Éric Soccorsi 
  
MULTIDIMENSIONAL BORG-LEVINSON INVERSE SPECTRAL THEORY

Keywords: 

published or not. The documents may come    

A short introduction to inverse spectral problems

Let Ω ⊂ R d , where d ∈ N := {1, 2, . . .}, be a bounded domain with C 1,1 boundary ∂Ω. In the particular case where d = 1, we set Ω := (0, 1). Given q ∈ L ∞ (Ω), real-valued, we perturb the Dirichlet Laplacian in L 2 (Ω) by q, i.e. we consider the operator acting in L 2 (Ω) as -∆ + q, that is endowed with homogeneous Dirichlet boundary conditions.

We investigate the inverse problem of determining the operator -∆ + q, that is of determining the perturbation potential q, from knowledge of partial spectral data of -∆ + q. More precisely, we are interested in two types of results:

• A uniqueness result, expressing that every two admissible potentials q j , j = 1, 2, are equal whenever the spectral data of -∆ + q 1 coincide with the ones of -∆ + q 2 , i.e. we seek the following implication:

(Spectral data of -∆ + q 1 = Spectral data of -∆ + q 2 ) =⇒ (q 1 = q 2 ).

• A stability result, claiming that any unknown admissible potential q is not only uniquely determined (in the sense of the above implication) by the spectral data of -∆ + q, but also that it depends continuously on these data.

1.1. Self-adjointness, spectral data and all that. For M ∈ (0, +∞) fixed, let q ∈ L ∞ (Ω, R) fulfill q L ∞ (Ω) M.

(

We define A q as the operator in L 2 (Ω), associated with the closed sesquilinear form a q (u, v) := Ω ∇u(x) • ∇v(x) + q(x)u(x)v(x) dx, u, v ∈ D(a q ) := H 1 0 (Ω), (1.2) where H 1 0 (Ω) denotes the closure of C ∞ 0 (Ω), the set of infinitely differentiable and compactly supported functions in Ω, for the topology of the first-order Sobolev space H 1 (Ω). The operator A q is self-adjoint in L 2 (Ω) and acts on its domain 1 as

A q u = (-∆ + q)u, u ∈ D(A q ) = H 1 0 (Ω) ∩ H 2 (Ω). (1.3) 
Here, the notation H 2 (Ω) stands for the usual second-order Sobolev space in Ω, and we recall that the graph norm of A q is equivalent to the one of H 2 (Ω), i.e.

c -1 u H 2 (Ω) u D(Aq) := u L 2 (Ω) + A q u L 2 (Ω) c u H 2 (Ω) , u ∈ D(A q ), (1.4) 
In view of (1.1)-(1.2), we infer from the Min-Max principle that λ 1 -M, and we recall for further use that lim n→∞ λ n = +∞.

(1.5)

Let {ϕ n , n ∈ N} be an orthonormal basis in L 2 (Ω) of eigenfunctions of A q , such that

A q ϕ n = λ n ϕ n , n ∈ N.
With reference to (1.4)-(1.5), there exist two constants n M ∈ N and c ∈ (0, +∞), both of them depending only on Ω and M , such that

c -1 λ n ϕ n H 2 (Ω) cλ n , n n M . (1.6) Put ψ n := ∂ ν ϕ n , n ∈ N,
where ν denotes the outward normal vector to ∂Ω and ∂ ν u := ∇u • ν is the normal derivative of ϕ. Then, it follows from (1.6) and the continuity of the trace operator τ 1 : u → (∂ ν u) |∂Ω from H 2 (Ω) into H 1/2 (∂Ω), that we have

ψ n H 1/2 (∂Ω) cλ n , n n M , (1.7) 
for some positive constant c that depends only on Ω and M .

1.2. Review of the one-dimensional case. Fix d = 1 and recall that we have Ω = (0, 1) with A q = -d 2 dx 2 + q(x), D(A q ) = {u ∈ H 2 (0, 1), u(0) = u(1) = 0}, in this case. 1.2.1. An obstruction to identifiability. A very natural question that arises in this context is to know whether q can be determined by knowledge of Sp(A q ) = {λ n , n ∈ N}. But the answer is negative as the spectrum does not discriminate between symmetric potentials. This can be seen by noticing that we have

U A q U -1 = A U q , ( 1.8) 
where we have set (U f )(x) := f (1 -x) for all f ∈ L 2 (Ω) and a.e. x ∈ Ω. Since U is unitary in L 2 (Ω), then the operators A q and A U q are unitarily equivalent, by (1.8). Hence they are iso-spectral: Sp(A U q ) = Sp(A q ). Thus, one cannot distinguish between the potentials q and U q, from knowledge of the two spectra Sp(A q ) and Sp(A U q ), despite of the fact that q = U q when q is not symmetric about the midpoint x = 1/2 of the interval Ω. Therefore, the spectrum of A q does not uniquely determine q, and some additional spectral data is needed for identifying the potential. 1.2.2. One-dimensional Borg-Levinson theorem. Assuming that ϕ n (0) = dϕn dx (0) = 1 for all n ∈ N, G. Borg [START_REF] Borg | Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte[END_REF] and N. Levinson [START_REF] Levinson | The inverse Sturm-Liouville problem[END_REF] established when Sp(A q ) is known, that additional knowledge of { ϕ n L 2 (Ω) , n ∈ N} uniquely determines q. Theorem 1.1 [START_REF] Borg | Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte[END_REF] and [START_REF] Levinson | The inverse Sturm-Liouville problem[END_REF]). For λ ∈ R and for q j ∈ L ∞ (0, 1; R), j = 1, 2, let u j (•, λ) be the H 2 (0, 1)-solution to the initial values problem (-d 2 dx 2 + q j (x))u j (x, λ) = λu j (x, λ), x ∈ (0, 1) u j (0, λ) = 0, u j (0, λ) = 1.

(1.9)

Denote by {λ j,n , n ∈ N} the non-decreasing sequence of the Dirichlet eigenvalues associated with A q j , obtained by imposing:

u j (1, λ j,n ) = 0, n ∈ N.
Then, we have the implication: [START_REF] Alessandrini | Stability for a multidimensional inverse spectral theorem[END_REF] , n ∈ N =⇒ (q 1 = q 2 in (0, 1)) .

λ 1,n = λ 2,n and u 1 (•, λ 1,n ) L 2 (0,1) = u 2 (•, λ 2,n ) L 2 (0,
Later on, I. M. Gel'fand and B. M. Levitan proved that uniqueness is still valid upon substituting u j (1, λ j,n ) for u j (•, λ j,n ) L 2 (0,1) , j = 1, 2, in Theorem 1.1: Theorem 1.2 (Gel'fand-Levitan (1951)). Under the conditions of Theorem 1.1 we have:

(λ 1,n = λ 2,n and u 1 (1, λ 1,n ) = u 2 (1, λ 2,n ), n ∈ N) =⇒ (q 1 = q 2 in (0, 1)) .
Remark 1.3. Let p, q, ρ be real-valued and bounded functions in (0, 1), with p and ρ positive. Introduce the operator

A p,q,ρ = -ρ -1 d dx p d dx + q, D(A p,q,ρ ) = {u ∈ H 1 0 (0, 1), pu ∈ H 1 (0, 1)},
which is self-adjoint in L 2 ρ (0, 1), the usual L 2 (0, 1)-space endowed with the weighted scalar product u, v L 2 ρ (0,1) = 1 0 ρ(x)u(x)v(x)dx. Denote by {λ n , n ∈ N} the sequence of the eigenvalues of A p,q,ρ and by {u n , n ∈ N} a L 2 ρ (0, 1)-orthonormal basis of eigenfunctions of A p,q,ρ , obeying A p,q,ρ u n = λ n u n . If p and ρ are C 1,1 (0, 1), then the boundary spectral data

BSD(p, q, ρ) = {(λ n , u n (1)), n ∈ N}
uniquely determine either of the three coefficients p, q and ρ, when the two others are known. Indeed, one can check by using the Liouville transformation y

(x) = L -1 x 0 p -1/2 (t)ρ 1/2 (t)dt, x ∈ (0, 1), where L = 1 0 p -1/2 (t)ρ 1/2 (t)
dt, as a coordinate transformation, that the equation -(pu ) + qu -λρu = 0 in (0, 1) reduces to its normal form -u + V u = λu in (0, 1), where V = V p,q,ρ is expressed in terms of p, q and ρ, while the boundary spectral data is preserved, i.e.

BSD(1, V, 1) = BSD(p, q, ρ). Thus, Theorem 1.2 yields recovery of V from BSD(p, q, ρ), hence the result. Notice that this change of coordinates is no longer valid for discontinuous p and ρ. We refer the reader to [START_REF] Carlson | An inverse spectral problem for Sturm-Liouville operators with discontinuous coefficients[END_REF] for a specific treatment of this problem.

All the approaches from G. Borg, N. Levinson or I. M. Gel'fand and B. M. Levitan, were based on highly one-dimensional techniques, but two great ideas emerged in the 80', that paved the way toward solving the multidimensional Borg-Levinson inverse spectral problem. The first one is called the C-property, see [START_REF] Ramm | Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering[END_REF]. It is due to A. G. Ramm who showed that the set {u 1 (•, λ)u 2 (•, λ), λ ∈ (0, +∞)} is dense in L 1 (0, 1). The second one is called the boundary control method, see [START_REF] Belishev | Recent Progress in the Boundary Control Method[END_REF]. It was established by M. I. Belishev upon applying the boundary controllability theory to the hyperbolic equation associated with the Sturm-Liouville system (1.9). One common nice feature of these two great ideas is that they apply to higher dimensions d 2 as well.

Multidimensional identification results.

1.3.1. Boundary spectral data. Let us recall that {λ n , n ∈ N} is the non-decreasing sequence of the eigenvalues of A q (repeated with the multiplicity), that {ϕ n , n ∈ N} is a L 2 (Ω)orthonormal basis of eigenfunctions of A q such that A q ϕ n = λ n ϕ n , and that ψ n = ∂ ν ϕ n . We define the boundary spectral data (BSD) of A q , or the BSD associated with q, as:

BSD(q) := {(λ n , ψ n ), n ∈ N}.
Remark 1.4. For all n ∈ N, one may replace ϕ n by e iθn ϕ n with θ n ∈ R, in the above definition. Thus it is clear that the BSD are not defined in a unique way: they depend on the choice of the L 2 (Ω)-orthonormal basis {ϕ n , n ∈ N} of eigenfunctions of A q . 1.3.2. Multidimensional identifiability. In 1988, it was proved for d 2 by A. Nachman, J. Sylvester and G. Uhlmann in [START_REF] Nachmann | An n-dimensional Borg-Levinson theorem[END_REF], and independently by R. Novikov in [START_REF] Novikov | Multidimensional inverse spectral problems for the equation ∆ψ + (v(x) + Eu(x))ψ = 0[END_REF], that the potential q is uniquely determined by BSD(q), i.e. that the following implication (BSD(q 1 ) = BSD(q 2 )) =⇒ (q 1 = q 2 ), holds for any two suitable potentials q j , j = 1, 2. This result has been improved in several ways by various authors.

