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Abstract: The development of smart buildings, as well as the great need for energy demand reduction,
has renewed interest in building energy demand prediction. Intelligent controllers are a solution
for optimizing building energy consumption while maintaining indoor comfort. The controller
efficiency on the other hand, is mainly determined by the prediction of thermal behavior from
building models. Due to the development complexity of the models, these intelligent controllers
are not yet implemented on an industrial scale. There are primarily three types of building models
studied in the literature: white-box, black-box, and gray-box. The gray-box models are found to be
robust, efficient, of low cost computationally, and of moderate modeling complexity. Furthermore,
there is no standard model configuration, development method, or operation conditions. These
parameters have a significant influence on the model performance accuracy. This motivates the
need for this review paper, in which we examined various gray-box models, their configurations,
parametric identification techniques, and influential parameters.

Keywords: building energy; building energy management system (BEMS); gray-box models; lumped-
parameter models; smart building; system identification; thermal-network models

1. Introduction

The need for the development of a sustainable environment is of the utmost impor-
tance to reduce the effects of climate change and global temperature increase due to the
significant rise in the emissions of greenhouse gasses (GHGs) such as CO2, CH4, N2O,
HFC, PFC and SF6. According to the International Energy Agency (IEA) [1,2], the buildings
and construction sector is responsible for almost 35% of global primary energy consump-
tion, which is much higher than the other sectors, i.e., transport (28%), and industries
(32%). Similarly, the buildings and construction sector accounts for 38% of CO2 emis-
sions (Figure 1). Whereas, in European Union (EU) buildings account for almost 40%
of energy consumption and 36% of CO2 emissions. The increase in emissions from the
buildings sector is attributable to the continued use of coal, oil, and natural gas for heating
and cooking, combined with rising activity levels in locations where electricity remains
carbon-intensive, resulting in stable direct emissions but increasing indirect emissions, i.e.,
electricity [3]. Without timely action, building-related GHG emissions are anticipated to
double or possibly triple by 2050 [4].

Many industrialized countries have made significant efforts in this regard, with strin-
gent rules, ambitious goals, and incentives for renewable energy integration [5,6]. Inter-
national communities and organizations have been hyperactive in drafting new global
policies to tackle the climate change problem. A road-map for the global energy sector has
been developed by IEA to achieve net-zero by 2050 [7], which stipulates a 75% increase in
overall floor area between 2020 and 2050. Consequently, the demand for heating, ventila-
tion, and air-conditioning systems (HVAC) will grow significantly, despite this demand

Energies 2022, 15, 1328. https://doi.org/10.3390/en15041328 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15041328
https://doi.org/10.3390/en15041328
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-9179-2581
https://orcid.org/0000-0002-2031-4088
https://orcid.org/0000-0002-4844-508X
https://doi.org/10.3390/en15041328
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15041328?type=check_update&version=2


Energies 2022, 15, 1328 2 of 27

growth, total CO2 emissions from the buildings sector decline by more than 95% from
almost 3 Gt in 2020 to around 120 Mt in 2050 in the net-zero energy scenario (NZE) [7].
Energy efficiency and electrification are the two main drivers of the decarbonization of
the buildings sector in NZE. Although the integration of renewable energy into buildings
leads to a reduction in energy dependency, it cannot be considered for a complete reduction
in energy consumption and emissions. This transformation is based mostly on commer-
cially/industrially accessible technologies, including improved envelopes for new and
existing buildings [8], e.g., phase-change materials [9], highly insulating materials [10],
heat pumps [11], energy-efficient appliances [12], occupancy behavior analysis [13], and
intelligent building controllers [14].

Figure 1. Global share of final energy and emissions by sector, 2019 [1–3].

A zero-carbon building is extremely energy efficient and uses either renewable energy
directly, or an energy source that will be entirely decarbonized by 2050, such as electricity
or district heat. This means that a zero-carbon-ready building will become a zero-carbon
building by 2050 without any further changes to the building or its equipment [7]. The
road-map to mitigate global direct CO2 is represented in Figure 2, and the global energy
consumption from fuel and end-use applications in Figure 3. Collectively, occupancy
behavior and energy efficiency constitute between 40–50% of the total activities required
to achieve the 2030 objective. This means more efficient energy appliances, energy-aware
occupants, and intelligent building control systems are necessary for this process. As a
result, building operation and management practices have a major impact on the reduction
of energy consumption and peak demand response.

Figure 2. Global direct CO2 emission reductions by mitigation measure in buildings in the NZE [7].



Energies 2022, 15, 1328 3 of 27

Figure 3. Global final energy consumption from fuel and end-use applications in buildings in the
NZE [7].

A building energy management system (BEMS) is a sophisticated computerized system
for monitoring and controlling a building’s energy needs [15–17]. It is connected to HVAC
systems and electrical appliances through sensors, and communication networks [18].
Building energy management systems provide real-time monitoring and control for a
range of integrated systems that are used to maintain the indoor comfort levels set by
occupants/users [19,20]. However, these systems have already been in use for the last
two decades yet energy management has not been significantly improved due to the poor
controller strategies/methodologies that have been implemented. Conventional ON/OFF
controllers, single objective controllers, rule-based controllers, etc., are mainly used for
temperature control [14]. In the last decade, there has been a surge in the amount of research
focused on multi-objective controllers. The application of data-driven controllers [21,22],
and model predictive controllers (MPCs) [23–26] has shown significant accuracy in con-
trolling the multiple objectives. However, buildings are heterogeneous systems (complex
networks of appliances and sensors) and the necessity of multi-objective applications for
controllers made their design and development extremely challenging and time-consuming.
Furthermore, these real-time controllers are model-based controllers and their performance
accuracy is greatly dependent on the building model accuracy. Low-order models that can
replicate the thermal dynamics of a building with high accuracy and low computational
cost are useful for model-based controllers [27]. However, due to all these reasons the
industrial application of such multi-objective controllers is still difficult and expensive.

Building Thermal Models

There are several approaches and models for energy performance analysis in buildings
(Figure 4). No single approach is universally suitable for all buildings. Rather, the choice of
which model is best for any given application depends on what you choose to quantify and
what data is available. These various models can be broadly categorized into two types:

• Steady-state models
• Dynamic/Transient models

Steady-state approaches appeal to applications where simplicity is key, and their lack of
data prevents more detailed and precise transient analyses. Steady-state analysis simplifies
the necessary calculations by neglecting thermal capacitance, dynamic temperature changes,
occupants’ influence on the system, and heat sources. Steady-state modeling is useful when
there is not much data available and for long-duration energy analysis [28].
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Figure 4. Building thermal modeling approaches.

However, real-time controllers are based on transient models. Researchers have
developed and suggested various dynamic models for buildings. These can be divided
into three categories:

• Analytical (white-box) models: are a physical modeling approach relying on ther-
modynamic and/or mathematical equations, and engineering methods for energy
modeling. Some examples are the building energy analysis simulation software pro-
grams such as EnergyPlus [29], the Transient System Simulation Tool (TRNSYS) [30],
eQuest, etc. Data for all the thermo-physical characteristics are required to develop
white-box models. The complexity of these models increases with an increase in the
size of a building, thus resulting in high computational costs. These models are not
suitable for controller applications.

