, a, k, φ) ≥ maxsri(w, k, φ) (1)
∃b ∈ di(w) s.t. sri(w, b, k, φ) < maxsri(w, k, φ) (2)

sri(w, a, k,¬φ) = 0 or
sri(w, a, k,¬φ) < maxsri(w, k,¬φ)

(3)

Equation 1 (resp. 2 and 3) in Def. 6 formalizes Cond. 1
(ref. 3 and 4) saw earlier. Also note that Eq. 1 and 2 together
imply sri(w, a, k, φ) > 0, which corresponds to Cond. 2.
Therefore, Def. 6 formalizes the four conditions of intention
introduced previously.

The formal definition of the action success rate function sr
is given in Table I. Because this is a long and complicated
definition, the next three subsections are entirely devoted to
explain the intuitions underlying it. We start with simple
scenarios and then generalize them for more complicated ones
step by step.

A. Perfect Information Single-agent Scenarios
Let us first assume a perfect information single-agent sce-

nario. That is, assume models where N and [w]i are singletons.



TABLE I
SUCCESS RATE FUNCTION DEFINITION

Action success rate: sri(w, a, k, φ) = avgw′∈[w]i
{sr′i(w′, a, k, φ)}

where:

sr′i(w, a, k, φ) =

 avg
α∈bjaci(w,a)

{vi(δ(w,α), k − 1, φ)}, if a ∈ di(w)

0, otherwise

State value:

vi(w, k, φ) =

{
pr([w]i, φ), if k = 0

maxa∈A{avgw′∈[w]i
{sri(w′, a, k, φ)}}, if k > 0

Presence ratio: pr([w]i, φ) =
|[w]i∩[[φ]]M|

|[w]i|

Best joint actions: bjaci(w, a) = {a} ×
∏
j∈N\{i} bacj(w)

Best action: baci(w) = argmaxa∈di(w){E [ui(w, a)]}
Expected action utility: E [ui(w, a)] = avgw′∈[w]i

{ui(w′, a)}

In such cases, the action success rate function sr is defined as
follows:

sri(w, a, k, φ) =

{
vi(δi(w, a), k − 1, φ), if a ∈ di(w)
0, otherwise

vi(w, k, φ) =


0, if k = 0 and w 6∈ [[φ]]M

1, if k = 0 and w ∈ [[φ]]M

max
a∈A
{sri(w, a, k, φ)}, if k > 0

In words, the success rate of an action a equals the value
of the state δi(w, a), which is the maximum success rate of
all i’s actions at that state. That is, the success rate of a is
either 0 or 1, according to whether δi(a,w) lays on a path to
φ after k steps. The values are always 0 or 1 because in this
kind of scenario the future is completely foreseeable by the
agent, which means that the agent only needs to calculate the
outcomes of actions to decide what to do.

Example 1: In the model depicted in Fig. 1, we have:

sri(w0, a, 1,¬p) = vi(w1, 0,¬p) = 1

sri(w0, b, 1,¬p) = vi(w2, 0,¬p) = 0

sri(w0, a, 1, p) = vi(w1, 0, p) = 0

sri(w0, b, 1, p) = vi(w2, 0, p) = 1

If i executes a at w0, then i acts with the intention to achieve
¬p after 1 step. Indeed, all conditions are satisfied: a is the
best action to achieve ¬p, there is another action that could
achieve p and a is not one of the best actions to achieve p.

The reader may also verify that, if i executes a, then i also
acts with the intention to achieve > after 2 steps. This means
that the agent acts with the intention to make the game lasts
for one more step. Again, this is true because action a is the
best one to achieve > after 2 steps, there is another action
which does not have that result and a is not one of the best
to achieve ¬> after 2 steps.

We cannot conclude that i acts with the intention to achieve
p after 2 steps nor that the agent acts with the intention to
achieve ¬p after 2 steps. The reason is that a is the best action

w0

0

w1

1
w2

1

w3

0
w4

a

b

a

b

Fig. 1. The model of a perfect information single-agent game. Rectangles
represent states. The numbers are the truth values of p. The valuation at the
empty rectangle is irrelevant for the example. Arrows represent actions. There
are three actions available: a, b and c. Action c is illegal at all states.

to achieve both results after 2 steps. Finally, the agent has no
intention after 3 steps. That is, there is no formula φ ∈ L0 for
which all the conditions are true, when considering 3 steps.