Firstly, H. Isozaki [START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF] (see also M. Choulli [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF]) extended the result of [START_REF] Nachmann | An n-dimensional Borg-Levinson theorem[END_REF][START_REF] Novikov | Multidimensional inverse spectral problems for the equation ∆ψ + (v(x) + Eu(x))ψ = 0[END_REF] when finitely many eigenpairs remain unknown. Theorem 1.5. For j = 1, 2, let q j ∈ L ∞ (Ω, R) and write 3 BSD(q j ) = {(λ j,n , ψ j,n ), n ∈ N}. Then, for all N ∈ N, we have the following implication:

((λ 1,n , ψ 1,n ) = (λ 2,n , ψ 2,n ), n N ) =⇒ (q 1 = q 2 ).
Recently, uniqueness in the determination of q was proved in [START_REF] Choulli | Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data[END_REF][START_REF] Kavian | Uniqueness and stability results for an inverse spectral problem in a periodic waveguide[END_REF] from the knowledge of the asymptotic behavior of BSD(q) when n → +∞. Theorem 1.6. Let q j for j = 1, 2, and the notations, be the same as in Theorem 1.5. Assume that the asymptotics of BSD(q 1 ) and BSD(q 2 ) coincide, in the sense that

lim n→∞ (λ 1,n -λ 2,n ) = 0 and +∞ n=1 ψ 1,n -ψ 2,n 2 L 2 (∂Ω) < ∞.
3 That is to say that {λ j,n , n ∈ N} is the non-decreasing sequence of the eigenvalues of A qj and that ψ j,n = ∂ ν ϕ j,n for all n ∈ N, where {ϕ j,n , n ∈ N} is a L 2 (Ω)-orthonormal basis of eigenvectors of A qj such that A qj ϕ j,n = λ j,n ϕ j,n .

Then, we have q 1 = q 2 in Ω.

The multidimensional Borg-Levinson theorem has been studied in many different kinds of settings4 and it is not quite possible to give an extensive survey of this here, but we shall mention a few results which are relevant for the problem under investigation in this text. In [START_REF] Päivärinta | An n-dimensional Borg-Levinson theorem for singular potentials[END_REF], L. Päivärinta and V. Serov proved identifiability of unbounded potentials q ∈ L p (Ω, R) for p > d/2, by BSD(q). The case of p = d/2, d 3, has been studied by V. Pohjola in [START_REF] Pohjola | Multidimensional Borg-Levinson theorems for unbounded potentials[END_REF]. As for Borg-Levinson inverse spectral theory with partial Neumann data, we refer the reader to M. Bellassoued, M. Choulli and M. Yamamoto's article [START_REF] Bellassoued | Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem[END_REF], where a log-stability estimate for electric potentials which are known in a neighborhood of the boundary, is established with respect to the BSD measured on an arbitrary non-empty open subset of the boundary5 . 1.3.3. Outline. The paper is organized as follows. In Section 2 we prove Theorems 1.5 and 1.6. In Subsection 2.1 we express the strong solution to the Dirichlet problem for -∆+q -λ, λ ∈ C \ Sp(A q ), in terms of BSD(q). Subsection 2.2 contains the proof Isozaki's formula, which is useful for the derivation of Theorems 1.5 and 1.6, presented in Subsections 2.3 and 2.4, respectively. In Subsection 2.5 we examine the stability issue of the Borg-Levinson inverse problem under study. Finally, we derive a parabolic identification result in Section 3, by means of Theorem 1.5.

Multidimensional Borg-Levinson theory

This section contains the proof of the incomplete Borg-Levinson theorem stated in Theorem 1.5 and the asymptotic Borg-Levinson theorem stated in Theorem 1.6. We start by establishing several technical results that are needed by the derivation of Theorems 1.5 and 1.6.

2.1. Preliminaries. For q ∈ L ∞ (Ω, R), f ∈ H 3/2 (∂Ω) and λ ∈ C, we consider the boundary value problem (BVP)

(-∆ + q -λ)u = 0 in Ω u = f on ∂Ω. (2.1)
First, we establish that there exists a unique strong solution 6 to the Cauchy problem (2.1) that can be expressed in terms of BSD(q). Lemma 2.1. Let q ∈ L ∞ (Ω, R) and f ∈ H 3/2 (∂Ω). Then, for each λ ∈ C \ Sp(A q ) there exists a unique solution u λ ∈ H 2 (Ω) to (2.1). Moreover u λ reads

u λ = +∞ n=1 f, ψ n L 2 (∂Ω) λ -λ n ϕ n in L 2 (Ω), (2.2) 
and we have

lim λ→-∞ u λ 2 L 2 (Ω) = lim λ→-∞   +∞ n=1 f, ψ n L 2 (∂Ω) λ -λ n 2   = 0. (2.3)
Proof. We split the proof into three steps.

Step 1: Existence and uniqueness of the solution to (2.1). Since f ∈ H 3/2 (∂Ω) and since the trace operator τ 0 : v → v |∂Ω is surjective from H 2 (Ω) onto H 3/2 (∂Ω), then there exists

F ∈ H 2 (Ω) such that τ 0 F = f . Thus, u λ is a solution to (2.1) iff v λ := u λ -F solves (-∆ + q -λ)v = G in Ω v = 0 on ∂Ω, ( 2.4) 
with

G := -(-∆ + q -λ)F ∈ L 2 (Ω) ∈ L 2 (Ω).
Next, λ being in the resolvent set of A q , we see that (2.4) admits a unique solution v λ = (A q -λ) -1 G. Thereofore, u λ = v λ + F is the unique solution to (2.1), and u λ ∈ H 2 (Ω).

Step 2: Proof of (2.2). For all n ∈ N, we have

0 = (-∆ + q -λ)u λ , ϕ n L 2 (Ω) = Ω (-∆ + q(x) -λ)u λ (x)ϕ n (x)dx, whence 0 = - ∂Ω ∂ ν u λ (x)ϕ n (x)dx + ∂Ω u λ (x)ψ n (x)dx + Ω u λ (x)(A q -λ)ϕ n (x)dx = ∂Ω f (x)ψ n (x)dx + (λ n -λ) Ω u λ (x)ϕ n (x)dx,
by integrating by parts. As a consequence we have

u λ , ϕ n L 2 (Ω) = f,ψn L 2 (∂Ω) λ-λn
, so (2.2) follows readily from this and the L 2 (Ω)-decomposition u λ = +∞ n=1 u λ , ϕ n L 2 (Ω) ϕ n .

Step 3: Proof of (2.3). With reference to (1.1)-(1.2), we have for all n ∈ N,

λ n = A q ϕ n , ϕ n L 2 (Ω) = a q (ϕ n , ϕ n ) = Ω |∇ϕ n (x)| 2 dx + Ω q(x) |ϕ n (x)| 2 dx -M,
hence Sp(A q ) ⊂ [-M, +∞). Thus,we see that every λ ∈ (-∞, -(1+M )] lies in the resolvent set of A q , and that f, = 0 for all n ∈ N, we infer from (2.5) and the Lebesgue

ψ n L 2 (∂Ω) λ -λ n 2 f, ψ n L 2 (∂Ω) 1 + M + λ n 2 , n ∈ N. (2.5) Further, since +∞ n=1 f,ψn L 2 (∂Ω) 1+M +λn 2 = u -(1+M ) 2 L 2 (Ω) < ∞,
dominated convergence theorem that lim λ→-∞   +∞ n=1 f, ψ n L 2 (∂Ω) λ -λ n 2   = +∞ n=1   lim λ→-∞ f, ψ n L 2 (∂Ω) λ -λ n 2   = 0.
Putting this, together with (2.2) and the Parseval formula, we obtain (2.3).

Notice that the series in (2.2) converges in L 2 (Ω) and not in H 2 (Ω). Therefore, the normal derivative ∂ ν u λ of the solution u λ to (2.1) cannot be obtained directly from (2.2), by substituting ψ n for ϕ n in the right hand side. To achieve this, we need to introduce an additional specific spectral parameter µ, and consider the difference u λ -u µ , as follows.

Lemma 2.2. Let q and f be the same as in Lemma 2.1. Then, for all λ and µ in C\Sp(A q ), we have

∂ ν (u λ -u µ ) = (µ -λ) +∞ n=1 f, ψ n L 2 (∂Ω) (λ -λ n )(µ -λ n ) ψ n in H 1/2 (∂Ω). (2.6)
Here u λ (resp., u µ ) denotes the H 2 (Ω)-solution to (2.1) (resp., (2.1) where λ is replaced by µ), given by Lemma 2.1.

Proof. In view of (2.1), we see that v := u λ -u µ solves

(-∆ + q -λ)v = (λ -µ)u µ in Ω v = 0 on ∂Ω. (2.7) Since λ is in the resolvent set of A q , (2.7) yields v = (λ -µ)(A q -λ) -1 u µ = (λ -µ) +∞ n=1 u µ , ϕ n L 2 (Ω) λ n -λ ϕ n , (2.8) 
the series being convergent in L 2 (Ω). Recall that we have

u µ = +∞ n=1 f, ψ n L 2 (∂Ω) µ -λ n ϕ n in L 2 (Ω), (2.9) 
upon substituting µ for λ in (2.2). Putting this together with (2.8), we get that

v = (λ -µ) +∞ n=1 f, ψ n L 2 (∂Ω) (λ n -λ)(µ -λ n ) ϕ n in L 2 (Ω), (2.10) 
Next, since v ∈ D(A q ) and A q v = (λ -µ)u µ + λv, we deduce from (2.9)-(2.10) that

A q v = (λ -µ) +∞ n=1 λ n f, ψ n L 2 (∂Ω) (λ n -λ)(µ -λ n ) ϕ n in L 2 (Ω).
Therefore, the series in (2.10) converges for the topology of the norm of A q , hence it converges in H 2 (Ω), according to (1.4). Finally, we obtain (2.6) from this by invoking the continuity of the trace operator

τ 1 : u → (∂ ν u) |∂Ω from H 2 (Ω) into H 1/2 (∂Ω).
The next lemma claims for any two real-valued bounded potentials q 1 and q 2 , that the solutions to (2.1) associated with either q = q 1 or q = q 2 , are closed as λ → -∞: in some sense the influence of the potential is dimmed when the spectral parameter λ goes to -∞.