• Data-driven (black-box) models: are data-driven building energy models, which are
built on the basis of available data [31,32] are often considered easy to model compared
to physics-based white-box models. Black-box model examples are Artificial Neural
Networks (ANNs) [33], Support Vector Machines (SVM) [34], Genetic Algorithms
(GAs) [35], Reinforcement Learning models (RL), deep machine learning models [36],
etc. Aside from their ease of application, black-box models, require large amounts
of input data to train the model. This data may not be available in buildings where
sensors are not installed, thereby limiting their application to the few buildings with
installed sensors.

• Hybrid (gray-box) models: to overcome white-box and black-box model drawbacks,
hybrid (gray-box) models were introduced [37]. Gray-box models are a combination of
physics-based models (white-box models) and statistical methods (black-box models).
Gray-box modeling is found to be the most robust and accurate method for modeling
building systems and improving building performance [38]. These models were
mainly developed using the lumped-capacitance method, which includes a network
of thermal resistors and capacitors (called a thermal-network model).

In the literature, many review papers have been published on energy efficient build-
ings in the contexts of both construction and operation. These mainly focused on sustain-
able building design [39], BEMS [40], Building Information Modeling (BIM) [41,42], build-
ing material [43], policies [6], retrofitting buildings [44], building energy modeling [14,45],
lighting systems [46], and building control techniques [47–49]. Several papers reviewed
controller techniques, i.e., data-driven models [21,50], fuzzy logic [51], cyber–physical
systems [52] and MPCs [53,54]. The papers also reviewed comfort management [55], and
occupancy behavior and prediction [13,56]. The summary and main topics of the above
reviews are summarized in Table 1.
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Table 1. State-of-the-art reviews related to building modeling and building energy management
systems.

Topic Reference Details

BEMS [40] A comprehensive study of the research related to computational optimization applied
for sustainable building development. The study covers a range of topics from building
envelopes to the energy systems installed in buildings.

BEMS [40] Energy management systems and strategies in the context of buildings are reviewed.
Particularly focused on the different energy management systems (EMS) implemented
in buildings.

Building energy modeling [45] Studies of building energy management systems and strategies in relation to human
dimensions are reviewed.

BEMS [14] The authors conducted a comprehensive review of recent intelligent building controllers.
This review also discusses three building modeling categories and compare them based
on their application and robustness.

Building envelope materials [43] A comprehensive review carried out regarding the use of different building materials.
The paper mainly focuses on phase-change materials (PCMs), with more than 150
different PCMs being reviewed.

Data-driven models [50] The authors conducted a detailed review of the models that are developed based on
available data.

Despite the considerable amount of review papers that have been published on build-
ing energy modeling, comfort management, occupancy behavior and prediction, controlling
techniques, and HVAC systems. There is still a lack of reviews concerning simplified mod-
els that mainly focused on thermal-network models. Kramer et al. [57] reviewed simplified
thermal models for buildings and addressed many questions such as: What kind of modeling
approaches are applied?, What are their (dis)advantages?, and What are important modeling as-
pects?. Similarly, Bagheri et al. [58] reviewed thermal network methods for buildings, and
compared them to the other tools, e.g., software tools. Unlike these review papers, this
paper presents a comprehensive and critical analysis of building thermal-network models.
Furthermore, we have reviewed thermal-network modeling methods, categorized them as:
direct, inverse, and hybrid models. Different configurations and influential parameters are
also highlighted and critically discussed. We have compared different parametric identifi-
cation techniques and their computational costs. Finally, we have provided a discussion on
the topics of model selection, future perspectives, and recommendations.

The papers that are reviewed in this study are selected by following a thorough filtering
process. Initially, an elementary search was conducted by using search engines: Google
Scholar, Scopus, Science Direct, and IEE Xplore digital library. For the review process, the
keywords ‘thermal-network model’, ‘Lumped Capacitor’, ‘lumped thermal’, ‘Gray-box
models’, ‘Lumped-parameter models’, and ‘Building energy management systems’ were
used to filter papers. Furthermore, only papers from top international journals and indexed
conference proceedings were considered, resulting in 120–130 papers being considered for
this state-of-the-art review based on these selection criteria.

2. Thermal-Network Models

The analogy between thermal and electrical systems [59] (Table 2) is frequently used
to develop simple and efficient models for the thermal analysis of buildings. In these
simplified models, the distributed thermal conductance and capacitance are typically
lumped together to avoid the use of complex partial differential equations for heat con-
duction. Furthermore, radiative and convective heat transfers can also be included in the
thermal-network model by using appropriate thermal resistance values [60]. The number of
capacitors present in the network determines the order of the ordinary differential equation.
The resulting equivalent mathematical equations can be represented using state-space
equations for computationally efficient simulations [61].
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Table 2. Thermal to Electrical System analogy.

Thermal System Electrical System

Source Temperature (T) Voltage (V)
Heat flux (φ) Current (I)

Element
Thermal conductivity (k) Conductivity (σ)
Thermal resistance (R) Electrical resistance (R)
Thermal capacity (C) Electrical capacitance (C)

The basic concept of these models is that temperature only varies with time and
remains constant across the walls and windows regardless of other changes. The Biot
number (Bi) is used in heat transport calculations [62]. These models help to obtain
simplified/reduced building models with higher efficiencies.

In the literature, many thermal network configurations have been proposed. The
type of building, the number of zones, the type of activities, the materials used, and the
application all have a role in these differences. Models of the building envelope, such as
walls, windows, and internal mass, are used to develop the equivalent thermal-network
circuit of a zone. The building is divided into a network of nodes with interconnecting paths
through which energy flows in a thermal-network model [63,64]. The method’s applicability
varies substantially depending on the nodes where energy balancing is performed. There
are mainly three types of models that can be developed:

1. Model for a building envelope (walls, floors, roofs, etc.).
2. Model for space-zone and its thermal interactions with the envelope.
3. Model for a complete zone.

Whilst, there is no huge difference between these methods, the model for a complete
zone is developed by aggregating the individual envelope models into a single model, and
integrating this with the space-zone model (see Figure 5). Whereas, the specific model for
the building envelope is significant in knowing surface temperatures, in the analysis of
individual envelope dynamics, etc.

Figure 5. Development of a thermal-network model for a building zone [65].

2.1. Building Envelope Models

The part of the building structure that is exposed to the environment is called the
building envelope. Furthermore, the majority of a building’s overall heat transmission
occurs through the building envelope. As a result, to effectively replicate real heat dy-
namics at a low computational cost, an efficient thermal-network model is required. The
configurations of these models, on the other hand, are not explicit and are dependent on
the number of layers and the thermo-physical properties of the materials. Conduction,
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convection, and radiation heat transfer are represented by the capacitors and resistors in
the model.