B. Imperfect Information Single-agent Scenarios

Now, we drop the assumption that sets [w]i are singletons.
In this case, function sr is generalized as follows:

sri(w, a, k, φ) = avg
w′∈[w]i

{sr′i(w′, a, k, φ)}

sr′i(w, a, k, φ) =

{
vi(δi(w, a), k − 1, φ), if a ∈ di(w)
0, otherwise

and the state value function v is the one in Table I.
Function v no longer calculates the value of a state, but

the value of a set of indistinguishable states. When k = 0,
the value of state w is equal to the presence ratio of φ in
[w]i, which is calculated with the ‘presence ratio’ function pr.
The latter calculates the number of different indistinguishable
states where φ is true over the total number of different
indistinguishable states for agent i.1 The idea of using this
ratio to calculate intention was first proposed in [23]. The
intuitive idea is that the agent ascribes equal probability to
each possible state indistinguishable from the current one. The
action success rate is calculated as the average of the success
rates in each state of [w]i. Actions success rates are not defined
for k = 0 because it does not make sense to try to achieve
φ after 0 steps with an action (whose execution necessarily
consumes a step).

Example 2 (Coffee and Milk): Assume an academic depart-
ment with a cafeteria and a kitchen. In the cafeteria, there is a
coffee machine which delivers coffee (p1) and milk (p2), but
that works only 50% of the time. In the kitchen there is, 1/3
of the time, a vacuum bottle with coffee and no milk; 1/3 of
the time a bottle with milk and no coffee, and no beverage
otherwise. The agent can go to the cafeteria (action a) or to
the kitchen (action b). This scenario is depicted in Fig. 2.

1By ‘different states’, we mean non-bisimilar states. By the invariance
theorem of modal logic (see e.g., [22]) states w and w′ are bisimilar if and
only if, for all φ ∈ L0, w � φ iff w′ � φ. We need this assumption because
function sr is sensible to the number of states in the model, and nothing
forbids a model to have duplicated states. For example, if the root state is
duplicated (hence, indistinguishable from the original root state) it is still a
valid model. In such a case, the entire game tree would be duplicated and the
calculations would be affected. Bisimilar states can be eliminated from the
model by a process called bisimulation contraction [22, p. 14].
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Fig. 2. The model of Example 2 (Coffee and Milk). At each state, the truth
values of p1 and p2, respectively. Dashed lines represent relation ∼i.

The values below show that, if i goes to the cafeteria (action
a), then she acts with the intention to have coffee and milk:

sri(w0, a, 1, p1 ∧ p2) = 1/2

sri(w0, b, 1, p1 ∧ p2) = 0

sri(w0, a, 1,¬(p1 ∧ p2)) = 1/2

sri(w0, b, 1,¬(p1 ∧ p2)) = 1

whereas, if i goes to the kitchen (action b), then she acts with
the intention to have coffee or milk:

sri(w0, a, 1, p1 ∨ p2) = 1/2

sri(w0, b, 1, p1 ∨ p2) = 2/3

sri(w0, a, 1,¬(p1 ∨ p2)) = 1/2

sri(w0, b, 1,¬(p1 ∨ p2)) = 1/3

The example above shows that, in general, intention to
achieve p1∧p2 does not imply intention to achieve p1∨p2. In
fact, this example reveals something even less intuitive than
that. Note that, if i executes b, then i acts with the intention
to achieve p1 ∨ p2 and also acts with the intention to achieve
¬p1. However, the agent should execute a to act with the
intention to achieve p2. This means that intention to achieve
p1 ∨ p2 and intention to achieve ¬p1 does not imply intention
to achieve p2. Another way of saying that is: intention does not
satisfy modal logic axiom K. We analyse more such properties
satisfied (or not) by intentions in Sec. IV-B.

C. Multiagent Scenarios

In imperfect information multiagent scenarios, we drop both
the assumptions that N and [w]i are singletons. The success
rate function is generalized once again. It is now the one
presented in Table I. Each action executed by agent i can lead
to multiple different states, because of the different actions
that the other agents can execute at the same time. This is
why we use a ‘best response’ function bjac in the definition of
the success rate function sr. Consequently, in these scenarios
actions success rates are not calculated based on the entire
game tree, but only on the paths that agents would actually
take in the game when playing rationally.