Lemma 2.3. Let f ∈ H 3/2 (∂Ω) and let q j ∈ L ∞ (Ω, R), j = 1, 2. For λ ∈ C \ (Sp(A q 1 ) ∪ Sp(A q 2 )
), let u j,λ be the solution to (2.1) where q j is substituted for q, which is given by Lemma 2.1. Then, we have

lim λ→-∞ ∂ ν u 1,λ -∂ ν u 2,λ L 2 (∂Ω) = 0.
(2.11)

Proof. Set w λ := u 1,λ -u 2,λ , so we have

(-∆ + q 1 -λ)w λ = (q 2 -q 1 )u 2,λ in Ω w λ = 0 on ∂Ω, from (2.

1), and hence w

λ = (A q 1 -λ) -1 (q 2 -q 1 )u 2,λ . Bearing in mind for all real number λ < -q 1 L ∞ (Ω) , that (A q 1 -λ) -1 B(L 2 (Ω)) = dist -1 (λ, Sp(A q 1 )) 1/( q 1 L ∞ (Ω) + λ), we find that w λ L 2 (Ω) q 2 -q 1 L ∞ (Ω) u 2,λ L 2 (Ω) -λ -q 1 L ∞ (Ω) , λ ∈ -∞, -q 1 L ∞ (Ω) .
Here and in the remaining part of this text, B(L 2 (Ω)) denotes the space of linear bounded operators 7 in L 2 (Ω). From this and (2.3) it then follows that lim

λ→-∞ λ w λ L 2 (Ω) = 0. (2.12) Next, since A q 1 w λ = (q 2 -q 1 )u 2,λ + λw λ , it holds true for every λ < -q 1 L ∞ (Ω) that A q 1 w λ L 2 (Ω) q 2 -q 1 L ∞ (Ω) u 2,λ L 2 (Ω) -λ w λ L 2 (Ω) , so we get lim λ→-∞ A q 1 w λ L 2 (Ω) = 0, from (2.
3) and (2.12). As a consequence we have

lim λ→-∞ w λ L 2 (Ω) + A q 1 w λ L 2 (Ω) = 0.
This and (1.4) entail lim

λ→-∞ u 1,λ -u 2,λ H 2 (Ω) = 0
which together with the continuity of the trace operator

τ 1 : u → (∂ ν u) |∂Ω from H 2 (Ω) into H 1/2 (∂Ω), yield (2.11). 2.2. Isozaki's asymptotic representation formula. Let q j ∈ L ∞ (Ω, R) satisfy q j L ∞ (Ω) M, j = 1, 2, (2.13) 
for some a priori fixed constant M ∈ (0, +∞). In [START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF], H. Isozaki gives a simple representation formula, expressing the difference q 1 -q 2 in terms of the Dirichlet-to-Neumann (DN) operator associated with the BVP obtained by substituting q j for q in (2.1). More precisely, adapting the argument of [START_REF] Isozaki | Some remarks on the multi-dimensional Borg-Levinson theorem[END_REF] to fit our aim in this text, we fix τ ∈ (1, +∞) and we consider the BVP (2.1) with λ = λ + τ := (τ + i) 2 and q = q j , i.e.

(-∆ + q j -λ + τ )u = 0 in Ω u = f on ∂Ω. (2.14) 7 The usual norm of T ∈ B(L 2 (Ω)) is defined by T B(L 2 (Ω)) = sup f ∈L 2 (Ω)\{0} T f L 2 (Ω) f L 2 (Ω)
.

We denote by u j,λ + τ the H 2 (Ω)-solution to (2.14) (for the sake of notational simplicity we drop the dependence of u j,λ + τ on f ). Let us introduce the DN map associated with (2.14), as

Λ j,λ + τ : H 3/2 (∂Ω) → H 1/2 (∂Ω) f → ∂ ν u j,λ + τ |∂Ω . (2.15)
Given two test functions f ± τ , we shall make precise below, we aim to link the difference q 1 -q 2 to the asymptotic behavior of

S τ := S 1,τ -S 2,τ , where S j,τ := Λ j,λ + τ f + τ , f - τ L 2 (∂Ω) , (2.16) 
as τ → +∞.

Test functions.

For ξ ∈ R d fixed, and for every τ ∈ (|ξ|+1, +∞), we set λ ± τ := (τ ±i) 2 , and we seek two functions f ± τ such that

     (-∆ -λ ± τ )f ± τ = 0 in Ω lim τ →+∞ f + τ (x)f - τ (x) = e -iξ•x , x ∈ Ω sup τ ∈(|ξ|+1,+∞) f ± τ C(Ω) < ∞.
(2.17)

Here and in the remaining part of this text, the notation

• (resp., |•|) stands for the Euclidian product (resp., norm) in R d .
Pick η ∈ S d-1 such that ξ • η = 0, and put

β τ := 1 - |ξ| 2 4τ 2 and η ± τ := β τ η ∓ ξ 2τ , ( 2.18) 
in such a way that |η ± τ | = 1. Then, the two following functions

f ± τ (x) := e i(τ ±i)η ± τ •x , x ∈ Ω, (2.19) 
fulfill the conditions of (2.17). As a matter of fact, it can be checked through direct computation from (2.18)

-(2.19), that ∆f ± τ = -λ ± τ |η ± τ | 2 f ± τ = -λ ± τ f ± τ in Ω, that f + τ (x)f - τ (x) = e -i τ +i τ ξ•x for all x ∈ Ω, and that f ± τ (x) e |η ± τ ||x| e |x| , x ∈ Ω. (2.20)
We notice for further use from (2.20) that the estimate

f ± τ L p (X) c * := 1 + |Ω| 1/2 + |∂Ω| 1/2 sup x∈Ω e |x| , ( 2.21) 
holds with X = Ω or X = ∂Ω, and with p = 2 or p = ∞. Here |Ω| (resp., |∂Ω|) denotes the diameter of Ω (resp., the length of ∂Ω).

2.2.2. Probing (2.1) with f ± τ . For j = 1, 2 and z ∈ C \ Sp(A q j ), we denote by u ± j,z the H 2 (Ω)solution to the BVP (2.1), where (q j , z, f ± τ ) is substituted for (q, λ, f ). The function u ± j,z is characterized by

(-∆ + q j -z)u ± j,z = 0 in Ω u ± j,z = f ± τ on ∂Ω, (2.22) hence v ± j,z := u ± j,z -f ± τ solves (-∆ + q j -z)v ± j,z = -(-∆ + q j -z)f ± τ in Ω v ± j,z = 0 on ∂Ω. (2.23) Moreover, since (-∆ + q j -z)f ± τ = (q j + λ ± τ -z)f ± τ , by the first line in (2.17), it follows from (2.23) that v ± j,z = -(A q j -z) -1 (q j + λ ± τ -z)f ± τ . (2.24)
Let us now examine the case where z = λ ± τ , which is permitted since λ ± τ belongs to the resolvent set of the self-adjoint operator A q j , as we have:

Im λ ± τ = ±2τ = 0.
(2.25)

We shall establish that the L 2 (Ω)-norm of v ± j,λ ± τ scales like τ -1 as τ becomes large, whereas the one of u ± j,λ ± τ is bounded uniformly in τ ∈ (1+|ξ| , +∞). To do that, we substitute λ ± τ for z in (2.24) and get that v

± j,λ ± τ = -(A q j -λ ± τ ) -1 q j f ± τ . Next, using that (A q j -λ ± τ ) -1 B(L 2 (Ω)) = dist -1 (λ ± τ , Sp(A q j )) (2τ ) -1
, according to (2.25), we obtain

v ± j,λ ± τ L 2 (Ω) q j L ∞ (Ω) f ± τ L 2 (Ω) 2τ M c * 2τ , j = 1, 2, (2.26) 
upon applying (2.13) and (2.21) with (X, p) = (Ω, 2). Now, bearing in mind that τ 1 and recalling that u ± j,z = v ± j,z + f ± τ , we derive from (2.26) that

u ± j,λ ± τ L 2 (Ω) M + 2 2 c * , j = 1, 2. (2.27) 2.2.3. Isozaki's formula. Proposition 2.4. For j = 1, 2, let q j ∈ L ∞ (Ω, R) satisfy (2.13).
Then, for all ξ ∈ R d , we have

Ω (q 1 (x) -q 2 (x))e -iξ•x dx = lim τ →+∞ S τ , (2.28)
where S τ is defined by (2.15)-(2.16).

Proof. For j = 1, 2, we consider the

H 2 (Ω)-solution u + j,λ + τ to the BVP (2.14) with f = f + τ : (-∆ + q j -λ + τ )u + j,λ + τ = 0 in Ω u + j,λ + τ = f + τ on ∂Ω.
(2.29)

Upon left-multiplying the first line of (2.29) by f - τ , integrating over Ω, and applying the Green formula, we obtain with the aid of (2.17) that

0 = Ω (-∆ + q j -λ + τ )u + j,λ + τ (x)f - τ (x)dx = f + τ , ∂ ν f - τ L 2 (∂Ω) -∂ ν u + j,λ + τ , f - τ L 2 (∂Ω) + Ω u + j,λ + τ (x)(-∆ + q j -λ - τ )f - τ (x)dx = f + τ , ∂ ν f - τ L 2 (∂Ω) -S j,τ + Ω q j (x)u + j,λ + τ (x)f - τ (x)dx, j = 1, 2.
Thus, we have

S j,τ = f + τ , ∂ ν f - τ L 2 (∂Ω) + Ω q j (x)u + j,λ + τ (x)f - τ (x)dx for j = 1, 2,

and consequently

S τ = S 1,τ -S 2,τ = Ω q 1 (x)u + 1,λ + τ (x) -q 2 (x)u + 2,λ + τ (x) f - τ (x)dx. (2.30) Next, taking into account that u + j,λ + τ = v + j,λ + τ + f + τ for j = 1, 2, we deduce from (2.30) that S τ - Ω (q 1 (x) -q 2 (x))f + τ (x)f - τ (x)dx = Ω (q 1 (x)v + 1,λ + τ (x) -q 2 (x)v + 2,λ + τ (x))f - τ (x)dx.
Therefore, by applying (2.21) with (X, p) = (Ω, 2) and (2.26), we get

S τ - Ω (q 1 (x) -q 2 (x))f + τ (x)f - τ (x)dx   2 j=1 q j L ∞ (Ω) v + j,λ + τ L 2 (Ω)   f - τ L 2 (Ω) M 2 c 2 * τ ,
which leads to: lim

τ →+∞ S τ - Ω (q 1 (x) -q 2 (x))f + τ (x)f - τ (x)dx = 0. (2.31)
Finally, as we have lim

τ →+∞ Ω (q 1 (x) -q 2 (x))f + τ (x)f - τ (x)dx = Ω (q 1 (x) -q 2 (x))e -iξ•x dx,
by the second line of (2.17), (2.21) with (X, p) = (Ω, +∞), (2.13), and the dominated convergence theorem, the desired result follows directly from this and from (2.31).

Armed with Proposition 2.4 we turn now to proving Theorems 1.5 and 1.6.