Several configurations have been proposed in the literature to describe the thermal
dynamics of the building envelope. These combinations are chosen based on the wall’s
composition, attributes, simulation time stamp, Biot number, and application. Figure 6
depicts an overview of several configurations proposed in the literature. Lorenz and
Massy [66] presented an early implementation of a thermal network for building envelopes,
introducing a 2R1C configuration for external walls and a 1R1C configuration for internal
walls. The accessibility factor was used to calculate the position of capacitance in the 2R1C
model. This simple approach has a number of significant benefits: the thermal response
analysis may be performed on low-cost, widely available computers (PCs) and still get
substantially accurate results with minimal amounts of effort and time. Furthermore, the
basic thermal network provides an easy-to-understand physical meaning for researchers
and designers.

Figure 6. Major configurations of envelope and space-zone models. Reproduced from Boodi et al. [27],
Fraisse et al. [67], Wang & Xu [68], and Ji et al. [69].

Similarly, Hassid [70] proposed the 2R1C model for external walls and adapted it
to passive solar structures. He found that this method can be used to estimate the heat-
ing requirements of passive solar dwellings as a first-order adjustment to the degree-day
method. When applied to medium or moderate thermal capacity structures, however, the
second-order model (one capacitor for the envelope and another for the inside air mass)
resulted in over-responsiveness. Tindale developed a third-order model to address this
problem in his study [71]. He also demonstrated an analytical method for determining its
parameters. When utilized on a light thermal mass, the model showed considerable advan-
tages over the second-order model without sacrificing computing performance. Despite
an increase in accuracy over the previous model, the second-order model’s performance
in heavy thermal mass structures is still low. Lombard and Mathews [72] also used the
RC model to simulate building heat transfer in a 2-port envelope model (second-order
model). The space zone was represented by a single heat-storage capacitance. The model
was applied on a one-story commercial building, and the overall sensible cooling load
and instantaneous sensible heat gain results were compared to the commercial building
example in ASHRAE Fundamentals [15].

These approaches and thermal structures were also implemented by Gouda et al. [73]
for the ceiling, floor, and interior walls. The more sophisticated model, which includes a
2R1C thermal network for each construction element (external walls, internal partition,
floor, and ceiling construction), outperformed the simpler model in terms of performance
and computing efficiency. This improvement in the model, which involves simulating
thermal dynamics using state-space equations, has opened up new options and ideas for
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analyzing the energy efficiency of various building materials. This method demonstrated
that the mass of a building’s exterior has a considerable impact on thermal dynamics in
long-term energy analysis. However, there were still concerns about using a single-node
envelope model for thermally large structures.

To improve the model’s performance on high thermal mass buildings, a new second-
order model is explicitly applied for modeling the thermal dynamics through the building
envelope in [61]. By reducing the square root of the sum-squared-error (SSE) between the
step responses of a reference 20th-order model and the 3R2C model, the model parameters
are determined. For parametric identification, Kuhn–Tucker equations are utilized to
drive multi-variable nonlinear constrained optimization. The performance of the model is
compared to that of a 20th-order benchmark model and a first-order based building model.
The optimized second-order model’s results show a significant improvement in modeling
performance over previously proposed, simplified, first-order models. The 3R2C model
was just 11% (0.211 s) more expensive to compute than the first-order model (0.19 s) in [66].
However, their work was limited in various ways, the most significant of which was the
fact that the parameters were identified based on a unit step excitation.

Fraisse et al. [67] proposed a higher-order 3R4C model to represent the conductive
heat transfer dynamics in building envelopes. The concept of aggregating numerous walls
in a building into a single thermal network is also proposed; this approach greatly reduces
computing costs. When compared to the 3R2C and 1R2C model dynamics, the higher-order
model performed better at higher input frequencies. Both 3R2C and 3R4C models have
approximately equivalent accuracy at lower input frequencies. The main advantage of the
latter is that it reduces the number of calculations as well as the number of parameters that
must be defined by the user.

Table 3 presents a few examples of building envelope model configurations that
are proposed in the literature. The most used and studied configuration in literature is
second-order model (3R2C). However, these models’ performance greatly depend on the
resistor and capacitor values. Many researchers have solved these parametric identification
problems using various approaches to achieve optimal parameter values for efficient model
performance. Underwood [74] attempted to address the limitations of [61] by proposing an
improved method for adjusting the parameters of the second-order model proposed, which
was based on a multiple-objective function-search algorithm that compared the model’s
response to that of a rigorous reference model. The study also incorporates parametric
identification based on periodic excitation, which was another limitation of the previous
work [61], which only utilized step excitation. After analysis, the value of the thermal
parameters of numerous typical construction elements was included. Boodi et al. [27], on
the other hand, proposed an alternative reference model based on unconditionally stable
Crank–Nicolson finite-difference models and applied both step and periodic functions to
excite the reference and 3R2C models. The difference in both responses may be seen in
the high thermal-mass walls result. The reference model’s exact dynamics are copied in
the model that has parameters that are optimized based on the step response. The same
model using periodic input parameters, on the other hand, has a little lower accuracy. It
implies that modeling using periodic input is more realistic and applicable to real building
dynamics.

There have been numerous studies like this presented in the literature. For parametric
identification, there is no defined or standard procedure. Therefore, Section 3 presents a
comprehensive analysis of these parametric identifications, optimization techniques, and
reference models.
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Table 3. Thermal network configurations for building construction elements.

Ref. External Wall Internal Partitions Ceiling Floor Windows

[66] 2R1C 1R1C 1R
[70] 2R1C
[75] 2R1C
[71] 2R1C 2R1C 1R
[76] 1R 1R 1C
[72] 3R2C
[77] 2R1C 1R1C 1R1C 1R1C 1R
[78] 2R1C 1R1C 1R1C 1R
[73] 2R1C 2R1C 2R1C 2R1C 1R
[61] 3R2C 3R2C 3R2C 3R2C
[67] 3R4C 3R4C 3R3C 3R3C 1R
[79] 1R1C 1R1C
[68] 3R2C 3R2C
[74] 3R2C
[80] 3R2C
[27] 3R2C 3R2C 3R2C 3R2C 1R
[81] 4R3C 1R 4R2C 1R

2.2. Models for Space-Zones and Their Thermal Interactions with Envelopes

The building model is a composition of the zone envelope model and an internal mass
model. The modeling of zone envelopes is relatively simple because of their easily available
thermal property or measurement data, and the extensive research done on this topic in
literature. Contrarily, internal mass is difficult to model due to the unavailability of the
property and measurement data. The internal mass includes internal structures, furniture,
carpet, electrical appliances, partitions etc.

The majority of studies have used a capacitor to represent internal mass. The tempera-
ture at this point is referred to as the temperature of the indoor air. Liao and Dexter [82]
presented a technique for developing a simplified second order physical model to simulate
the dynamic behavior of a multi-zone heating system in a residential building. Total re-
sistance and capacitance of the building envelope, and internal mass all contribute to the
parameters of a simplified second-order model in their method.

Wang and Xu [83] developed a technique for simulating internal masses. An internal
mass was represented using the 2R2C model structure. Floors, partitions, internal walls,
and furniture are all constituents of the building’s internal mass. These elements absorb
radiant heat from windows and inhabitants, as well as from lighting, electrical machines,
and other sources, and then gradually releases the heat to the indoor airspace. Furthermore,
the parameters of the 2R2C model are determined by reducing the root-mean-square-error
(RMSE) between the reference and 2R2C model dynamics using genetic algorithms. When
compared to the actual measured data, the performance of the building model with optimal
parametric parameters is observed to have an average error of 10%.