Example 3 (Tic-tac-toe): We model the well known game
Tic-tac-toe. The game signature consists of:

P = {cell(l, c, i) | l ∈ {0, 1, 2} and i ∈ N}
N = {X,O}
A = {noop} ∪ {mark(l, c) | l, c ∈ {0, 1, 2}}

Fig. 3 depicts a small part of the model (the entire tree has
approximately 5! = 120 nodes) where the initial board is
already partially marked and it is X’s turn to play. Because
it is a zero-sum game, utilities can be calculated using the
minimax algorithm.

Agent X can win the game in various ways: if she marks
cell (0, 0) (which leads to w1), she can complete the first row
or the first diagonal, and if she marks cell (0, 1), she can
complete either the first row or the second column. However,
if she marks cell (1, 0), then she intends not to win the game.
To see why, first consider the following goal formulas:

φ0 = cell(0, 0,X) ∧ cell(0, 1,X) ∧ cell(0, 2,X)

φ1 = cell(0, 0,X) ∧ cell(1, 1,X) ∧ cell(2, 2,X)

φ2 = cell(0, 1,X) ∧ cell(1, 1,X) ∧ cell(2, 1,X)

ψ = φ0 ∨ φ1 ∨ φ2

Formula φ0 means that X completes the first row on the board,
φ1 means that X completes the first diagonal, φ2 means that
X completes the middle column, and ψ means that X wins the
game in Fig. 3. We have:

srX(w0,mark(1, 0), 5,¬ψ) = 1 (4)
srX(w0,mark(1, 0), 5, ψ) = 0 (5)

srX(w0,mark(0, 0), 5,¬ψ) = 1/2 (6)

This means that, by marking cell (1, 0), X acts with the
intention not to win the game after 5 steps. Indeed, (4) means
that, after marking (1, 0), X is certain to obtain a non-winning
state (i.e., a state satisfying ¬ψ) after 5 steps. Equation (5)
shows that, after marking (1, 0), X never obtains a winning
state after 5 steps. Therefore, marking (1, 0) is not one of the
best actions to achieve ψ after 5 steps. Equation (6) means
that, after marking (0, 0), X obtains a non-winning state after
5 steps in 50% of the cases. Therefore, there is a non-best
action for ¬ψ.

It may seem puzzling that action mark(0, 0), which is part
of a winning strategy for X, does not lead to a winning state in
all cases. Te reason is that, when querying for ¬ψ, we assume
that X is aiming at satisfying this formula and we disregard
the utility function uX. But note that the definition in Table I
uses the utility function uO for the opponent agent O, which
means that we assume that O acts to maximize her utility.

It is interesting to see that not all moves reveal agent’s
intentions. For example, consider the following success rates:

srX(w0,mark(0, 0), 3, φ0) = 3/4

srX(w0,mark(0, 0), 3,¬φ0) = 1

srX(w0,mark(1, 0), 3, φ0) = 0
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Fig. 3. The model of Example 3 (Tic-tac-toe). The numbers on the arrows
are the utilities for agents i and j, respectively.

The first value above indicates that action mark(0, 0) has a
success rate of 3/4 to achieve φ0 after 3 steps for X. Indeed,
in Fig. 3 we can see that, if X aims at completing the first row
after 3 steps, then X can achieve it from states w4, w5 and
w6, but not from w3. However, this does not show that X has
the intention to achieve φ0 after 3 steps because, even though
action mark(0, 0) is among the best ones to achieve φ0 after 3
steps and there is at least one legal action, namely mark(1, 0),
that is not among of the best ones to achieve that, we have
that (which may seem surprising) mark(0, 0) is among the
best actions to achieve ¬φ0 as well. What prevents us from
being able to infer X’s intention is that X can still deviate from
that objective in her next move. In other words, it is too soon
to conclude that X is aiming at completing the first row after 3
steps. Maybe X is aiming at completing the diagonal, or maybe
she is planning to mark cell (1, 0) next, which means that she
does not want to win the game. It is just not possible to know
by analyzing only one action. Also note that mark(0, 1) has
the same success rate values, thus the same reasoning applies.

IV. A LOGIC OF INTENTION

A. Intention Operator

Latter, we show some properties satisfied by our definition
of intention. To do this, we extend the language with an
intention operator.