Proof of the incomplete Borg-Levinson theorem.

In this section we prove Theorem 1.5. In view of Proposition 2.4, we have to show that lim

τ →+∞ S τ = 0, ξ ∈ R d . (2.32)
Indeed, by combining the Isozaki formula (2.28) with (2.32), we get for every ξ ∈ R d that the Fourier transform (Fq)(ξ

) := 1 (2π) d/2 R d q(x)e -iξ•x dx (2.33)
of the following function

q(x) := q 1 (x) -q 2 (x) if x ∈ Ω 0 if x ∈ R d \ Ω, (2.34) reads (Fq)(ξ) = 1 (2π) d/2 Ω (q 1 (x) -q 2 (x))e -iξ•x dx = 1 (2π) d/2 lim τ →+∞ S τ = 0.
By the injectivity of Fourier transform F, this entails that q = 0 in R d , i.e. that q 1 = q 2 in Ω.

We turn now to establishing (2.32). To this purpose, we fix ξ ∈ R d , pick τ ∈ (|ξ|+1, +∞), and for j = 1, 2 and all z ∈ C \ Sp(A q j ), we consider the H 2 (Ω)-solution u + j,z to the BVP (2.1), where (q j , z, f + τ ) is substituted for (q, λ, f ), i.e.

(-∆ + q j -z)u + j,z = 0 in Ω u + j,z = f + τ on ∂Ω.
For

z j ∈ C \ Sp(A q j ), j = 1, 2, we put u + j,z 1 ,z 2 := u + j,z 1 -u + j,z 2 and recall from (2.16) that S τ = Λ 1,λ + τ f + τ , f - τ L 2 (∂Ω) -Λ 2,λ + τ f + τ , f - τ L 2 (∂Ω) = ∂ ν u + 1,λ + τ -∂ ν u + 2,λ + τ , f - τ L 2 (∂Ω)
. Thus, for every µ ∈ (-∞, -M ) we have

S τ = ∂ ν u + 1,λ + τ ,µ , f - τ L 2 (∂Ω) -∂ ν u + 2,λ + τ ,µ , f - τ L 2 (∂Ω) + ∂ ν u + 1,µ -∂ ν u + 2,µ , f - τ L 2 (∂Ω) . (2.35)
In view of (2.11), we have lim

µ→-∞ ∂ ν u + 1,µ -∂ ν u + 2,µ L 2 (∂Ω)
= 0 so we get

S τ = lim µ→-∞ ∂ ν u + 1,λ + τ ,µ -∂ ν u + 2,λ + τ ,µ , f - τ L 2 (∂Ω) , (2.36) upon sending µ to -∞ in (2.35).
Next, we introduce

κ τ,µ (t) := µ -λ + τ (λ + τ -t)(µ -t) , t ∈ R \ {µ}, (2.37) 
and set

ζ τ (ψ, ϕ) := f + τ , ψ L 2 (∂Ω) f - τ , ϕ L 2 (∂Ω) , ψ, ϕ ∈ L 2 (∂Ω). (2.38)
In light of Lemma 2.2, the scalar product in the right hand side of (2.36) decomposes as

∂ ν u + 1,λ + τ ,µ -∂ ν u + 2,λ + τ ,µ , f - τ L 2 (∂Ω) = +∞ n=1 (κ τ,µ (λ 1,n )ζ τ (ψ 1,n ) -κ τ,µ (λ 2,n )ζ τ (ψ 2,n )) , ( 2.39) 
where the notation ζ τ (ψ) is a shorthand for ζ τ (ψ, ψ). Further, as (λ 1,n , ψ 1,n ) = (λ 2,n , ψ 2,n ) for every n N , by assumption, (2.39) becomes

∂ ν u + 1,λ + τ ,µ -∂ ν u + 2,λ + τ ,µ , f - τ L 2 (∂Ω) = N -1 n=1 (κ τ,µ (λ 1,n )ζ τ (ψ 1,n ) -κ τ,µ (λ 2,n )ζ τ (ψ 2,n )) , (2.40)
the sum in the right hand side of the above equality being taken equal to zero when N = 1. Further, taking into account that

lim µ→-∞ κ τ,µ (λ j,n ) = 1/(λ + τ -λ j,n ), j = 1, 2, n = 1, . . . , N -1,
we deduce from (2.36) and (2.40), that

S τ = N -1 n=1 ζ τ (ψ 1,n ) λ + τ -λ 1,n - ζ τ (ψ 2,n ) λ + τ -λ 2,n . 
Next, bearing in mind that Im (λ + τ ) = 2τ , we see that |λ + τ -λ j,n | 2τ for j = 1, 2 and for all n = 1, . . . , N -1, and hence that

|S τ | N -1 n=1 (|ζ τ (ψ 1,n )| + |ζ τ (ψ 2,n )|) (2τ ) -1 f + τ L 2 (∂Ω) f - τ L 2 (∂Ω) N -1 n=1 ψ 1,n 2 L 2 (∂Ω) + ψ 2,n 2 L 2 (∂Ω) (2τ ) -1 ,
from (2.37)-(2.38). Now, applying (2.21) with X = ∂Ω and p = 2, we obtain that

|S τ | c 2 * N -1 n=1 ψ 1,n 2 L 2 (∂Ω) + ψ 2,n 2 L 2 (∂Ω) τ -1 ,
which immediately entails (2.32).

Proof of the asymptotic Borg-Levinson theorem.

In this section we prove Theorem 1.6. We stick with the notations of Section 2.3 and recall from (2.36) and (2.39) that

S τ = lim µ→-∞ ∂ ν u + 1,λ + τ ,µ -∂ ν u + 2,λ + τ ,µ , f - τ L 2 (∂Ω) = lim µ→-∞ +∞ n=1 (A n,τ,µ + B n,τ,µ ) , (2.41) 
where

A n,τ,µ := (κ τ,µ (λ 1,n ) -κ τ,µ (λ 2,n )) ζ τ (ψ 1,n ), (2.42) 
and 

B n,τ,µ := κ τ,µ (λ 2,n ) (ζ τ (ψ 1,n -ψ 2,n , ψ 1,n ) + ζ τ (ψ 2,n , ψ 1,n -ψ 2,n )) . ( 2 
(λ 1,n -λ 2,n )ζ τ (ψ 1,n ) (λ + τ -λ 1,n )(λ + τ -λ 2,n ) , ( 2 
= ζ τ (ψ 1,n -ψ 2,n , ψ 1,n ) + ζ τ (ψ 2,n , ψ 1,n -ψ 2,n ) λ + τ -λ 2,n . 
(2.45) Finally, the end f the proof is displayed in Section 2.4.3.

2.4.1.

Step 1: Proof of (2.44). Let us start by noticing that

|κ τ,µ (λ 1,n ) -κ τ,µ (λ 2,n )| 2 |λ 1,n -λ 2,n | max t∈[λ 1,n ,λ 2,n ] 1 |λ + τ -t| 2 + 1 |µ -t| 2 , n ∈ N.
This can be seen from the identity κ τ,µ (λ

1,n ) -κ τ,µ (λ 2,n ) = - λ 2,n λ 1,n κ τ,µ (t)dt, which yields |κ τ,µ (λ 1,n ) -κ τ,µ (λ 2,n )| |λ 1,n -λ 2,n | max t∈[λ 1,n ,λ 2,n ] |λ + τ -µ| |λ + τ -t| |µ -t| 2 + |λ + τ -µ| |λ + τ -t| 2 |µ -t| ,
and from the basic estimate |λ + τ -µ| |λ + τ -t| + |µ -t|, entailing:

|λ + τ -µ| |λ + τ -t| |µ -t| 2 + |λ + τ -µ| |λ + τ -t| 2 |µ -t| 1 |µ -t| 2 + 2 |λ + τ -t| |µ -t| + 1 |λ + τ -t| 2 2 |µ -t| 2 + 2 |λ + τ -t| 2 .
Denote by λ * ,n a real number between λ 1,n and λ 2,n , where the maximum of the function t → |λ + τ -t| -2 + |µ -t| -2 is achieved, in such a way that we have

|κ τ,µ (λ 1,n ) -κ τ,µ (λ 2,n )| 2 |λ 1,n -λ 2,n | 1 |λ + τ -λ * ,n | 2 + 1 |µ -λ * ,n | 2 , n ∈ N.
(2.46)

Next, bearing in mind that lim n→+∞ λ 1,n = +∞, we pick N 0 ∈ N so large, that

λ 1,N 0 λ + τ + 4M. (2.47) Since λ 1,n λ 1,N 0 for all n N 0 , we have |λ + τ -λ 1,n | λ 1,n -|λ + τ | 4M in this case, whence |λ + τ -λ * ,n | |λ + τ -λ 1,n | -|λ 1,n -λ * ,n | |λ + τ -λ 1,n | -2M .
Here, we used the basic inequality

|λ 1,n -λ * ,n | |λ 1,n -λ 2,n | and the estimate |λ 1,n -λ 2,n | q 1 -q 2 L ∞ (Ω) 2M, n ∈ N, (2.48) 
arising from the Min-Max principle and the operator identity A q 2 = A q 1 + q 2 -q 1 . Therefore, we have 

λ + τ -λ * ,n |λ + τ -λ 1,n | 2 , n N 0 . ( 2 
|µ -λ * ,n | |µ -λ 1,n | -|λ 1,n -λ * ,n | |µ -λ 1,n | 2 , n ∈ N.
Putting this together with (2.42), (2.46) and (2.49), we obtain that

|A n,τ,µ | 8δ 1 |ζ τ (ψ 1,n )| |λ + τ -λ 1,n | 2 + |ζ τ (ψ 1,n )| |µ -λ 1,n | 2 , n N 0 , (2.50)
where

δ 1 := sup n∈N |λ 1,n -λ 2,n | < ∞.
Further, in light of (2.38), we deduce from (2.3) that

+∞ n=1 |ζ τ (ψ 1,n )| | -λ 1,n | 2   +∞ n=1 f + τ , ψ 1,n L 2 (∂Ω) -λ 1,n 2   1/2   +∞ n=1 f - τ , ψ 1,n L 2 (∂Ω) -λ 1,n 2   1/2 u + 1, L 2 (Ω) u - 1, L 2 (Ω) , = λ + τ , µ.
Here, u ± 1, denotes the H 2 (Ω)-solution to (2.1) where ( , q 1 , f ± τ ) is substituted for (λ, q, f ). Thus, bearing in mind that λ + τ = λ - τ , we derive from (2.50) that

+∞ n=N 0 |A n,τ,µ | 8δ 1 u + 1,λ + τ L 2 (Ω) u - 1,λ - τ L 2 (Ω) + u + 1,µ L 2 (Ω) u - 1,µ L 2 (Ω)
.