Ji et al. [69] proposed an improved approach to the work of [68,83]. The authors
reasoned that the previously proposed 2R2C model is insufficiently accurate to account for
all internal elements’ influences on the cooling/heating load. The results of three distinct
models with thermal networks in series and parallel configurations are compared to the
results of the reference model. When compared to the measured cooling load, the model
accuracy is found to be more sensitive to the distribution of solar radiation than to the
classification of thermal mass.

Similarly, Park et al. [84,85] proposed a method for representing electrical appliances
in the form of a thermal network. The heat emitted by electrical equipment can increase
the cooling demand in a well-insulated building. The authors proposed a 1R1C thermal-
network model to study the heat gain from these appliances. Furthermore, considerable
research is still needed on internal mass modeling that takes into account all of the con-
tributing factors to the heating and cooling load of internal mass.
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2.3. Models for a Complete-Zone Full-Scale Model

A "zone" is an area in a thermal-network model that is developed by assuming a
uniform air temperature in an enclosed space. If the internal temperature in all spaces is
almost uniform, a full building can be considered a zone. However, in advanced highly
insulated buildings, the temperature of each space is maintained differently depending
on the needs, therefore a room in a building can be considered as a zone, and zones
are interconnected to establish a multi-zone model to represent the entire building. The
thermal dynamics of an enclosed space are represented using a zone model. The zone
model (full-scale) is composed of 2 models: an envelope model and an internal mass model.
The envelope model’s outputs are used as inputs in the internal mass model. The thermal
network structure of the entire zone model is governed by the envelope and internal mass
structures. Some major examples of both full-scale models and reduced-order models are
shown in Figure 7.

Figure 7. Few examples of full-scale models and reduced-order models Reproduced from: Boodi
et al. [27], Braun and Chaturvedi [38], Harb et al. [86], Danza et al. [87], Reynders et al. [88], and Fux
et al. [89].

Lombard and Matthews [75] developed a thermal-network model for a zone to inte-
grate the effect of dynamic ventilation. The thermal dynamics of a zone are represented
using the thermal network structure of configuration 3R1C. The model is simple, efficient,
and accurate enough to reproduce the major dynamics. Despite this, the dwelling’s total
thermal mass is grouped into a single capacity. Furthermore, there is no differentiation be-
tween the fast dynamics of indoor air and the slow dynamics of structural mass. Therefore,
higher order models can be used to improve the efficiency of the zone model.

Fraisse et al. [67] developed a zone model that comprises the 3R4C envelope model and
the internal thermal mass model, both of which were developed separately. They found that
a 3R2C model for an envelope produces results that are as accurate as a 3R4C model. Aside
from that, they developed a model for analyzing the interaction of a building’s thermal
network with the electric and hydraulic heating floor. The performance of the coupled
model was compared to the performance of the reference model, and the findings were
concluded to be sufficiently accurate. They did not, however, provide a comprehensive
explanation of the parameters identified and their physical interpretation. Furthermore,
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model for the HVAC system and the interaction between these systems and building zone
is studied by Tashtoush et al. [79]. They also included the dynamics of the humidity
model in the thermal network and compared the transient responses of the controller and
uncontrolled systems. They concluded that the controller is effective in rejecting small error
disturbances with a small-time period.

Bacher and Madsen [90] conducted a study on suitable model identification in an
attempt to understand the importance of each thermal network element and to determine
the appropriate building model to represent heat dynamics. They compared the results of
several thermal network configurations, starting with the 2nd-order model and increasing
its complexity until a model that included all heat dynamic elements and thermal mass
nodes of the zone (5th-order). They compared the performance of ten models using fitting
and likelihood ratio tests. The building model was excited by a pseudo-random binary
sequence signal (PRBS), which has white noise properties and no correlation with the
other inputs. This signal is applied to the heating system and facilitates the creation of
suitable models representing the heat dynamics of buildings. The CTSM tool (Continuous-
Time Stochastic Modeling) proposed by [91], was used to analyze the obtained time series.
It allowed to find grey-box models and embedded parameters (thermal resistances and
capacities, for example) using multivariate time series data. The study conclude that
model complexity greater than third-order has little influence on model performance
improvement.

Palomo et al. [92] used simplified models (2- to 6-order models) to represent a multi-
zone individual building. The authors conclude that a second order model can accurately
predict daily energy consumption for the tested individual building, but a fourth order
model is recommended for high-quality indoor air temperature and heating load power
prediction. Mejri et al. [93] developed and compared gray box models with orders ranging
from 1 to 5 and observed that increasing the model order beyond 2 does not result in a
substantial performance improvement and may even lead to inaccurate results.

On the basis of indoor temperature prediction, models with orders ranging from one to
four are compared [89]. The model’s states and parameters are estimated using an extended
Kalman filter (EKF). The results show that the 1R1C model is adequate for reproducing the
thermal behavior of a passive building. The model is also tested for two-day and four-day
predictions, the author concluded these models could be useful in short-term controller
applications. A study on model identification was also conducted by Massano et al. [94].
The EnergyPlus model is used as a reference for comparing the results of the first and
second-order models. The performance of the first-order model with coupled parameters
resulted in the MAE and RMSE below 0.37 °C as compared to second-order models with
MAE and RMSE above 0.7 °C. This indicates the first-order model outperformed other
models with both coupled and separately identified parameters. Because the parameters of
the thermal-network model are interconnected, they must be estimated as a whole rather
than separately. All of these models, however, are calibrated and validated using sensor
data from the identified building during an unoccupied period. Whereas, Berthou et al. [95]
developed four different thermal-network models of orders two and three. In each model
order, the number of resistors and the position of thermal mass nodes are changed. Using
real dynamic occupancy data, the models’ indoor temperature and heating load predictions
were evaluated. The performance of the models is compared for both heating and cooling
period predictions, the 6R2C model performed better than other models by resulting in
below 2% error from the best result.

The approaches for developing thermal-network models are detailed in the guidelines
VDI 6007 [96] and DIN EN ISO 13790 [97]; the former presents a second-order model for
simulating a zone, whereas the latter presents a first-order (5R1C) model for zone tempera-
ture and heating load prediction. However, the 5R1C model cannot be implemented when
the ventilation or infiltration dynamics are included in the model as division by zero may
appear when these two airflows are zero. Furthermore, neither of the guidelines discusses
any fitting methods or parametric identification based on the measured data. Michalak [98]
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presented a modified 4R1C version of the 5R1C model to address the problem of ventilation
or infiltration dynamics, in which the existing ventilation heat dynamics was replaced
with a new heat flux, which relates to the time-varying airflow caused by infiltration and
ventilation. The model is validated against the EN 15625 standard, BESTEST tests, and
EnergyPlus data.