Definition 7: Let a game signature (P,N,A) be given. The
language L is the set of formulas χ defined by the following
grammar in BNF:

χ ::= > | p | ¬χ | χ ∨ χ | Kiχ | EXχ | IaiXkφ

where p ranges over P , i ranges over N , a ranges over A,
k ranges over N+ and φ ranges over L0. We sometimes use
IaiXφ to abbreviate IaiX

1φ.
In the intention operator (as the reader has probably

guessed), ‘I’ stands for ‘intention’, whereas ‘X’ remembers
us that this is an intention operator towards the future. The
intended meaning of formulas of the form IaiX

kφ is ’when i
executes a she intends to achieve φ after k steps’.

Formula φ ranges over L0 in Def. 7. Consequently, L does
not admit nesting of the intention operator. Thus, e.g., IaiX(p1∧
IaiXp2) is not a well-formed formula. Also note that IaiXXp
is not well-formed either (because of the two symbols ‘X’
together).

Examples of well-formed formulas are: IaiX
2p (meaning

‘when i executes a she intends to achieve p after 2 steps’),
IaiX(Kip ∨ ¬Kip) (when i executes a she intends to know
whether p is true), KiI

a
jXp (i knows that, when j executes a

she intends to achieve p after 1 step) and IaiXp1 → IaiXp2
(when i executes a she intends to achieve p1 after 1 step
implies when i executes a she intends to achieve p2 after 1
step).

Definition 8 (Satisfaction Relation): The satisfaction relation
� between formulas in L and pointed models (M, w) is the
same as in Def. 4 for the Boolean, knowledge and temporal
operators plus:

M, w � IaiX
kφ iff a ∈ Bi(w, k, φ) \ Bi(w, k,¬φ)

andBi(w, k, φ) 6= di(w)

where:

Bi(w, k, φ) = {a ∈ A | sri(w, a, k, φ) > 0

and sri(w, a, k, φ) = maxsri(w, k, φ)}

The semantics of the operators already in L0 are the same.
For the intention operator, we have that, IaiX

kφ is true if and
only if action a is one of the best actions to achieve φ after k
steps, is not one of the best actions to achieve ¬φ after k steps,
and the set of best actions to achieve φ after k steps is not
the entire set of executable (legal) actions. This last condition
implies that there is a different action b that is one of the
best to achieve ¬φ after k steps. Therefore, this semantics
implements Def. 6.

For example, let M be the model in Fig. 3, and let a =
mark(1, 0) and b = mark(0, 0). We have w0 � IaiX

5¬ψ and
w0 � ¬IbiX3φ0.

B. Properties of the Intention Operator

We now aim at showing that operator IaiX
k is indeed an

intention operator. In order to do so, we show that it satisfies
some desired properties, the most important being the one
called intention-belief consistency. Indeed, this property seems
to be shared among all theories of intention. For instance,
Bratman’s Asymmetry Thesis states that:

“An intention to A normally provides the agent with
support for a belief that he will A. But there need
be no irrationality in intending to A and yet still
not believing one will. In contrast, there will be
irrationality in intending to A and believing one will
not A; for there is a defensible demand that one’s
intentions be consistent with one’s beliefs.” [4, p.38].

The more recent Shoham’s database perspective approach to
intention [5], [14] stipulates that an agent that intends to take
an action cannot believe that its preconditions do not hold, and



also believes that the post-conditions of the action hold after
its execution.

The view that beliefs and intentions must be consistent
with each other is also adopted by several logical approaches
to intention [2], [6], [10]. In BDI logic [1], this has been
interpreted as the following three principles:

1) � INT(φ)→ ¬BEL(¬φ) (intention-belief consistency)
2) 2 INT(φ)→ BEL(φ) (intention-belief incompleteness)
3) 2 BEL(φ)→ INT(φ) (belief-intention incompleteness)
Cohen and Levesque [10] presented an example usually

called the ‘dentist example’:
“I intend to get my teeth fixed, and I know that it
implies experiencing pain, but I do not intend to
experience pain.”