With reference to (2.3), we assume upon possibly enlarging -µ, that u ± 1,µ L 2 (Ω) 

1, and obtain

+∞ n=N 0 |A n,τ,µ | 2δ 1 (M + 2) 2 c 2 * + 4 , ( 2 
λ 2,n λ 1,n -|λ 1,n -λ 2,n | λ 1,N 0 -2M λ + τ , whence |µ -λ 2,n | = λ 2,n -µ |λ + τ | -µ |λ + τ -µ|. Therefore, we get |κ τ,µ (λ 2,n )| 1 |λ + τ -λ 2,n |
, n N 0 , from (2.37). This and (2.38) entail 

|B n,τ,µ | ψ 1,n -ψ 2,n L 2 (∂Ω) f + τ L 2 (∂Ω) f - τ , ψ 1,n L 2 (∂Ω) λ + τ -λ 2,n + f - τ L 2 (∂Ω) f + τ , ψ 2,n L 2 (∂Ω) λ + τ -λ 2,n c * ψ 1,n -ψ 2,n L 2 (∂Ω) f - τ , ψ 1,n L 2 (∂Ω) λ + τ -λ 2,n + f + τ , ψ 2,n L 2 (∂Ω) λ + τ -λ 2,n , ( 2 
+ τ -λ 1,n | 2 q 1 -q 2 L ∞ (Ω)
for all n N 0 , and using the estimate

|λ + τ -λ 2,n | |λ + τ -λ 1,n | -q 1 -q 2 L ∞ (Ω)
arising from (2.48), we find that

λ + τ -λ 2,n |λ + τ -λ 1,n | 2 = |λ - τ -λ 1,n | 2 , n N 0 . (2.53)
Putting this together with (2.52), we get for every µ ∈ (-∞, -(1

+ 5M )], that +∞ n=N 0 |B n,τ,µ | 2c * ε 1      +∞ n=N 0 f - τ , ψ 1,n L 2 (∂Ω) λ - τ -λ 1,n 2   1/2 +   +∞ n=N 0 f + τ , ψ 2,n L 2 (∂Ω) λ + τ -λ 2,n 2   1/2    , with ε 1 := +∞ n=1 ψ 1,n -ψ 2,n 2 L 2 (∂Ω) 1/2
. This leads to 

+∞ n=N 0 |B n,τ,µ | 2c * ε 1 u - 1,λ - τ L 2 (Ω) + u + 2,λ + τ L 2 (Ω)
|A n,τ, * | c 2 * |λ 1,n -λ 2,n | ψ 1,n 2 L 2 (∂Ω) τ 2 and |B n,τ, * | c 2 * ψ 1,n L 2 (∂Ω) + ψ 2,n L 2 (∂Ω) ψ 1,n -ψ 2,n L 2 (∂Ω) τ .
Therefore, it holds true for all n ∈ N that lim 

|A n,τ, * | δ N +∞ n=N f - τ , ψ 1,n L 2 (∂Ω) λ + τ -λ 1,n f + τ , ψ 1,n L 2 (∂Ω) λ + τ -λ 2,n 2δ N   +∞ n=N f - τ , ψ 1,n L 2 (∂Ω) λ - τ -λ 1,n 2   1/2   +∞ n=N f + τ , ψ 1,n L 2 (∂Ω) λ + τ -λ 1,n 2   1/2
, N N 0 .

In the last line we used the Cauchy-Schwarz inequality, the estimate (2.53) and the identity

|λ - τ -λ 1,n | = |λ + τ -λ 1,n |.
Therefore, applying Lemma 2.1 and (2.27), we obtain for all N N 0 , that 

+∞ n=N |A n,τ, * | 2δ N u - 1,λ - τ L 2 (∂Ω) u + 1,λ + τ L 2 (∂Ω) (M + 2) 2 2 c 2 * δ N , which entails lim sup τ →+∞ +∞ n=N |A n,τ, * | (M + 2) 2 2 c 2 * sup n N |λ 1,n -λ 2,n | , N N 0 . ( 2 
+∞ n=N ψ 1,n -ψ 2,n L 2 (∂Ω) f + τ L 2 (∂Ω) f - τ , ψ 1,n L 2 (∂Ω) λ + τ -λ 2,n + f - τ L 2 (∂Ω) f + τ , ψ 2,n L 2 (∂Ω) λ + τ -λ 2,n ε N    f + τ L 2 (∂Ω)   +∞ n=N f - τ , ψ 1,n L 2 (∂Ω) λ + τ -λ 2,n 2   1/2 + f - τ L 2 (∂Ω)   +∞ n=N f + τ , ψ 2,n L 2 (∂Ω) λ + τ -λ 2,n 2   1/2    ,
where

ε N := +∞ n=N ψ 1,n -ψ 2,n 2 L 2 (∂Ω) 1/2
. Next, applying Lemma 2.1 we get for all N ∈ N

that +∞ n=N f + τ ,ψ 2,n L 2 (∂Ω) λ + τ -λ 2,n 2 u + 2,λ + τ 2 L 2 (Ω)
, and for every N N 0 that

+∞ n=N f - τ , ψ 1,n L 2 (∂Ω) λ + τ -λ 2,n 2 4 +∞ n=N f - τ , ψ 1,n L 2 (∂Ω) λ + τ -λ 1,n 2 4 u - 1,λ - τ 2 L 2 (Ω)
, by virtue of (2.53). Therefore, in light of (2.21) with (X, p) = (∂Ω, 2) and (2.27), we have

+∞ n=N |B n,τ, * | ε N 2 f + τ L 2 (∂Ω) u - 1,λ - τ L 2 (Ω) + f - τ L 2 (∂Ω) u + 2,λ + τ L 2 (Ω) 3(M + 2) 2 c 2 * ε N ,
provided N N 0 , and hence lim sup

τ →+∞ +∞ n=N B n,λ + τ , * 3(M + 2) 2 c 2 * +∞ n=N ψ 1,n -ψ 2,n 2 L 2 (∂Ω) 1/2
, N N 0 .

Putting this together with (2.55)-(2.56), we obtain lim sup

τ →+∞ |S τ | c   +∞ n=N ψ 1,n -ψ 2,n 2 L 2 (∂Ω) 1/2 + sup n N |λ 1,n -λ 2,n |   , N N 0 , (2.57)
where the constant c := (M + 2)(M + 5)c 2 * /2 is independent of N . Now, by sending N to +∞ in the right hand side of the above estimate, we get that lim sup τ →+∞ |S τ | = 0. Thus, we have lim τ →+∞ S τ = 0, by virtue of Proposition 2.4. This entails in the same way as in Section 2.3 that q 1 = q 2 in Ω, which terminates the proof of Theorem 1.6 2.5. The stability issue. The stability issue for the Borg-Levinson inverse problem was first examined by G. Alessandrini and J. Sylvester in [START_REF] Alessandrini | Stability for a multidimensional inverse spectral theorem[END_REF], who proved Hölder stable determination of q by BSD(q) (see also [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF]Theorem 2.31] for a reformulation of their result). We shall establish in this section, at the expense of stronger regularity on q, that it can be Hölder-stably determined by the asymptotic behavior of its BSD, provided q is known on the boundary ∂Ω.

Notations and stability inequality.

We stick with the notations of Section 2. In particular, given two real-valued potentials q j , j = 1, 2, we denote by {λ j,n , n ∈ N} the sequence of the eigenvalues of A q j , arranged in non-decreasing order (and repeated with the multiplicity), and we write ψ j,n instead of ∂ ν ϕ j,n for all n ∈ N, where {ϕ j,n , n ∈ N} is a L 2 (Ω)-orthonormal basis of eigenvectors of A q j , such that A q j ϕ j,n = λ j,n ϕ j,n . Theorem 2.5. For M ∈ (0, +∞) fixed, pick q 1 and q 2 in L ∞ (Ω, R) ∩ H 1 (Ω), such that

q j L ∞ (Ω) + q j H 1 (Ω) M, j = 1, 2,
(2.58) and q 1 = q 2 on ∂Ω.

(2.59) Assume moreover that

+∞ n=1 ψ 1,n -ψ 2,n 2 L 2 (∂Ω) < ∞.
(2.60)

Then, the following stability estimate

q 1 -q 2 L 2 (Ω) C lim sup n→+∞ |λ 1,n -λ 2,n | 2/(d+2) ,
holds for some positive constant C that depends only on Ω and M .

2.5.2. Proof of Theorem 2.5. Let us recall from (2.57) that for all N N 0 , we have lim sup

τ →+∞ |S τ | c   +∞ n=N ψ 1,n -ψ 2,n 2 L 2 (∂Ω) 1/2 + sup n N |λ 1,n -λ 2,n |   ,
for some positive constant c that is independent of N and ξ. Thus, in light of (2.60) we get upon sending N to infinity, that lim sup 

τ →+∞ |S τ | c lim sup n→∞ |λ 1,n -λ 2,n | . ( 2 
S τ = Ω q(x)e -x•ξ dx = (2π) d/2 q(ξ),
where q is the same as in (2.34) and q stands for the Fourier transform Fq of q, defined by (2.33). This, (2.61) and the basic estimate

|lim τ →+∞ S τ | lim sup τ →+∞ |S τ |, yield | q(ξ)| (2π) -d/2 c lim sup n→+∞ |λ 1,n -λ 2,n |, uniformly in ξ ∈ R d . Thus, we obtain q L ∞ (R d ) c lim sup n→+∞ |λ 1,n -λ 2,n | . (2.62)
upon substituting (2π) -d/2 c for c. On the other hand, we infer from (2.34) and the Plancherel theorem that

q 1 -q 2 2 L 2 (Ω) = q 2 L 2 (R d ) = q 2 L 2 (R d ) = R d | q(ξ)| 2 dξ. (2.63) For R ∈ (1, +∞) fixed, set B R := {ξ ∈ R d , |ξ| R} and notice from (2.63) that q 1 -q 2 2 L 2 (Ω) = B R | q(ξ)| 2 dξ + R d \B R | q(ξ)| 2 dξ. (2.64)
The first term in the right hand side of (2.64) is easily treated, as we have

B R | q(ξ)| 2 dξ cR d q 2 L ∞ (B R ) , (2.65)
for some positive constant c that is independent of R. Further, since q 1 -q 2 ∈ H 1 0 (Ω) from (2.59), we see that q ∈ H 1 (R d ). Thus we may write

R d \B R (1 + |ξ| 2 ) | q(ξ)| 2 dξ = q 2 H 1 (R d ) = q 1 -q 2 2 H 1 (Ω) q 1 H 1 (Ω) + q 2 H 1 (Ω) 2 4M 2 ,
from (2.58), and consequently

R d \B R | q(ξ)| 2 dξ R -2 R d \B R (1 + |ξ| 2 ) | q(ξ)| 2 dξ 4M 2 R -2 .
Putting this and (2.64)-(2.65) together, we find that

q 1 -q 2 2 L 2 (Ω) c R d q 2 L ∞ (B R ) + R -2 , (2.66)
upon possibly substituting max(c, 4M 2 ) for c. Set δ := lim sup n→+∞ |λ 1,n -λ 2,n |. We shall examine the two cases δ ∈ (0, 1) and δ ∈ [1, +∞) separately. In the first case we plug the estimate q L ∞ (B R ) cδ, arising from (2.62), in (2.66), choose R = δ -2/(d+2) , and get

q 1 -q 2 L 2 (Ω) Cδ 2/(d+2) , ( 2.67) 
with C := (c(1 + c 2 )) 1/2 . In the second case we have obviously

q 1 -q 2 L 2 (Ω) q 1 L 2 (Ω) + q 2 L 2 (Ω) 2M 2M δ 2/(d+2) , δ ∈ [1, +∞),
so the desired result follows from this and (2.67).