Harb et al. [86] presented a similar model identification study and compared the
model performance to real data collected from reference building. Because the authors had
no prior knowledge of the physical properties of building materials, the parameters were
determined inversely using the Interior Point (IP) optimization technique. Multiple norms
and guidelines are used to determine the parameters physical probable value range for
various physical characteristics [96,99–102]. The developed models were of configurations
1R1C, 3R2C, 4R2C, and 8R3C. These models were evaluated from both a statistical and a
physical standpoint. The result conclude that in comparison to the simpler 4R2C model,
the complex 8R3C model shows no significant improvement in performance. A similar
study was carried out in [103], the authors developed 1st, 2nd, and 3rd-order models
to predict real-world building thermal dynamics. The inverse technique and the system
identification algorithm are used in MATLAB [104] to identify model parameters. The
residual auto-correlation study shows that the second order model accurately represents
the building thermal dynamics, but it also reveals that the model cannot account for certain
behaviors and approximations. User bad-behaviors, measured signal aliasing, and a low
correlation between the measured temperature and the temperatures of the represented
thermal zones can make identification difficult, and even give a poor result in terms of
accuracy.

The application of lumped parameter models is mainly used for thermal dynamics
analysis that is focused on capturing the sensible heat dynamics. However, this approach
has been also tested and validated for hygric models. Kramer et al. [105] proposed a
methodology to develop both thermal and hygric models, they developed 10 thermal and
5 hygric models for comparative analysis. Both the models are identical in structure, with
vapor pressure serving as the driving force and solar irradiance being excluded as an input
in the hygric model. The performance of these models is compared with measured data
from four monumental buildings using a residual and parameter analysis. The results
suggest that for long-term simulations, the simplified hygrothermal model is capable of
accurately simulating most indoor climates (1 year).

Nevertheless, numerous studies have been undertaken on the development of zone
models utilizing the whole model dynamics by representing each element in order to
capture all thermal dynamics associated with the zone. Models with numerous thermal
components have a higher level of performance accuracy than models with a small number
of thermal elements. Sayadi et al. [106] proposed a building model with a 9th-order thermal
network that contains a thermal network for each construction element (external walls,
internal walls, roof, and floor). The model is trained and validated using the measured
data from the building. An MPC model is implemented based on the full-scale zone model,
the results show that whole zone model performance is accurate enough for MPC and
they achieved 43% and 31% reduction in the overall energy use during the estimation and
validation periods, respectively. However, the envelope in this study is represented using a
2R1C thermal network, which may not be appropriate for heavy thermal mass walls. As a
result, ref. [27,65] proposed a full-scale model that contains a 2nd-order thermal network
representation of each envelope element. The results show that the model’s accuracy is
acceptable in both summer and winter simulations. The winter results, however, have a
MAPE (Mean Absolute Percentage Error) of 6.53% and an RMSE of 0.69 °C, which is higher
than the summer MAPE of 4.71% and RMSE of 0.61 °C. This is due to unaccounted heat
gains from the occupants during winter.

The higher order full-scale models are capable of capturing the majority of the build-
ing’s heat transport dynamics and accurately estimating indoor temperature and heat-
ing/cooling demand. When modeled for multiple zones of a building, however, the
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computational cost and complexity of these full-scale models increases. A 4-zone building
model, for example, may have a state-space dimension of 40 or more, whereas a 100-zone
building could have a state-space dimension of a thousand. Thus, such a model is unsuit-
able for a model-based control technique, particularly one requiring on-line optimization
based on model prediction, such as MPC. Therefore, for reactive building energy man-
agement systems, reduced-order models are necessary [107]. Goyal and Barooah [108]
proposed a model reduction methodology based on a balanced truncation method for LTI
systems and balanced truncation-like reduction method for nonlinear thermal building
thermal models. The measured RMS error in temperature predictions over a 24-h period is
0.5 °C when the model is reduced from 40 to 14 states. When the same model is reduced
to 8 states, the observed RMS is 2 °C. Therefore, for modeling multi-zone buildings, such
methods are essential. The computational cost comparison between the full-scale model
and reduced-order models is shown in Table 4.

Table 4. Computation time vs. model order. Reproduced from Goyal and Barooah [108].

Model Model Order Computational Time

Full-scale 40 189–397 s
Reduced 14 38–77 s
Maximally reduced 8 32–64 s

Table 5 summarizes the critical analysis of the contributions and main limitations of
full-scale models that are developed for both single-zone and multi-zone buildings. In this
context, the significance of model parameters, sensitivity analyses, generic thermal models,
accurate internal thermal mass models, and the effects of residual analysis, simulation-
times, -steps and -periods are not addressed clearly. These potential areas should be
assessed in detail to achieve efficient, simplified, and low computational cost building
thermal-network models.

Table 5. Analysis of whole-zone models based on the thermal network approach.

Reference Building Type Zone Structure Single-Zone Multi-Zone Contributions Limitations

[109] Micro-homes 3R1C X Passive heating is proposed for
heating/cooling load reduction

Effects of all thermal dynamics are
not taken into account

[110] Office 4R4C X
Hybrid building modeling method
with a reduced modeling and
calibration effort

The use of two different modeling
techniques requiring different sets of
skills from the modeler may be an
obstacle for its practical
implementation

[111] Office 3R3C X

The definition of the differential
equations that govern the system is
unnecessary, and less inputs and a
priori information are required

GP presents a higher day-ahead
prediction error, it requires longer
training periods and is more
sensitive to unknown input data

[108] - 40 states X

The non-linear higher order model
is reduced using balanced
truncation-like model reduction
method

Effect of all thermal dynamics are
not taken into account

[81] Residential 31R6C X

Lumped-capacitance building
model with an HP based heating
system managed by a predictive
control, that allows some degree of
flexibility to space conditioning

Node positioning is not discussed

[112] Single-room 4R3C X
A novel optimization method is
proposed for parametric
identification

There is little difference between the
results of PSO and BSAS, and the
stability of the proposed algorithm
should be studied for higher-order
RC networks
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Table 5. Cont.

Reference Building Type Zone Structure Single-Zone Multi-Zone Contributions Limitations

[87] - 12R9C X 3R2C envelope model is used to
constitute whole-zone model

Sensitivity analysis is not discussed.
The parametric identification
method and node positioning is not
discussed

[113] Demonstrator
building 11 states X

An MPC is applied to control the
indoor space based on the comfort
index PMV

Positing of nodes is not discussed

[98] 4R1C X The model performance accuracy is
better than EN ISO 13790 model

Positing of nodes is not discussed.
Sensitivity analysis is not discussed

[114] Industrial
building 55 states X

This algorithm defines basic
structures in model as sources,
spaces, walls and openings, and
enables rapid and automated
development of thermodynamic
model of a building in state-space
representation, based on basic
information about the building

Calculation of RC values in white
box model is not clear. The author
states that the values correspond to
layer values but wall composition is
not presented in the paper. The
results are shown for 1 day and
these are not properly fit with the
measured data

[115] Single-room 5R1C, 7R2C X

Both lumped-capacitance models
appear to reliably calculate the
overall energy needs of buildings in
both heating and cooling seasons.
As far as transient behavior is
concerned, the first-order ISO 13790
model seems inappropriate to
calculate neither the hourly cooling
load profile nor the cooling peak
load. The second-order model
proposed by VDI 6007 is more
accurate in both the heating and
cooling modes