They use that example to defend a principle which can be
formalized as follows:

4) 2 (INT(φ) ∧ BEL�(φ→ ψ))→ INT(ψ) (side-effect)
Roy [6] defends the following four principles in his ap-

proach to intention:
5) � φ implies � Iiφ (necessitation)
6) � Ii(φ→ ψ)→ (Iiφ→ Iiψ) (axiom K)
7) � Iiφ→ ¬Ii¬φ (seriality)
8) � Iiφ→ KiIiφ (interaction)
Khan and Lespérance [15] also show that their approach

satisfies several properties. The ones that can be translated to
our formalism are:

9) � ¬IiX⊥ (consistency)
10) � KiAXφ→ IiXφ (realism)
11) � IiXφ→ ¬KiAX¬φ (int.-knowledge consistency)

There is no belief operator in our logic. The way we can
show that our approach respects intention-belief consistency is
indirect. We appeal to a relation between knowledge and belief
that is widely accepted: ‘what is known is also believed’. This
amounts to the validity of Kiφ→ BELiφ. This means that, if
Principle 1 were valid in a logic with a belief and a knowledge
operator, then the formula IaiXφ→ ¬KiAXKi¬φ should also
be valid. We call this principle (as in [15]) intention-knowledge
consistency. Note the use of KiAXKi instead of just Ki. This
is necessary in our setting because, as said earlier, when we
write IaiXφ, we mean that i intends to achieve φ in the next
state. This will be a requirement for all the principles we
address in the sequel. We prove several principles for our
intention operator in Prop. 2 below, which uses the following
lemma.

Lemma 1:M, w � KiAXKiφ implies Bi(w, 1, φ) = di(w).
Proof: By definition, (M, w) � KiAXKiφ iff, for all

w′ ∈ [w]i, all di(w) and all w′′ ∈ [δ(α,w′)]i, we have
(M, w′′) � φ. This means that pr([w′′]i, φ) = 1 (for all
w′′). Then we have vi(w

′′, 0, φ) = 1 (for all w′′), and then
vi(δ(w

′, α), 1, φ) = 1 (for all w′ and α ∈ D(w′)). This
implies, for all a ∈ di(w), sri(w, a, 1, φ) = 1. Therefore,
a ∈ Bi(w, 1, φ), for all a ∈ di(w).

In what follows, (AX)k (resp. (AXKi)
k) denotes a se-

quence of k operators, e.g., (AX)3φ = AXAXAXφ, and

w0

11
w2

01
w3

a b

Fig. 4. A counter-model for the formula in Prop. 2.5. The numbers are the
truth values of p1 and p2, respectively.

(AXKi)
2 = AXKiAXKiφ. To avoid confusion, the super-

script k is never used in this way with the intention operator.
Proposition 2:
1) � IaiXφ→ ¬KiAXKi¬φ (int.-knowledge consist.)
2) � IaiX

kφ→ ¬Ki(AXKi)
k¬φ (k-steps int.-knowledge

consist.)
3) 2 IaiXφ→ KiAXKiφ (int.-knowledge incompl.)
4) 2 Ki(AXKi)

kφ→ IaiX
kφ (k-steps knowledge-int.

incompl.)
5) 2 (IaiX

kφ ∧Ki(AX)k(φ→ ψ))→ IaiXψ (side-effect)
6) � ¬IaiXk⊥ (consistency)
7) � IaiX

kφ→ ¬IaiXk¬φ (seriality)
8) � IaiX

kφ→ KiI
a
iX

kφ (interaction)
9) From φ↔ ψ infer IaiX

kφ↔ IaiX
kψ (extensionality)

Proof:
1) Assume the opposite, i.e., there is (M, w) that satisfies

IaiXφ ∧ KiAXKi¬φ. This means that Bi(w, 1,¬φ) =
di(w) (by Lemma 1). The latter implies (M, w) 2 IaiXφ
(by Def. 8). But this contradicts the assumption. There-
fore, we have that IiiXφ→ ¬KiAXKi¬φ is valid.

2) This can be proved by iterating the arguments in the
proofs of Lemma 1 and Prop. 2.1 k times.

3) LetM be the model in Fig. 2. We have that (M, w0) �
IaiXp, because a ∈ Bi(w0, 1, p) \ Bi(w0, 1,¬p) and
Bi(w0, 1, p) 6= di(w0). However, we clearly have that
(M, w0) 2 KiAXKip, because δ(w0, a) = w1 and
(M, w1) 2 p.

4) We have (M, w) � Ki(AXKi)
kφ implies Bi(a, k, φ) =

di(w) (by Lemma 1 iterated k times). Therefore,
(M, w) 2 IaiX

kφ.
5) We show it for k = 1. Let M be the model in

Fig. 4. We have that (M, w0) � KiAX(p1 → p2),
because p2 is true in both w2 and w3. We also have
Bi(w0, 1, p1) = {a} and Bi(w0, 1,¬p1) = {b}. Thus,
(M, w0) � IaiX

1p1. However, because Bi(w0, 1, p2) =
di(w0), then we have (M, w0) 2 IaiX

1p2.
6) It is enough to see that Bi(w, k, φ) = Bi(w

′, k, φ) for
all w′ ∈ [w]i.