Application to parabolic inverse coefficient problems

Let T ∈ (0, +∞), let Ω be as in the preceding sections, that is Ω ⊂ R d , d 2, is a bounded domain with boundary ∂Ω ∈ C 1,1 . We consider the diffusion equation

     (∂ t -∆ + q)u = 0 in Q := Ω × (0, T ) u = f on Σ := ∂Ω × (0, T ) u(•, 0) = 0 in Ω, (3.1)
where q is a real-valued bounded potential and f fulfills the compatibility condition:

f (•, 0) = 0 on ∂Ω.
The inverse problem we examine in this section can be stated as follows. Given M ∈ (0, +∞) and two open subsets Γ in and Γ out of ∂Ω, determine

q ∈ Q M := {q ∈ L ∞ (Ω, R), q L ∞ (Ω) M }
by knowledge of the parabolic partial DN map at one fixed time T 0 ∈ (0, T ):

Λ q : f ∈ H in → ∂ ν (•, T 0 ) |Γout .
Here, we have set

H in := {f ∈ H , suppf ⊂ Γ in ×(0, T 0 )}, with H := C 1,α ([0, T ], H 3/2 (∂Ω)) for some α ∈ (0, 1]. Remark 3.1. Since suppf ⊂ (0, T 0 ) × Γ in for any f ∈ H in , then the compatibility condition f (•, 0) = 0 holds on ∂Ω.
Evidently, the inverse problem under investigation can be reformulated as whether the mapping q ∈ Q M → Λ q is injective.

3.1. Parabolic Dirichlet-to-Neumann map and identifiability. We start by recalling the following uniqueness and existence result (see e.g. [8, Section 3.5]). Proposition 3.2. For all q ∈ Q M and all f ∈ H , there exists a unique solution

u ∈ Z := C 1 ((0, T ], H 2 (Ω)) ∩ C 0 ([0, T ], L 2 (Ω)) to (3.1).
Thus, by continuity of the trace operator g

→ (∂ ν g) |Γout from H 2 (Ω) to H 1/2 (Γ out ), the map Λ q : H in → H 1/2 (Γ out ) f → ∂ ν u(•, T 0 ) |Γout is well-defined.
The main result if this section is as follows.

Theorem 3.3. Assume that Γ in ∪ Γ out = ∂Ω and that Γ in ∩ Γ out = ∅. For j = 1, 2, let q j ∈ Q M and put Λ j := Λ q j . Then, we have the implication:

(∀f ∈ H in , Λ 1 (f ) = Λ 2 (f )) =⇒ (q 1 = q 2 ).
Remark 3.4. This result was proved by B. Canuto and O. Kavian in [START_REF] Canuto | Determining coefficients in a class of heat equations via boundary measutements[END_REF]. Recently, in [START_REF] Kian | Global uniqueness in an inverse problem for time fractional diffusion equations[END_REF], it was extended to the case of time-fractional diffusion equations (∂ α t -∆ + q)u = 0 in Q, with α ∈ (0, 1) ∪ (1, 2), and where ∂ α t denotes the Caputo fractional derivative of order α. 3.2. Technical tools. The proof of Theorem 3.3 consists of two steps.

• The first one is to show that knowledge of Λ q uniquely determines8 BSD(q) :

(∀f ∈ H in , Λ 1 (f ) = Λ 2 (f )) =⇒ (BSD(q 1 ) = BSD(q 2 )) . ( 3.2) 
• The second step is to identify q through BSD(q), with the aid of Theorem 1.5.

In [START_REF] Katchalov | Equivalence of time-domain inverse problems and boundary spectral problems[END_REF], A. Katchalov, Y. Kurylev, M. Lassas and C. Mandache have established the equivalence between the full parabolic DN map and the BSD. Their statement is quite similar to the claim of the first step, except that this is the partial data Λ q (and not the full parabolic DN map) that is considered here and that we only seek determination of BSD(q) by Λ q (and not equivalence of these two data).

3.2.1. Some notations and useful properties. We stick with the notations of Section 2. That is to say that for j = 1, 2, we write BSD(q j ) = {(λ j,n , ψ j,n ), n ∈ N} with ψ j,n = ∂ ν ϕ j,n .

Weyl's law. It is well known (see e.g. [START_REF] Reed | Methods of Modern Mathematical Physics IV: Analysis of Operators[END_REF]Section XIII.15]) that there exist two constants n M ∈ N and c ∈ (1, +∞), both of them depending only on Ω and M , such that we have

c -1 n 2/d λ n cn 2/d , n n M .
This entails for all k ∈ N and all ε > 0, that the series

+∞ n=n M λ k n e -ελn c k +∞ n=n M n 2k/d e -c -1 εn 2/d < ∞. (3.3) 
Linear independence of the Neumann data. Given a non-empty open subset Γ of ∂Ω, the family {ψ n |Γ , n ∈ N} is, in general, not linearly independent in L 2 (Γ), but the normal derivatives of the eigenfunctions associated with one eigenvalue are linearly independent. More precisely, if m n denotes the geometric multiplicity of λ n , let {ϕ n,i , i = 1, . . . , m n } be an orthonormal basis of the L 2 (Ω)-subspace ker(A q -λ n ). Then, we have

dim{ψ n,i |Γ , i = 1, . . . , m n } = m n . ( 3.4) 
The proof of (3.4) essentially relies on the following unique continuation principle for local Cauchy data.

Lemma 3.5. For j, k = 1, . . . , d, let a j,k = a k,j ∈ W 1,∞ (Ω), b j ∈ L ∞ (Ω) and c ∈ L ∞ (Ω),
and suppose that the differential operator

P := - d j,k=1 a j,k (x)∂ 2 j,k + d j=1 b j (x)∂ j + c(x),
fulfills the ellipticity condition:

∃λ ∈ (0, +∞), j,k a j,k (x)ξ j ξ k λ |ξ| 2 , x ∈ Ω, ξ ∈ R d .
Then, for all u ∈ H 2 (Ω), we have:

(P u = 0, u |Γ = ∂ ν u |Γ = 0) =⇒ (u = 0 in Ω).
To show (3.4), we pick m n constants c i , i = 1, . . . , m n , such that mn i=1 c i ψ n,i = 0 on Γ.

Putting ϕ := mn i=1 c i ϕ n,i , we see that ϕ solves

     A q ϕ = λ n ϕ in Ω ϕ = 0 on Γ ∂ ν ϕ = mn i=1 c i ψ n,i = 0 on Γ.
Thus, upon applying Lemma 3.5 with a jk = δ jk and b j = 0 for j, k = 1, . . . , d, and c = q, we get tat ϕ = 0 in Ω. Here and below, δ denotes the Kronecker symbol, i.e.

δ jk := 1 if j = k 0 otherwise.
Next, since the family {ϕ n,i , i = 1, . . . , m n } is linearly independent in L 2 (Ω), we obtain that c i = 0 for all i = 1, . . . , m n . Therefore, the ψ n,i |Γ , i = 1, . . . , m n , are linearly independent in L 2 (Γ), which establishes (3.4).

We may now prove the: Lemma 3.6. Let Γ and Γ be two non-empty open subsets of ∂Ω. Then, the function

θ n (σ, σ ) = mn i=1 ψ n,i (σ)ψ n,i (σ ), (σ, σ ) ∈ Γ × Γ , is not identically zero in Γ × Γ .
Proof. We prove Lemma 3.6 by contradiction. If we assume that θ n (σ, σ ) = 0 for a.e. (σ, σ ) ∈ Γ × Γ , then we would have mn i=1

ψ n,i (σ)ψ n,i = 0 on Γ , and hence ψ n,i = 0 on Γ, i = 1, . . . , m n , from (3.4), which is in contradiction with (3.4). Therefore, θ n is not identically zero in Γ × Γ . 

(∀f ∈ H in , Λ 1 (f ) = Λ 2 (f )) =⇒ (λ 1,n = λ 2,n and ψ 1,n = ψ 2,n on Γ in ∪ Γ out , n ∈ N),
up to an appropriate choice of the eigenfunctions ϕ 2,n of A 2 .

Prior to proving Theorem 3.7, we establish a representation formula of the normal derivative of the solution to (3.1).

3.3.1.

A representation formula of the DN map. We start by expressing the solution to (3.1) in terms of the BSD. Lemma 3.8. For all f ∈ H , the solution u to (3.1), given by Proposition 3.2, reads

u(•, t) = n 1 u n (t)ϕ n in L 2 (Ω), t ∈ [0, T ], (3.5) 
where

u n (t) = - t 0 e -λns ∂Ω ψ n (σ)f (σ, t -s)dσ ds, n ∈ N.
Proof. Since {ϕ n , n ∈ N} is an orthonormal basis of L 2 (Ω) and u ∈ C 1 ([0, T ], L 2 (Ω)) by Proposition 3.2, we have

∀s ∈ [0, T ], u(•, s) = n∈N u n (s)ϕ n in L 2 (Ω), with s → u n (s) = Ω u(x, s)ϕ n (x)dx ∈ C 1 ([0, T ].
Moreover, for all s ∈ [0, T ], we get that

u n (s) = Ω ∂ t u(x, s)ϕ n (x)dx = - Ω (-∆ + q(x))u(x, t)ϕ n (x)dx = - Ω u(x, s)A q ϕ n (x)dx + ∂Ω ∂ ν u(σ, s)ϕ n (σ)dσ - ∂Ω u(σ, s)∂ ν ϕ n (σ)dσ,
upon applying the Green formula. As a consequence, we have

u n (s) = -λ n Ω u(x, s)ϕ n (x)dx - ∂Ω f (σ, s)ψ n (σ)dσ = -λ n u n (s) - ∂Ω f (σ, s)ψ n (σ)dσ,
and hence e -λns d ds (e λns u n (s)) = u n (s) + λ n u n (s) = -∂Ω f (σ, s)ψ n (σ)dσ. Thus, taking into account that u n (0) = 0, we get for every t ∈ [0, T ], that In general the series in (3.5) converges in L 2 (Ω) but the convergence can be upgraded to H 2 (Ω) by assuming that the function f ∈ H satisfies the following condition