The current study hopes to be useful
to building designers who must
choose between simplified
simulation tools based on the
standards mentioned and to
researchers who intend to integrate
the lumped-capacitance models
presented here into city district
simulation tools

[116] Test room X X

The two-node model for one room
presented in this paper gives
reasonably good results for a variety
of typical wall constructions. The
extension of the model for a
multi-zone building on the base of
the two-node model seems to
reproduce with good accuracy the
results obtained by the dynamic
thermal simulation program ESP-r

Of these, the explicit solution
methods are too onerous for general
purposes, both computationally and
in terms of data requirements (and
associated uncertainties)

[117] Office X

It has been proved that the analytical
solution is asymptotically stable for
all time steps, and therefore, there
are no constraints on the feasible
search region of the RC parameters

This model is proposed as a
simplified but robust model, which
is embedded in existing and future
BAS without the need to install
additional sensors

[118] Historical
building X

The study found that combining a
high thermal-inertia-mass with a
ventilation system eliminates
overheating and improves indoor
comfort while lowering cooling
loads.

The model should be tested and
validated for other types of
buildings.

3. Parametric Identification

Gray-box models are a hybrid of white-box and black-box concepts. The system’s
equations are obtained using physics, thermodynamics, and heat transfer theories. The
lumped-parameter model is used for buildings, and is capable of capturing all the zone’s
heat dynamics [119]. The challenge arises, however, while defining the lumped model’s
parameter values [120]. When operational data (measured sensor data) is unavailable
and only thermo-physical characteristics are available, the parameters can be determined
analytically [121,122], or by developing an analytical model as a reference model using
available data and matching the resultant dynamics of the thermal network and reference
models [74,80]. However, if there is good availability of measured data but a lack of thermo-
physical characteristics data, inverse methodologies [123–125] are applied to determine
parameter values by minimizing the prediction error between the thermal-network model
and the measured data [126–129]. We may categorize parametric identification methods
into three groups based on the numerous methods provided in the literature:
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• Forward/direct methods
• Inverse methods
• Hybrid methods

3.1. Forward/Direct Methods

The direct/forward methods are developed based on analytical models. The parame-
ter values of the thermal-network model are derived analytically. In general, the analytical
models need complete data for geometry, thermo-physical properties of the construction
materials, etc. Analytical parameter identification methods can be complex, and their accu-
racy can be questioned in some cases, whereas optimization-algorithm-based methods are
more accurate, however, require prior simulation using a detailed or high-order reference
model, and thus, are not suitable for use in buildings or urban micro-climate thermal simu-
lation programs (as the characteristic parameters of the model must be adjusted beforehand
for each element). Thus, it is necessary to find an analytical adjustment method (that
does not require prior simulation using a reference model) that offers sufficient accuracy,
maintains simplicity (therefore a low computational cost) and can be adapted to changes in
the value of the simulation’s time step.

Ramallo-González [120] proposed a new approach based on the Dominant Layer
Model (DLM) as an alternative to analytical methods for developing thermal networks for
multi-layered composite walls. The authors investigated the relative influence of each layer
in a frequency-response multi-layer wall. This method includes a set of rules to define
thermal network parameter values. The model’s overall accuracy outperformed Fraisse’s
model [67] in both the time and frequency domains when results were compared.

Furthermore, Rodríguez Jara et al. [130] introduced an analytical approach for deter-
mining the parameter values based on a hypothesis that these values are time-dependent
and vary throughout the simulation. They validated the proposed approach on 41 different
types of multi-layer walls by comparing it to the reference finite-difference model. How-
ever, there is a lack of detailed analysis on full-scale model simulation using the developed
approach.

Analytically determined parameters can result in more efficient model development.
However, in order to develop such models, the researcher must have strong analytical
knowledge, and sometimes the design process can become complex and time consuming,
leading to the results diverging from the excepted results for multi-zone models. Further-
more, these methods can only be implemented if all possible thermo-physical knowledge
of the building is available. Therefore, researchers have proposed an inverse method to
overcome these drawbacks.

3.2. Inverse Models

Inverse modeling is the process of taking measured sensor data from the building as
an input to determine the parameters or perform system identification. These methods
determine parameters by minimizing the error between the measured and simulation
results. Two types of inverse problems are [131]:

• Parameter estimation: Inverse modeling is used to determine the parameters, such
as resistor or capacitor values in the thermal-network model. These parameters will
have some physical meaning and boundaries during the optimization.

• System identification: The inverse modeling is applied to identify complete systems
with all parameters that may or may not have any physical meaning. These models
use patterns to predict the system’s dynamics.

The general optimization process is shown in Figure 8, the building model is repre-
sented in state-space models with state and parameter values. The simulations that do not
need to be repeated are performed at the initialization stage. Parameters of the state-space
equations are initialized for the first step of the simulation; the response is compared with
the measured/reference model data. Furthermore, optimization techniques are applied to
find the optimal parameter values that produce global minimum error values. This new
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set of parameters is then used for the prediction of indoor temperature or heating/cooling
load.

Figure 8. Optimization process. Reproduced from Kramer et al. [105].

Early implementation of parameter identification was proposed in [132] where the
RC model of structure 3R2C is developed for a school building. The resistor and capacitor
values are determined using the least squares optimization algorithm. The identified
parameters were, however, showing average differences of 25–30% compared to real values.
Furthermore, they found that the methodology is computationally expensive and not
suitable for integration with BEMS. Later, they proposed an improved recursive least
squares method in [133] to integrate the thermal-network model into BEMS for on-line
control applications. This study opens up the possibilities of developing thermal-network
models for retrofitted/new buildings, and controller applications, that do not require
knowledge of the thermo-physical characteristics of the building.

Madsen and Holst [76] worked on the estimation of continuous dynamic models
from discrete measured data. The parameters in continuous-time models are estimated
by the maximum likelihood method where a Kalman filter is used in calculating the
likelihood function. The authors concluded that more reasonable physical interpretations
of parameters are possible for continuous-time parameter estimation. Another study [134]
applied the same methodology to identify the parameters of a higher order thermal network-
model. They added white noise to the measured data to compensate for any error in the
measurement. The model includes adjacent room air temperature, power from radiators
and EC-units, and outside air temperature and solar radiation for the south and north
side, respectively. The results show that the model was able to simulate the system with a
maximum difference between the simulated and measured temperatures of 0.40 °C during
the simulation period of 17 days. Furthermore, a methodology was proposed in [135] to
find a model linking the heat consumption to climate and calendar information by using
statistical algorithms to identify the parameters.