7) Immediate, because Bi(w, k,⊥) = ∅, for all w.
8) Let (M, w) � IaiX

kφ. Then a 6∈ Bi(σ, k,¬φ) (by
Def. 6). Therefore, (M, w) 2 IaiX

k¬φ.
9) If � φ ↔ ψ then Bi(w, k, φ) = Bi(w, k, ψ), for all w

and k. Therefore, we have � IaiX
kφ iff � IaiX

k(ψ).
Prop. 2.1, 2.3 and 2.4 correspond to Principles 1–3, respec-

tively. Therefore, our intention operator satisfies all principles



of the asymmetry thesis, but using knowledge instead of belief.
Prop. 2.1 also corresponds to Principle 11. Prop. 2.5 corre-
sponds to Principle 4. Prop. 2.6 corresponds to Principle 9.
Prop. 2.7–2.8 correspond to Principles 7–8, respectively.

Three principles are not satisfied, namely, Principles 5, 6
and 10. Example 2 is a counter example for both Axiom K
(Principle 6), Necessitation (Principle 5) (as well as Prop. 3.7
below). In addition, Principle 5 means ‘agents always intend
to achieve valid formulas’. This would contradict the third
condition of intention (of Sec. III). Principle 10 contradicts
the third principle of the asymmetry thesis. Therefore, it is
preferable to not satisfy it. The following proposition lists
these and some other interesting non-validities.

Proposition 3:
1) From φ we cannot infer IaiX

kφ. (necessitation)
2) 2 IaiX

k(φ→ ψ)→ (IaiX
kφ→ IaiX

kψ) (axiom K)
3) 2 IaiX

k> (axiom N)
4) 2 IaiX

k(φ ∧ ψ)→ (IaiX
kφ ∧ IaiX

kψ) (axiom M)
5) 2 (IaiX

kφ ∧ IaiX
kψ)→ IaiX

k(φ ∧ ψ) (axiom C)
6) 2 (IaiX

kφ ∨ IaiX
kψ)→ IaiX

k(φ ∨ ψ)
7) 2 IaiX

k(φ ∧ ψ)→ IaiX
k(φ ∨ ψ)

V. CONCLUSION AND PERSPECTIVES

In this work, we propose a method for checking agent in-
tentions in games. Differently from most contributions, where
intentions are directly provided in the model, ours infer agent
intentions from their behaviour. We show that our operator
indeed models intention as it satisfies the most important
properties of intention, namely Bratman’s asymmetry thesis
as well as Cohen and Levesque’s side-effect principle.

Maybe the most straightforward questions left open relate
to the axiomatic system and computational complexity of the
logic. Intention checking amounts to model checking formula
IaiX

kφ in (M, w). It is decidable, because model checking
in ATEL is decidable in polynomial time [18], [19] and the
sets Bi(w, k, φ), upon which intentions are defined, are finite.
We are currently working on the adaptation of the existing
model-checking techniques for this logic.

We saw in Example 3 that it is not possible to infer the
intention of i with only one action. However, it would be
possible if we could consider consecutive actions by i, e.g.,
marking (0, 0) and then marking (0, 1). It is not hard to
generalize the success rate function to sequences of actions.
Once this is done, a formula of the form Ia1...a`

i Xk can be
given a semantics that compares success rates of different
sequences of ` actions by i and returns weather i acts with
the intention to achieve φ after k steps. Again, we leave the
details to future work.

We did not investigate “intentions about intentions”. Our
language does not permit formulas of the form IaiXIbjXφ,
which would mean ‘when agent i executes a she intends to
achieve, after 1 step, that, when j executes b she intends
to achieve φ after 1 step’. This could mean delegation,
persuasion, or coercion. Many questions arise. For instance,
does intention about intention to φ imply intention to φ? What
should be the agents intentions about their own intentions? Can

it express intention change? Can an agent have the intention
to change its intention? We plan to address these questions in
the near future.

On the practical side, we are currently working on an
implementation of our intention checking method for games
in GDL-II [24]. The idea is to be able to check intentions of
general game players.
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