∃ε ∈ (0, T 0 ), ∀(σ, t) ∈ ∂Ω × [T 0 -ε, T 0 ], f (σ, t) = 0, (3.6) 
for some fixed T 0 ∈ (0, T ). Indeed, in this case we deduce from the identity u(•, T

0 ) = f (•, T 0 ) = 0 on ∂Ω that u(•, T 0 ) ∈ H 2 (Ω) ∩ H 1 0 (Ω) = dom(A q ).
As a consequence we have

+∞ n=1 λ n |u n (T 0 )| 2 < ∞ and the series in (3.5) converges in H 2 (Ω) for t = T 0 : u(•, T 0 ) = +∞ n=1 u n (T 0 )ϕ n in H 2 (Ω).
Thus, by continuity of the trace operator g → (∂ ν g) |∂Ω from H 2 (Ω) to H 1/2 (∂Ω), we obtain that

∂ ν u(•, T 0 ) = +∞ n=1 u n (T 0 )ψ n = - +∞ n=1 T 0 ε e -λns ∂Ω f (σ, T 0 -s)ψ n (σ)dσ ds ψ n in H 1/2 (∂Ω). (3.7)
Having proved (3.7), we may now establish the: Lemma 3.9. For all f ∈ H fulfilling (3.6), it holds true that

Λ q f = - T 0 ε +∞ n=1 e -λns ∂Ω f (σ, T 0 -s)ψ n (σ)dσ ψ n ds in H 1/2 (∂Ω).
Proof. In light of (3.7), we may write that

u n (T 0 ) = - T 0 ε e -λns γ n (s)ds with γ n (s) := ∂Ω f (σ, T 0 -s)ψ n (σ)dσ, s ∈ [ε, T 0 ]. (3.8) As |γ n (s)| f (•, T 0 -s) L 2 (∂Ω) ψ n L 2 (∂Ω) , we get from (1.7) that +∞ n=n M e -λns |γ n (s)| ψ n H 1/2 (∂Ω) c 2 +∞ n=1 λ 2 n e -λnε f (•, T 0 -s) H 3/2 (∂Ω) , s ∈ [ε, T 0 ].
Since +∞ n=1 λ 2 n e -λnε < +∞ by (3.3), and s → f (•, T 0 -s) H 3/2 (∂Ω) ∈ L 1 (ε, T 0 ), the Lebesgue dominated convergence theorem then yields

+∞ n=1 T 0 ε e -λns γ n (s)ds ψ n = T 0 ε +∞ n=1 e -λns γ n (s)ψ n ds,
where the convergence of the series is considered in H 1/2 (∂Ω).

Armed with Lemma 3.9, we turn now to proving Theorem 3.7. Theorem 3.7. We split the proof into four steps.

Proof of

First step: Set up. For f ∈ H in obeying the condition (3.6), we apply Lemma 3.9 and get

Λ j (f ) = - T 0 ε +∞ n=1 e -λ j,n s Γ in ψ j,n (σ)f (σ, T 0 -s)dσ ψ j,n ds in H 1/2 (Γ out ), j = 1, 2.
This and the assumption Λ 1 (f ) = Λ 2 (f ) for all f ∈ H in , yield for a.e. σ ∈ Γ out that

T 0 ε +∞ n=1 Γ in e -λ 1,n s ψ 1,n (σ)ψ 1,n (σ ) -e -λ 2,n s ψ 2,n (σ)ψ 2,n (σ ) f (σ, T 0 -s)dσ ds = 0. (3.9)
Let g ∈ H 3/2 (∂Ω) be such that supp g ⊂ Γ in , fix ε ∈ (0, T 0 ) and pick h ∈ C 0 (0, T 0 -ε), the set of compactly supported continuous functions in (0, T 0 -ε). Then, the function

f (σ, t) := g(σ)h(t) if (σ, t) ∈ ∂Ω × (0, T 0 -ε) 0 if (σ, t) ∈ ∂Ω × [T 0 -ε, T 0 ),
lies in H in and verifies (3.6). Thus, by applying (3.9) with f expressed in this form, we find for a.e. σ ∈ Γ out that

T 0 ε +∞ n=1 Γ in e -λ 1,n s ψ 1,n (σ)ψ 1,n (σ ) -e -λ 2,n s ψ 2,n (σ)ψ 2,n (σ ) g(σ)dσ h(T 0 -s)ds = 0. Since h is arbitrary in C 0 (0, T 0 -ε), then s → h(T 0 -s) is arbitrary in C 0 (ε, T 0 ), so the above identity yields +∞ n=1 Γ in e -λ 1,n s ψ 1,n (σ)ψ 1,n (σ ) -e -λ 2,n s ψ 2,n (σ)ψ 2,n (σ ) g(σ)dσ = 0, s ∈ (ε, T 0 ), σ ∈ Γ out , ( 3 
.10) by density of C 0 (ε, T 0 ) in L 1 (ε, T 0 ). This follows from the fact that

s → +∞ n=1 e -λ j,n s Γ in ψ j,n (σ)g(σ)dσ ψ j,n ∈ L ∞ ((ε, T 0 ), H 1/2 (Γ out )), arising from the estimate +∞ n=n M e -λ j,n s Γ in ψ j,n (σ)g(σ)dσ ψ j,n H 1/2 (Γout) g L 2 (Γ in ) +∞ n=n M e -λ j,n ε ψ j,n 2 H 1/2 (∂Ω) c 2 g H 3/2 (∂Ω) +∞ n=n M λ 2 j,n e -λ j,n ε < ∞,
which is derived for all s ∈ (ε, T 0 ) from (1.7) and (3.3). Now, since ε is arbitrary in (0, T 0 ), we infer from (3.10) that

+∞ n=1 Γ in e -λ 1,n s ψ 1,n (σ)ψ 1,n (σ ) -e -λ 2,n s ψ 2,n (σ)ψ 2,n (σ ) g(σ)dσ = 0, σ ∈ Γ out , s ∈ (0, T 0 ). (3.11) 
Second step: Analytic continuation. For j = 1, 2, we set

F j (σ , s) = +∞ n=1 e -λ j,n s Γ in ψ j,n (σ)g(σ)dσ ψ j,n (σ ), (σ , s) ∈ Γ out × (0, +∞), (3.12) 
and we establish the: Lemma 3.10. The H 1/2 (Γ out )-function s → F j (•, s), j = 1, 2, is analytic in (0, +∞).

Proof. For K, a compact subset of (0, +∞), we set ε := inf{s, s ∈ K} > 0. Then, with reference to (1.7), we have

e -λ j,n s Γ in ψ j,n (σ)g(σ)dσ ψ j,n H 1/2 (∂Ω) e -λ j,n ε ψ j,n L 2 (Γ in ) g L 2 (Γ in ) ψ j,n H 1/2 (∂Ω) e -λ j,n ε ψ j,n 2 H 1/2 (∂Ω) g H 3/2 (∂Ω) c 2 g H e -λ j,n ε λ 2 j,n , s ∈ K, n ∈ N, for j = 1, 2,
where c is the constant appearing in (3.3). Therefore, the series +∞ n=1 e -λ j,n s Γ in ψ j,n (σ)g(σ)dσ ψ j,n converges in H 1/2 (∂Ω), uniformly for s ∈ K. As a consequence, the mapping s → F j (•, s) is analytic in K, since this is obviously the case for each function s → e -λ j,n s ( Γ in ψ j,n (σ)g(σ)dσ)ψ j,n with n ∈ N. Finally, K being arbitrary in (0, +∞), we end up getting from this that F j is analytic in (0, +∞). Now, putting (3.11)-(3.12) together, we infer from Lemma 3.10 that:

F 1 (•, s) = F 2 (•, s) in H 1/2 (Γ out ), s ∈ (0, +∞). (3.13)
Next, for each s ∈ (0, +∞) fixed, we have

+∞ n=n M λ j,n e -λ j,n s ψ j,n L 2 (Γ in ) c +∞ n=n M λ 2 j,n e -λ j,n s < ∞, by (1.7) and (3.3), whence σ → +∞ n=1 e -λ j,n s |ψ j,n (σ)| ψ j,n H 1/2 (Γout) ∈ L 2 (Γ in ). Therefore, it holds true that σ → +∞ n=1 e -λ j,n s |ψ j,n (σ)g(σ)| ψ j,n H 1/2 (Γout) ∈ L 1 (Γ in )
for all s ∈ (0, +∞). Thus, by applying the Lebesgue dominated convergence theorem, we get that for every s ∈ (0, +∞),

F j (•, s) = +∞ n=1 e -λ j,n s Γ in ψ j,n (σ)g(σ)dσ ψ j,n = Γ in +∞ n=1
e -λ j,n s ψ j,n (σ)ψ j,n g(σ)dσ, the convergence of the series being taken in the sense of H 1/2 (Γ out ). This and (3.13) yield for a.e. σ ∈ Γ out and all s ∈ (0, +∞), that

Γ in +∞ n=1 e -λ 1,n s ψ 1,n (σ)ψ 1,n (σ ) g(σ)dσ = Γ in +∞ n=1 e -λ 2,n s ψ 2,n (σ)ψ 2,n (σ ) g(σ)dσ. (3.14)
Moreover, since σ → +∞ n=1 e -λ j,n s ψ j,n (σ)ψ j,n ∈ L 2 (Γ in , H 1/2 (Γ out )), j = 1, 2, and since g is arbitrary in H 3/2 (Γ in ), we deduce from (3.14) and the density of H 3/2 (Γ in ) in L 2 (Γ in ), that for all s ∈ (0, +∞), the identity

+∞ n=1 e -λ 1,n s ψ 1,n (σ)ψ 1,n (σ ) = +∞ n=1 e -λ 2,n s ψ 2,n (σ)ψ 2,n (σ ), (3.15) 
holds in L 2 (Γ in , H 1/2 (Γ out )), and consequently in L 2 (Γ in × Γ out ).

Third step: Generalized Dirichlet series. Let {λ j,n , n ∈ N} be the sequence of strictly increasing eigenvalues of A j = A q j , j = 1, 2. For each n ∈ N, we denote by m j,n the geometric multiplicity9 of the eigenvalue λ j,n and we introduce a family {ϕ j,n,i , i = 1, . . . , m j,n } of eigenfunctions of A j , which satisfy

A j ϕ j,n,i = λ j,n ϕ j,n,i , i = 1, . . . , m j,n ,
and form a L 2 (Ω)-orthonormal basis of the eigenspace ker(A j -λ j,n ). Next, we put e -λ 2,n s θ 2,n (σ, σ ), s ∈ (0, +∞), (σ, σ ) ∈ Γ in × Γ out .