Mustafaraj et al. [136] conducted a comparative study on different stochastic algo-
rithms such as Box–Jenkins (BJ) models, autoregressive models with external inputs (ARX),
autoregressive moving average models with external inputs (ARMAX), and output error
(OE) models to identify the thermal behavior of an office positioned in a modern commer-
cial building. The models were trained and validated throughout the weekdays of the
summer, autumn, and winter seasons, to study the thermal behavior of the zone, and two
major influencing output parameters (temperature and relative humidity) were chosen for
prediction. The results show that the BJ model provides better prediction results than ARX
and ARMAX models (see Tables 1–6 in [136]). The out-performance of BJ models being
due to its handling of noise being more suitable than other algorithms. Furthermore, these
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algorithms are adaptive to the changing conditions of the building systems. In this regard,
such algorithms are better suited for on-line controller applications in buildings [137].
Similarly, Unscented Kalman Filtering (UKF) is implemented for on-line thermal parameter
estimation for multi-zone buildings [138], and Sequential Monte carlo methods for 3R2C
models [139].

Lin et al. [140] presented a study on the identification of a suitable reduced-order
model to represent the actual building dynamics and the estimation of its parameters.
The authors compared the performance of full-scale (13-order), first, and second-order
models with the measured data. Here the parameter values for the full-scale model are
taken from ASHRAE standards, [15] and for reduced-order models, the same values are
aggregated to represent the parameters. Three different (open and closed-loop) measured
data sets are used for model performance comparisons in both the time and frequency
domain. The results show that the second-order models are accurate enough to capture the
influencing dynamics of the building. Furthermore, least squares and maximum likelihood
optimization techniques are compared for parameter estimation. As the cost functions are
non-convex, gradient based optimization techniques often fail to find the global minimum,
this is a normal condition of higher number parameter models. Therefore, the direct
search method is used for minimizing the cost-functions to avoid getting stuck at the local
minimum. The least squares method is found to be more accurate in closed-loop data cases,
whereas ML is better for forced-response data.

Many studies have used a readily available system identification toolbox of MATLAB
for the parameter estimation process [141,142]. Afshari and Liu [143] presented a study on
the urban energy model to estimate the urban heat intensity (UHI) and UHI cooling load
penalty. A third-order thermal network urban energy model is developed and the parame-
ters are identified by calibrating the model with measured hourly data. The best parameter
estimation results are obtained using genetic algorithms and particle swarm optimization
techniques (PSO) and the former was retained for model simulation. However, stochastic
optimization algorithms are time-consuming due the to large number of populations being
randomly initialized to accomplish optimization.

Whereas Wang et al. [112] proposed a novel optimization algorithm known as beetle
swarm antenna search (BSAS) for the estimation of parameters in building thermal-network
models that has a low computational cost and an acceptable accuracy. Seven total R and
C values are estimated by minimizing the mean absolute difference between the thermal
model and EnergyPlus-predicted indoor temperatures. The BSAS algorithm’s performance
is compared with other algorithms such as GA, PSO, and DE. The results show that BSAS
with beetle number 5 shows better stability with high computational cost, whereas beetle
number 2 produces a slightly higher error with a low computational cost. However, PSO
results were more stable than the BSAS with beetle number 5. However, the proposed
optimization algorithm needs to be tested on higher-order thermal-network models.

Due to an increase in the implementation of IoT devices in buildings, the availability
of large datasets has lead to an increased use of inverse-algorithm based building-dynamic-
model development. As a result of the modeling simplicity and availability of powerful
computational machines, these algorithms are used for model identification, parametric
identification, model order reduction, and estimation of thermal characteristics of the
buildings. Furthermore, the fusion of multiple inverse algorithms has been shown to lead
to the development of robust models with excellent indoor environment parameters, and
heating/cooling load prediction accuracies [134,144]. As seen in Table 6, many different
inverse algorithms are used in the literature. These algorithms are broadly classified into
three categories [131]:

• Deterministic models
• Stochastic time series models
• Black-box models

However, the acuracy of this type of inversely developed model heavily depends on
the accuracy of collected data. Most of the time data collected are prone to have measure-
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ment errors, and such data leads to models with estimated parameters that produce large
errors [145]. Some of the inverse models are critically reviewed with different parameters
in Table 6. Many studies have been applied to whole-zone model parameter estimation,
and they show greater accuracy when compared with the measured data. However, a lot
of work is still required to focus on the uncertainty analysis of the measured data [146],
model validation through long-term simulation, dynamic occupancies, physical interpreta-
tion of estimated parameters, sensitivity analyses, training and testing periods, and input
variables.

Table 6. Analysis of inverse model developed on optimization algorithms.

Reference Building Type
Thermal-
Network
Model

Optimization
Method/
Algorithm

Simulation
Tool

Simulation
Period

Performance
Metrics Contributions Limitations

[60] University Multi-zone
Maximum
likelihood
estimator

MATLAB 48 h Sum squared
error (SSE)

Convective heat
transfer between
zones is considered
and parameters are
estimated for the
same zone

Zone temperatures
are maintained at a
constant value
(closed-loop data),
this is likely to lead
to grossly inaccurate
parameter
estimation

[147] Residential 5R2C Least squares
identification MATLAB 120 days fit

The models for
input systems are
modeled and
linearised to obtain
simple models

Physical
interpretation of
obtained parameter
values are not
studied.
Furthermore, the
boundaries of
parameter values are
not clearly stated.

[105] Monumental Multiple
configurations

GA, pattern
search,
fmincon

MATLAB 1 year

fit, mean
squared error
(MSE), mean
absolute
error (MAE)

Simplified
hygrothermal model
is developed with
multiple parametric
optimization
methods. Indoor
temperature and RH
are predicted for
free floating
monumental
building with higher
accuracy

Sensitivity analysis
is not conducted.
The computation
time complexity for
optimization
process is high, as is
the difference
between each
optimization
algorithm output
parameter.

[95] Office 6R2C Interior point
algorithm

Training :
1,2,3 weeks,
Test : 3 weeks

fit, RMSE,
energy
relative error
(ERE)

Multiple RC models
are compared.
Sensitivity analyses
of parameters are
presented.

Robustness of the
proposed model
should be validated
for long-term
predictions.

[89] Lodging 1R1C
Nelder–Mead
simplex
algorithm

Parametric
estimation :
12 days,
model
simulation : 2
and 4 days

RMS and
MAE

Multiple RC models
are compared.
On-line estimation
of occupancy heat
gains is estimated
and included in the
model.

The model should
be validated for
long-term
predictions. Physical
interpretations of
parameters are not
included.

[123] Residential Envelope
model - 2R1C

Bayesian
analysis

CERN MI-
NUIT [148] 14 days

Combining physical
and Bayesian
analyses lead to
significantly
reduced
measurement
periods required to
estimate U- and
R-values compared
to conventional
steady-state
methods.

Lower order RC
model is not suitable
for the high thermal
mass walls.
Robustness of the
methodology
should be verified
for different
materials.

[111] Office 3R3C least squares
algorithm MATLAB 3, 7, 21, and

42 days RMSE

Gaussian process
(GP) is developed to
represent building
dynamics. The
prediction errors for
occupied period are
27% lower than
gray-box models.

Long-term
simulation is not
studied. Dynamic
occupancy, and
other heat inputs are
not fully taken into
account.
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Table 6. Cont.

Reference Building Type
Thermal-
Network
Model

Optimization
Method/
Algorithm

Simulation
Tool

Simulation
Period

Performance
Metrics Contributions Limitations

[149] Office
Envelope
model - 2R1C
and 3R2C

Maximum a
posteriori
(MAP) and
bayesian
analysis

SciPy [150] 3 days fit

R and C values are
estimated for
building envelopes
based on in-situ
measurements. The
positioning of R and
C parameters are
optimally
positioned in 3R2C
model

The methodology to
chose parameter
boundary values is
not clearly
presented.

[142] Office 4R2C
System
identification
toolbox

MATLAB 1 day fit

EMSs are developed
based on mixed
integer linear
programming
(MILP) to optimize
the bi-directional
energy flow while
managing thermal
comfort.

Selection of model
structure is not
discussed. Physical
interpretation of
each parameter is
ignored.

[151] Office Multi-zone

GA and
Prediction
Error Method
(PEM)

MATLAB 17 days fit and RMSE

Model reduction by
removing
non-identifiable
parameters is
presented. This also
reduced the model
uncertainty
significantly.

Zone temperatures
are maintained at a
constant value
(closed-loop data),
this likely to lead to
grossly inaccurate
parameter
estimation

[152] University 3R2C

Profile
likelihood
method [153,
154]

RMSE

UKF and EnKF have
been compared for
the purpose of
estimating residuals
and covariance for
evaluation of the
likelihood function.

Closed-loop data is
used for validation,
this is likely to lead
to grossly inaccurate
parameter
estimations

3.3. Hybrid Models

These models are the combination of the direct and inverse method. Direct methods
are computationally inefficient and complex to model, whereas inverse models are simple
and computationally efficient but need a large amount of data in order to train the model
or identify the system parameters. In all new or retrofitted buildings, where there is lack
of availability of building operational data, the application of inverse models becomes
impractical. Furthermore, to avoid poorly estimated models from noisy measurements
with high uncertainties, many studies have been undertaken on developing reference
models based on analytical or numerical methods. Hence, using optimization techniques
for parametric identification of thermal-network models reduces the error between the
reference and thermal network-models.

Antonopoulos and Koronaki [155] proposed a hybrid method that developed a refer-
ence model based on the finite-difference method. The apparent thermal capacitance of
a building is determined using the least squares optimization technique. These thermal
capacitance values have a significant influence on thermal model performance accuracy.
They validated their approach on various buildings in Greece.

Gouda et al. [61] applied a constrained optimization technique to identify the param-
eters of the thermal-network model by minimizing the error between reference model
dynamics. They developed a 20th-order thermal-thermal-network modelnetwork model to
replicate the envelope dynamics, and also used it as a reference model. Similarly, Fraisse
et al. [67] developed a frequency response model as a reference model. Underwood [74]
developed a numerical method based on an implicit finite-difference model as a reference
model. Similarly, Harish and Kumar [80] used the finite-difference Crank–Nicolson numer-
ical model as a reference model for 3R2C envelope model parameter identification. The
model parameters are determined for step responses in outdoor temperature and relative
humidity. Xu and Wang [64,156] compared the Conduction Transfer Function (CTF) model
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with the 3R2C model for parameter estimation. They validated the building model with
measured data. These identified thermal models are later used to develop a full-scale zone
model for validation with measured data [27]. Apart from analytical and numerical models,
software tools (EnergyPlus, TRNSYS, and ESP-r) are also used as reference models for
system and parameter identification, and validation.

Models that have been developed based on hybrid modeling lead to high perfor-
mances and accuracies with a loss of modeling complexity. Furthermore, reduced-order
system identification based on a reference model for multi-zone models can lead to high
computational costs and complexities. Whereas, full-scale models based on envelope and
internal mass models reduce the complexity for a single-zone model. However, these
become complex for multi-zone models. Therefore, there is still more research needed on
hybrid modeling and model-reduction methods.

4. Conclusions and Perspectives

More and more use of sensors, connecting devices, and advanced technologies have
enabled efficient building management and control. These controllers’ performance is
predominantly dependent on the building models that can replicate real building dynam-
ics. In addition, during the design and planning stage of building constructions, such
simplified models will be important in selecting the suitable materials, orientation, op-
eration schedules, and systems combination. Thermal network method-based building
models have the ability to predict and replicate the building dynamics with a high accuracy.
Other advantages are its low computational cost (models based on state-space representa-
tions), robustness, reduced-order modeling, simplicity to develop, development even with
limited/no thermo-physical properties data, and suitability to controller applications.

Recent studies have shown that MPC controllers based on thermal-network models
are able to better manage occupant comfort while achieving significant energy consump-
tion reduction. However, these models become complex for multi-zone buildings without
proper model reduction techniques. Additionally, the system’s parameters have significant
influence of the model performance, therefore proper parameters’ estimation is required.
More study is needed in this area since physical knowledge of thermal network parameters,
node placement, and sensitivity lacks adequate explanation and interpretation. Further-
more, there is a lack of explanation on network structure selection for envelope model,
internal mass, and zone models. Further research is required on this aspect to develop a
generic model that is adaptable to all conditions and building types.

A critical and extensive review is carried out in this study to addresses thermal net-
work method-based modeling types, applicability, advantages, model-reduction methods,
reference models, and parameters identification to achieve a high-performance model to
predict building dynamics. These thermal network method-based models are reviewed
in detail for building envelopes, internal thermal mass, and zone models. We have also
reviewed different methods for parameter identification. More research has been done
on the inverse gray-box models with parameters are estimated by calibrating model with
measured data. However there is a lack of detailed explanation of the parameters’ physical
interpretations. Furthermore, in the literature, thermal-network models are predominantly
applied for buildings by only considering the sensible heat transfer dynamics and the
latent heat being completely ignored. They also have a significant influence on the indoor
conditions and heating/cooling load predictions.

In this regard, significant research is still required on many themes of the thermal-
network models for building modeling, some of the most important and potential areas are
listed below:

• The models that are developed for envelopes are not generic and multiple config-
urations are presented. Therefore, research on development of a generic model to
represent thermal dynamics through building envelopes (considering multiple types
of thermal mass walls) is essential.
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• As noted by authors, full-scale models are accurate but become complex when applied
for multi-zone buildings. More research is needed on model reduction and calibrations
techniques.

• In most studies, there is still a lack of analysis on the models’ suitability for seasonal
variations, dynamic occupancy, and short and long-term simulations.

• Analysis of proper input selection and consideration of all influential inputs is still
required.

• Comprehensive analysis on the development of hygric models (including latent heat
and mass transfer dynamics) is essential. These models can be used to simulate indoor
thermal conditions with greater accuracy.

• Most parametric and system identification studies lack a thorough explanation of
model structure selection, physical interpretation of identified parameters, and bound-
ary values selection during the optimization process.

• Uncertainty analysis of measured and simulated data is still poorly studied in the
literature and has not been considered in most studies.

Finally, the prospective areas discussed above must be addressed in detail to design
and develop a building model that is accurate in predicting indoor conditions and can be
applied to all building types and conditions (generic model). Such models open the way
for a significant industrialization of intelligent controllers, inclusion in digital twins, and
the incorporation of all other comfort variables, as well as the realization of sustainable
building development (in operation stage).
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