θ j,n (σ, σ ) := m j,n i=1 ψ j,n,i (σ)ψ j,n,i (σ ), (σ, σ ) ∈ Γ in × Γ out , ( 3 
(3.17)

Moreover, each function θ j,n , for j = 1, 2 and n ∈ N, being not identically zero in Γ in × Γ out according to Lemma 3.6, it follows from (3.17 with Ψ j,n := (ψ j,n,1 , . . . , ψ j,n,m j,n ) T , j = 1, 2, To this end, we notice that the set Γ n,1 := {σ ∈ Γ in ∩ Γ out , ψ 1,n,1 (σ) = 0} has positive Lebesgue measure, since ψ 1,n,1 is not identically zero in Γ in ∩ Γ out . Similarly, the functions ψ 1,n,1 and ψ 1,n,2 being linearly independent in L 2 (Γ in ∩ Γ out ), the Lebesgue measure of the set Γ n,2 := (σ 1 , σ 2 ) ∈ (Γ in ∩ Γ out ) 2 , det ψ 1,n,1 (σ 1 ) ψ 1,n,2 (σ 1 ) ψ 1,n,1 (σ 2 ) ψ 1,n,2 (σ 2 ) = 0 is positive 10 . Thus, by induction on i, we can build a subset Γ n,m 1,n ⊂ (Γ in ∩ Γ out ) m 1,n , with positive Lebesgue measure, such that following matrix 10 Otherwise, we would have ψ 1,n,2 (σ 1 )ψ 1,n,1 -ψ 1,n,1 (σ 1 )ψ 1,n,2 = 0 in L 2 (Γ in ∩Γ out ) for a.e. σ 1 ∈ Γ in ∩Γ out , and hence ψ 1,n,1 (σ 1 ) = 0 since ψ 1,n,1 and ψ 1,n,2 are linearly independent in L 2 (Γ), which is a contradiction with the fact that Γ n,1 has non-zero Lebesgue measure.

Next, with reference to (3.18), we get upon applying (3.16) with σ = σ j for j = 1, . . . , m 1,n , that This can be equivalently rewritten as P 1,n (σ)Ψ 1,n (σ) = P 2,n (σ)Ψ 2,n (σ) for a.e. σ ∈ Γ in , where P 2,n (σ) is the following m 1,n × m 2,n matrix: Therefore, putting M n (σ) := P 1,n (σ) -1 P 2,n (σ) for a.e. σ ∈ Γ n,m 1,n , we get that Ψ 1,n (σ) = M n (σ)Ψ 2,n (σ) for a.e. σ ∈ Γ in . Further, taking σ = σ j in (3.18), we get in the same way as before that Ψ 1,n (σ ) = M n (σ)Ψ 2,n (σ ) for a.e. σ ∈ Γ out . As a consequence, we have

Ψ 1,n (σ) = M n (σ)Ψ 2,n (σ), σ ∈ Γ in ∪ Γ out , σ ∈ Γ n,m 1,n . (3.20) 
Since dim{ψ j,n,i , i = 1, . . . , m j,n } = m j,n in L 2 (Γ in ∪ Γ out ), j = 1, 2, we infer from (3.20) that m 1,n m 2,n . Moreover, as j = 1 and j = 2 play symmetric roles here, we have m 2,n m 1,n , so we end up getting that m 1,n = m 2,n . It remains to show that M n (σ) ∈ O mn (R) for a.e. σ ∈ Γ n,mn . This can be done by plugging each of the two following equalities Ψ 1,n (σ) = M n (σ)Ψ 2,n (σ) for a.e. σ ∈ Γ in and Ψ 1,n (σ ) = M n (σ)Ψ 2,n (σ ) for a.e. σ ∈ Γ out , in (3.17). We obtain that M n (σ)ψ 2,n (σ) • M n (σ)ψ 2,n (σ ) = ψ 2,n (σ)•ψ 2,n (σ ), where the symbol • stands for the Euclidian scalar product in R mn . Therefore, we have (M n (σ) T M n (σ)-I mn )ψ 2,n (σ)•ψ 2,n (σ ) = 0 for a.e. (σ, σ ) ∈ Γ in × Γ out , where I mn denotes the identity matrix of size m n . The family {ψ 2,n,i , i = 1, . . . , m n }, being linearly independent in L 2 (Γ out ), this entails that (M n (σ) T M n (σ) -I mn )ψ 2,n (σ) = 0 for a.e. σ ∈ Γ in . Similarly, using that {ψ 2,n,i , i = 1, . . . , m n } is linearly independent in L 2 (Γ in ), we get that M n (σ) T M n (σ) -I mn = 0, which establishes that M n (σ) ∈ O mn (R). b) We turn now to showing that ψ 1,n,i = ψ 2,n,i on ∂Ω for all i ∈ {1, . . . , m n }, up to some appropriate choice of the eigenfunctions ϕ 2,n,i . To do that, we write ϕ 2,n = (ϕ 2,n,1 , . . . , ϕ 2,n,mn ) T and we consider ϕ 2,n = (ϕ 2,n,1 , . . . , ϕ 2,n,mn ) T := M n (σ) T ϕ 2,n , where σ is arbitrary in Γ n,mn .

Writing M n instead of M n (σ) in the sequel, we have for all (i, k) ∈ {1, . . . , m n } 2 that ϕ 2,n,i , ϕ 

  .43) We split the proof into three steps. The first one, presented in Section 2.4.1, is to show that lim µ→-∞ +∞ n=1 A n,τ,µ = +∞ n=1 A n,τ, * , where A n,τ, * :=

  .49) Similarly, taking µ ∈ (-∞, -(1 + 5M )), we have |µ -λ 1,n | -µ -M 4M . Since |λ 1,n -λ * ,n | 2M , by (2.48), we get that |λ 1,n -λ * ,n | |µ -λ 1,n | /2, and hence

3. 3 .Theorem 3 . 7 .

 337 Proof of the parabolic uniqueness result. In this section we prove Theorem 3.3. In light of Theorem 1.5, it is enough to show (3.2). More precisely, we shall establish the: Under the assumptions of Theorem 3.3, we have

e

  λnt u n (t) = -t 0 e λns ∂Ω f (σ, t)ψ n (σ)dσ ds, upon integrating over [0, t].

  ) and the standard theory of Dirichlet series, that λ 1,n = λ 2,n andθ 1,n = θ 2,n on Γ in × Γ out , n ∈ N. (3.18)Fourth step: End of the proof. We are left with the task of showing that m 1,n = m 2,n for all n ∈ N, and that the eigenfunctions ϕ 2,n can be chosen in such a way thatψ 1,n,i = ψ 2,n,i on Γ in ∪ Γ out , i = 1, . . . , m n ,where we have set m j,n := m 1,n = m 2,n . Prior to doing so, we recall that for all non empty open subset Γ ⊂ ∂Ω, the dimension of the subspace spanned by {(ψ j,n,i) |Γ , i = 1, . . . , m j,n } in L 2 (Γ), is equal to m j,n , i.e. that m j,n = dim{ψ j,n,i , i = 1, . . . , m j,n }, j = 1, 2.a) We start by establishing that m 1,n = m 2,n = m n and that there exists M n ∈ O mn (R), the set of orthogonal matrices of size m n , such that we have Ψ 2,n = M n Ψ 1,n , (3.19)

P 1

 1 n,1 (σ 1 ) . . . ψ 1,n,m 1,n (σ 1 ) . . . . . . ψ 1,n,1 (σ m 1,n ) . . . ψ 1,n,m 1,n (σ m 1,n ) a.e. σ := (σ 1 , . . . , σ m 1,n ) ∈ Γ n,m 1,n .

  n,i (σ j )ψ 1,n,i (σ) = m 2,n i=1 ψ 2,n,i (σ j )ψ 2,n,i (σ), σ ∈ Γ in , σ = (σ 1 , . . . , σ m 1,n ) ∈ Γ n,m 1,n .

P 2

 2 n,1 (σ 1 ) . . . ψ 2,n,m 2,n (σ 1 ) . . . . . .ψ 2,n,1 (σ m 1,n ) . . . ψ 2,n,m 2,n (σ m 1,n )

  .51) with the aid of (2.27). Now, since lim µ→-∞ A n,τ,µ = A n,τ, * for all n ∈ N, we deduce (2.44) from this and (2.51) by invoking the Lebesgue dominated convergence theorem.

2.4.2.

Step 2: Proof of (2.45). For all n N 0 , we infer from (2.47)-(2.48) that

  .16) where ψ j,n,i := ∂ ν ϕ j,n,i . For every fixed s ∈ (0, +∞), it is clear from (1.7) and (3.3) that both series appearing in(3.15) are absolutely convergent in L 2 (Γ in × Γ out ), so we infer from (3.16) that

	+∞	+∞
	e -λ 1,n s θ 1,n (σ, σ ) =	
	n=1	n=1

  2,n,k L 2 (Ω) =

	mn
	(M T
	r,s=1

n ) ir (M T n ) ks ϕ 2,n,r , ϕ 2,n,s L 2 (Ω) = mn r,s=1 (M n ) ri (M n ) sk δ rs ,

Such as operators in the divergence form, see e.g. B. Canuto and O. Kavian's paper[START_REF] Canuto | Determining Two Coefficients in Elliptic Operators via Boundary Spectral Data: a Uniqueness Result, Bolletino Unione Mat[END_REF], where two unknown coefficients out of three are simultaneously identified by the BSD, or magnetic Schrödinger operators, see e.g. Y. Kian's article[START_REF] Kian | A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data[END_REF].

[START_REF] Canuto | Determining coefficients in a class of heat equations via boundary measutements[END_REF] The strategy that is used in this paper is quite the opposite of the one we apply in the last section of this text for solving parabolic inverse coefficient problems by means of the Borg-Levinson theorem, in the sense that the authors rather derive their spectral stability result from a hyperbolic stability

inequality.[START_REF] Canuto | Determining Two Coefficients in Elliptic Operators via Boundary Spectral Data: a Uniqueness Result, Bolletino Unione Mat[END_REF] A strong solution to (2.1) is a solution in H 2 (Ω), which satisfies the equation a. e. in Ω.

Or, equivalently, the BSD associated with the Dirichlet Laplacian A q , defined by (1.2).

That is to say that m j,n is the dimension of the linear subspace ker(A j -λ j,n ) in L 2 (Ω).
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where δ denotes the Kronecker symbol 11 . Thus it holds true for all (i, k

Moreover, for all i ∈ {1, . . . , m n } and for a.e. σ ∈ ∂Ω, we get upon writing ν(σ) = (ν 1 (σ), . . . , ν d (σ)) T , that

Therefore, we have Ψ 2,n = M T n Ψ 2,n and hence Ψ 2,n = Ψ 1,n on ∂Ω, by virtue of (3.19). This terminates the proof of Theorem 3.7.